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Abstract Sliding block displacements are used to evaluate the potential for seismic slope
instability. Deterministic approaches are typically used to predict the expected level of sliding
block displacement, although they do not rigorously account for uncertainties in the expected
ground shaking, dynamic response, or displacement prediction. As a result, there is no con-
cept of the actual hazard associated with the displacement computed by the deterministic
approach. This paper summarizes and extends recent developments related to the probabilis-
tic assessment of sliding block displacements. The probabilistic approach generates a hazard
curve for displacement in which the annual rate of exceedance for a range of displacement
levels is computed. The probabilistic approach is formulated both in terms of scalar hazard
analysis (i.e., using one ground motion parameter, peak ground acceleration) and vector haz-
ard analysis (i.e., using two ground motion parameters, peak ground acceleration and peak
ground velocity), and applied both to rigid and flexible sliding block conditions. Generally,
the vector probabilistic approach predicts displacements that are 2–3 times smaller than the
scalar probabilistic approach, revealing the value of characterizing frequency content via
peak ground velocity. Comparisons between the deterministic and probabilistic approaches,
in either a scalar or vector context, indicate that the deterministic approach can severely under-
estimate displacements relative to the probabilistic approach because it ignores the aleatory
variabilities in the dynamic and sliding responses of the sliding mass. This under-prediction is
most significant for longer period sliding masses. Modifications to the deterministic approach
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are proposed that provide displacements that are more consistent with the probabilistic
approach.

Keywords Seismic slope stability · Sliding displacements · Probabilistic ·
Slope performance

1 Introduction

The seismic performance of slopes is typically evaluated based on the sliding displacement
predicted to occur along a critical sliding surface. This displacement represents the cumu-
lative, downslope movement of a sliding mass due to earthquake shaking. The magnitude
of sliding displacement relates well with observations of seismic performance of slopes
(e.g., Jibson et al. 2000), and thus has been a useful parameter in seismic design and hazard
assessment.

The magnitude of sliding displacement is strongly affected by the intensity, frequency
content, and duration of earthquake shaking. Various empirical models are available that
predict sliding displacement as a function of ground motion parameters and site parameters,
but these models have significant aleatory variability (i.e., large standard deviation) such
that a large range of displacements is predicted for a set of input parameters. Earth-
quake ground motions also display significant aleatory variability, yet current evaluation
procedures for computing sliding displacement are based on a deterministic approach,
in which the aleatory variability in the expected ground motion, dynamic response, and
predicted displacement are either ignored or not treated rigorously. Thus, there is no
concept of the actual hazard associated with the displacement computed by the deter-
ministic approach. A probabilistic assessment of sliding displacement can account rig-
orously for the aleatory variability in earthquake ground shaking and in the dynamic
response and sliding displacement predictions, providing a more complete assessment of
the risk associated with seismic slope failure. It should be noted that the probabilistic
framework presented here does not include epistemic uncertainty (e.g., uncertainty in the
shear strength and shear stiffness of the soil in the slope). The effect of epistemic uncer-
tainty on predicting slope displacements can be included through conventional logic tree
approaches.

This paper summarizes and extends recent developments related to the probabilistic
assessment of sliding displacements of slopes under seismic shaking. Newly developed
models are presented that predict the dynamic response and sliding displacement of slid-
ing masses and take advantage of multiple ground motion parameters. The value of these
additional ground motion parameters in predicting sliding displacement is demonstrated.
Probabilistic frameworks to predict the dynamic response and sliding displacement of slopes
are introduced. The probabilistic frameworks are formulated both in terms of scalar hazard
analysis (i.e., using one ground motion parameter) and vector hazard analysis (i.e., using
two ground motion parameters). The probabilistic frameworks are applied to hypotheti-
cal examples, and the probabilistic results compared with deterministic results. The paper
first considers rigid sliding masses, and then extends the approaches to flexible sliding
masses.
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2 Rigid sliding masses

2.1 Predictive models for the displacement of rigid sliding masses

Shallower and/or stiffer sliding masses subjected to low frequency seismic shaking respond
as rigid bodies for which the dynamic response of the material within the sliding mass can be
ignored (Fig. 1). The seismic loading for a rigid sliding mass is simply the acceleration–time
(a–t) history at the base of the sliding mass, with the destabilizing force-time history acting
on the slope, F(t), equal to the a–t history (in units of gravity, g) times the weight of the
sliding mass. The resistance to sliding is characterized by the yield acceleration, ky, of the
slope (ky = seismic coefficient that when multiplied by the weight of the sliding mass and
statically applied to the slope yields a factor of safety of 1.0). Earthquake-induced sliding
displacements (D) are expected if the peak ground acceleration (PGA), which is proportional
to the maximum destabilizing force, exceeds the yield acceleration.

To calculate the sliding displacement of a rigid sliding mass, a suite of recorded a–t
histories can be selected and numerically integrated for the sliding episodes that initiate
when ky is exceeded (in the destabilizing direction). Alternatively, an empirical model can
be used that predicts D as a function of the yield acceleration and various ground motion
parameters, such as the PGA, peak ground velocity (PGV), Arias Intensity (Ia), etc. To be
useful for probabilistic analyses empirical models for sliding displacement must provide
estimates of both the median displacement and its standard deviation, and the most efficient
models attempt to minimize the standard deviation (Cornell and Luco 2001).

