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Abstract The seismic hazard map or delineation of regions with high earthquake hazard
is important to plan risk mitigation strategies. Identifying areas of high seismic hazard can
lead city planners to enforce better construction standards and predict areas vulnerable to
slope instability. Conventional seismic hazard maps are based on limited factors like ground
acceleration, ground velocity, etc. This paper presents a new class of data-driven multivari-
ate rule–based model to create online as well as offline interactive seismic hazard map that
is flexible and readily automated. A multivariate rule-based seismicity map (MRBSM) is
defined as the map of regions with a future high hazard of earthquakes. The classification
and regression tree method is used to extract rules that predict regions with high hazard of
earthquakes with mb ≥ 4.5 in Iran. The rules generated for our MRBSM of Iran are based
on a large number of geological and geophysical parameters. The MRBSM indicates that
the province of Bandar Abbas, a major population center in the South of Iran has a high
hazard of earthquakes with mb ≥ 4.5. In addition, our method allows identification of the
most important parameters associated with earthquakes. Our analysis shows that the isostatic
anomaly has the strongest correlation with earthquakes while magnetic intensity, regional
Bouger anomaly, Bouger anomaly, and gravity anomaly also correlate well. Despite wide-
spread application of a- and b-values of the Gutenberg-Richter formula, these parameters do
not correlate well with earthquake hazards in the area.
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1 Introduction

Iran is one the most seismically active areas of the world and frequently suffers from destruc-
tive earthquakes that leave large numbers of casualties and financial losses. Earthquakes in
Iran and neighboring countries are closely related to their positions within the geologically
active Alpine-Himalayan Belt that separates the Eurasian from the Africa plates. Tectonic
activity in this region can be characterized by high topography, recent volcanism and many
active faults that cause destructive earthquakes. This area of complex plate interaction has
long been the focus of attention among Earth scientists. Many researchers have studied the
seismicity of Iran for decades. For example, Nowroozi (1976, 1979) introduced 23 seismo-
tectonic provinces for Iran based on seismicity data, geological information, physiographic
features, structural trends, active faults and distribution of salt domes. Berberian (1979) crit-
icized this seismotectonic zoning. Shoja-Taheri and Niazi (1981) divided the country into
three major seismic zones based on the seismic strain release by earthquakes. Ambraseys
and Melville (1982) defined four major zones of seismic activity in Iran based on historical
macroseismic data. The four proposed zones depict an overall pattern of seismic distribu-
tion in the country and were constructed without prior knowledge of regional tectonics.
Karakaisis (1994) divided Iran into 21 seismogenic source areas based on the meizoseismal
regions of destructive earthquakes, and major faults of Quaternary and Tertiary age. Tavakoli
(1996) divided Iran into 20 seismotectonic provinces Tavakoli and Ghafory-Ashtiany (1999)
assessed seismic risk in Iran. Bonini et al. (2003) studied the seismotectonic pattern of Iran
using analogue models. Recently Ashtari Jafari (2010) used a statistical method to predict
great earthquakes in Tehran.

