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Abstract Pseudo-static seismic analysis of retaining walls requires the selection of an equiv-
alent seismic coefficient synthetically representing the effects of the transient seismic actions
on the soil-wall system. In this paper, a rational criterion for the selection of the equivalent
seismic coefficient is proposed with reference to sliding retaining walls. In the proposed
approach earthquake-induced permanent displacements are assumed as a suitable parameter
to assess the seismic performance and an alternative definition of the wall safety factor is
introduced comparing expected and limit values of permanent displacements. Using a sim-
plified displacement prediction model it is shown that, for a given design earthquake, reliable
values of the equivalent seismic coefficient should depend on all the factors affecting the sta-
bility condition of the soil-wall system and on a threshold value of permanent displacement
related to a given ultimate or serviceability limit state. To achieve a match between the results
of the pseudo-static and of the displacement-based analysis, the proposed procedure detects
the value of the equivalent seismic coefficient for which the two approaches provide the same
factor of safety. Thus, without necessarily carrying out a displacement analysis, a measure
of the safety condition of a soil-wall system consistent with the actual seismic performance
may be achieved through an equivalent pseudo-static analysis.

Keywords Critical acceleration coefficient · Equivalent seismic coefficient · Performance-
based design analysis · Pseudo-static analysis · Retaining walls · Tolerable displacements

1 Introduction

Current procedures for seismic design of retaining walls rely on the pseudo-static approach.
In these procedures the Coulomb (1776) earth pressure theory is generally adopted to estimate
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the active thrust behind the wall. Generally, the earthquake effects on the active thrust are
introduced through the well-known Mononobe–Okabe solution (Okabe 1926; Mononobe and
Matsuo 1929) which provides the value of the seismic active earth-pressure coefficient for
a dry cohesionless backfill; however, other limit equilibrium or limit analysis solutions can
be used for estimating the seismic active thrust accounting for particular boundary and/or
surcharge conditions and for both cohesive and frictional soil shear resistance.

In the pseudo-static approach the actual effects of the transient seismic action, char-
acterised by abrupt changes in modulus and sign, are represented by a pair of sta-
tic forces computed multiplying the weight of the wall and of the retained soil by
the horizontal kh,eq and vertical kv,eq components of an equivalent seismic coefficient
keq. The seismic stability conditions of the soil-wall system are then evaluated using
a force-balance approach and are quantified through pseudo-static safety factors Fps,
against sliding, tilting and bearing capacity; correspondingly, Fps is defined as the
ratio between resisting and driving forces or moments. Despite the shortcomings of
this conventional approach, in current practice the pseudo-static analysis is usually pre-
ferred to more sophisticated numerical finite element (FE) or finite difference (FD)
methods.

However, evidence of damages caused by recent large earthquakes (e.g. Tateyama et al.
1995; Fang et al. 2003; Huang and Chen 2004; Trandafir et al. 2009) showed that performance-
based design must be considered an emerging methodology able to overcome most of the
limitations of the conventional pseudo-static approach (e.g. Zeng and Steedman 2000; Taylor
et al. 2007).

Unlike the pseudo-static method of analysis, performance-based design procedures pro-
vide information on the response of the soil-wall system when the force-balance is exceeded
and permanent deformations occur due to unbalanced forces or moments. The magnitude of
the earthquake-induced permanent displacement and/or rotation can then be compared with
corresponding limit values which may be suffered by the soil-wall system without reaching
an ultimate or a serviceability limit state.

As an alternative to dynamic FE or FD approaches, performance-based analyses may be
carried out through simplified procedures that, starting from the early study by Richards and
Elms (1979), were derived following the sliding block approach introduced by Newmark
(1965). In these procedures permanent displacements or rotations of the wall and, in some
cases, permanent displacements of the retained soil wedge, can be assessed through double
integration of the equation of motion of the soil-wall system subjected to a given acceleration
time-history.

2 Purpose of the study and paper outline

Although pseudo-static and performance-based procedures may be regarded as alternative
methods of analysis, the seismic coefficient to be used in a pseudo-static analysis may be
related to the earthquake-induced displacements and/or rotations and, then, to the expected
level of damage.

This paper presents a procedure to relate limit values of permanent displacement and the
horizontal seismic coefficient kh,eq to be used in the pseudo-static analysis of sliding retaining
walls. The procedure involves solutions concerning: (i) the factors affecting the equation of
motion and the critical acceleration coefficient of the soil-wall system; (ii) a rational criterion
to link the results of the conventional pseudo-static analysis and of the displacement-based
analysis.
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Using a simplified model for the prediction of the expected wall displacements and a
suitable definition of the seismic safety factor of the soil-wall system, an expression of the
equivalent seismic coefficient kh,eq is derived allowing, without necessarily carrying out a
displacement analysis, a measure of the safety condition consistent with that of a more reliable
performance-based analysis.

The procedure is presented accounting only for the horizontal component of the seismic
acceleration time-history; this assumption is not relevant since, in most cases, the influence of
the vertical component of the ground acceleration on the magnitude of earthquake-induced
permanent displacements of sliding system is negligible (e.g. Yan et al. 1996; Ling et al.
1997; Ling and Leshchinsky 1998; Inglès et al. 2006; Sarma and Scorer 2009; Caltabiano et
al. 2012).

A critical review of existing solutions for seismic displacement analysis of sliding retaining
walls, as well as of original solutions recently proposed by the Authors, is preliminarily
presented in Sects. 3 and 4 in order to: (i) clarify the reference framework for the present
study; (ii) introduce the theoretical assumptions required for the development of the proposed
procedure which is described in Sect. 5 together with the solution developed for the evaluation
of the equivalent seismic coefficient kh,eq.

3 Seismic displacements of sliding retaining walls

Earthquake-induced permanent displacements of retaining walls sliding along the soil-
foundation interface can be computed through several procedures.

Richards and Elms (1979) applied the sliding block approach, proposed by Newmark
(1965), to the evaluation of the earthquake-induced permanent displacements of sliding
retaining walls. The reference soil-wall scheme considered by Richards and Elms is shown
in Fig. 1a. The Authors assumed that a soil wedge in the retained backfill reaches an active
stress state and used the Mononobe–Okabe (M–O) earth-pressure coefficient Kae to evaluate
the seismic active earth-thrust Sae. In the analysis only the dynamic equilibrium condition of
the wall is considered; thus, the effect of the active soil wedge, which slides down when the
wall moves outward, is ignored in the evaluation of both critical acceleration coefficient and
permanent displacements.

Biondi and Cascone (2014) recently showed that, using the Richards and Elms (R–E)
procedure, it is not possible to derive closed-form solutions for the horizontal critical accel-
eration coefficient kh,c and derived the equations listed in the “Appendix 1” (together with
the relevant notations) for an iterative evaluation of kh,c. Moreover, since the R–E procedure
requires an expression of the active earth-pressure coefficient Kae, in current practice it can
be applied to a limited number of cases. As an example, the Mononobe–Okabe (M–O) solu-
tion for computing Kae can be used for the soil-wall scheme of Fig. 1a but it cannot be used
for the schemes of Fig. 1b–d or in the case of both cohesive and frictional shear resistance.
In these cases other limit equilibrium or limit analysis solutions can be used to estimate
Kae accounting for particular boundary and/or surcharge conditions (e.g Motta 1993, 1994;
Caltabiano et al. 2000, 2012; Stamatopoulos and Velgaki 2001; Stamatopoulos et al. 2006;
Mylonakis et al. 2007), for both cohesive and frictional shear resistance (e.g. Shukla et al.
2009), for its post-peak reduction along previously formed slip surfaces (e.g. Koseki et al.
1998) and, finally, for the influence of the length of the foundation heel (e.g. Greco 2009;
Evangelista and Scotto di Santolo 2010; Kloukinas and Mylonakis 2011).

In the R–E procedure permanent displacements of the wall dw are evaluated assimilating
the actual soil-wall system to an ideal rigid block sliding on a horizontal plane corresponding
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Fig. 1 Soil-wall schemes

to the interface between the wall-base and the underlying foundation-soil. In this analogy
the actual wall and the block are subjected to the same horizontal acceleration time-history,
ah = kh·g, are characterized by the same horizontal component kh,c of the critical acceleration
coefficient and the soil wedge is not directly accounted for in the analysis. The equation of
motion of the block can be derived equating the excess of driving to resisting force to the
inertia force arising in the block due to its relative acceleration with respect to the base.
Neglecting the vertical component of the ground motion (av = kv ·g = 0) it is:

d̈o = g · [
(kh − kh,c)

]
(1)

In Eq. (1) do is the current value of the permanent displacement cumulated by the block that,
in the R–E procedure, is treated as dw.