Various empirical models for sliding displacement have been published in the literature
(e.g., Bray and Travasarou 2007; Jibson 2007), but this paper focuses on the models of Saygili
and Rathje (2008) and Rathje and Saygili (2009). These models (hereafter called SR08/RS09)
were developed from displacements computed using over 2,000 recorded motions from the
Next Generation Attenuation (NGA) database. These models are used because they con-
sidered the ground motion parameters and combinations of ground motion parameters that
minimize the standard deviation of the prediction of displacement (i.e., σlnD). Nonetheless,
other displacement models can easily be implemented within the presented probabilistic

Fig. 1 Seismic loading parameters for rigid sliding masses

123



1074 Bull Earthquake Eng (2014) 12:1071–1090

Table 1 Parameters for (PGA,
M) and (PGA, PGV) models

Parameter (PGA, M) model (PGA, PGV) model

a1 4.89 −1.56

a2 −4.85 −4.58

a3 −19.64 −20.84

a4 42.49 44.75

a5 −29.06 −30.50

a6 0.72 −0.64

a7 0.89 1.55

approach. The work by Saygili and Rathje (2008) and Rathje and Saygili (2009) recommend
two models: one model that uses a single ground motion parameter plus earthquake magni-
tude (i.e., the (PGA, M) model) and another model that uses two ground motion parameters
(i.e., the (PGA, PGV) model). These models predict displacement in cm and assume a log-
normal distribution for displacement. They are summarized in Eqs. (1) and (2) and in Table 1.
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The (PGA, M) model is considered a scalar model because it uses only a single ground
motion parameter. The (PGA, PGV) model is considered a vector model because it uses a
vector of two ground motion parameters.

The standard deviations (σlnD) of both models were found to depend on ky/PGA, with
larger values of σlnD occurring at larger values of ky/PGA. The ky/PGA-dependence for σlnD

is plotted in Fig. 2 for the two models, with values ranging between 0.75 and 1.0 (in natural
log units) for the (PGA, M) model and ranging between 0.4 and 0.9 for the (PGA, PGV)
model. The smaller σlnD at smaller ky/PGA indicates that the information provided by PGV
is most useful in reducing the prediction uncertainty when more of the a–t history is sampled
during the sliding displacement calculation (i.e., ky << PGA).

2.2 Probabilistic framework for rigid sliding displacement

A probabilistic assessment of sliding displacement predicts the annual rate of exceedance (λ)

of different levels of sliding displacement (e.g., Lin and Whitman 1986; Yegian et al. 1991a,b;
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Fig. 2 Standard deviations
associated with (PGA, M) and
(PGA, PGV) models

Ghahraman and Yegian 1996; Travasarou et al. 2004; Rathje and Saygili 2008), in the same
way that a probabilistic seismic hazard analysis (PSHA) predicts λ for different levels of
PGA or spectral acceleration. Thus, a seismic hazard curve for sliding displacement is a plot
of λD versus D. The subscript D is used to distinguish the λ associated with displacement
from the λ associated with ground motion.

Calculating λD requires knowledge of the probability that a displacement level is exceeded
given a ground motion level and the annual probability of occurrence of that ground motion
level. The product of these probabilities is computed and then integrated over all levels of
ground motion to compute λD. For the (PGA, M) model, the calculation of λD(x), where x
is the displacement level, is given by:

λD (x) =
∑

i

∑
k

P [ D > x | PGAi, Mk] · P [Mk |PGAi ] · P [PGAi] (3)

In Eq. (3) P[D > x |PGAi, Mk] represents the probability that D > x given acceleration level
PGAi and earthquake magnitude Mk, and is computed from the model-predicted median
displacement, its standard deviation, and the assumption of lognormality for these conditional
displacements. P[Mk |PGAi] is the conditional probability of occurrence of Mk given PGAi,
and is derived from the hazard disaggregation for each PGAi. Finally, P [PGAi] is the annual
probability of occurrence of acceleration level PGAi (i.e., a bin of PGA centered about PGAi)
and is derived from differencing of the PGA hazard curve. The double summation represents
numerical integration over bins for PGA and M. Equation (3) is easily implemented with
information from a traditional PSHA for PGA.

It is worth noting that the rare-event assumption is employed when computing P [PGAi]
from the hazard curve. Assuming that the event under consideration is rare, the chance
of two or more occurrences of the event within the time period of interest is small and
thus the annual rate and the annual probability of exceedance are the same. Using this
assumption, the annual probability that the acceleration level will fall within a bin of
PGA centered about PGAi (i.e., P [PGAi]) can be approximated from the hazard values
using:

P [PGAi] = λi−1/2 − λi+1/2 = λi + λi−1

2
− λi + λi+1

2
= λi−1 − λi+1

2
(4)

where λi−1/2 and λi+1/2 represent the hazard associated with PGA values halfway between
adjacent PGA values in the hazard curve (i.e., PGAi−1, PGAi, and PGAi+1), and λi−1,λi,
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and λi+1 the hazard associated with the same adjacent PGA values. Note that the above
expression assumes a linear variation of hazard values over the PGA bin and that the PGA
probabilities estimated in this way will tend to exact values as the bin size reduces. In the
case that large PGA bins are used then this approximation should be revisited to account for
the nonlinear variation of hazard values over the bin.