This work deploys both surface and sub-surface data (geological and geophysical char-
acteristics) to build a multivariate numerical database. Then rules governing high impact
earthquakes were extracted based on combinations of major parameters. A decision tree rule
extraction (data mining) method was used to shed light on the seismicity patterns and to
determine the parameters that correlate highly with earthquakes in Iran. The application of
data mining and machine learning methods such as neural network (Fu 1999) and decision
tree (Quinlan 1993) is very common in a variety of fields that include the environmen-
tal sciences (Dmeroski 2002). While Rule-Based methods are not new, their application to
earthquake hazard prediction is novel. A major advantage of using such methods is that
they are mostly data driven, nonparametric and without priori assumptions. When models
are based on data alone without any discrimination based on the researchers’ opinions, his-
torical facts are the main players in model construction. During the last few years, some
researchers used machine-learning methods to build classifiers or to predict earthquakes. For
example, Zmazek et al. (2003) used a regression tree (model tree) to predict earthquakes
based on soil radon data. Iftikhar and Toshinori (2009) used a rough set and decision tree
(C4.5 algorithm) to characterize premonitory factors of low seismic activity. Standart et al.
(2010) applied data mining techniques to the discovery of spatial and temporal earthquake
relationships. None of these studies has shown a combination of parameters that lead to
identification of highly active seismic areas. Previous studies such as: (Berg et al. 1964;
Bouchon 1973; Davis and West 1973; Caputo et al. 1984, 1985; Geli et al. 1988; Johnston
1997; Zamani and Hashemi 2000; Chen et al. 2002; Li and Li 2009) indicate that the seis-
micity of an area is influenced by geological and geophysical parameters such as isostatic
anomaly, topography, gravity anomaly and the electromagnetic field. So, the rules governing
the patterns of earthquakes and the relative importance of such governing factors have not
yet been investigated.
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This paper introduces for the first time the classification and regression tree (CART) anal-
ysis to extract meaningful rules that can be used to build a decision support system that
predicts earthquake hazards.

CART, introduced by Breiman et al. (1984), has been applied fruitfully for both prediction
and rule extraction problems. CART analysis is a machine learning method based on statisti-
cal rules that finds combinations of predictor variables that predict target variables. In other
words, CART analysis is used to predict numerical outcome based on different variables. The
resulting model uses the geological and geophysical data as predictors with the number of
earthquakes with magnitude mb ≥ 4.5 as target. The rationale for using this method was: (a)
to find parameters that correlate with earthquake occurrence and, (b) to generate an automated
multivariate rule-based seismicity model using these parameters and their values to predict
number of earthquakes with mb ≥ 4.5. Because many towns, and villages in Iran have poor
resistance against earthquakes a threshold magnitude of MC = 4.5 (i.e. the magnitude of
completeness for the earthquake catalog of Iran) has been selected (Zamani and Agh-Atabai
2009, 2011). In the case of events with mb ≥ MC , there was an improvement in the epicen-
tral locations as more instruments were added to the worldwide network of seismological
stations (Berberian 1979). On the other hand, because of the poor statistics of the very few
large earthquakes, a threshold magnitude of MC = 4.5 makes model validation easier.

Typically, the geological and geophysical variables gathered are not only correlated with
each other, but each attribute is also influenced by the other attributes (Zamani and Hashemi
2004; Zamani et al. 2011). The details of exactly how variables such as, magnetic anomalies,
gravity anomalies, rock types, fracture systems, earthquakes etc. evolved as a consequence
of geodynamic processes is not of our concern in this paper. We wanted to discover the cor-
relations between earthquakes and these variables. In other words, we wanted to identify and
extract rules satisfying some minimum confidence threshold and showing the association or
coincidence between the predictor variables (splitting variables) and the predicted variable
(target variable, i.e. the number of earthquakes with mb ≥ 4.5). Decision tree rule extraction
model is not intended to investigate the earthquake cycle or the causes of earthquakes in Iran.
As the term suggests, data mining using decision tree rule extraction technique has a some-
what more exploratory rather than confirmatory nature. This technique is directed toward
searching deeply into characteristics of the large data bases for patterns regardless of cause-
and-effect relationships. In data mining, a decision tree described data but not decisions;
rather the resulting classification or prediction rules can be an input for decision making. The
main objective of this paper is to present a new class of data-driven multivariate rule-based
model to create online as well as offline interactive earthquake hazard map that is flexible
and readily automated.