Starting from the pioneer study by Richards and Elms (1979) other procedures were pro-
posed, ranging from one-block sliding and/or tilting wall analysis (e.g. Nadim and Whitman
1983; Wu and Prakash 2001; Zeng and Steedman 2000), to two-wedge soil-wall system slid-
ing analysis (e.g. Zarrabi-Kashani 1979; Stamatopoulos and Velgaki 2001; Stamatopoulos
et al. 2006), to multi-block sliding analysis incorporating mass transfer between adjacent
blocks (e.g. Chlimintzas 2002).

In fact, when the wall accumulates permanent displacements, the active soil wedge slides
downward with the inclination of the least soil resistance and the soil-wall system actually
consists of two bodies; in this case a two-wedge (2-W ) approach is suitable for the analysis
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Fig. 2 Scheme of the soil-wall system considered by Stamatopoulos et al. (2006)

of the seismic stability condition and for the evaluation of earthquake-induced permanent
displacements (Stamatopoulos et al. 2006), even in the case of particular boundary and
surcharge conditions (e.g. Caltabiano et al. 2000, 2012).

3.1 Two-wedge approach

Two-wedge (2-W ) approaches were recently proposed by Stamatopoulos and Velgaki (2001),
Stamatopoulos et al. (2006) and by Caltabiano et al. (1999, 2005, 2012) with reference to
soil-wall schemes characterized by different boundary and surcharge conditions (Figs. 1, 2).

Using a 2-W model with kinematically compatible displacement components subjected
only to horizontal seismic acceleration (kv = 0), Stamatopoulos and Velgaki (2001) showed
that during the relative motion: (i) the earth thrust acting on the wall does not coincide with
the active earth-thrust Sae predicted by the M–O formula; (ii) the angle αc of the critical
wedge do not coincide with that predicted by Zarrabi-Kashani (1979). The R–E and the 2-W
approaches provide coincident solutions for both the inter-wedge force (i.e. the earth thrust)
and the critical wedge angle when the soil-wall system is at limit equilibrium.

More recently, Stamatopoulos et al. (2006) extended the 2-W solution by Stamatopoulos
and Velgaki (2001) to the case of cohesive and frictional backfill and foundation soils. In
the reference scheme (Fig. 2) the wall base is inclined of an angle αb to the horizontal, no
surcharge acts on the sloping backfill and the vertical component of the ground motion is
neglected (kv = 0); the solution is proposed in terms of critical acceleration coefficient khc,
critical wedge angle αc and coefficients of the equations of motion for both the wall and the
retained soil wedge. The Authors performed a small and a large displacements analysis in
which the effects of the change in the system geometry as displacements develop is neglected
or is accounted for, respectively.

Using a 2-W approach, Caltabiano et al. (2012) also proposed closed form solutions for
the computation of khc, αc and of the coefficients involved in the equation of motion for
several soil-wall systems characterized by different surcharge and boundary conditions. In
the reference soil-wall schemes (Fig. 1a, b) a cohesionless soil is considered both in the
backfill (c′ = 0) and in the foundation soils (cb = 0), no change in system geometry is
assumed (small displacements assumption) and the effect of the vertical component (kv �= 0)
of the ground motion and of a uniformly distributed distanced surcharge (q) are accounted
for.
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In the following sub-sections, the more relevant aspects of a 2-W small displacements
analysis in comparison with the sliding block approach are presented and discussed with
reference to the soil-wall schemes described in Figures 1a and 2 (coinciding for αb = 0)
together with the notations relevant for the discussion. Then, the influence of the change
in system geometry (large displacements analysis) will be discussed in order to derive a
simplified displacement predictive model which is required by the proposed procedure for
the selection of the equivalent seismic coefficient.

3.1.1 Evaluation of the critical acceleration coefficient

As previously stated, the R–E and the 2-W procedures provide the same result at limit
equilibrium; then, kh,c can be computed using any of these approaches. The R–E procedure
leads to very simple expressions of kh,c which must be solved iteratively and require closed
form expressions of the seismic active thrust coefficient Kae (e.g. “Appendix 1”); conversely,
closed form solutions for kh,c may be derived using the 2-W approach, though characterized
by some mathematical complexity. The need of closed form solutions for kh,c is apparent
when the effect (i) of the change in system geometry, (ii) of the cyclic reduction of soil shear
strength or (iii) of the vertical component kv of the seismic acceleration is included in the
displacement analysis.

In all these cases kh,c is time dependent and must be computed at each time step of the input
accelerogram and the use of closed form solutions may drastically reduce the computational
effort in the displacement evaluation.

Examples of 2-W solutions giving the critical acceleration coefficient kh,c may be found
in the papers by Caltabiano et al. (1999, 2000, 2012), Stamatopoulos and Velgaki (2001),
Stamatopoulos et al. (2006) together with, coupled or uncoupled, expressions providing
the critical wedge angle αc at the limit equilibrium condition and the corresponding earth
pressure coefficient Kae. Table 1 lists the main features of some of the above mentioned
2-W solutions together with the corresponding boundary and surcharge conditions and the
reference soil-wall schemes.

Differently from the conventional R–E procedure, in a 2-W analysis a potential sliding
surface in the retained soil, inclined of an angle α to the horizontal, is considered and the
equations describing the limit equilibrium conditions of the wall and of the retained soil
wedge are contemporarily satisfied. In these coupled equations the weight Ws of the retained
soil wedge involved in the potential failure mechanism and the seismic active thrust Sae,
representing the inter-wedge force, depend on α; the solution of the problem is obtained
searching for the critical value αc of the wedge angle for which, contemporarily, Sae and kh,c

attain their maximum and minimum value, respectively.
According to Biondi and Cascone (2014) for the soil-wall schemes of Figs. 1a and 2, the

equations describing the limit equilibrium conditions of the retained soil wedge and of the
wall can be reduced to the following system of two equations:

{
Kae(α) = �1

�2
kh,c(α)

1−�·kh,c(α)
= �1

�2

(2)

where:
⎧
⎪⎪⎨

⎪⎪⎩

�1 = A1 · (tan α)2 + B1 · tan α+ C1

�2 = A2 · (tan α)2 + B2 · tan α + C2

�1 = A3 · (tan α)2 + B3 · tan α + C3

�2 = A4 · (tan α)2 + B4 · tan α + C4

(3)
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Table 1 Closed-form solutions for kh,c and αc

Conditions (see Figs. 1, 2) Reference
scheme

Reference

i = β = δ = 0 Figure 1a Caltabiano et al. (1999)

c′ = cb = 0

kv = 0, q = 0

Solutions for kh,c and αc (with αc as a function of kh,c)

i = β = δ = 0 Figure 1b Caltabiano et al. (2000)

c′ = cb = 0

kv = 0, q �= 0, dq �= 0

Solutions for kh,c and αc (with αc as a function of kh,c)

β = 0 Figure 2 Stamatopoulos and Velgaki (2001)

c′ = cb = 0

kv = 0, q = 0, αb �= 0

Solutions for kh,c and αc (with αc as a function of kh,c)

i = β = δ = 0 Figure 1a, b Caltabiano et al. (2005)

c′ = cb = 0

kv = 0, q = 0

Uncoupled solutions for kh,c and αc

i �= 0, β �= 0, δ �= 0, αb �= 0 Figure 2 Stamatopoulos et al. (2006)

c′ �= 0, cb �= 0

kv = 0, q = 0

Solution for kh,c (with kh,c as a function of αc)

i = β = δ = 0 Figure 1a, b Caltabiano et al. (2012)

c′ = cb = 0

kv = 0, q �= 0, dq �= 0

Uncoupled solutions for kh,c and αc

i �= 0, β �= 0, δ �= 0, αb �= 0 Figure 1a, b Biondi and Cascone (2014)

c′ = 0, cb �= 0

kv �= 0, q �= 0, dq �= 0

Solution for kh,c (with kh,c as a function of αc)

and Kae(α) and kh,c(α) are the unknown variables representing the seismic active earth pressure
coefficient and the critical acceleration coefficient computed for the potential sliding surface;
in Eq. (3), � = kv/kh is the ratio between the vertical (kv) and the horizontal components of
the seismic coefficient (positive values of � and of kv meaning vertical inertia forces directed
upward) and, finally, A1–A4, B1–B4 and C1–C4 are numerical constants.