For the (PGA, PGV) model, the calculation of λD(x) is given by:

λD (x) =
∑

i

∑
j

P
[

D > x | PGAi, PGVj
] · P

[
PGAi, PGVj

]
(5)

where P[D > x
∣∣PGAi, PGVj] represents the probability that D > x given ground motion

levels PGAi and PGVj, and P[PGAi, PGVj] is the joint annual probability of occurrence of
ground motion levels PGAi and PGVj. The double summation again represents integration
and is performed over bins for both PGA and PGV. P[PGAi, PGVj] is computed via vector
PSHA (VPSHA, Bazzurro and Cornell 2002). In addition to ground motion prediction models
for PGA and PGV, VPSHA requires an estimate of the correlation coefficient between these
two ground motion parameters. For PGA and PGV, the correlation coefficient (ρ) has been
estimated as 0.6 (Rathje and Saygili 2008; Baker 2007). Currently, no commercially available
PSHA software performs VPSHA calculations; however P[PGAi, PGVj] can be computed
from the output of a traditional PSHA using:

P
[
PGAi, PGVj

] = P
[
PGVj|PGAi

] · P [PGAi] (6)

P
[
PGVj|PGAi

] =
∑

k

∑
l

P
[
PGVj|PGAi, Mk, Rl

] · P [Mk, Rl|PGAi] (7)

These equations require a traditional PSHA for PGA that is used to compute P [PGAi] and
the associated magnitude/distance disaggregation to compute P [Mk, Rl|PGAi]. Additionally,
ground motion prediction equations for PGA and PGV, along with the correlation coefficient,
are required to compute P

[
PGVj|PGAi, Mk, Rl

]
. Additional information can be found in

Bazzurro (1998) and Rathje and Saygili (2009).
The framework presented in this section can be applied to other empirical displacement

prediction models that use different ground motion parameters. In these cases, the appropri-
ate ground motion parameters should be substituted in Eqs. (3) through (7). Applying this
framework requires ground motion prediction equations for the ground motion parameters,
the correlation coefficient between these ground motion parameters (if the vector approach
is used), and a displacement prediction model with a robust estimate of σlnD. No matter the
empirical displacement model, the probabilistic framework can be implemented easily in a
spreadsheet or any common numerical software package (e.g., Matlab).

2.3 Comparison of probabilistic and deterministic displacement predictions

To demonstrate the probabilistic approach, consider a site in Northern California with the
PGA and PGV hazard curves shown in Fig. 3. The hazard curves were computed using the
PSHA code and fault models of Abrahamson (personal communication) along with the Boore
and Atkinson (2008) ground motion prediction equation and Vs30 = 760 m/s. The hazard
at this site is significant, with PGA = 0.54 g and PGV = 42 cm/s at a 10 % probability of
exceedance in 50 years (λ = 0.0021 1/year) and PGA = 0.88 g and PGV = 71 cm/s at a 2 %
probability of exceedance in 50 years (λ = 0.0004 1/year). The disaggregations with respect
to magnitude for PGA and PGV both indicate mean magnitudes of about 6.75 for these
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(a) (b)

Fig. 3 a PGA hazard curve and b PGV hazard curve used in analyses

Fig. 4 Predicted displacement
hazard curves using the (PGA, M)
and (PGA, PGV) model

hazard levels. VPSHA was also performed for the site using the VPSHA code of Abrahamson
(personal communication).

Displacement hazard curves were computed for a slope at the site with ky = 0.1 (Fig. 4).
These curves were computed using the scalar (PGA, M) model and associated hazard infor-
mation, as well as the vector (PGA, PGV) model and its relevant hazard information. Because
of smaller median displacements and a smaller standard deviation, the (PGA, PGV) model
predicts substantially smaller displacements than the (PGA, M) model at each hazard level.
The difference can be as large as a factor of 3, indicating the value of including PGV in
displacement predictions.
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Table 2 Probabilistic and deterministic displacement predictions for rigid sliding

λD (1/year)* Displacement comparisons (ky = 0.1)

(PGA, M) model (PGA, PGV) model

Probabilistic (cm) Deterministic (cm) Probabilistic (cm) Deterministic (cm)

0.0021 67 43 25 29

0.0004 208 113 75 81

* λD = 0.0021 and 0.0004 represent 10 % and 2 % probabilities of exceedance in 50 years, respectively

Figure 4 can be used to identify the displacement that has a specific annual rate of
exceedance (i.e., λD) or the probability of exceedance within a given time period if a Poisson
assumption is adopted. The identified displacement levels for λD = 0.0021 and 0.0004 1/year
(i.e., 10 and 2 % probabilities of exceedance in 50 years) are listed in Table 2. As expected,
the displacements at the smaller λD (i.e., smaller probability of exceedance) are larger than
those at larger λD because larger displacements are less likely to occur. The displacement
levels in Table 2 are associated with known hazard levels, making them the appropriate values
to consider in design decisions.