2 Seismotectonic setting

The Iranian plateau with its flanking orogens comprises one of the most seismically active
areas in the world. This plateau can be characterized by: active faults, recent volcanoes
and high surface elevation along the Alpine-Himalaya orogenic belt. The seismic records
of Iran are divided into historical document records (pre-1900) and instrumental records
(post-1900). Ambraseys and Melville (1982) documented Iran’s historical earthquakes. The
seismicity studies of Iran from instrumental records was conducted by Wilson (1930), Niazi
and Basford (1968), Nowroozi (1971, 1976), Ambraseys and Monifar (1973), Berberian
(1973, 1995), Tchalenko (1975), Ambraseys (2001), Engdahl et al. (1998), Engdahl et al.
(2006). Reliable earthquake data for Iran exist only for the last few decades because the
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locations of earthquakes have been recorded accurately only after the mid 1960s. Historical
and instrumental catalogues have shown a spatial correlation between seismicity and seismo-
tectonic sources in Iran. In the last century, many destructive earthquakes occurred in Iran,
for example: Silakhor (Ms=7.4, 1909); Salmas (Ms=7.4, 1930); Torud (Ms=6.4, 1953);
Lar (Ms =6.7, 1960); Buyin Zahra (Ms=7.2, 1962); Dasht-e-Bayaz (Ms=7.4, 1968); Qir
(Ms= 6.9, 1972); Khorgu (Ms=7, 1977); Tabas (Ms=7.7, 1978); Qayen (Ms=7.1, 1979);
Rudbar-Manjil (Ms=7.2, 1990); Birjand (Ms=7.3, 1997) and Bam (Ms=6.6, 2003). The
seismicity map of Iran (Niazi and Basford 1968) indicates high dispersion and inhomoge-
neity of the seismic activity in Iran. For example, Earthquakes larger than Ms=7 have not
occurred in the Zagros region; however, shocks of magnitude over Ms=7 have occurred in
Eastern and Central Iran. Seismicity data show that the Zagros fold thrust belt in the south-
west, the Kopeh Dagh active fold belt in the northeast, the Alborz thrust belt in the north
and the Makran in the south east are the most active areas in Iran. Central and Eastern Iran
(minus the Tabas block) are less active. The creation of a possible earthquake hazard map
requires the delineation of seismotectonic provinces with high earthquake hazard potential.
The seismotectonic provinces of Iran are defined as geographic regions with equal seismic
potential and similar geological structures. During the past decades, many researchers have
studied and produced tectonic and seismotectonic maps of Iran based on the geological and
seismological data, for example: Stöcklin (1968); Berberian (1976, 1977); Nowroozi (1976,
1979); Tavakoli (1996); Tavakoli and Ghafory-Ashtiany (1999); Alavi (1991); Zamani and
Hashemi (2004); Zamani et al. (2011), Fig. 1.

3 Method of analysis

One of the ultimate goals of earthquake hazard studies is to understand the distribution of
earthquake and earthquake related phenomena in as much detail as possible. Only for the few
areas where major faults are identified, this type of study has been made (Rogers et al. 1998).
However, this type of study is time consuming and is not possible for every seismogenic
regions.

In recent years, machine learning and knowledge discovery techniques have been used for
rule extraction in many different fields including business, social sciences, planning, biologi-
cal sciences, and engineering, among others. These methods include data mining tools such as
decision tree, neural network, and rough sets (Fu 1999; Pawlak and Slowinski 1994; Quinlan
1993). The extracted rules reveal trends, patterns, and relationships which might otherwise
have remained obscured by the complex patterns of association and massive amount of data.

4 Decision tree

In data mining tools, decision tree is a data driven, non parametric technique without a pri-
ori assumptions, which is better suited for non-normal and non-homogeneous data sets. In
decision tree theory, a decision tree is a classifier with the structure of a tree with a top-
down geometry/hierarchy (Fig. 2) used in statistics, data mining and machine learning. The
classification proceeds from top to bottom and has only splitting paths (burst nodes) but
no converging paths (sink nodes).This technique is often considered to improve knowledge
representation structure by deriving meaningful decision rules and maximizing differences
on a dependent variable (Daubie et al. 2002).