A1 and A2, B1 and B2, C1 and C2 depend on the angle of shear strength ϕ′ of the retained
soil, on the geometrical parameters (β, i, H—see Figs. 1a, 2) of the retained soil wedge having
unit weight γ and initial H = Ho (Fig. 1a) and current H = H(t) (Fig. 2) height of the
retained soil, on the inclination δ of the inter-wedge force and on the critical value of the
seismic coefficient kh,c. A3 and A4, B3 and B4, C3 and C4 depend on the mechanical (γ,ϕ′)
and geometrical (β, i, H ) parameters of the retained soil, on the mechanical (cb, φb) and
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Fig. 3 Influence of ϕ′ and δ on
the critical acceleration
coefficient kh,c computed for the
soil-wall system of Fig. 1a with
kv = 0 and cb = 0
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geometrical (αb, Bb) parameters of the wall-foundation soil interface, on the inclination δ of
the inter-wedge force and, finally, on the normalized wall weight:

�w = 2 · Ww

γ ·H2 (4)

being WW the wall weight.
Setting:

�3 = �2 · Kae(α) − �1

�3 = �2 · kh,c(α)

1 − � · kh,c(α)

− �1 (5)

it can be shown (Biondi and Cascone 2014) that the functions �3 and �3 describe the limit
equilibrium conditions of the soil wedge and of the wall, respectively, and their discriminants
allow detecting the critical wedge angle αc for which Kae(α) and kh,c(α) attain, contemporar-
ily, the maximum Kae = Kae(α c) and the minimum kh,c = kh,c(α c) respectively. Concerning
kh,c it is:

tan
kh,c

1 − � · kh,c
= b + √

b2 − a · c

a
(6)

where:

a = B2
4 − 4 · A4 · C4 b = 2 · A3 · C4 − 2 · C3 · A4 − B3 · B4 c = B2

3 + 4 · A3 · C3 (7)

The expressions of the constants A1 − A4, B1 − B4 and C1 − C4 are given in the “Appendix
2” assuming for simplicity αb = 0 and cb = 0.

Using Eqs. (6–7) Biondi and Cascone (2014) performed a parametric analysis in order
to check the influence of all the mechanical and geometrical parameters involved in the
estimation of kh,c and found that, among all the investigated parameters, the inclination δ

of the active thrust, the normalized wall weight �w and the friction angle φb at the soil-
foundation interface are those which mostly influence kh,c.

In Figs. 3, 4 and 5, for the case i = β = 0, kh,c is plotted versus the angle of shear strength
ϕ′ of the retained soil, varying δ (Fig. 3), φb (Figs. 4a, 5a) and �w (Figs. 4b, 5b); specifically,
the influence of φb and �w is analyzed for the case δ /ϕ′ = 0 (Fig. 4) and δ /ϕ′ = 2/3 (Fig. 5).
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Fig. 4 Influence of ϕ′, �w and φb on the critical acceleration coefficient kh,c computed for the soil-wall
system of Fig. 1a with kv = 0, cb = 0 and δ / ϕ′ = 0
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Fig. 5 Influence of φb (a) and �w (b) on the critical acceleration coefficient kh,c for the soil-wall system of
Fig. 1a computed for kv = 0, cb = 0 and δ / ϕ′ = 2/3

From all the plots it is evident that higher values of δ, �w and φb lead to more stable
soil-wall systems characterized by greater values of the critical acceleration coefficient kh,c.

As an example for �w = 0.7 and δ /ϕ′ in the range 0–2/3 (Fig. 3), kh,c increases from
about 0.17 to about 0.28, for ϕ′ = 35◦, and from about 0.26 to about 0.43, for ϕ′ = 40◦.

It is evident that the influence of φb (Figs. 4a, 5a) and �w (Figs. 4b, 5b) is remarkable
regardless the values of δ. For example for ϕ′ = 35◦, �w =0.7 and δ /ϕ′ = 2/3 (Fig. 5a)
the critical acceleration coefficient is kh,c ≈ 0.1 for φb /ϕ′ = 2/3 and it almost triplicates
(kh,c ≈ 0.28) for φb /ϕ′ = 1; similarly, in the case δ /ϕ′ = 0 (Fig. 4a) the value of kh,c

123



1248 Bull Earthquake Eng (2014) 12:1239–1267

computed for φb /ϕ′ = 1 is about seven times larger than that corresponding to the case
φb /ϕ′ = 2/3.

3.1.2 Equation of motion of sliding walls

The enhancements of the 2-W approach with respect to the sliding block procedure are mainly
related to the actual equations of motion of the soil-wall system. To derive these equations
the dynamic equilibrium condition in the direction of sliding must be considered:

d̈w · Ww

g
= Dw − Rw

d̈s · Ws

g
= Ds − Rs (8)

In Eq. (8) d̈w and d̈s are the relative acceleration of the wall (suffix w) and of the soil wedge
(suffix s), respectively, caused by the excess of driving (Dw, Ds) to resisting (Rw, Rs) forces
in the time interval during which it is kh > kh,c.

Assuming kv = 0 and using the expressions of the driving and of the resisting forces
derived by Biondi and Cascone (2014), Eq .8 can be rewritten in the form:

d̈w = [
kh − kh,c

] · Cw · g

d̈s = [
kh − kh,c

] · Cs · g (9)

where Cw and Cs are the wall and the soil displacement factors, respectively, depending on all
the mechanical (ϕ′, δ, cb,φb) and geometrical (i, β, αw, H, �w) parameters of the soil-wall
system (see Figs. 1, 2).

The wall displacement factor Cw is given by the following equation:

Cw = �w · A5 + B5

�w · A6 + B6
(10)

where the constants A5, A6, B5 and B6 depend on the same factors affecting Cw; the “Appen-
dix 3” lists the expressions giving A5, A6, B5 and B6 for the case kv = 0(� = 0) and cb =
0.

According to Stamatopoulos and Velgaki (2001) and to Stamatopoulos et al. (2006) the
kinematic compatibility of the displacements requires that the components of the displace-
ment vectors dw (of the wall) and ds (of the soil wedge), normal to the boundary between the
two wedges, have the same magnitude; this allows introducing the shape factor SF:

SF = dw

ds
= cos (αc − β)

cos (β+ αb)
(11)

In a small displacement analysis (H(t) = Ho) carried out assuming kv = 0, the factors
Cw, Cs and SF are constant with time and Eqs. (9–11) lead to:

dw = Cw · do

ds = Cs · do = Cw

SF
· do (12)

Therefore, once Cw (Eq. 10) and SF (Eq. 11) are estimated, the displacements of the wall
(dw) and of the soil wedge (ds) involved in the failure mechanism can be computed starting
from the displacement do of the rigid block sliding along a horizontal plane with the same
critical acceleration coefficient kh,c of the actual soil-wall system.
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Fig. 6 Influence of ϕ′ and δ on
the displacement ratio Cw
computed for the soil-wall system
of Fig. 1a with kv = 0 and cb = 0
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3.2 Sliding block versus sliding retaining wall: small displacement analysis

Equation (12) state that permanent displacements cumulated by the soil-wall system (dw, ds)
differ for a factor (Cw, Cs) from those computed referring to the rigid block sliding on a
horizontal plane (Eq. 1), despite the same values of kh,c is adopted in the two displacement
analyses.

Stamatopoulos et al. (2006) and Biondi and Cascone (2014) performed an extensive para-
metric analysis concerning the influence of the various parameters affecting the displace-
ment factor Cw. These Authors showed that Cw can assume values larger or smaller than
one depending on the combination of the geometrical and mechanical parameters describing
the soil-wall system. However, in most cases it is Cw < 1 reflecting that the permanent
displacements of a sliding retaining wall, computed according to a 2-W analysis, are smaller
than those evaluated for the corresponding rigid block. Thus, in most cases, the sliding block
analogy leads to a conservative estimate of the wall displacements.

Using the expressions of Cw (Eq. 10) and of the numerical constants A5, A6, B5 and B6

(“Appendix 3”) the plots of Figs. 6, 7 and 8 were obtained for the case αb = 0.
In Figs. 6 and 7, for the case i = β = 0, the values of Cw are plotted versus ϕ′ varying δ

(Fig. 6), φb (Fig. 7a) and �w (Fig. 7b). For each of the investigated parameters the same range
of variation adopted for kh,c (Figs. 3, 4) was considered; specifically, the ratios δ /ϕ′ and
φb /ϕ′ range in the intervals 0–2/3 and 2/3–5/4, respectively, and the normalized wall weight
�w ranges from 0.5 to 1.3. From the plots it is apparent that all the considered parameters
remarkably affect the displacement ratio Cw.

Concerning the inclination of the seismic active thrust (Fig. 6), the lower values of Cw

correspond to the lower values of δ and the differences between the values of Cw computed
for different δ seem to be not significantly affected by ϕ′.