In practice, engineers generally consider a ground motion amplitude at a given hazard
level and then make a deterministic prediction of displacement, rather than evaluating a
displacement associated with a given hazard level. Typically, a deterministic displacement
prediction represents the median displacement, although a + 1σ displacement or an upper
bound displacement may be considered in an effort to take into account some uncertainty in
the displacement prediction. Table 2 lists the median deterministic displacements calculated
using the (PGA, M) and (PGA, PGV) models. For the (PGA, M) model, the 10 and 2 %
in 50 year values of PGA (Fig. 3a) were used along with the mean magnitude of 6.75 to
compute the median deterministic displacement for ky = 0.1. For the (PGA, PGV) model,
the 10 and 2 % in 50 year values of PGA (Fig. 3a) and PGV (Fig. 3b) were used to compute the
median deterministic displacement. The values in Table 2 show that for the (PGA, M) model,
the deterministic approach significantly under-predicts displacement relative to the fully
probabilistic value. This under-prediction is caused by the deterministic approach ignoring
the uncertainty in the displacement prediction. On the other hand, the deterministic approach
using the (PGA, PGV) model predicts displacements similar to or slightly larger than the fully
probabilistic approach. As noted in Rathje and Saygili (2011), this result occurs because the
probabilistic approach incorporates the correlation between PGA and PGV (ρ ∼0.6) while
the deterministic approach uses PGA and PGV from separate hazard curves, which essentially
assumes perfect correlation (ρ ∼1.0). Thus, the PGV is overestimated relative to PGA in the
deterministic approach and this over-prediction in ground motion balances out, or is even
larger than, the effect of ignoring the uncertainty in the displacement prediction.

Rathje and Saygili (2011) investigated the difference between probabilistic and determin-
istic displacements for a range of ky values using the ground motion hazard at 12 sites in
California. The goal of that study was to recommend what level of epsilon (i.e., εD = number
of standard deviations) is required for the deterministic approach to predict displacements
similar to the probabilistic approach. This value of εD can be used with Eq. (8) to predict
hazard-consistent levels of displacement:

Dhazard−consistent = exp [ln (Dmedian) + εD · σlnD] (8)
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Fig. 5 Recommended εD to use
in deterministic displacement
analyses to generate
displacements consistent with
probabilistic analyses

In Eq. (8), the median displacement is predicted using Eqs. (1a) or (2a) and the PSHA-
derived ground motion values. The standard deviation in Eq. (8) is computed from Eqs. (1b)
or (2b). Rathje and Saygili (2011) found that εD varied with ky/PGA, as shown in Fig. 5, with
εD decreasing with increasing ky/PGA. Larger εD values are recommended for the (PGA, M)
model than for the (PGA, PGV) model. The smaller values of εD indicate that the probabilistic
and deterministic approaches predict more comparable levels of displacement for the (PGA,
PGV) model than for the (PGA, M) model. As previously noted, this result is caused by the
fact that the deterministic approach using the (PGA, PGV) model overestimates the correlated
values of (PGA, PGV), which counteracts the effect of ignoring displacement uncertainty.
This effect even makes εD negative for the (PGA, PGV) model over a large range of ky/PGA
values (Fig. 5).

3 Flexible sliding masses

3.1 Predictive models for the dynamic response of flexible sliding masses

Deeper and/or softer sliding masses subjected to high frequency input signals behave
as flexible bodies such that the rigid block model is not appropriate. In these cases,
the dynamic response of the flexible sliding mass must be taken into account (Fig. 6).
Two-dimensional finite element analysis can be used to model this dynamic response,
or alternatively the sliding mass at its maximum thickness can be modeled as a one-
dimensional soil column. Previous research (e.g., Rathje and Bray 2001, Vrymoed and
Calzascia 1978) has shown that the one-dimensional simplification provides an adequate
estimate of the seismic loading for deeper sliding masses. A decoupled sliding block
analysis (e.g., Makdisi and Seed 1978) uses the results of the dynamic response analy-
sis to compute the sliding displacement. The seismic loading time history for the slid-
ing mass is related to the seismic coefficient (k)-time history, in which k represents
the average acceleration within the sliding mass. The destabilizing force-time history
(F(t)) is then simply equal to the k-time history times the weight of the sliding mass.
Earthquake-induced sliding displacements are expected if the maximum seismic coefficient
(kmax) exceeds the yield acceleration, ky, of the slope (Fig. 6).

To calculate the sliding displacement of a flexible sliding mass, a suite of recorded a–t
histories can be selected and used as input into one-dimensional wave propagation analysis
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Fig. 6 Seismic loading parameters for flexible sliding masses

to compute k-time histories for the sliding mass. Each k-time history can then be numer-
ically integrated for the sliding episodes that initiate when ky is exceeded. Alternatively,
empirical models (e.g., Makdisi and Seed 1978; Bray and Rathje 1998) can be used that first
predict kmax as a function of ground shaking and site characteristics, and then predict D as
a function of ky and kmax. Other empirical models are available (e.g., Bray and Travasarou
2007) that predict D for flexible sliding masses directly from the ground motion and site
characteristics.

