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Abstract Integral abutment bridges (IAB) are experiencing increasing diffusion in the short
to mid-range lengths, where they offer some advantages over traditional girder bridges with
non-monolithic connection at the abutments. One challenging problem with their analysis and
design is that consideration of the interaction between foundation soil, structure and backfill
is unavoidable, also for the deck design. Further, the end of the construction is only one
of the conditions that need to be verified during design. Cyclic deformations, such as those
occurring during ground shaking, typically lead to an increase in stresses in the abutments and
connections, due to progressive compaction (ratcheting) of the backfill soil. This problem
is magnified when the bridge is comprised between two embankments, whose response
may amplify the input motion and drive the deformation of the bridge. Performance-based
design aims at superseding current design procedures by explicitly checking that the target
performances set out are achieved, and not overly exceeded. Such a design paradigm naturally
calls, on the one hand, for improved accuracy in response determination and more refined
analyses, and, on the other, for taking into account the uncertainties entering into the problem
by means of an explicitly probabilistic approach. With this objective in mind, the paper
presents an inelastic dynamic model for the seismic analysis and design of IABs. The model,
that features a balanced compromise between the setup and evaluation effort on one hand, and
accuracy on the other, has been developed for implementation in typical commercial analysis
packages. It builds on 1D site-response analysis and on inelastic Winkler-like modeling, to
reproduce the main physical aspects of the seismic response of IABs. One example application
to a highway overpass in Italy illustrates the model and the relevance of a fully probabilistic
approach to performance-based design. The application offers also important insight into the
choice of an efficient intensity measure for this type of structure.
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1 Introduction

The paper focuses on seismic design of a particular structural typology that has gained
increased interest worldwide, i.e. the integral abutment bridge (IAB). As it is well known,
the advantage of this typology consists in the elimination of joints and bearing devices at
the abutments by realizing a monolithic connection between deck and abutment wall. This
translates into both lower construction and maintenance costs.

The country with the largest number of IABs is by far the USA, where the typology has
been in widespread use for more than twenty years (Burke 1990), and it is reported that
more than 13,000 such bridges (Maruri and Petro 2005) where built already in 2005. A
relatively recent overview of US practice is provided by (Wasserman 2007), who dates the
first realizations in some states (Ohio, South Dakota and Oregon) to as far back as in the
1930s and ‘40s. Moving to Europe, it is recognized that this typology has been employed
in Switzerland for more than half a century now, since it was the mainstream choice for the
bridges on the highway network built after WWII (Kaufmann 2011). An overview of the
different European practices is given in White et al. (2010). White (2007) also previously
compared European with US practice. IABs have been considered and realized in many
other countries, e.g. in Japan (Nakamura et al. 2002; Akiyama and Kajikawa 2008), and in
Australia (Connal 2004).

In view of the large number of realizations worldwide, one would expect that a consol-
idated design practice and guidelines would be available. On the contrary, indications are
missing even in modern codes, in particular for the specific aspect of seismic design. This
can be attributed to a good extent to the fact that, from an analysis and design point of view,
the structural continuity existing between deck, abutment wall and supporting piles makes
essential full consideration of soil–structure interaction (SSI) phenomena, an area which still
requires specialized expertise and is not satisfactorily amenable of simplified procedures to
be used in practice.

Consideration of SSI is essential for both seismic action and service loads. With respect
the latter, one aspect peculiar to this typology is the fact that independently of the presence
of loads, the cyclic thermal excursions of the deck (England et al. 2000) occurring during
the entire service life lead to a progressive build-up of earth pressures behind the abutments,
which may reach very large levels at the occurrence of seismic actions. Furthermore, the
relevance of SSI becomes dominant in case of elevated bridges, e.g., overpasses, due to the
presence of the embankments at their ends. These latter are in fact additional components
of the whole system, having a seismic response of their own that in many cases drives
the response of the bridge itself. Notably, the fact that embankment contribution is entirely
neglected even in modern codes, such as Caltrans (1999) and ATC (1996a,b), confirms the
lack of established methods (Kotsoglou and Pantazopoulou 2007).

Nonetheless, papers on the analysis of these bridges are relatively abundant in the technical
literature. A review of the methods, however, reveals the actual scarcity of comprehensive
approaches, contrasting with the larger number of papers dealing with specific, partial aspects
of the whole problem.

Spyrakos and Loannidis (2003) concentrate on the longitudinal response of a prestressed
concrete IAB, carrying out modal analysis on an equivalent linear model (iterative) excited
only at the base, with the aim of assessing the contribution of SSI to the response. Dicleli
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(2005) also considers the longitudinal response of IABs and focuses on the effect of cyclic
thermal movements. He employs pushover analysis on a model with nonlinear soil springs
and piles and, based on parametric analyses, derives design equations for the maximum
allowable length as a function of abutment strength. The maximum deck length is a debated
issue, see e.g. (Baptiste et al. 2011). In practice, very different lengths are encountered in past
realizations: Wasserman (2007) reports limitations in the US varying from state to state, but
indications tend to agree on a limit between 400 and 500 m. Pekcan et al. (2010) focus on the
design of the deck-abutment connection in steel IABs, employing refined nonlinear FE mod-
els of the connection to derive the flexibility of the connection spring used in a global 3D frame
model of the bridge. They also consider the bridge excited at its base neglecting embankment
amplification. Similarly, Vashegani-Farahani et al. (2010) assess the longitudinal response
of a composite steel-concrete deck IAB by means of inelastic time-history analysis of a 3D
frame model. They employ nonlinear interaction springs that connect the structure with a
fixed support (again, no embankment amplification), and evaluate the influence of the backfill
compaction level. A step towards consideration of the motion amplification is that presented
in Dicleli and Erhan (2011), where a fairly comprehensive 3D model of an IAB is employed
in inelastic time-history analysis. Notably, however, the abutment wall is connected with an
assembly of springs to a rigid support. Kotsoglou and Pantazopoulou (2007, 2009, 2010)
highlight the importance of the embankment dynamic properties in the response of IABs,
focusing on the transverse response. They employ refined 3D finite element models and
compare them with shear wedges to derive the dynamic impedance properties of embank-
ments, which they then use in a IAB model according to a sub-structuring approach. Zhang
and Makris (2002a,b) similarly consider the dynamic response of embankments and employ
shear wedge and complete 3D finite element models for the purpose.