From the plots of Fig. 7 it is also apparent that the greater are the friction angle φb (Fig.
7a) and the normalized wall weight �w (Fig. 7b), the greater is Cw. Assuming ϕ′ = 35◦
and δ /ϕ′ = 0 for the case of Fig. 7a (�w = 1.1) Cw increases from 0.81 to 0.96 for φb /ϕ′
increasing from 2/3 (kh,c = 0.121) to 5/4 (kh,c = 0.414); similarly, for the case φb /ϕ′ = 1
(Fig. 7b), Cw ranges from 0.71 to 0.89 for �w increasing from 0.5 (kh,c = 0.075) to 1.1 (kh,c

= 0.281).
Among all the investigated parameters, the normalized wall weight �w is, probably, the

one with the largest range of variation; values of �w in the range 0.5–0.85 are typical of gravity
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Fig. 7 Influence of ϕ′, �w and φb on the displacement ratio Cw computed for the soil-wall system of Fig.
1a with kv = 0 and cb = 0
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Fig. 8 Influence of δ (a) and of φb (b) on the displacement ratio Cw computed for the soil-wall system of
Fig. 1a with kv = 0 and cb = 0

retaining walls with no or short foundation heel, �w = 0.85–1.15 is frequent in cantilever
retaining walls and, finally, �w = 1–2.5 is usual for reinforced soil walls (β > 60◦) or slopes
(β ≤ 60◦). In Fig. 8 Cw is plotted versus �w varying δ (Fig. 8a) and φb (Fig. 8b). In the plots
�w ranges from 0.5 to 2, covering a wide typology of earth retaining structures.

From the results in Figs. 7 and 8 it is apparent that increasing the soil-wall system stability
conditions (i.e. greater values of kh,c or �w) the displacement ratio Cw approaches unity,
meaning minor differences between the displacement of the wall dw and that of the sliding
block do.
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Consistently with the studies by Stamatopoulos and Velgaki (2001) and by Stamatopoulos
et al. (2006), all the computed values of Cw (Figs. 6, 7, 8) are in the range 0.6–1.1. However,
it is apparent that in most cases Cw is smaller than unity meaning dw < do. The condition
Cw > 1 (i.e. dw > do) occurs in very few cases related to the combination of the higher
values of the angle of shear strength of the retained soil ϕ′ together with the higher values of
φb and �w and the lower values of δ.

Therefore, it can be stressed that though the sliding-block analogy neglects the coupled
soil-wall behaviour and the kinematic compatibility of their displacements, generally it leads
to values of permanent displacement of the wall greater than that predicted by a more reliable
2-W displacement analysis (do > dw); in a very few cases it is (do < dw).

3.3 Effect of change in the system geometry

Actually, if the wall slides the geometry of the soil-wall system changes during motion.
Several authors proposed large displacements analyses introducing the effect of the change

in the system geometry as displacements develop (e.g. Zarrabi-Kashani 1979; Caltabiano et
al. 1999; Sarma and Chlimintzas 2000; Stamatopoulos and Velgaki 2001; Stamatopoulos et
al. 2006). During the motion the height of the backfill reduces from the initial value Ho (Fig.
2) and, as displacements increase, new failure surfaces may develop in the retained soil. The
reduction of the backfill height (H(t) ≤ Ho—Fig. 2) leads to more stable configurations of the
soil-wall system for which, if no shear strength degradation occurs, the critical acceleration
progressively increases. In this case, a large displacements analysis usually allows predicting
smaller permanent displacements than a small displacements analysis.

In large displacements analyses a 2-W approach can be adopted and the change in the
ground surface of the retained soil can be estimated through a combined application of the
mass conservation principle and of the kinematic compatibility condition of the wall and
wedge displacements, (e.g. Caltabiano et al. 1999; Stamatopoulos et al. 2006). Closed-form,
as well as numerical, solutions are available for the evaluation of the current height H(t) of the
retained soil-wedge, of the critical wedge angle αc(t), of the seismic earth pressure coefficient
Kae(t), of the horizontal component of the soil-wall critical acceleration coefficient kh,c(t)
and, finally, of the displacement factors affecting the equations of motion of the wall and of
the soil-wedge.

To the author’s knowledge, the most comprehensive solutions available in the literature
are those proposed by Stamatopoulos et al. (2006) referring to the soil-wall system shown in
Fig. 2. According to these Authors, in the case of a large displacements analysis, carried out
neglecting the effect of the vertical component of the ground motion (kv = 0), the equations
of motion of the wall and of the retained soil wedge, can be written as:

d̈w = [
kh − kh,c(t)

] · Cw(t) · g

d̈s = [
kh − kh,c(t)

] · Cs(t) · g (13)

where Cw(t) and Cs(t) represent the current (time dependent) values of the wall and of the
soil-wedge displacement factors (Cw and Cs in Eq. 9) respectively. Also the soil-wall critical
acceleration coefficient kh,c(t) varies with time since it is evaluated at each time step of the
analysis referring to the current geometrical configuration of the soil-wall system (i.e. the
current values of H(t) and αc(t)—Fig. 2). In the following kh,co denotes the initial (t = 0)
value of the critical acceleration coefficient computed for the undeformed configuration of
the soil-wall system.
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Fig. 9 Values of the ratio ξ

computed by Stamatopoulos et al.
(2006) and proposed upper bound
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The result of a 2-W large displacements analysis can be quantified through the ratio
between the maximum values of the permanent displacement of the wall computed including
(dw,max) and neglecting (dw,max—small displacements analysis with kh,c(t) = kh,co) the
change in the system geometry:

ξ = dw,max

dw,max
(14)

Since dw,max ≤ dw,max, it is always ξ ≤ 1.
Stamatopoulos et al. (2006) carried out an extensive parametric analysis using four accel-

eration time-histories and a great number of combinations of the mechanical and geometrical
parameters describing the reference soil-wall scheme (Fig. 2). The time-histories represent
the horizontal components of the ground acceleration recorded, at epicentral distances rang-
ing from 5 to 40 km, during four large earthquakes with magnitude in the range 5.75–7.3; the
accelerograms have peak values ah,max = kh,max ·g in the range 0.15g–0.7g and fundamental
period in the range 0.1–0.6 s and, thus, cover a very wide range of energy and frequency
content. The results of the analysis were presented in terms of variation of ξ with the acceler-
ation ratio kh,co/kh,max. The shaded area in Fig. 9 represents the envelope of the values of ξ

presented by Stamatopoulos et al. (2006). It can be observed that ξ is close to unity for values
of the ratio kh,co/kh,max greater than about 0.30–0.4, while values in the range 0.15–0.9 can
be obtained for kh,co/kh,max < 0.30.

Most of the ξ–kh,co/kh,max plots presented by Stamatopoulos et al. (2006) seem to suggest
a unique fit curve regardless the acceleration record adopted in the analysis, the wall weight
(Ww), the initial height (Ho) of the retained soil, the slope αb and the adhesion cb and friction
angle φb at the base of the wall; conversely, the results are affected by a certain dispersion
(enclosed in the shaded area in Fig. 9) when the effects of i, β and δ are accounted for.

The results provided by Stamatopoulos et al. (2006) were used herein to derive an empir-
ical expression of the ξ–kh,co/kh,max relationship. Specifically, the upper bound of the data
enclosed in the shaded area of Fig. 9 with kh,co/kh,max < 0.35 was fitted using the following
functional form:

ξ = ξo +
kh,co

kh,max

ξ1 + ξ2 · kh,co
kh,max

(15)

The best estimate of the regression parameters, obtained through an ordinary least squares
method, is ξo = 0.2618, ξ1 = 0.0649 and ξ2 = 1.1678 and the corresponding upper bound
curve is plotted in Fig. 9 as a thick dashed line.
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Using the computed upper bound of theξ–kh,co/kh,max relationship a conservative estimate
of the maximum value of the actual permanent displacement cumulated by the wall, dw,max,
can be assessed, by-passing the large displacements analysis, and applying the reduction
coefficient ξ (Eq. 15) to the value of the maximum permanent displacement, dw,max, given
by a traditional small displacements analysis:

dw,max =
⎛

⎝ξo +
kh,co

kh,max

ξ1 + ξ2 · kh,co
kh,max

⎞

⎠ · dw,max (16)

For kh,co/kh,max ≥ 0.35, dw,max = dw,max can be assumed without appreciable error (Fig.
9).

4 Simplified displacement predictive model

In the previous sections it was shown that the equation of motion to be solved for the evaluation
of the earthquake-induced permanent displacements of sliding retaining walls (Eqs. 12–14)
is formally similar to that of a rigid block sliding on a horizontal plane with the same critical
acceleration coefficient of the actual soil-wall system (Eq. 1).

These equations differ in a displacement factor which is unity in the case of the sliding
block (Eq. 1) and, for usual combinations of the relevant parameters characterizing the soil-
wall system, is less than one (Cw ≤ 1) in a 2-W displacement analysis.