The empirical models for rigid sliding indicate that PGV improves the displacement pre-
diction, and it follows that an analogous parameter should be defined for flexible sliding
masses. If the k-time history for flexible sliding is analogous to the a–t history for rigid
sliding, then the numerical integration of the k-time history is analogous to the numerical
integration of the a–t history (i.e., the velocity time history). The velocity that is computed
by numerical integration of the k-time history is called k-vel (Rathje and Antonakos 2011),
and it provides information regarding the frequency content of the k-time history. The max-
imum of the k-vel—time history is k-velmax. The parameters kmax and k-velmax represent
the dynamic response of a sliding mass, and empirical models have been developed that
predict these parameters as a function of the ground shaking and site characteristics (Rathje
and Antonakos 2011). These models were developed through one-dimensional site response
analyses where kmax and k-velmax were computed at the base of different sliding masses
subjected to 80 input motions. The predictive models for kmax and k-velmax are summarized
below.

The model for kmax predicts ln(kmax/PGA) as a function of ln(Ts/Tm) and PGA, where
Ts is the natural period of the sliding mass and Tm (Rathje et al. 2004) is the mean period of
the earthquake motion:

For Ts/Tm ≥ 0.1:

ln

(
kmax

PGA

)
= (0.459 − 0.702 · PGA) · ln

⎧⎨
⎩

(
Ts
Tm

)
0.1

⎫⎬
⎭

+ (−0.228 + 0.076 · PGA) ·
⎛
⎝ln

⎧⎨
⎩

(
Ts
Tm

)
0.1

⎫⎬
⎭

⎞
⎠

2

(9)
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(a) (b)

Fig. 7 Predictive models for the dynamic response of flexible sliding masses: a kmax and b k-velmax

For Ts/Tm < 0.1:

ln

(
kmax

PGA

)
= 0.0

The standard deviation for this model in natural log units is 0.25. Given Ts/Tm and the input
motion PGA, kmax is computed from the predicted value of kmax / PGA multiplied by the
input motion PGA. The model predictions from Eq. (9) are shown in Fig. 7a for PGA = 0.1,
0.3, and 0.7 g. The model predicts a parabolic relationship between kmax/PGA and Ts/Tm

in log-log space, with the shape of this relationship varying with PGA. Smaller values of
kmax/PGA are predicted at larger PGA and larger Ts/Tm. At Ts/Tm ≤ 0.1 the relationship
predicts kmax = PGA, which indicates rigid sliding conditions.

The model for k-velmax predicts ln(k-velmax/PGV) as a function of ln(Ts/Tm) and PGA,
and is given by:

For Ts/Tm ≥ 0.2:

ln

(
k-velmax

PGV

)
= (0.240) · ln

⎧⎨
⎩

(
Ts
Tm

)
0.2

⎫⎬
⎭

+ (−0.091 − 0.171 · PGA) ·
⎛
⎝ln

⎧⎨
⎩

(
Ts
Tm

)
0.2

⎫⎬
⎭

⎞
⎠

2

(10)

For Ts/Tm < 0.2:

ln

(
k-velmax

PGV

)
= 0.0

The standard deviation for this model in natural log units is 0.25. Given Ts/Tm and the
input motion PGA and PGV, k-velmax is computed from the predicted value of k-velmax /
PGV multiplied by the input motion PGV. The model predictions from Eq. (10) are shown
in Fig. 7b for input PGA = 0.1, 0.3, and 0.7 g. k-velmax displays less nonlinearity than kmax,
with k-velmax/PGV maintaining values between 1.3 and 0.7 over a large range of Ts/Tm.
Additionally, the period range over which k-velmax = PGV extends to Ts/Tm = 0.2.
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3.2 Predictive models for the sliding displacement of flexible sliding masses

Rathje and Antonakos (2011) extended the displacement models of SR08/RS09 to make
them applicable to flexible sliding masses. The extension involves using kmax and k-velmax

in lieu of PGA and PGV in the original (PGA, M) and (PGA, PGV) models, and the addition
of a term that is a function of Ts. The modified models for flexible sliding displacement are
given in Eq. (11) for the (kmax, M) model and Eq. (12) for the (kmax, k-velmax) model.

ln D = a1 + a2

(
ky

kmax

)
+ a3

(
ky

kmax

)2

+ a4

(
ky

kmax

)3

+ a5

(
ky

kmax

)4

+ a6 ln (kmax) + a7 (M − 6) + f1(Ts) (11a)

with f1 (Ts) =
{

3.69 · Ts − 1.22 · T2
s , Ts ≤ 1.5 s

2.78, Ts > 1.5 s

σln D(kmax,M) = 0.694 + 0.322

(
ky

kmax

)
(11b)

ln D = a1 + a2

(
ky
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)
+ a3

(
ky
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)2

+ a4

(
ky
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)3

+ a5

(
ky
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)4

+ a6 ln (kmax) + a7 ln (k-velmax) + f2(Ts) (12a)

with f2 (Ts) =
{

1.42 · Ts, Ts ≤ 0.5 s
0.71, Ts > 0.5 s

σln D(kmax,k-velmax) = 0.40 + 0.284

(
ky

kmax

)
(12b)

The parameters a1 through a7 in Eqs. (11) and (12) are set equal to those developed previously
for rigid sliding (Table 1). Note that the standard deviations for these models are given in
Eqs. (11b) and (12b). These standard deviations are generally smaller than those for the rigid
models.