The above brief overview shows that there is still room for improvement in modelling
of these structures, especially with the aim of devising models that capture the fundamental
physical aspects and response characteristics of IABs, without resorting to tools that can-
not be used in practice for design, and can be regarded as high-ended even at the research
level (Elgamal et al. 2008). Further, even though in some cases parametric studies have
been conducted on the effect of some system parameters, proper consideration of the uncer-
tainty affecting both system properties and the seismic excitation is not present in the cited
works. This, on the other hand, is an essential aspect of a thorough implementation of the
performance-based design (PBD) paradigm.

It is observed, however, that even current formulations for design against seismic action,
e.g. (CEN 2004; CEN 2005 IBC 2012), though they are well conceived and tested and claim
to be PBD procedures, fall short of providing a measure of actual compliance with the stated
performance objectives. In view of the several unavoidable sources of uncertainty affecting
the problem, such a measure should be properly given in probabilistic terms.

The last decade has seen reliability methods for seismic design become effective tools
that can be used in practice with an acceptable amount of additional effort and competence
(Cornell 1996; Cornell and Krawinkler 2000; Krawinkler and Miranda 2004).

Based on the previous discussion, this paper presents a fully probabilistic PBD approach
for seismic design of IABs. The approach results in the mean annual frequency (MAF) of
exceedance λ of any response quantity of interest (stress resultants for strength design, cumu-
lative displacements and deformations), from which an appropriate design value, character-
ized by an accepted MAF of exceedance, can be chosen. The approach employs inelastic
response history analysis (IRHA) for a number of recorded ground motions. Its practical
applicability rests on the use of a simplified treatment of the nonlinear dynamic behavior of
the soil–structure system, previously developed by the authors for the analysis of diaphragm
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walls (Franchin et al. 2007), and adapted to the IAB case. With respect to the previously
cited works, the method accounts for uncertainty in both system properties and seismic
action (intensity, frequency content, duration), and the model can describe the input motion
amplification through both the foundation soil and the embankment, as well as the inelastic
interaction between soil-backfill and structure, resulting in progressive accumulation of pres-
sures, displacements and internal forces. Section 2 describes the model, Sect. 3 introduces the
probabilistic PBD procedure, while Sect. 4 illustrates their application to a highway overpass
in Italy.

2 Model

Figure 1 shows a single-span integral-abutment highway overpass (left) and its numerical
model (right). Three main elements can be identified in the system: (a) the structure, com-
posed of the deck and the abutments, (b) the soil close to the structure, whose response is
influenced by the interaction with the structure, (c) soil outside this region, whose motion
can be considered undisturbed by the structure (free-field). In particular, element (b) consists
of the portions of the natural foundation soil in which the piles are embedded, and of the
embankment on top of it, in direct contact with the abutment wall.

In seismic conditions the structure is deformed by the motion of the foundation soil and of
the embankment on top of it. As it has been already noted, the vibration of the embankment
may well drive the motion of a short bridge and completely dominate its response.

In the assumption that the seismic motion consists of vertically propagating shear waves,
the proposed model is based on the non-linear shear-beam approximation for the response of
the ground layers and of the embankments on both sides of the bridge. In particular, the shear-
beam on each side of the bridge is comprised of two parts: the lower one, corresponding to
the natural foundation soil, has a constant cross-section, while the upper one, corresponding
to the embankment, is tapered towards to the crest.

The shear-beam motion is input to the structure (piles and abutment wall) through springs
for which the well-known one-dimensional nonlinear Winkler approximation is adopted. The
latter approximation has been subjected to a limited validation versus the results of inelastic
2D finite element analysis with reference to diaphragm walls (Franchin et al. 2007). The
results therein show how the model is capable of providing reasonably good predictions for
both maximum and residual bending moments, as well as for cumulative displacements.

The elements of the model are schematically depicted in Fig. 2, which shows also the
required input parameters. The denomination of the employed finite elements typologies
follows that of the commercial analysis package SAP2000, version 14.1 (CSI 2009), used to

Fig. 1 Typological highway overpass on the Italian A13 highway (left) and corresponding analysis model
(right, only structural portion shown)
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Fig. 2 Model components and parameters

implement the model for the application in Sect. 4. The seismic motion is input at the base,
as explained in Sect. 2.5 and shown in Fig. 4.

2.1 Foundation soil

Two twin 1D soil columns on both sides of the bridge extend from the bedrock to the deck
level. These columns are those that are commonly used in site response analysis. The state of
practice of one-dimensional site response analysis is mostly based on the equivalent lineariza-
tion approach in the frequency domain introduced in Schnabel et al. (1972), implemented in
codes such as SHAKE or EERA. The limit of this approach in relation to the analyzed system
and to performance-based design, however, is that it cannot predict residual displacements.
This is the reason for adopting time-domain inelastic analysis. Hysteretic constitutive laws for
soils are commonly specified in terms of a monotonic backbone, either hyperbolic or derived
from modulus degradation curves, to which a predefined unload-reload rule is attached, e.g.
the Masing criterion (Kramer 1996). This basic inelastic model, however, is known to be
capable of reproducing experimentally derived secant stiffness but also to overestimate the
equivalent damping at higher strain levels. More refined models that reproduce both stiffness
and damping correctly are available and implemented in codes such as Cyclic-1D (Elgamal
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et al. 1998), primarily employed for liquefaction-susceptible soil profiles, and NL-DYAS
(Gerolymos and Gazetas 2005; Drosos et al. 2012). The former employs a multi-surface
plasticity model, while the latter employs an enhanced variant of the well-known Bouc-
Wen (BW) model (Bouc 1971; Wen 1976), denominated BWGG. Both can model cyclic
degradation and even cyclic mobility in saturated coarse-grained soils. They yield basically
equivalent results, as shown in Drosos et al. (2012).