The effect of the change in system geometry during motion can be accounted for through
the reduction factor ξ (Eq. 15) by-passing a large displacements analysis.

Based on these considerations the first of Eqs. (12) and (14) together with Eqs. (10) and
(15) allow introducing the following relationship for a simplified evaluation of the maximum
value of the expected wall displacement:

dw,max = ξ ·Cw · do,max =
⎛

⎝ξo +
kh,co

kh,max

ξ1 + ξ2 · kh,co
kh,max

⎞

⎠ · �w · A5 + B5

�w · A6 + B6
· do,max (17)

In Eq. (17) do,max is the maximum permanent displacement cumulated by a rigid block sliding
on a horizontal plane, characterized by the same critical acceleration coefficient kh,co of the
actual soil-wall system and subjected to the same acceleration time-history.

The values of dw,max provided by Eq. (17) can be regarded as the result of a two-wedge
large displacements analysis and requires only the evaluation of the maximum value of the
sliding block displacement do,max to be corrected using the factors Cw and ξ, depending
on all the geometrical and mechanical parameters describing the soil-wall system (Eqs. 10,
15). Both these coefficients are generally smaller than unity and therefore the expected wall
displacement dw,max is usually smaller than the block displacement do,max.

If the effect of the change in system geometry is neglected in the displacement analysis
(ξ = 1; kh,c(t) = kh,co), Eqs. (16) and (17) reduce to:

dw,max = dw,max = Cw · do,max = �w · A5 + B5

�w · A6 + B6
· do,max (18)

For a given earthquake record do,max can be estimated through a conventional Newmark-type
analysis. Alternatively, many empirical relationships are available in the literature relating
do,max to one or more seismic parameters describing the characteristics of the reference ground
motion in terms of peak values (e.g. Ambraseys and Menu 1988; Whitman and Liao 1984),
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amplitude distribution and energy content (e.g. Ausilio et al. 2007; Jibson 2007), frequency
content, spectral parameters and strong motion duration (e.g. Saygili and Rathje 2008; Madiai
2009; Biondi et al. 2011). These empirical relationships represent displacement predictive
equations and were derived through best-fit regression analyses of permanent displacements
computed using given sets of earthquake records. The accelerogram database, the seismic
parameters selected as predictor variables and the functional form of the regression model
adopted in the best-fit analysis are the main factors affecting the reliability of the predictive
equations.

The choice of an appropriate functional form (e.g. Ambraseys and Menu 1988; Hwang
2012) and of suitable seismic parameters as predictors (e.g. Saygili and Rathje 2008) are
crucial aspects, especially when the analysis is aimed to minimize the aleatory variability in
the prediction of do,max. Conversely, when a conservative estimate of do,max is pursued, simple
functional forms and few predictor variables can be used to derive upper-bound predictive
equations of practical use. As an example Ambraseys and Menu (1988), Yegian et al. (1991)
and Biondi et al. (2011) used the following functional forms to describe the logarithm of the
expected maximum permanent displacement as a linear, polynomial or non-linear function
of the acceleration ratio kh,c/kh,max:

log do,max = a + b · kh,c

kh,max
(19)

log do,max = a + b · kh,c

kh,max
+ c ·

(
kh,c

kh,max

)2

+ d ·
(

kh,c

kh,max

)3

(20)

log do,max = a + b · log

(
1 − kh,c

kh,max

)
+ c · log

kh,c

kh,max
(21)

In Eqs. (19–21) a, b, c and d are regression parameters evaluated for a given confidence
level and the ratio kh,c/kh,max is the unique predictor variable included in the model.

In this paper the procedure proposed for the assessment of the equivalent seismic coef-
ficient kh,eq is illustrated with reference to the Italian seismicity using the displacement
predictive model derived by Biondi et al. (2011). However, as it will be apparent in the next
section any other simplified predictive model can be used to derive numerical values of kh,eq.

The displacement regression model by Biondi et al. (2011) was derived using a set 405,
uniformly processed, free-field horizontal acceleration time-histories recorded at site-source
distances R ≤ 100 km, during 110 shallow crustal earthquakes occurred in Italy with moment
magnitude in the range 4.1–6.9. For the selected records the peak acceleration ah,max =
kh,max · g and the Arias Intensity Ia (Arias 1970) vary in the ranges 0.05 · g–0.675 · g and
0.4–2874 cm/s, respectively, the duration of the strong motion phase D5-95 (Trifunac and
Brady 1975) and the mean period Tm (Rathje et al. 1998) range from 0.4 to 51 s and from
0.07 to 0.57 s, respectively.

In the analysis by Biondi et al. (2011) the original accelerograms and also sets of accelero-
grams scaled to peak values up to 0.15, 0.25 and 0.35g were adopted and displacements were
computed for values of the acceleration ratio kh,c/kh,max in the range 0.1–0.8; in the regres-
sion analysis several sets of seismic parameters, including kh,c/kh,max, Ia, D5-95 and Tm,
were used as predictive variables.

Herein, reference is made to the predictive model developed assuming the ratio kh,c/kh,max

as predictor (Eq. 19); Table 2 lists the values of the regression parameters a and b evaluated
for a probability of exceedance p equal to 90, 95 and 99 %. According to Eqs. (17–19)
the following simplified predictive model can be derived for a conservative estimate of the
maximum permanent displacement of the wall:
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Table 2 Regression parameters
of the displacement predictive
model proposed by Biondi et al.
(2011)

log do,max = a + b · kh,c
kh,max

Accelerograms

Original Scaled to
kh,max =
0.15

Scaled to
kh,max =
0.25

Scaled to
kh,max =
0.35

p = 50 % b (cm) −3.908 −3.687 −3.472 −3.454

a (cm) 1.220 1.281 1.401 1.540

p = 90 % a (cm) 1.962 2.013 2.080 2.240

p = 95 % a (cm) 2.172 2.220 2.273 2.438

p = 99 % a (cm) 2.567 2.609 2.634 2.810

log dw,max = a + b · kh,co

kh,max
+ log Cw + log

⎛

⎝ξo +
kh,co

kh,max

ξ1 + ξ2 · kh,co
kh,max

⎞

⎠ (22)

or, alternatively, for ξ = 1:

log dw,max = log dw,max = a + b · kh,co

kh,max
+ log Cw (23)

In the following, the suffix ‘o’ in the initial value of the critical acceleration coefficient kh,co

is omitted for simplicity and the symbol kh,c denotes the value computed with reference to
the undeformed geometry of the soil-wall system (small displacement analysis).

5 Performance-based pseudo-static analysis

The result of a pseudo-static stability analysis critically depends on the values of the hori-
zontal, kh,eq, and vertical, kv,eq, equivalent seismic coefficients. These allow the evaluation
of the pseudo-static inertia forces that, acting on both the wall and the soil wedge involved
in the failure mechanism, should represent the overall earthquake effects on the soil-wall
system.

In current practice kh,eq and kv,eq are provided by seismic codes and, usually, are related
to the expected peak ground acceleration at a given site. Specifically, in most codes and
guidelines for seismic design kh,eq is assumed to be a fraction βw of the horizontal peak
ground acceleration coefficient kh,max while kv,eq is assumed to be a percentage � of kh,eq:

kh,eq = βw ·kh,max

kv,eq = � · kh,eq (24)

The coefficient βw is usually denoted as acceleration reduction factor.
According to Eq. (24) kh,eq and kv,eq do not depend on the mechanical and geometrical

properties of the considered soil-wall system (that actually represent crucial factors for its
seismic response), refer only to the peak acceleration amplitude (that is not suitable to describe
all the characteristics and the potential effects of the expected ground motion), and, finally,
do not seem to reflect any criteria concerning the quantification of the earthquake effects on
the seismic performance of the soil-wall system.

Cascone and Biondi (2014) recently showed that, introducing a suitable definition of the
safety factor in terms of cumulated displacements, the equivalent seismic coefficients to
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be used in the pseudo-static analysis could be related to threshold values dw,lim or ds,lim

of the permanent displacement which may be suffered by the wall (dw,lim) or by the soil-
wedge (ds,lim) without reaching an ultimate or a serviceability limit state. These Authors
assumed that the earthquake-induced permanent displacement, predicted by a proper modified
Newmark-type analysis (e.g. the 2-W approach previously described), reliably represents the
earthquake effects and is a suitable index for assessing the seismic performance if compared
with proper limit values (dw,lim or ds,lim) related to the operational characteristics of the
soil-wall system.