Figure 8 shows the predicted kmax, k-velmax, and D as a function of Ts for ground shaking
characterized by a deterministic M = 7, R = 5 km event with PGA = 0.35 g, PGV = 30 cm/s,
and Tm = 0.45 s. kmax (Fig. 8a) peaks at 0.37 g at a very short period of 0.075 s, and then
decreases at longer periods. At Ts = 1.0 s, kmax is equal to 0.1 g, which is less than one-
third the value for Ts = 0.0 s (i.e., rigid sliding). k-velmax (Fig. 8b) reaches its peaks of
33 cm/s at a longer period (Ts ∼ 0.25 s), and decreases only to 22 cm/s at Ts = 1.0 s. This
value is about 75 % of the value at Ts = 0.0 s. The displacement predictions (Fig. 8c) show
the displacement peaking at Ts between 0.1 and 0.2 s because it is over this period range
where kmax and k-velmax are amplified. Displacements generally decrease at larger values
of Ts because kmax decreases, and the displacements approach zero as kmax approaches
ky. Generally, the (kmax, k-velmax) model predicts displacements 2–3 times smaller than
the (kmax, M) model because of the additional frequency content information provided by
k-velmax.

3.3 Probabilistic framework for flexible sliding displacements

Similar to rigid sliding displacements, calculating λD for flexible sliding involves calculating
the probability that a displacement level is exceeded given a ground motion level and the
annual probability of occurrence of that ground motion level. However, ground shaking is
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(a) (b) (c)

Fig. 8 Predicted a kmax, b k-velmax, and c sliding displacement as a function of the natural period of the
sliding mass f or a M = 7, R = 5 km event

characterized by kmax and k-velmax for flexible sliding rather than by PGA and PGV. For the
(kmax, M) model, λD is computed by:

λD (x) =
∑

k

∑
m

P
[

D > x | kmaxm , Mk
] · P

[
kmaxm , Mk

]
(13)

In Eq. (13) P
[
D > x

∣∣kmaxm , Mk
]

represents the probability of D > x given a kmax value of
kmaxm and earthquake magnitude Mk, and it is computed from the model-predicted median
displacement and its standard deviation (Eq. 11). P

[
kmaxm , Mk

]
is the joint annual probability

of occurrence of kmaxm and Mk. This joint annual probability of occurrence is computed
from the annual rate of occurrence of PGAi (i.e., P [PGAi]), the disaggregation for PGA (i.e.,
P[Mk |PGAi] ), and the probability that PGAi will generate kmaxm (i.e., P[kmaxm

∣∣ PGAi, Mk])
using:

P
[
kmaxm , Mk

] =
∑

i

P
[

kmaxm

∣∣ PGAi, Mk
] · P [ Mk| PGAi] · P[PGAi] (14)

In Eq. (14), P
[

kmaxm

∣∣ PGAi, Mk
]

is derived from the predictive model for kmax/PGA and
its standard deviation. The summation represents numerical integration over PGA. Although
M does not influence the kmax prediction, it is required for the displacement prediction
and therefore must be carried through the calculation. To simplify the calculations, Eq. (14)
ignores the variation of Tm with magnitude and distance, and uses one value when computing
kmax.

For the (kmax, k-velmax) model, λD is computed by:

λD (x) =
∑

m

∑
n

P
[

D > x |kmaxm , k-velmaxn

] · P
[
kmaxm , k-velmaxn

]
(15)

where P
[
D > x

∣∣kmaxm , k-velmaxn

]
represents the probability of D > x given seismic load-

ing levels kmaxm and k-velmaxn , and P
[
kmaxm , k-velmaxn

]
is the joint annual probability of

occurrence of seismic loading levels kmaxm and k-velmaxn . P
[
kmaxm , k-velmaxn

]
is computed

from P[PGAi, PGVj] and the probabilities of obtaining kmaxm and k-velmaxn given PGAi and
PGVj using:
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Fig. 9 Correlation between
k-velmax and kmax

P
[
kmaxm , k-velmaxn

] =
∑

i

∑
j

P
[

kmaxm

∣∣ k-velmaxn , PGAi, PGVj
] ·

·P [
k-velmaxn

∣∣ PGAi, PGVj
] · P

[
PGAi, PGVj

]
(16)

The predictive model for k-velmax/PGV and its standard deviation are used to compute
P

[
k-velmaxn

∣∣ PGAi, PGVj
] · P

[
kmaxm

∣∣ k-velmaxn , PGAi, PGVj
]

requires that the correlation
between kmax and k-velmax be considered. The correlation coefficient between kmax and
k-velmax is used to derive a conditional mean and standard deviation for kmax, and these
values are used to compute P

[
kmaxm

∣∣ k-velmaxn , PGAi, PGVj
]
.

To evaluate the correlation coefficient between kmax and k-velmax, the residuals of the
computed values of kmax and k-velmax relative to the predictive models of Rathje and Anton-
akos (2011) were calculated and used to estimate the correlation coefficient. This approach
is similar to the approach taken by Baker (2007) when considering the correlation between
various ground motion parameters. The kmax and k-velmax residuals are plotted in Fig. 9 and
show moderate correlation. The computed correlation coefficient is 0.45.