The approach followed herein is the same as in Franchin et al. (2007) and employs a sim-
plified variant of the Bouc-Wen model, which is that implemented in the adopted commercial
code Sap2000. In particular, the soil columns are modeled with NLLink elements (here used
as 1D shear springs) to which the Wen plasticity law is assigned to describe the shear force-
deformation response. The Wen law implemented in Sap2000 is the simple symmetric one
without pinching, and stiffness or strength degradation, governed by the equations:

f = αku + (1 − α) fy z (1)

ż =
{

u̇
(
1 − �z�n

)
if zu̇ > 0

u̇ otherwise
(2)

where f is the force, u the displacement and z is an internal variable whose evolution is
governed by the differential equation (2) and determines the shape of the hysteresis loop. The
model has four parameters: the initial stiffness k, the hardening ratio α, the yield displacement
uy and the exponent n which regulates the sharpness of the transition between the elastic and
the post-elastic behavior. Equation (2) is obtained from the complete equation of the basic
BW model:

uy ż = u̇
[
1 − |z|n (β + γ sgn (zu̇))

]
(3)

by setting β = γ = 0.5 which corresponds to a Masing criterion for the unload-reload
curve (Drosos et al. 2012). The corresponding approximation, which is due to the present
capabilities of the employed analysis code, is recognized.

Soil deposits exhibit different variations of strength and stiffness (which are closely
related) with the effective confinement pressure σ ′

0 = σ ′
0 (z), depending on their plastic-

ity index PI. In particular, coarse-grained soil with low PIs have both stiffness and strength
generally increasing with depth, while fine-grained soils with high PIs tend to have constant
stiffness and strength (Ishibashi and Zhang 1993). Accordingly, the model allows depth-
dependent values to be assigned to k and fy according to the following expressions:

k (z) = G0 (z) A

Δz
(4)

fy (z) = Aτy (z) (5)

where G0 is the initial shear modulus of the soil or embankment material, A is the column
cross-section area, Δz is the layer thickness and τy the shear strength of the soil material. The
initial shear modulus can be derived either from correlations with SPT and CPT data, or using
the relation G0 (z) = ρ (z) V 2

s (z) with the mass density ρ and the shear wave velocity Vs .
The shear strength can be obtained again from correlation with in-situ tests or, for example,
as τy (z) = G0 (z) γy (z) where γy (z) is the depth-dependent yield shear strain of the soil
material. The latter parameter is tabulated as a function of σ ′

0 and PI in Drosos et al. (2012).
Herein the simple Mohr-Coulomb model has been used and hence:

τy (z) = c (z) + σ ′
0 (z) tan φ (z) (6)

where c and φ are the cohesion and internal friction angle of the soil material.
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The other parameters of the Wen model have been set constant and equal to n = 2
(corresponding to a smooth, rounded transition between elastic and plastic branches) and α

= 0 (no hardening). These are both within the typical ranges of these parameters indicated
in Drosos et al. (2012): n between 0 and 5, β between 0.4 and 0.6 and α between 0 and 2 %.
Finally, each layer has mass m = ρ A Δz.

2.2 Embankments

It is noted that for the portion of the column describing the foundation soil (z < 0), the area
A is constant and chosen to be “large enough”, so that its motion is not influenced by the
interaction with the enclosed bridge or the embankment response. The portion of the column
above ground (0 < z < H), corresponding to the embankment (see Fig. 2), has a trapezoidal
transverse shape and hence the 1D beam elements have decreasing cross-section area toward
the top, according to the shear wedge model introduced by Wilson and Tan (1990a,b). The
dimension of the embankment elements parallel to the X axis (longitudinal axis of the bridge,
see Fig. 2) has been set equal to:

Lc ∼= 0.7
√

SBc H (7)

where Bc and Bb are the crest and base width of the embankment, and S = 2H/(Bb − Bc) is
its slope. The above expression is the result of a study on the use of lower-order models for the
determination of the dynamic response of earth embankments (Zhang and Makris 2002a,b).
The study has compared dynamic properties of a 3D model of a long embankment (both
prismatic and sloping along the longitudinal axis X) with that of a 1D tapered shear beam
and found that the above length yields frequency transfer functions, in both the longitudinal
and transverse directions, that exhibit a quite good match with those obtained with the full
model.

2.3 Interface and structural elements

The portion of soil in direct contact with the structure is denominated “interface” and consists
of four sets of springs modeling, from left to right (see Fig. 2): (a) the contact between the left
column and the left abutment/piles, (b) the contact between the piles of the left abutment and
the soil enclosed within the abutments, (c) and (d) the analogous contacts on the right side. It
should be noted that the springs (b) and (c) are connected directly to the opposite column (e.g.
a spring goes from joint 205 to 405, and a spring goes from joint 305 to 105). This, coupled
with a kinematic constraint that forces the two columns to have the same displacement at
each level z, amounts to saying that these springs work on the relative displacement of the
piles with respect to the free-field motion, and neglecting in approximation the difference in
motion between the free-field and the soil enclosed by the two pile diaphragms.

NLLink elements are used also for these interaction springs. These elements can be
assigned independent 1D constitutive laws on the six degrees of freedom. A MultiLinearPlas-
tic axial force-deformation law is assigned to the horizontal degree of freedom, while a Lin-
ear shear force-deformation law is assigned to the vertical degree of freedom. The latter is
employed to model the distributed vertical load-transfer between piles and surrounding soil,
and the corresponding stiffness is equal to:

kZ (z) = n p0.6E (z)
[
1 + 0.5

√
a0

]
(8)

where n p is the number of piles, E(z) = 2(1 + ν)G0(z) is the Young modulus of soil
(ν is its Poisson ratio, set equal to 0.3 in the application) and a0 = ωd/Vs(z) is the non-

123



946 Bull Earthquake Eng (2014) 12:939–960

Fig. 3 Constitutive law for the interface elements

Fig. 4 Loading stages Stage I: Self-weightof
deck and abutments

Stage II:
Embankment
construction

Stage III: Earthquake

dimensional frequency parameter. The frequency-dependence of the stiffness is mild in the
range of frequencies of interest: a constant value is used for the purpose of time-domain
analysis, setting ω = 2π/T1, where T1 is the fundamental period of the deposit.