Accordingly, if the equivalent seismic coefficient kh,eq has to reliably represent the overall
earthquake effects on a given soil-wall system, then it must depend on the limit displacements
dw,lim and ds,lim and on the factors affecting the wall displacement response, such as the
characteristics of the design earthquake (e.g. kh,max), the initial stability condition of the
soil-wall system and the acceleration ratio kh,c/kh,max.

Herein, reference is made to limit states of the soil-wall system defined through the limit
value dw,lim and a procedure for defining the equivalent seismic coefficient kh,eq as a function
of dw,lim and of the acceleration ratio kh,c/kh,max is described assuming kv = 0 (� = 0) since
the effect of the vertical component of the ground motion is almost negligible in the evaluation
of the permanent displacement.

In the following sub-sections an appropriate definition of the wall safety factor, alternative
to the conventional pseudo-static one, is preliminarily proposed and a solution for the evalu-
ation of kh,eq is provided introducing an equivalence between the conventional pseudo-static
force-balanced approach and a performance-based analysis based on permanent displace-
ments evaluation.

5.1 An alternative definition of the wall safety factor

In a displacement analysis the seismic performance of a soil-wall system can be evaluated
comparing the maximum value of the earthquake-induced permanent displacement of the
wall dw,max with a proper limit value dw,lim; the ratio dw,lim/dw,max represents a displacement
safety factor. However, in two cases, namely dw,lim = 0 or dw,max = 0, this definition of the
safety factor fails in providing a reliable measure of the wall performance and an alternative
index is needed to reliably check the results of the displacement analysis.

Using a displacement predictive model, instead of computing dw,max for given values of
the peak ground acceleration coefficient kh,max, a limit value, kh,lim, of the peak seismic coef-
ficient associated to a given limit displacement dw,lim of the wall can be detected. Specifically,
kh,lim represents the peak horizontal acceleration coefficient required to induce a permanent
displacement equal to the limit value dw,lim.

For example, with reference to the displacement predictive model described by Eq. (22),
it is:

kh,lim

kh,c
= −b

a + log (ξ ·Cw) − log dw,lim
(25)

Values of the peak ground acceleration coefficient kh,max lower than the limit seismic coef-
ficient kh,lim given by Eq. (25) yield earthquake-induced displacements dw,max smaller than
the limit value dw,lim, the associated limit state not being achieved.

In Fig. 10, with reference to the soil-wall system described in Fig. 1a with ϕ′ = 35◦, i =
β = δ /ϕ′ = cb = 0,φb /ϕ′ = 2/3 and kv = 0,kh,lim is plotted versus �w for values of
the limit displacement dw,lim ranging from 0.1 to 10 cm. In the analysis the displacement
predictive model (Eq. 23) derived with reference to the original set of accelerograms, with a
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Fig. 10 Tolerable acceleration
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probability of exceedance p = 90 %, was used (Table 2) and ξ = 1 was assumed for simplicity
(Eq. 23).

From the plots it is evident that the limit displacement significantly affects the tolerable
acceleration coefficient kh,lim. For a given soil-wall system (i.e. a given value of kh,c in Eq.
25) the greater dw,lim the greater is kh,lim; similarly, kh,lim increases as the system becomes
more stable (increasing values of �w, that is increasing value of kh,c—see Fig. 4b).

As an example for dw,lim equal to 1, 5 and 10 cm the tolerable acceleration kh,lim varies
in the range 0.12–0.26 for �w = 0.8 (kh,c ≈ 0.055), 0.21–0.46 for �w = 1 (kh,c ≈ 0.102)
and 0.29–0.61 for �w = 1.2 (kh,c ≈ 0.138). In all the cases for values of dw,lim gradually
reducing to zero, kh,lim tends to kh,c (dashed line in Fig. 10).

A factor of safety Fk representing a reliable measure of the seismic performance of the
soil-wall system can then be defined as the ratio between the tolerable acceleration coefficient
kh,lim, that can be sustained by the wall without attaining a given limit state (corresponding
to a limit displacement dw,lim), and the peak value of the acceleration coefficient kh,max to
which the wall is subjected during the earthquake:

Fk = kh,lim

kh,max
(26)

Since kh,lim and kh,max are related to the limit dw,lim (Eq. 25) and to the earthquake-induced
dw,max (Eqs. 22–23) displacements, Fk represents a measure of the safety against a given
limit state evaluated comparing accelerations rather than displacements.

Values of Fk greater than one indicate wall stability with respect to the limit state related
to the selected limit displacement dw,lim; in fact, if kh,lim > kh,max (that is Fk > 1) the
earthquake-induced displacement will be smaller than the limit one (dw,lim > dw,max).

Convenience in using Fk rather than the conventional pseudo-static safety factor Fps will
be shown with reference to the soil-wall scheme of Fig. 1a (αb = 0). In the case kv = 0
(� = 0) the pseudo-static safety factor with respect to a sliding failure mechanism can be
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Fig. 11 Comparison between
conventional (Fps) and proposed
(Fk) safety factors
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expressed as:

Fps =
2·cb·Bb

�w·γ ·H2 + tan φb ·
[
1 + Kae

�w
· sin (δ + β)

]

Kae
�w

· cos (δ + β) + kh,eq
(27)

where kh,eq is the equivalent seismic coefficient adopted in the conventional pseudo-static
analysis (i.e. kh,eq = βw ·kh,max and � = kv,eq/kh,eq), Kae represents the active earth-
pressure coefficient and the other symbols are described in Fig. 1a and have been already
introduced.

In Fig. 11, Fk and Fps are plotted versus kh,max with reference to the soil-wall system of
Fig. 1a with �w = 1 and the other geometrical (i, β) and mechanical (ϕ′, δ, φb) parameters
as in the case of Fig. 10.

Specifically, for the case cb = 0, Fk was computed through Eq. (26) evaluating kh,lim (Eq.
25) for several values of dw,lim assuming ξ = 1 (no change in system geometry); Fps was
computed through Eq. (27) for βw = 1/2 and βw = 2/3 using the Mononobe–Okabe active
earth-pressure coefficient given by Eq. 35 of “Appendix 1”.

For the considered soil-wall system the critical acceleration coefficient and the wall dis-
placement factor are kh,c ≈ 0.10 (Eqs. 6–7) and Cw ≈ 0.79 (Eq. 10), respectively.

According to the conventional pseudo-static approach, the wall is stable (Fps > 1) if kh,eq

is smaller than kh,c; this means kh,max < kh,c/ βw that is kh,max < 0.104 for βw = 1/2 and
kh,max < 0.203 for βw = 2/3. Conversely, using Fk, the values of kh,max for which the wall
stability is ensured (Fk > 1) depend on the adopted value of the limit displacement dw,lim,
that is, on the permanent displacement which may be undergone by the wall without reaching
a limit state.

As an example (Fig. 11), for dw,lim equal to 1, 5 and 10 cm the wall is stable for kh,max

smaller than about 0.22, 0.34 or 0.47, respectively, all these values being larger than the value
obtained from the traditional pseudo-static approach (from Fig. 11 it is Fps = 1 for kh,max =
0.21 or 0.15 if βw = 1/2 or 2/3).

Similarly, for a given kh,max, different values of Fk are obtained depending on the selected
values of dw,lim. As an example if kh,max = 0.25 is assumed, for the considered soil-wall
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system it is dw,max = 3.4 cm (Eq. 23) and, correspondingly, Eq. (26) or Fig. 11 give Fk =
0.74, 0.86, 1.21 and 1.38 for dw,lim equal to 0.5, 1, 3.5 and 5 respectively, denoting that wall
stability may be (Fk > 1) or may be not (Fk < 1) satisfied depending on the assumed limit
displacement. Correspondingly, the conventional pseudo-static approach yields Fps = 0.92
for βw = 1/2 and Fps = 0.80 for βw = 2/3 denoting a wall instability (Fps < 1) regardless the
earthquake-induced displacement dw,max and the assumed limit value dw,lim.

5.2 A rational criterion for the selection of the pseudo-static coefficient kh,eq

In order to achieve a match between the results of the pseudo-static and of the performance-
based analysis, an equivalence criterion between the two approaches must be introduced.

A rational criterion to define this equivalence consists in the detection of the equivalent
seismic coefficient kh,eq for which the two approaches provide the same factor of safety:
Fk = Fps.

In this way, although no displacement analysis is performed, even using the pseudo-static
approach a measure of the wall safety condition consistent with that of performance-based
analysis can be obtained.