The extracted rules are easily interpretable allowing complex relationships to be repre-
sented in an intuitive and comprehensible manner. The rules establish a relationship between
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Fig. 1 Automatic integrated self-organized optimum zoning (AISOOZ) map of Iran representing 11 optimum
tectonic zones (Zamani et al. 2011)

descriptions of objects by attributes and their assignment to a specific class. This technique
eliminates unnecessary or redundant attributes from classification. Decision tree learning
produces a directed decision tree as a predictive model. This maps observations about an
item leading to conclusions about the item’s target value. It describes a tree structure for
sequential partitioning of the dataset in order to maximize differences on a dependent vari-
able. In this method, an instance is classified by starting at the root node of the decision tree
and testing the attribute specified by this node. The model then moves down the tree branch
corresponding to the value of the attribute to some internal node.

This process is then repeated at the node on this branch and so on until a leaf node is
reached. This provides the classification of the instance. Each node in the tree specifies a
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Fig. 2 A typical binary decision tree. (R) Root node. (A) The internal node. (B) The leaf node or terminal
node also known as child node. A leaf represents, the predicted value of target attribute given the values of
the attributes represented by the path from the root

test of some attribute of the instance. Each node in the tree specifies a test of some branch
descending from that node corresponds to one possible value for this attribute.

This paper applies modern data analytical and sorting techniques to develop a useful new
type of earthquake hazard map that is flexible and readily automated. This new approach is
based on data mining and machine learning technique which uses a decision tree as a pre-
dictive model. The model is constructed explicitly or implicitly by inductive learning from a
sufficient number of training examples (Mitchell 1997). Classic decision tree learner CART
algorithm is used to induce a decision tree model. This rule induction algorithm provides a
general framework that can be instantiated in various ways to produce different decision trees
(Breiman et al. 1984; Ripley 1996). The underlying assumption of inductive approach is that
the trained model is applicable to future, unseen examples, in order to discover unknown pat-
terns. CART analysis is an umbrella term used to refer to both of classification and regression
trees analysis procedures (Breiman et al. 1984). For categorical outputs (i.e. classification
trees): the leaves of the tree represent a class or group labels. For numeric outputs (i.e. pre-
diction trees): the leaves of the tree predict an average value (i.e. regression trees) or specify
a function that can be used to predict the value (i.e. model trees).

CART algorithm offers advantages to other methods of analyzing alternatives. It is inher-
ently non-parametric. That is to say no assumptions are made regarding the underlying
distribution of the predictor variables. Thus, CART can handle numerical data that are highly
skewed or multi-modal, as well as categorical predictors with either ordinal or non-ordinal
structure (Lewis 2000). CART also identifies “splitting” predictor variables based on an
exhaustive search of all possible independent variables as splitters. CART handles missing
primary splitters (predictor variables) in the data sets by substituting surrogate variables. A
primary splitter variable is the best splitter of a node while a surrogate splitter is a splitter
that splits in a fashion similar to the primary. It is a relatively automatic machine learning
technique. In other words, compared to the complexity of the operations, relatively little
input is required from the user. Finally CART decision tree models are easy to interpret
even for non-statisticians. The users of CART algorithm aim to classify or predict the val-
ues of new examples by feeding them into the root of the tree, and determining which leaf
the example flows to. In CART decision tree modelling, a desirable model is one having a
relatively small number of directional branches or links, a relatively small number of nodes
from which these branches diverge, and high predictive power, in which entities are correctly
classified or predicted at the terminal nodes or leaves. In these tree structures, leaves represent
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classifications and branches represent conjunction of features or attribute values that lead to
these classifications. Each output or terminal value measures the result of a scenario: the
sequence of decisions and events on a unique path leading from the root or initial decision
node to a specific terminal or leaf node.