As far as the horizontal degree of freedom is concerned Fig. 3 shows three inelastic
constitutive laws: (a) schematically represents the constitutive law presented in Becci and
Nova (1987) at the basis of the analysis package “Paratie”, widely employed in Italy for
the Winkler-type analysis and design of flexible diaphragm walls; (b) is the approximation
adopted in Franchin et al. (2007) for the purpose of inelastic dynamic analysis of diaphragm
walls within the analysis package OpenSEES (McKenna et al. 2000), where a single stiffness
value is adopted for both active and passive earth pressure conditions; (c) is the approximation
adopted herein due to SAP2000 requiring NLLink elements to have a force-deformation law
that passes through the axes origin ( f = u = 0). In order to comply with this requirement the
“K0” (at-rest) stresses are recreated with a pattern of horizontal forces applied in the walls
nodes, labeled 200’s and 300’s in Fig. 2 (see also the following Fig. 4).

Depth-dependent values are assigned to stiffness and strength according to the following
expressions:

123



Bull Earthquake Eng (2014) 12:939–960 947

kx (z) = 1.2
E (z) Ac (z)

L
(9)

f +
y (z) = −Ac (z) [Ka (z) − K0 (z)] σv (z) (10)

f −
y (z) = −Ac (z)

[
K p (z) − K0 (z)

]
σv (z) (11)

where Ac(z) = BdΔz(z) is the contact area, where Bd is the deck width assumed to be equal
to the abutment width; L = (La + L p)/2 is the average of the passive and active lengths, as
defined in “Paratie” for the purpose of stiffness determination (i.e. the stiffness is assigned a
common average value for active and passive pressure conditions):

La = 2

3
la tan

(
45◦ − φ

2

)
with la = min (H + D, 2H) (12)

L p = 2

3
l p tan

(
45◦ + φ

2

)
with l p = min (D, H) (13)

For the earth-pressure coefficients in at rest, active and passive conditions, the following
basic expressions have been used in the application:

K0 = 1 − sin φ (14)

Ka = 1 − sin φ

1 + sin φ
(15)

K p = 1 + sin φ

1 − sin φ
(16)

While the foundation soil is a natural medium that will respond to seismic input of increasing
intensity eventually entering in the nonlinear range, the structure is the object of a design
with prescribed performance objectives. Most current seismic design codes prescribe elastic
response for the foundation structures and in general for structures in contact with soil, such
as diaphragm walls. Furthermore, the recent trend in bridge design is to make reduced if
any resort to inelastic reserves, in recognition of the strategic character of these structures
in the resilience of communities, and considering also the limited extra cost associated with
this choice. Structural members are modeled with frame elements. These can be either linear
or nonlinear, depending on the target performance under seismic action. If elastic response
is desired, frame elements are linear and the response in terms of stress resultants is used
to design strength. Conversely, if exploitation of ductility is accepted, strength is designed
for gravity and traffic loads, and nonlinear frame elements can be used for a displacement-
based verification under seismic action. Nonlinear frame elements are also necessary when
assessing an existing structure.

2.4 Input motion

As far as the seismic motion is concerned, this is input to the system through a compliant
base in terms of forces (see next section, and Fig. 4) proportional to ground velocity:

f (t) = cbu̇ (t, zb) (17)

in which the base damper constant is assigned the value cb = ρbVsb A, where the mass density
and shear wave velocity are those of the elastic bedrock and A is the soil column cross section
area (Kramer 1996). The velocity at depth zb is obtained integrating the acceleration history,
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which in turn is the deconvolution of the surface signal. The latter operation is repeated for
all ground motions in the suite selected for the purpose of the probabilistic analysis described
in the following Sect. 3.

Selection of natural motions for the purpose of inelastic dynamic analysis is a topic of ongo-
ing discussion since the late ‘90s (Shome et al. 1998). As explained in Sect. 3 (Eqs. 18, 19),
MAF of exceedance of response thresholds of interest are computed according to the total
probability theorem, employing as an intermediate (conditioning) variable a measure of inten-
sity of the seismic motion, commonly denoted as IM. It is well known that if the latter is
“sufficient”, i.e. it makes the response unconditional on all other ground motion properties,
the choice of records can be done in a relatively free manner (Shome et al. 1998). Since,
however, there cannot be a perfectly sufficient IM for general nonlinear multi-degree of free-
dom system, it is an accepted fact that the selection of records should be such as to reflect
the seismicity of the site. This can be done in different ways, of varying complexity. The
“softer” approach would be that of targeting the causative magnitude and distance ranges of
the events that dominate the hazard at the site, as provided by probabilistic seismic hazard
analysis (PSHA) de-aggregation. These ranges depend on the chosen IM and hazard level and
it is often suggested to use levels close to the final value of the MAF. PSHA de-aggregation
actually yields triplets of values, including also the so-called “epsilon”, beside magnitude
and distance. Epsilon measures the distance of a motion from the average one for the consid-
ered magnitude and distance. There are proposals to consider epsilon in the record selection,
because it is a good predictor of the spectral shape (Baker and Cornell 2006).

The above selection criteria in most cases translate in a correct representation of duration
properties, not included in spectral IMs (the mainstream choice), which are very relevant to
degrading hysteretic systems, such as e.g. existing structures or systems that are sensitive to
cumulative energy, like the IAB.

Finally, in order to carry out the deconvolution to the model base with the same profile for
all motions, the latter need to be selected, with the previous criteria, within a pool of records
from rock/stiff soil conditions.

2.5 Load stages

The nonlinear analysis requires a sequence of three load stages, as shown in Fig. 4. The seismic
input is applied last to the system (Stage III), after the gravity loads of the deck (Stage I) and
the increment of earth pressures (Stage II) due to the construction of the embankment. The
latter is linearly increasing from z = H to z = 0, and constant there on. For simplicity, the
model does not change from one stage to the next one (i.e. it is not a sequential construction
analysis): the interface springs properties (sets a and d) during Stage I should account for
the absence of the embankment.