Using Eqs. (26) and (27) and imposing Fps = Fk the following expression for kh,eq can
be derived:

kh,eq =
2·cb·Bb/cos αb

γ ·H2·�w
· kh,max

kh,lim
+ Eeq

cos αb + sin αb · tan φb · kh,max
kh,lim

+ � · Eeq

(28)

where:

Eeq =
(

cos αb · tan φb ·kh,max

kh,lim
− sin αb

)

+ Kae,eq

�w
·
[

cos (δ + β − αb) − tan φb · sin (δ + β − αb) · kh,max

kh,lim

]
(29)

Kae,eq is the active earth pressure coefficient computed at limit equilibrium (i.e. for kh = kh,eq

and � = kv,eq/kh,eq) and all the other symbols have been already introduced (Figs. 1a, 2).
As expected the equivalent seismic coefficient kh,eq depends on all the geometrical

(i, β, Bb, αb) and mechanical (γ, ϕ′, δ, �w, cb, φb) parameters describing the soil-wall
system, on the peak ground acceleration (kh,max, �) and, through kh,lim (Eq. 25), on the
acceptable wall displacement dw,lim and on the critical acceleration coefficient kh,c.

Like in the case of the critical acceleration coefficient (Eq. 32 in “Appendix 1”), Eq. (28)
must be solved iteratively since the earth-pressure coefficient Kae,eq depends on kh,eq.

It is worth noting that Eqs. (28) and (29) are formally similar to Eqs. (31) and (32) of
“Appendix” giving the critical acceleration coefficient kh,c and the quantity Ec; the only
difference consists in the safety factor which is unity in the equations giving kh,c and Ec and
is equal to Fk in the equations giving kh,eq and Eeq.

Moreover, since when kh,eq = kh,c it is Fk = 1:

– the condition kh,eq < kh,c occurs if Fk > 1, meaning that both the expected wall displace-
ment and the expected peak acceleration do not overcome the corresponding limit values:
dw,max < dw,lim and kh,max < kh,lim; accordingly, the proposed equivalent pseudo-static
analysis provides Fps = Fk > 1;

– the condition kh,eq > kh,c occurs if Fk < 1, implying that a limit state of the wall is
achieved since it is also kh,max > kh,lim and dw,max > dw,lim; accordingly, the proposed
approach leads to Fps = Fk < 1.
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Finally, it must be pointed out that the obtained expressions for kh,eq (Eq. 28) do not depend
on the adopted displacement predictive model since this is only involved in the computation
of the limit acceleration kh,lim (Eq. 25). Expressions of kh,lim, alternative to Eq. (25), can be
derived using any other displacement regression model providing dw,max as a function of kh,c

and kh,max through different functional forms (e.g. Eqs. 20, 21) or introducing other suitable
seismic parameters.

Once the expression of kh,eq is known, the acceleration reduction factor βw may be com-
puted normalizing Eq. (28) with respect to kh,max:

βw = kh,eq

kh,max
=

2·cb·Bb/cos αb
γ ·H2·�w·kh,lim

+ Eeq
kh,max

cos αb + sin αb · tan φb · kh,max
kh,lim

+ � · Eeq

(30)

Equation (30) shows that the acceleration reduction factor βw depends on the same quantities
affecting kh,eq, including the expected peak ground accelerations (kh,max, �), the geometrical
and mechanical parameters of the soil-wall system, reflected also in the value of kh,c, and the
limit displacement dw,lim, implicit in the limit acceleration kh,lim (Eq. 25).

With reference to the soil-wall system of Fig. 1a, the values of βw were computed for
the case ϕ′ = 35◦, δ /ϕ′ = φb /ϕ′ = 2/3, β = i = cb = 0 and kv = 0 (� = 0) assuming
several values of the wall limit displacement dw,lim ranging from 1 to 10 cm and neglecting
the effect of the change in system geometry (ξ = 1); in the analysis the Mononobe–Okabe
active earth-pressure coefficient (Eq. 35) and the parameters a and b of the displacement
predictive model (Eq. 22) obtained for p = 90 % with reference to the accelerograms scaled
to kh,max = 0.25 (Table 2) were adopted.

The results are shown in Fig. 12a were βw is plotted against �w; in the figure, also the values
βw = 1/2 and βw = 2/3 suggested by the European Committee for Standardization (2003)
in part 5 of Eurocode 8 (EC8), for gravity retaining walls which can undergo permanent
displacements up to dw,lim (mm) = 300 · kh,max and dw,lim (mm) = 200 · kh,max are plotted
with a thin and a thick dashed line, respectively.

It can be observed that both dw,lim and �w significantly affect the computed values of βw.
Generally, for a given value of �w, βw reduces as dw,lim increases. As an example, assuming
�w = 1 (kh,c = 0.078, Cw = 0.84), the plots in Fig. 12a yield values of βw equal to 0.865,
0.651, 0.511, 0.232 for dw,lim = 2, 3.5, 5 and 10 cm respectively. Then, the greater is the
value of dw,lim that can be suffered by the wall, the lower is the equivalent seismic coefficient
kh,eq=βw ·kh,max to be adopted in the pseudo-static analysis. Thus, soil-wall systems that
can undergo larger permanent displacements without reaching a limit state, can be verified
assuming smaller values of the equivalent seismic actions.

As a consequence a unique value of βw leads unavoidably to erroneous evaluations of the
equivalent seismic actions and, then, of the wall seismic performance.

For example for dw,lim = 10 cm the proposed procedure provides βw = 0.23 which is lower
than the values suggested by EC8. In this case the expected wall displacement is dw,max =
8.2 cm and the corresponding limit acceleration (Eq. 25) is kh,lim = 0.27; therefore, the limit
state is not achieved by the wall (since it is dw,max = 8.2 cm < dw,lim = 10 cm and kh,max =
0.25 < kh,lim = 0.27).

A reliable selection of the equivalent seismic coefficient should reflect this result leading
to a pseudo-static safety factor Fps greater than unity.

Assuming βw = 0.23, as predicted by the proposed procedure, it is Fk = kh,lim/kh,max =
1.08 and Fps = Fk > 1 consistently with the condition dw,lim > dw,max; conversely, using
βw = 1/2 or βw = 2/3 as suggested by EC8 (regardless dw,lim) it is Fps = 0.92 < 1 or Fps =
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Fig. 12 Acceleration reduction factor (a) and comparison between kh,eq and kh,c (b)

0.80 < 1 which, in both cases, is not consistent with the actual seismic performance of the
wall (dw,max < dw,lim).

As shown in Fig. 12a, for a given limit displacement dw,lim the greater is �w (i.e. the
greater is kh,c), the lower is the acceleration reduction factor βw and, then, kh,eq.

As an example for dw,lim = 3.5 cm it is βw = 0.65, 0.40 and 0.31 for �w equal to 1,
1.1 and 1.2 respectively; similarly, for the same values of �w and for dw,lim = 5 cm it is
βw = 0.51, 0.29 and 0.22. Then, for a given limit state and design value of peak ground
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acceleration kh,max, the more stable is the considered soil-wall system, the smaller is the
equivalent seismic coefficient kh,eq=βw ·kh,max to be adopted in the pseudo-static analysis.

In Fig. 12b, the plot of the ratio kh,c/kh,max is superimposed to the curves representing
the acceleration reduction factor βw depicted in Fig. 12a.

Assuming �w = 1 which leads to kh,c = 0.078 (Eqs. 5–6) and to Cw = 0.84 (Eq. 9) for
kh,max = 0.25 Eq. (22) leads to dw,max = 8.2 cm; in this case it is worth observing that:

– for dw,lim = 5 cm the limit displacement is exceeded (dw,lim < dw,max) and the proposed
procedure gives βw = 0.51 and Fk = 0.84 < 1; in the diagram of Fig. 12b the correspond-
ing point (�w = 1; βw = 0.51) is located above the thick line representing the acceleration
ratio kh,c/kh,max;

– assuming dw,lim = 10 cm (βw = 0.23) it is Fk = 1.08 > 1 consistently with the condition
dw,lim > dw,max and in Fig. 12b the point relevant to this case (�w = 1; βw = 0.23) is
located below the thick line representing the ratio kh,c/kh,max.

Similarly, in the case �w = 1.2 (kh,c = 0.11, Cw = 0.87, dw,max = 3.1 cm), in the diagram
of Fig. 10b, the points relevant for the cases dw,lim = 2 cm (βw = 0.08 and Fk = 0.89 < 1)
and dw,lim = 5 cm (βw = 0.29 and Fk = 1.15 > 1) are located below and above of the line
representing the ratio kh,c/kh,max respectively.

Then, for a given value of the limit displacement dw,lim, the curve representing the accel-
eration ratio kh,c/kh,max divides Fig. 10b in two zones:

– above the curve, the equivalent seismic coefficient kh,eq is greater than the corresponding
critical value kh,c and wall stability evaluated in terms of displacement ratio is not satisfied
since it is dw,lim < dw,max; consistently it is also kh,lim < kh,max and Fk = Fps < 1;

– below the curve, kh,eq is smaller than kh,c, and since the expected permanent displacement
does not overcome the limit value (dw,lim > dw,max) the wall stability is ensured and the
limit state associated to dw,lim is not achieved; consistently, the proposed approach leads
to the condition Fk = Fps > 1(kh,lim > kh,max).