5 Data analysis

Earthquakes can be related to the manifestations as well as to the vestiges of long-lived,
deep-seated geodynamic processes within the Earth. Meanwhile, almost all surficial features
and phenomena of the Earth are fundamental consequences of the interactions of exogenic
and endogenic processes (Fowler 2005; Petersen et al. 2011; Turcotte and Schubert 2002).
Therefore, identifying earthquake precursors is a difficult task. Despite considerable research
efforts by seismologists, scientifically reproducible earthquake predictions can not yet be
made (Hough et al. 2009; Pulinets 2006). Conventional techniques fall short of complying
with stringent constraints and assumptions to be used in identifying, detecting, and measuring
some kind of earthquake precursory phenomena. Furthermore, in seismogenic regions with
low seismicity rate, it is difficult to collect statistically significant number of records to derive
conclusive prediction. The classical statistical techniques also include a priori assumptions
on the data distribution which are difficult to be satisfied for earthquake data sets.

Typically, the geophysical and geological characteristics gathered are not only corre-
lated with each other, but each attribute is also influenced by the other attributes. Thus, in
many instances the attributes are interwoven in such a way that when analyzed individually
they yield little information about the region under investigation (Zamani et al. 2011). The
details of exactly how magnetic anomalies, gravity anomalies, rock types, fracture systems,
earthquakes etc. evolved as a consequence of geodynamic processes is not our concern in
this paper. We present a novel application of decision tree-based rule extraction method for
discovering hidden patterns in these attributes irrespective of contributory causes. In other
words, we wanted to identify and extract rules satisfying some minimum confidence thresh-
old and showing the coincidence between independent predictor variables (i.e. geophysical
and geological parameters) and dependent predicted variable (i.e. the number of earthquakes
with mb ≥ 4.5 or target variable). For this purpose, the study area (Iran) is divided into 175
quadrangles, each covering a degree of latitude and longitude (Zamani and Hashemi 2004;
Zamani et al. 2011). The quadrangles from west to east are numbered beginning with 1 for the
quadrangle between 44◦E and 45◦E meridians and increasing to 175 for quadrangle between
61◦E and 62◦E meridians. None of offshore Iran is included in the data set. These quadrangles
are used as cases or observations (input samples). Each case has been characterized by 48
variables (attributes) that seem to characterize the intensity and degree of contrast between
tectonic and seismotectonic structures in Iran (Table 1).

As mentioned earlier, CART software package for decision tree building is used with our
proposed data set presented in Table 1. The rational for using CART was: (a) to find the best
independent or splitter attributes (i.e. those that are most closely related to the number of
earthquakes with mb ≥ 4.5); and (b) to extract rules from the resultant decision tree model
using these attributes and their values, which allow us to predict the number of earthquakes
with mb ≥ 4.5. The inductive learning of decision tree in this paper involves the processing
of a relatively large number of geophysical and geological characteristics or attributes. The
rules based on the correlates that best predict the number of earthquakes with mb ≥ 4.5.
They are quite useful for earthquake hazard analysis, particularly in regions where the earth-
quake cycle is relatively slow or recording stations are inadequate to collect significant
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Table 1 Attributes used for constructing the multivariate rule-based seismicity map (MRBSM), measured
within 1◦ quadrangles