Although not used explicitly in the calculation of the displacement hazard curve, it is
illustrative to compute the hazard curves for kmax and k-velmax. These hazard curves are
computed independently of one another using:

λkmax (y) =
∑

i

∑
k

P [ kmax > y| PGAi, Mk] · P [ Mk| PGAi] · P[PGAi] (17)

λk-velmax
(z) =

∑
i

∑
j

P
[

k-velmax > z| PGAi, PGVj
] · P

[
PGAi, PGVj

]
(18)

3.4 Comparison of probabilistic and deterministic dynamic response
and displacement predictions

To illustrate the probabilistic approach for flexible sliding the hazard information used for
the same Northern California site (Fig. 3) is used. The mean period of the ground motion is
deterministically set at Tm = 0.5 s and calculations are made for Ts/Tm equal to 0.0, 0.25, 0.5,
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(a) (b)

Fig. 10 a kmax hazard curves and b variation of kmax with PGA from Eq. (9) for different values of Ts/Tm

Table 3 Probabilistic and deterministic kmax predictions

λ (1/year) kmax comparisons

Ts/Tm =0.25 Ts/Tm =0.5 Ts/Tm =1.0

Probabilistic
(g)

Deterministic
(g)

Probabilistic
(g)

Deterministic
(g)

Probabilistic
(g)

Deterministic
(g)

0.0021 0.55 0.50 0.42 0.38 0.27 0.24

0.0004 0.77 0.66 0.56 0.45 0.35 0.26

and 1.0. These conditions represent rigid sliding (Ts = 0) and flexible sliding for Ts = 0.125,
0.25 and 0.5 s. The dynamic response predictions, as well as the displacement predictions, are
computed using the probabilistic and deterministic approaches. Note that assuming a larger
value of Tm would result in a larger dynamic response and larger displacements.

The hazard curves for kmax are shown in Fig. 10a, along with the hazard curve for PGA
(i.e., rigid conditions). The hazard curves for the three different values of Ts/Tm generally
predict smaller values of seismic loading than for rigid conditions, except at the larger values
of λ (i.e., shorter return periods). The seismic loading levels generally get smaller with
increasing Ts/Tm because kmax generally decreases with Ts/Tm (Fig. 7). Figure 10b plots
predicted values of kmax as a function of PGA for the three different values of Ts/Tm. Note
that the median prediction of kmax is greater than PGA only for Ts/Tm ≤ 0.5 and for PGA
smaller than about 0.2 g. Also, note that for Ts/Tm = 1.0, kmax reaches a limiting value of
0.26 g and does not continue to increase for PGA larger than about 0.7 g.

Table 3 compares the probabilistic kmax values for 10 and 2 % probabilities of exceedance
in 50 years with those evaluated deterministically based on the 10 and 2 % in 50 year values
of PGA. The deterministic values are between 10 and 25 % smaller than the probabilistic
values because the probabilistic values take into account the uncertainty in the prediction
of kmax. The difference is largest for Ts/Tm = 1.0 because the deterministic values approach
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(a) (b)

Fig. 11 a k-velmax hazard curves and b variation of k-velmax / PGV with PGA for different values of Ts/Tm

Table 4 Probabilistic and deterministic k-velmax predictions

λ (1/year) k-velmax comparisons

Ts/Tm = 0.25 Ts/Tm = 0.5 Ts/Tm = 1.0

Probabilistic
(cm/s)

Deterministic
(cm/s)

Probabilistic
(cm/s)

Deterministic
(cm/s)

Probabilistic
(cm/s)

Deterministic
(cm/s)

0.0021 46 45 48 46 43 39

0.0004 77 74 78 72 66 56

the limiting value of 0.26 g, while the probabilistic values continue to increase due to the
variability in the kmax prediction.

The k-velmax hazard curves are shown in Fig. 11a, along with the hazard curve for PGV
(i.e., rigid conditions). The k-velmax hazard curves closely follow the PGV hazard curve
because k-velmax does not decrease quickly with increasing PGA or Ts/Tm (Fig. 11b). The
probabilistic k-velmax values for 10 and 2 % probabilities of exceedance in 50 years are
shown in Table 4 along with those evaluated deterministically based on the 10 and 2 % in
50 year values of PGA and PGV. The difference between the probabilistic and deterministic
values of k-velmax is modest, with the deterministic values generally 5–10 % smaller than the
probabilistic values.

The ratio of deterministic predictions to probabilistic predictions in Table 4 is plotted ver-
sus Ts/Tm in Fig. 12 for kmax and k-velmax. Here it is clearly observed that the deterministic
predictions underestimate the probabilistic predictions, and the ratio decreases with increas-
ing Ts/Tm. At a given Ts/Tm, the under-prediction is larger for kmax than for k-velmax and
the under-prediction is larger for smaller λ. The deterministic k-velmax values are relatively
similar to the probabilistic predictions because the deterministic predictions of k-velmax are
based on perfectly correlated (ρ ∼1.0) values of PGA and PGV, while the probabilistic
k-velmax are based on ρ ∼0.45. Therefore, although the deterministic values of k-velmax
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Fig. 12 Ratio of deterministic to
probabilistic predictions of kmax
and k-velmax

ignore the uncertainty in the k-velmax prediction, the larger ground motion levels used in its
deterministic calculation somewhat balances this issue out.