3 Probabilistic seismic performance-based design

As stated in the introduction, the final result of the method is the MAF of exceedance of
any force or deformation design quantity of interest. With reference for instance to an elastic
target performance and to the bending moment at the abutment-deck connection, the design
value is the maximum attained during Stage III, MI I I , which can be expressed as the sum of
the moment at the end of Stage II, MI I , and of the moment increment Δ M, both of which
are in general random quantities. Accordingly, the MAF of MI I I = MI I + ΔM can be
expressed by the theorem of total probability as:
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λMI I I (x) =
∞∫

Sa=0

∞∫
MI I =0

G ΔM|Sa ,MI I ( x − z| y, z) fMI I (z) dz︸ ︷︷ ︸
p(MI I =z)

∣∣dλSa (y)
∣∣ (18)

which expresses the fact that, for any intensity level Sa = y, MI I I exceeds x whenever
MI I equals z and ΔM exceeds x − z. The functions G, f and λSa are the complementary
cumulative distribution function (CCDF) of the seismic moment increment, conditional on
the seismic intensity and Stage II moment, the probability density of MI I , and the MAF of
exceedance of the seismic intensity (seismic hazard curve), respectively.

In the simple case that the variability of MI I is negligible with respect to that of ΔM , the
previous equation simplifies to:

λMI I I (x) =
∞∫

Sa=0

G ΔM|Sa ( x − MI I | y)
∣∣dλSa (y)

∣∣ (19)

The seismic intensity in the above equations is expressed in terms of a single scalar intensity
measure, which is here chosen to be a spectral acceleration. Its probability distribution is
given by the seismic hazard curve λSa , which is the end result of a probabilistic seismic
hazard analysis. The period at which Sa is evaluated is often taken equal to the fundamental
period of the system, Sa = Sa(T1), which in the case at hand would nearly coincide with that
of the soil deposit (given the ratio of masses between the soil column and the bridge). This
is not found to be the optimal choice for IABs and a discussion and indications are given in
Sect. 4 with reference to the application results.

The CCDF of the seismic moment increment can be expressed, under the assumption that
ΔM is lognormal, as:

G ΔM|Sa ( x − MI I | y) = 1 − �

(
ln (x − MI I ) − μ ln ΔM|Sa=y

σ ln ΔM|Sa=y

)
(20)

where μlnΔM|y and β = σlnΔM|y are the mean and standard deviation of the logarithm of
ΔM . It is common to model the median of ΔM as a power-law function of the intensity,
with parameters a and b:

(ΔM | Sa)50% = ayb → μ ln ΔM|Sa=y = ln a + b ln y (21)

and to consider the “dispersion” β = σlnΔM|Sa=y independent of Sa . The complete proba-
bilistic characterization of the seismic demand reduces then to the evaluation of the three
parameters: a, b and β. This can be done in an affordable manner employing linear regression
on the results of n (a few tens) of inelastic response history analyses (IRHA) with unscaled
recorded motions. As shown in the application, the analysis can also easily incorporate the
uncertainty in system properties, such as soil/embankment stiffness and/or strength.

When the variability of MI I is not negligible, the full CCDF of ΔM conditional on Sa

and MI I is needed. This can be obtained as follows under the assumption that ΔM(y) and
MI I are jointly lognormal. In this case the marginal distribution of ΔM remains the same as
in Eq. (21), while MI I is lognormal with parameters μlnM I I and σlnM I I . The parameters of
the conditional distribution can be found as (Benjamin and Cornell 1970):

μ ln ΔM|Sa=y,MI I =z = μ ln ΔM|Sa=y + ρ ln ΔM|Sa=y,ln MI I

σ ln ΔM|Sa=y

σln MI I

(
ln z − μln MI I

)
(22)

σ ln ΔM |Sa=y,MI I =z = σ ln ΔM|Sa=y
√

1 − ρ ln ΔM|Sa=y,ln MI I (23)
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where, consistently with the use of a constant value for the dispersion β = σln ΔM|Sa=y, a
constant value independent of Sa is also employed for ρln ΔM|Sa=y,ln MI I , evaluated on the
basis of a finite number n of analyses as:

ρln ΔM|Sa=y,ln MI I ,=
1

n−p

∑n
i=1

(
ln MI I, j − μlnMI I

)
(ln ΔMi − (ln a − b ln yi ))

βσln MI I

(24)

The design value for the total moment MI I I (action effect) is obtained inverting Eq. (18)
or (19) for an assigned accepted value λ0 of its MAF of exceedance: MI I I,d = x(λ0). The
corresponding mean strength (ultimate moment evaluated with mean material properties)
is finally designed amplifying MI I I,d by the factor exp (−0.5β2

C k/b) that accounts for the
uncertainty in the strength βC , and for the hazard and demand exponents k and b (see for
details Cornell et al. 2002).

4 Application

The procedure illustrated in the previous section has been applied to the highway overpass in
Fig. 1. The overpass is a tentative standard design solution to be used for the upgrade works
on Italian highways A13 “Bologna-Padova” and A12 “Roma-Civitavecchia”. This overpass
has been located for the purpose of this example at the beginning of A13 close to Bologna
(44.53◦N−11.36◦E). According to the Italian design code, this structure should be designed
to remain elastic under a seismic action characterized by a mean return period of about 1,000
years. Accordingly, in this application in order to evaluate the elastic demand for strength
design the structure (frame elements of the deck and abutment wall and piles) is modeled as
linear elastic. Recourse to inelastic dynamic analysis (inelasticity is considered in the soil
and embankment) of this typological design, and of similar ones, is due to concerns about
their seismic behavior, in particular about possible detrimental effects of embankment-driven
deformations.

The deck has composite steel-concrete section (two steel girders and a 12.00 m wide
concrete slab, for a span length of L = 38.00 m), and the abutments are solid RC walls
(1.20 m thick, of height H = 10.00 m) founded over a RC pile diaphragm (8 φ 1, 200 piles
at 1.35 m, of length D = 20.00 m).