No. Attributes No. Attributes

1 a- value in the Gutenberg–Richter’s
formula, AVGRF

25 Minimum gravity anomaly (mgal),
MIGRV

2 b- value in the Gutenberg–Richter’s
formula, BVGRF

26 Range of free air anomaly (mgal),
RAFRA

3 Maximum earthquake magnitude (mb),
MXEMG

27 Average free air r anomaly (mgal),
AVFRA

4 Number of earthquakes greater than
mb ≥ 4.5, NEGMB

28 Maximum free air anomaly (mgal),
MXFRA

5 Maximum seismic energy released (j),
MXSER

29 Minimum free air anomaly (mgal),
MIFRA

6 Range of isostatic anomaly (mgal), RA
ISO

30 Range of magnetic intensity (gamma),
RAMGI

7 Average isostatic anomaly (mgal),
AVISO

31 Average magnetic intensity (gamma),
AVMGI

8 Maximum isostatic anomaly (mgal),
MXISO

32 Maximum magnetic intensity (gamma),
MXMGI

9 Minimum isostatic anomaly (mgal),
MIISO

33 Minimum magnetic intensity (gamma),
MIMGI

10 Range of regional Bouger anomaly
(mgal), RAEGB

34 Average Moho depth (km), AVMOD

11 Average regional Bouger anomaly
(mgal), AVREG

35 Range of elevation (m), RAELV

12 Maximum regional Bouger anomaly
(mgal), MXREG

36 Average elevation (m), AVELV

13 Minimum regional Bouger anomaly
(mgal), MIREG

37 Maximum elevation (m), MXELV

14 Range of residual Bouger anomaly
(mgal), RARES

38 Minimum elevation (m), MIELV

15 Average residual Bouger anomaly
(mgal), AVRES

39 Relative area of surface unconsolidated
sediment cover(%), RAUNR

16 Maximum residual Bouger anomaly
(mgal), MXRES

40 Relative area of surface sedimentary
rocks (%), RASER

17 Minimum residual Bouger anomaly
(mgal), MIRES

41 Relative area of surface metamorphic
rocks (%), RAMER

18 Range of Bouger anomaly (mgal),
RABUG

42 Relative area of surface igneous rocks
(%), RAIGR

19 Average Bouger anomaly (mgal),
AVBUG

43 Relative area of surface ophiolitic rocks
(%), RAOPR

20 Maximum Bouger anomaly (mgal),
MXBUG

44 Relative area of surface Cenozoic rocks
(%), RACER

21 Minimum Bouger anomaly (mgal),
MIBUG

45 Relative area of surface Mesozoic rocks
(%), RAMER

22 Range of gravity anomaly (mgal),
RAGRV

46 Relative area of surface Paleozoic rocks
(%), RAPAR

23 Average gravity anomaly (mgal),
AVGRV

47 Relative area of surface Proterozoic
rocks (%), RAPTR

24 Maximum gravity anomaly (mgal),
MXGRV

48 Fault length density (km−1), FLTLD

Geological data have been obtained from digitized and regular geological maps of Iran (Geological Survey of
Iran 2004). Seismological data were taken from earthquakes that occurred between the years 1900 up to 2010
(Engdahl et al. 2006; Gutenberg and Richter 1954; ISC 2012; NEIC 2012). Geophysical data have been taken
from Dehghani and Makris (1983), total magnetic intensity maps of Iran (Yousefi 1989), Seismicity and fault
map of Iran (Mohajer-Ashjai and Nabavi 1982) and digital data from Geological Survey of Iran
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number of records. For this propose, the database of attributes measurement represented in
Table 1 is compiled for the 175 quadrangular observation sites of 1◦ area. As the input vari-
ables were continuous, computer program for CART analysis was run in regression—tree
mode. Tree building process start at the root, which includes all observations in the full learn-
ing database (i.e. the source set). Starting with this node, the CART computer algorithm finds
the best possible independent variable to split the root node into two child nodes, based on
an exhaustive search of all possibilities of splitter variables. These child nodes are then split
and so forth. In each node the optimum decision rule (i.e. the best splitter variable) is found
based some impurity measure for the two child nodes. For regression tree (i.e. prediction
tree) analysis the sum of squared errors (SSE), the so called sum of squared deviations or
variance is automatically applied. At each node the recursive procedure may stop splitting the
node further when the variation or SSE between the predicted model and observed values is
minimized. A small SSE indicates a tight fit of the model to the observed data. The procedure
results in the selection of the independent variable that produces the greatest “separation”
in the target variable (i.e. the number of earthquakes with mb ≥ 4.5). Splitting procedure
stops when there is only one data-point left in each node, or when each node has only the
same predicted values. At this point a “maximal” tree has been constructed, which probably
overfits, because it represents all idiosyncrasies of the learning data set. For regression tree
(i.e. prediction tree), a “maximal” tree is achieved such that means between nodes vary as
much as possible and standard deviation or variance (i.e. dispersion) within each node is as
low as possible. The maximal tree has the maximum number of levels of tree growth beneath
the root node, where the maximum tree depth is reached. The maximum regression tree is
unable to split the data without violating a condition that some parent node has observations
of different classes. In search for useful patterns in data set it is essential to avoid the trap
of overfitting or finding patterns that apply only to the training data set. CART’ s embedded
test disciplines ensure that the patterns found will hold up when applied to new data set.
Further, the testing and selection of the optimally-sized tree are an integral part of the CART
algorithm.