Displacement hazard curves for the Northern California site and ky = 0.1 are shown in
Fig. 13. Displacement hazard curves are computed using the (kmax, M) and (kmax, k-velmax)
models, and curves are shown for rigid conditions as well as for the three Ts/Tm values. Simi-
lar to previous comparisons for rigid sliding, the (kmax, k-velmax) model predicts smaller dis-
placements than the (kmax, M) model. The difference is typically between a factor of 2 and 3,
indicating the value of incorporating frequency content via k-velmax when making displace-
ment predictions. For both of the models, flexible sliding block displacements are generally
larger than rigid sliding block displacements for Ts/Tm = 0.25 and 0.5. At Ts/Tm = 1.0, the
flexible sliding block displacements are smaller than the rigid sliding block displacements.
The displacement hazard curves in Fig. 13 allow an engineer to easily identify the displace-
ment levels associated with the hazard level of interest. For example, the (kmax, k-velmax)

model for Ts/Tm = 0.25 predicts a displacement of 33 cm at λ = 0.0021 1/year (10 % in
50 years) and 101 cm at λ = 0.0004 1/year (2 % in 50 years).

Having developed and demonstrated the probabilistic approach, it is useful again to com-
pare probabilistic results with the results that would be obtained from traditional determin-
istic analysis. Deterministic analysis takes the ground motions (i.e., PGA and PGV) from
a hazard curve for a given hazard level, uses these values to predict a median dynamic
response (i.e., kmax and k-velmax), and uses the median dynamic response to predict a
median displacement. Deterministic and probabilistic analyses were performed for the North-
ern California site for ky = 0.1 and 0.2, and Ts/Tm = 0.0, 0.25, 0.5, and 1.0 using the
(kmax, M) and (kmax, k-velmax) models. The ratio of the deterministic to probabilistic dis-
placements is plotted versus Ts/Tm in Fig. 14 for all of the analyses performed. The dis-
placement differences (i.e., probabilistic–deterministic) associated with the data in Fig. 14
are mostly between 10 and 100 cm for the (kmax, M) model and between ±5 cm for the
(kmax, k-velmax) model. It is clear from the data in Fig. 14 that the deterministic analysis
under-predicts displacement for almost all cases (except for Ts/Tm = 0.0 using the vec-
tor model) and it severely under-predicts the displacements at larger Ts/Tm. The issue at
larger Ts/Tm is that the deterministic prediction of kmax may approach ky such that very
small deterministic displacements are predicted. In the probabilistic analysis all potential
kmax values (large and small) and their probability of occurrence are taken into account in
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Fig. 13 Displacement hazard curves for a (kmax, M) displacement model and b (kmax, k-velmax)displacement
model for different values of Ts/Tm and ky = 0.1

Fig. 14 Ratio of deterministic to
probabilistic predictions of
displacements

the displacement calculation such that larger displacements are predicted for a given hazard
level.

The data in Fig. 14 represents a small sample of analyses, but they indicate the potential
un-conservatism in deterministic analysis and demonstrate the value of performing fully prob-
abilistic analysis. As an alternative to fully probabilistic analysis, a modified deterministic
approach may be developed that applies appropriate values of epsilon such that hazard-
consistent displacements are generated. This approach would be similar to the approach
developed by Rathje and Saygili (2011) for rigid sliding block analyses, but would require
accounting for hazard consistent values of kmax, k-velmax as well as hazard-consistent dis-
placement.
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4 Conclusions

The probabilistic assessment of the seismic sliding displacements of slopes is a useful frame-
work because it rationally takes into account the significant aleatory variabilities in the pre-
diction of sliding displacement due to earthquake shaking. The probabilistic framework uses
the output from a traditional PSHA and can be implemented within a spreadsheet or numer-
ical software package, making it a tool that can be used easily by practicing engineers. The
displacement hazard curve generated by the probabilistic analysis can be used to identify
the displacement level associated with a specified hazard level (i.e., annual probability of
exceedance). This allows the engineer to predict the performance for a known hazard level,
rather than simply identifying the design motion based on a specified hazard level and pre-
dicting a deterministic displacement.

A vector hazard framework, which uses multiple ground motion parameters to describe
seismic shaking (e.g., PGA and PGV or kmax and k-velmax), provides smaller estimates
of sliding displacement than a scalar framework, which uses only a single ground motion
parameter (e.g., PGA or kmax). The displacement from vector hazard analysis may be 2–3
times smaller than from scalar hazard analysis. This outcome results from accounting for
frequency content in the input ground motion when PGV or k-velmax is included in the
displacement prediction.

For both rigid and flexible sliding masses, the deterministic approach commonly used in
practice underestimates the displacement hazard as compared with the probabilistic approach.
The under-prediction becomes more significant for sliding masses with longer periods and
for slopes with larger ky. The under-prediction is less severe for the vector displacement
model than for the scalar displacement model.

A probabilistic approach is required to accurately assess the seismic risk due to slope
instability. The probabilistic approach considered in this work incorporates the aleatory vari-
abilities associated with ground shaking, the dynamic response of the slope, and the sliding
response of the slope, but it does not incorporate the epistemic uncertainties associated with
incomplete knowledge of parameters such as the shear wave velocity and shear strength of
the materials in the slope. The effects of epistemic uncertainty can be incorporated using
conventional logic tree approaches, in which displacement hazard curves are computed for
different sets of input parameters and the hazard curves weighted based on the relative belief
in each set of parameters. Including the effects of both aleatory variability and epistemic
uncertainty provides a more complete picture of the seismic risk associated with seismic
slope instability.
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