The foundation soil is assumed to be a homogeneous dense sand with a constant unit
weight γ = 20 kN/m3, shear wave velocity increasing with depth according to Vss =
czm = 170z0.25m/s (which corresponds to an average shear wave velocity over the first 30 m
equal to Vss ≈ 320 m/s), friction angle φ = 30◦ and negligible cohesion. The soil layer
extends for 50 m down to an elastic bedrock with unit weight γ = 20 kN/m3 and average
shear wave velocity Vsb = 1, 000 m/s, leading to a damper constant cb = 5.14 × 107 kNs/m.
The embankment soil is a slightly lighter and softer material, with unit weight γ = 18 kN/m3,
average shear wave velocity Vse = 250 m/s, friction angleφe = 30◦ and a cohesion c = 1 kPa.

Since uncertainty on a new structure designed for elastic response is much lower than that
associated to inelastic response of natural soil, uncertainty in the former is not modelled.
Two cases are considered. The first, labeled “Mean model”, in which no uncertainty on the
soil properties is considered, and the model is set up with the values above. The second case,
labeled “Random soil”, is included to show how the effect of uncertainty in soil stiffness and
strength can be considered. In this latter case, for illustration purposes, four properties are
modeled as random variables as two statistically independent vectors: the first one includes the
coefficient c in the Vss power law, taken uniform in the interval [110,220], and the friction
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Table 1 Selected ground motions

Record Event Event name Year Station M Repic(km) D(s) Deff (s)

1 1 Chi-Chi, Taiwan-02 1999 TCU067-N.at2 5.9 33.9 61 25

2 1 Chi-Chi, Taiwan-02 1999 TCU071-N.at2 5.9 23.1 52 25

3 1 Chi-Chi, Taiwan-02 1999 TCU075-N.at2 5.9 34.1 54 25

4 1 Chi-Chi, Taiwan-02 1999 TCU076-N.at2 5.9 34.2 45 20

5 2 Coalinga-01 1983 H-Z06000.at2 6.4 42.8 40 25

6 2 Coalinga-01 1983 H-Z09000.at2 6.4 41.2 32 30

7 2 Coalinga-01 1983 H-Z10000.at2 6.4 41.4 40 30

8 3 Griva, Greece 1990 L-EDE-NS.at2 6.1 32.9 28 15

9 4 Irpinia, Italy 1980 B-AUL000.at2 6.2 37.2 32 32

10 4 Irpinia, Italy 1980 B-BAG000.at2 6.2 22.3 42 30

11 5 Morgan Hill 1984 CLS220.at2 6.2 30.1 36 20

12 5 Morgan Hill 1984 SJL270.at2 6.2 57.7 28 28

13 6 N. Palm Springs 1986 SIL000.at2 6.1 27.7 24 15

14 7 Parkfield 1966 C12050.at2 6.2 36.2 44 44

15 7 Parkfield 1966 TMB205.at2 6.2 40.3 30 12

16 8 Santa Barbara 1978 CAD250.at2 5.9 34.0 11 7

17 9 Sierra Madre 1991 chan1155.at2 5.6 18.7 40 8

18 10 Whittier Narrows 1987 A-CHL030.at2 6.0 37.1 16 10

19 10 Whittier Narrows 1987 A-MU2032.at2 6.0 31.1 32 16

20 10 Whittier Narrows 1987 A-TUJ262.at2 6.0 29.5 31 16

angle φs ∼ U(27, 33), with an assumed correlation coefficient of 0.8; the second vector
includes the constant shear wave velocity of the embankment material Vse ∼ U(200, 300)

and the corresponding friction angle φe ∼ U(28, 32), with an assumed correlation coefficient
of 0.8. It is noted how this simplified characterization of the variability of the soil profile
is used here just as an example, while the method itself allows without effort to treat more
realistic and complex models (Franchin and Cavalieri 2013). One random sample of the four
variables is associated to each of the recorded ground motion used for the analysis.

Variability in the input motion is described through a suite of 20 recorded ground motions.
Table 1 reports the records, selected from the PEER strong motion catalogue in a magnitude
bin between 5.5 and 6.5. The latter corresponds roughly to the magnitude range expected at
the site from the employed PSHA de-aggregation. The latter should be the de-aggregation of
the chosen IM for a return period close to the inverse of the final MAF. Since the complete
de-aggregation data were not available for the considered site, the (M, R) bin for the 500-
year PGA de-aggregation (provided for the entire national territory in Italy by the National
Institute for Geophysics and Volcanology) was used in approximation. Records were selected
from rock outcrop and stiff-soil (VS > 800 m/s). Table 1 reports also duration and effective
duration, used to terminate the analysis.

Figure 5 shows an example of the results that are obtained from the model, with reference to
the “Mean model” and record #17 (the record inducing the largest seismic moment increment
in the right deck-abutment connection). The figure shows the bending moment envelope
over the three analysis stages, and reports also the peak values in three cross sections. In a
deterministic context (current code, e.g. Eurocode 8) results of this type would be averaged
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Stage I: 10 361 kNm
Stage II:  9 521 kNm
Stage III:  9 521 kNm

Stage I: 15 054 kNm
Stage II: 15 879 kNm
Stage III: 27 389 kNm

Stage I:     380 kNm
Stage II:   5 383 kNm
Stage III: 24 908 kNm

Fig. 5 Bending moment dynamic envelope for record #17

Fig. 6 Bending moment at the abutment-deck connection: time-series for the “mean model” under input
signal n.17 highlighting the ratcheting effect and moment build-up

with those of other 6 records (the suite being selected to be compatible with a code spectrum
with assigned mean return period) to yield the design action effect. In the context of the
illustrated probabilistic procedure, the above result becomes one of 20 points in the intensity
vs moment increment ΔM plane, as far the seismic moment increment is concerned, and one
of the 20 values used to evaluate the parameters of the distribution of MII.