6 Discussion and conclusions

Pseudo-static and displacement analyses are usually regarded as alternative methods for the
evaluation of the seismic performance of retaining walls. However, the equivalent seismic
coefficients adopted in the pseudo-static representation of the transient seismic action can be
related to earthquake-induced permanent displacements in the attempt to link the conventional
pseudo-static approach to more reliable performance-based analyses.

This paper presents a rational procedure for a proper selection of the horizontal seismic
coefficient kh,eq as a function of a limit value of the earthquake-induced permanent displace-
ment dw,lim that can be suffered by the wall without reaching a serviceability or an ultimate
limit states.

The proposed procedure assumes that earthquake-induced permanent displacement rep-
resents a proper index of the wall seismic performance, requires the evaluation of the critical
acceleration coefficient kh,c and of the factors Cw and Cs affecting the equation of motion of
the soil-wall system and, finally, involves a suitable displacement predictive model, possibly
accounting for the change in the system geometry during motion.

Solutions for the evaluation of kh,c, Cw and Cs are presented and discussed in the paper
showing that the Newmark sliding-block analogy, which neglects the coupled soil-wall behav-
ior and the kinematic compatibility, generally overestimates the wall displacements. It is
shown that the higher is the critical acceleration coefficient kh,c of the considered soil-wall
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system, the less relevant are the effect of the change in system geometry due to displacement
development and the difference between the actual wall displacements and those predicted
by the sliding block analogy.

Using a displacement predictive model the procedure allows evaluating a limit value
kh,lim of the horizontal acceleration coefficient representing the maximum value of the seis-
mic acceleration coefficient that can be sustained by the wall without reaching a limit state
corresponding to a limit permanent displacement dw,lim.

Introducing a safety factor Fk, defined as the ratio between the limit acceleration coefficient
kh,lim and the earthquake-induced peak ground acceleration kh,max, it has been demonstrated
that, for a given design earthquake, reliable values of the equivalent seismic coefficient kh,eq

should depend on all the factors affecting the stability condition of the soil-wall system and
on the permanent displacement that can be sustained by the wall without reaching a limit
state; also, it has been shown that the use of an equivalent acceleration coefficient not related
to dw,lim, kh,max and kh,c may lead to a pseudo-static evaluation of the wall performance (i.e
to a value of the pseudo-static safety factor Fps) inconsistent with that of a more reliable
displacement-based analysis.

To achieve a match between the results of the two kinds of analysis the procedure proposed
in this paper detects the value of the equivalent seismic coefficient kh,eq for which the two
approaches provide the same factor of safety: Fps = Fk.

The proposed expression for the evaluation of kh,eq involves all the geometrical and
mechanical parameters describing the soil-wall system, the expected peak ground accel-
eration kh,max and the acceptable wall displacement dw,lim. Through a parametric analysis
it has been shown that the more stable is the considered soil-wall system, the smaller is the
equivalent seismic coefficient to be used in the pseudo-static analysis; similarly, the greater
is the limit displacement dw,lim that can be suffered by the wall, the lower is the seismic force
to be adopted in the equivalent pseudo-static analysis.

Using the proposed expression of kh,eq (Eq. 28) without necessarily carrying out a dis-
placement analysis, a measure of the safety condition of a soil-wall system consistent with its
expected seismic performance may be achieved through an equivalent pseudo-static analysis.

Acknowledgments This research was supported by the Dipartimento della Protezione Civile in the frame-
work of the Research Project ReLUIS/DPC 2010-2013 (Thematic area AT-2, Task 2.1).

Appendix

For the soil-wall systems shown in Figs. 1a, 2 this Appendix lists the equations derived by
Biondi and Cascone (2014) and by Cascone and Biondi (2014) for the evaluation of the
critical,kh,c, and of the equivalent, kh,eq, seismic coefficients and of the displacement factor
Cw assuming kv = 0 (� = 0).

Appendix 1: Horizontal component of the critical acceleration coefficient, kh,c: R–E
procedure

kh,c can be computed solving, iteratively, the following equation (Biondi and Cascone 2014):

kh,c =
2·cb·Bb

γ ·H2·�w·cos αb
+ Ec

cos(φb − αb)
cos φb

+ � · Ec

(31)
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where cb and φb are the shear strength parameters at the wall-foundation soil interface, Bb

is the wall base width, αb is the inclination of the wall base to the horizontal and H is the
height of the retained soil having a unit weight γ;

Ec = sin (φb − αb)

cos φb
+ Kae,c

�w
· sin (δ + β +φb − αb)

cos φb
(32)

� = kv,c

kh,c
(33)

is the ratio of the vertical to the horizontal seismic coefficient at limit equilibrium;

�w = 2 · Ww

γ ·H2 (34)

is the normalized wall weight (Ww is the wall weight);
Kae,c is the value at limit equilibrium of the Mononobe–Okabe active earth-pressure coeffi-
cient Kae:

Kae = cos2(β + θ −ϕ′)

cos2 β · cos θ · cos(δ + β + θ) ·
[
1 +

√
sin(ϕ′ −i−θ)·sin(δ+ ϕ′)
cos(i−β)·cos(β + δ+ θ)

]2 (35)

with:

tan θ = tan θc = kh,c

1 − kv,c
= 1

1/kh,c − �c
(36)

In the case of horizontal wall base (αb = 0; Fig. 1a) Eqs. 31 and 32 reduce to:

kh,c =
2·cb·Bb

γ ·H2·�w
+ Ec

1 + � · Ec
(37)

Ec = tan φb + Kae,c

�w
· sin (δ + β +φb)

cos φb
(38)

If the vertical component of the ground acceleration is neglected (kv = 0; � = 0), it is:

kh,c = 2 · cb · Bb

γ ·H2 · �w
+ tan φb + Kae,c

�w
· sin (δ + β +φb)

cos φb
(39)

Appendix 2: Horizontal component of the critical acceleration coefficient: 2-W proce-
dure

For the case cb = 0 and αb = 0, the horizontal component of the critical acceleration coefficient
kh,c can be computed through the following equation (Biondi and Cascone 2014):

kh,c

1 − � · kh,c
= b + √

b2 − a · c

a
(40)

where:

a = B2
4 − 4 · A4 · C4 b = 2 · A3 · C4 − 2 · C3 · A4 − B3 · B4 c = B2

3 + 4 · A3 · C3

(41)
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being:

A3 = cos (β + δ +φb)

cos φb
· (1 + tan i · tan β) · tan β

− sin
(
β + δ +ϕ′)

cos ϕ′ · tan φb · �w (42)

A4 = cos (β + δ +φb)

cos φb
· (1 + tan i · tan β) · tan β · tan ϕ′

+ sin
(
β + δ +ϕ′)

cos ϕ′ · �w (43)

B3 = cos (β + δ +φb)

cos φb
· (1 + tan i · tan β) · (

1 − tan β · tan ϕ′)

−cos
(
β+ δ +ϕ′ +i

)

cos ϕ′ · cos i
· �w · tan φb (44)

B4 = cos (β + δ +φb)

cos φb
· (1 + tan i · tan β) · (

tan β+ tan ϕ′)

+cos
(
β+ δ +ϕ′ +i

)

cos ϕ′ · cos i
· �w (45)

C3 = cos (β + δ +φb)

cos φb
· (1 + tan i · tan β) · tan ϕ′

−cos
(
β+ δ +ϕ′)

cos ϕ′ · �w · tan i · tan φb (46)

C4 = cos (β + δ +φb)

cos φb
· (1 + tan i · tan β)

−cos
(
β+ δ +ϕ′)

cos ϕ′ · tan i · �w (47)

Appendix 3: Wall displacement factor Cw

For the case cb = 0 the wall displacement factor Cw is (Biondi and Cascone 2014):

Cw = �w · A5 + B5

�w · A6 + B6
(48)

where:

A5 = cos
(
αc − δ − β −ϕ′) · cos (αc − β) · cos (φb − αb) (49)

A6 = cos
(
αc − δ − β −ϕ′) · cos (αc − β) · cos φb (50)

B5 = cos (β −i) · cos
(
αc −ϕ′) · cos (φb − αb + δ + β)

cos (αc −i)
·
[

cos (αc − β)

cos β

]2

(51)

B6 = cos ϕ′ · cos (φb − αw + β + δ) · cos (β − αw) · (cot αc + tan β) · (1 + tan i · tan β)

1 − tan i · cot αc

(52)
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