Figure 6 shows the time-series of the bending moment at the right deck-abutment con-
nection during record #17 (the same as in Fig. 5). One can see the non-symmetric response
with accumulation of negative moment caused by the cyclic compaction of the soil behind
the abutment. The final permanent moment of about 20,000 kNm is considerably larger than
the initial one (end of Stage II, MI I = 15, 879 kNm)

As far as the choice of the IM is concerned, spectral acceleration at the fundamental period
of the system (in this case equal to T1 = 0.486 s, very close to the value obtained from the
simple expression for a homogenous soil deposit T1 = 4zb/VS = 0.443 s using the average
value over 50 m: VS = 361 m/s) is generally considered to be a sufficient and efficient intensity
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First mode T = 0.486 s
Fundamental mode of the 

deposit+embankment

Second mode T = 0.186 s
Second mode of the 

deposit+embankment

Third mode T = 0.149 s
Fundamental mode of the 

embankment

Fig. 7 First three mode shapes and associated vibration periods for the soil–embankment–structure system

measure for peak responses of stable hysteretic systems, meaning that system response is
approximately conditionally independent of magnitude and distance, and that the data points
show a reduced scatter, when records are scaled to this measure (Padgett et al. 2008).

As already shown in Fig. 6, the analyzed system exhibits a moderate tendency to progres-
sive build-up of stresses and deformations due to the already mentioned “ratcheting” effect.
For systems prone to cumulative damage, such as degrading and geotechnical systems, better
intensity measures should account for duration (number of significant cycles) and the energy
content of the record. Arias intensity, for example, is one such a measure.

Further, one can also note from Fig. 6 that the predominant period of the structural response
is about 0.16 s. The latter does not coincide with the fundamental period of the soil deposit
but, rather, it is intermediate between the second (T2 = 0.19 s) and third (T3 = 0.15 s) mode
periods. This indicates that these modes are better correlated with structural response and
thus, spectral acceleration at T = 0.16 s may be a much more efficient IM than Sa(T1). This
hypothesis is also supported by the inspection of the first three mode shapes, shown in Fig. 7,
which reveals that the latter two modes are those imposing largest flexural deformation on
the structure. In particular, the figure allows appreciating how both modes are strictly related
to the embankment amplification of motion.

In sum, three candidate IMs are selected as conditioning variable for Eqs. (18, 19). Table 2
reports the values of the three intensity measures for each of the twenty records, the corre-
sponding responses for both the mean and the random model, and the sampled soil and
embankment properties for the random model. The latter values have been sampled using the
Nataf distribution (Pinto et al. 2004). The correlation coefficient ρ’ between the underlying
standard normal variables is taken equal to that between the original variables ρ (Liu and
Kiureghian 1986).

Figures 8, 9 and 10 show the scatter plots of the IM-ΔM data points for the three selected
intensity measures. The figures report the median (solid) and the 16 and 84 % fractile (dashed)
curves obtained by power-law fit of the data (Eq. 21), for both the mean and the random model.
Table 3 reports the corresponding regression parameters a, b and β.

Starting with Fig. 8 and the data in the table, one can see that, as anticipated, Sa(T1) is not
an efficient IM, since the dispersion for the mean model (i.e. the dispersion induced solely
by the record-to-record variability) and the random model equal 0.58 and 0.50, respectively.
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Fig. 8 Scatter plot and power
law fit of the intensity-demand
(seismic moment increment)
relation, obtained for the spectral
acceleration at the fundamental
system period
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Fig. 9 Scatter plot and power
law fit of the intensity-demand
(seismic moment increment)
relation, obtained for the Arias
intensity
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Fig. 10 Scatter plot and power
law fit of the intensity-demand
(seismic moment increment)
relation, obtained for the spectral
acceleration at period T = 0.16 s
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Interestingly, one would expect the values to be in reverse order, but this counterintuitive
result is not meaningful since the difference between these two large values is not statistically
significant. The main effect of the increased uncertainty (model uncertainty), with this IM, is

123



956 Bull Earthquake Eng (2014) 12:939–960

Table 3 Regression parameters of seismic moment increment vs seismic intensity

Sa(T1 = 0.48 s) Arias intensity IA (m/s) Sa(T = 0.16 s)

Mean model Random soil Mean model Random soil Mean model Random soil

a 2,739 2,861 12,422 15,016 1,843 2,218

b 0.46 0.55 0.43 0.46 0.80 0.70

β 0.58 0.50 0.43 0.36 0.17 0.28

to induce an increase in the median ΔM vs IM. The same holds also for the results in Fig. 9.
The latter, and the values in Table 3, show that, as expected, the Arias intensity is more efficient
than the spectral acceleration at the fundamental period of the system. The dispersion for
both models are lower than the previous ones: 0.43 and 0.36, respectively. These values,
however, are still rather large and since ground motion prediction equations for IA, needed
to evaluate the corresponding hazard in Eqs. (18) or (19), are generally characterized by a
larger dispersion with respect to those for Sa , this IM does not represent a better alternative.

Figure 10 and the results in Table 3 confirm that using the spectral acceleration at a period
closer to those of the higher modes dominating the structural response is a far better choice.
The Sa(T = 0.16 s) is highly efficient, especially for the mean model, with a dispersion of
only 0.17. This spectral IM is even more efficient than the duration-related Arias intensity.
This is due to the fact that even if the pressures behind the abutments exhibit a tendency to
cumulative build-up, the IAB is still globally symmetric, as opposed e.g. to a free-standing
diaphragm-wall (Franchin and Cavalieri 2013), thus limiting the extent to which internal
forces can drift.

For this IM, differently from the previous cases, inclusion of model uncertainty leaves the
median unchanged and inflates the dispersion that almost doubles to 0.28. The latter value
corresponds approximately to the value that could be estimated assuming a linear relationship
between the response and the input random variables, consistently with the fact that b for
this IM is closer to 1 (0.8 and 0.7, for the mean and random model, respectively), as shown
by:

σln ΔM,random =
√

σ 2
ln ΔM, mean + δ2

VSe
+ δ2

φe
+ δ2

φs
+ δ2

c

=
√

0.172 + 0.112 + 0.042 + 0.062 + 0.192 = 0.286 (25)

where the fact that the standard deviation of the logarithm and the coefficient of variation
are numerically equivalent for values lower than 0.3 has been used, and the coefficient of
variation of the generic input random variable (uniform in [a,b]) is given by δ = σ/μ =
(b − a)/

√
12)/((a + b)/2).

The data in Table 3 and the power-law for ΔM (random model) on Sa(T = 0.16 s) allow
the determination of μln MI I = 9.69 kNm, σln MI I = 0.035 and ρ ln ΔM |Sa=y,ln MI I = 0.63.
Figure 11 shows the final result of the procedure for the evaluation of the response MAF
curve. The plot shows three MAF curves. The curves labeled “Mean model” and “Random
soil” are obtained using Eqs. (19) and (18), respectively, with the seismic hazard curve for the
site of the bridge in terms of Sa(T = 0.16 s), and the demand-intensity parameters in Table 3.
The hazard curve has been obtained from data in terms of uniform hazard spectra at 9 return
periods (30–2,475 years) supplied for the whole Italian territory by the National Institute of
Geophysics and Volcanology. The two curves are close to each other, as expected due to the
observed minor effect of system-related uncertainty. This is numerically confirmed by the
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Fig. 11 Mean annual frequency
of exceedance: spectral
acceleration (“seismic hazard”,
left), total (gravity + seismic)
moment (right)

Fig. 12 Response spectra of the
20 selected motions: the grey
band shows the interval of
variation of the individual records
spectra

reduced increase in the design value for the connection bending moment. Assuming for the
design moment a target MAF of 1/1,000 years, the frequency characterizing the seismic action
in the current Italian code for ultimate limit state design under seismic action of ordinary
highway structures, the increase from 25,216 (mean model) to 26,923 kNm (random model)
is just 7 %.

To put the above results in perspective, the above design values are also compared with
a close estimate of the value one would obtain by the current design code in Italy (which
is aligned with the Eurocodes). According to the code, when using time-history analysis
for response determination, the design action effects equal the mean of the maxima obtained
from (at least) seven motions selected to be spectrum compatible (on average) with the 1,000-
years uniform hazard spectrum for the site. Further, all analyses shall be carried out on the
same model with mean material properties. Thus, the “code value” of the design moment
has been estimated from the MAF curve of MI I I evaluated neglecting all uncertainty other
than that in the seismic intensity Sa , described by the hazard curve, i.e. setting β = 0 and
using “Mean model” parameters. This is equivalent to disregarding the system uncertainty
(mean model parameters) and taking the mean (actually, the median) of the intensity-demand
relationship. The corresponding value on this curve for the accepted frequency of 10−3 (equal
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to 24,785 kNm) can be taken as a close approximation of the code value, since, as shown in
Fig. 12, the selected records, scaled to the 1,000-years value of Sa(0.16 s) closely match the
uniform hazard spectrum from the code with the same return period. The value is practically
coincident (just 2 % lower) with that obtained with the probabilistic approach with the mean
model, indicating once again the efficiency of the chosen IM.

Finally, the full probabilistic design would be completed by consideration of the uncer-
tainty in the moment capacity. This could be done, as already mentioned, by designing the
mean moment capacity (i.e. the flexural strength evaluated with mean material properties)
for the demand moment MI I I = 26,923 kNm, amplified by a factor exp(0.5 β2

C k/b), whose
value in this application is close to one but that can be up to about 1.15 (Cornell et al. 2002).

5 Conclusions

Integral abutment bridges have been built in some areas for decades now, and they are recently
experiencing increasing worldwide diffusion in the short to mid-range lengths. Their analysis
and design is quite challenging, since it requires consideration of the interaction between
foundation soil, structure and backfill even for the deck design under service loads. Cyclic
deformations, thermal and most importantly seismic, typically lead to an increase in stresses in
the abutments and connections, due to progressive compaction (ratcheting) of the backfill soil,
a problem magnified when the bridge is comprised between embankments, whose response
amplifies the input motion and drives the deformation of the bridge.

This paper presents a method of analysis and design that is feasible in practice, but
still captures the essential physical aspects of the response. Moreover the method is fully
performance-based in that displacements and stress resultants (transient and cumulative) can
be evaluated accounting for the uncertainties affecting the problem: in the action as well as
in the system (foundation, embankments, structure).

The method is based on a simplified inelastic dynamic model for the response determi-
nation via inelastic response history analysis, and on approaches to probabilistic seismic
assessment of structures that are by now well-established.

The model, developed for implementation in typical commercial analysis packages,
employs 1D inelastic site-response analysis and inelastic Winkler-like springs, to capture
the main physical aspects of the seismic response of IABs. In particular, the model is based
on a global approach to SSI, with the foundation soil profile and overlying embankment mod-
elled explicitly as part of the system. This global approach is the most efficient to reproduce
the time-varying imposed displacement along the abutment wall and piles.

A few tens of analyses with carefully selected real recorded motions and associated real-
izations of system parameters provide a sample of the response that is used for probabilistic
demand characterization.

One example application to a highway overpass in Italy illustrates the method. The appli-
cation, even in its simplicity, has highlighted some interesting findings. The response of
the IAB comprised between embankments is indeed driven by their deformation, as already
shown in previous studies. In particular, the mode shapes corresponding to the amplification
of the free-field motion by the embankments are those inducing maximum flexural deforma-
tions in the bridge structure. This has an important practical consequence for the probabilistic
assessment. The spectral acceleration at a period close to the periods of these higher modes
of vibration (in the example the second and third) turns out to be a very efficient intensity
measure, leading to quite reduced dispersion in the intensity-demand relation. This spectral
IM has been found to be even more efficient than the duration-related Arias intensity. This is
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due to the fact that even if the structural response exhibits a tendency to cumulative build-up
of internal forces, the IAB is still globally symmetric, as opposed e.g. to a free-standing
diaphragm-wall.

Finally, the application has also shown how consideration of model uncertainty increases
the MAF of exceedance of the response and thus the design values of the action effects.
This increase is limited in the particular application (< 10 %), owing to the simplicity of
the considered soil profile (homogenous, rather than layered) and of the uncertainty model
adopted for illustration (which produces always smooth profiles of the soil properties), as
well as to the relatively low variability of the input random variables.
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