The optimal regression tree was found by tenfold cross-validation which is an industry
standard for many applications (Oates and Jensen 1997). Hence, CART uses tenfold cross-
validation for maximum regression tree optimizations. This was done by dividing our learning
data set into ten subsets with an equal distribution for the dependent (target) variable (i.e. the
number of earthquakes with mb ≥ 4.5). A maximal regression tree was grown from 90 %
of the subsets, with 10 % of the data set reserved for assessing the SSE. This process was
repeated ten times with the learning data, each time reserving a different 10 % of the data for
SSE assessment.

Error rates from the regression trees were combined to yield estimated error rates for
the nodes in the maximum tree (Steinberg and Colla 1997). But employing cross-validation
method itself for all possible regression trees with different sizes is also not feasible due to
computational constraints. Therefore, CART algorithm dose not check all subtrees of the
maximum regression tree but only special key subtrees. For this purpose, some new mea-
sure the so called cost-complexity index is automatically applied in the CART algorithm
(Breiman et al. 1984). This index controls the size of the resulting regression tree which can
be estimated by the number of terminal nodes. The idea is that the maximum regression tree
will get a penalty for its big size; on the other hand, it is more accurate for predicting. Small
regression trees will get relatively lower penalty, for their size but their predicting abilities
are limited. Optimization procedure based on such trade-off criterion could determine the
optimally-sized regression tree with the help of cost-complexity function and cross-valida-
tion (Breiman et al. 1984). Our maximum regression tree was grown, and then pruned back to
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obtain the optimal size tree by determining the lowest SSE. In CART algorithm, the automatic
setting limits the maximum tree growth to five levels beneath the root node.

6 Results and discussion

Many investigators have suggested that seismicity in Iran is related to geographical position,
local geology and tectonics. Such studies often lack adequate accuracy since the earthquake
cycle is slow or recording stations are inadequate (Lomnitz 1994; Zamani and Agh-Atabai
2009, 2011). In this work, a new and updated catalogue of geological and geophysical data of
Iran has been used as training data to model the occurrence of earthquakes. Statistically sig-
nificant rules associated with the number of earthquakes with mb ≥ 4.5 (the target variable)
are found (Fig. 3).

The target variable information is provided by the gain index values shown in Table 2.
This index is a useful tool for measuring the value of our decision tree predictive model. The
index value is basically an indication of how far the observed target category percentage for
that node differs from the expected target category percentage in the root node before the
effects of any of the independent variables are considered. The gain index percentage tells

Table 2 The gain summery provides statistics for all terminal nodes in the tree

Rule no. Node number Number of
observations
in node

Node
percentage

Predicted
values

Gain index
value (%)

1 12 6 3.4 67 436.6

2 26 3 1.7 54 349.7

3 14 2 1.1 48 310.1

4 11 6 3.4 40 262.7

5 25 7 4 38 247.1

6 28 2 1.1 28 181.6

7 24 4 2.3 22 144.4

8 15 3 1.7 21 140.2

9 32 2 1.1 18 118.3

10 35 19 10.9 17 110.5

11 31 2 1.1 14 94.1

12 37 8 4.6 14 92.7

13 27 7 4 13 85.5

14 36 13 7.4 12 75.3

15 23 5 2.9 9 59.1

16 38 26 14.9 9 57.7

17 34 41 23.4 6 36.9

18 29 3 1.7 5 31.3

19 33 14 8 3 19.9

20 30 2 1.1 1 9.7

Node number: the number of node in Fig. 3. Number of observations in the node: The total number of samples
at that node. Node percentage: The percentage of all samples in the dataset that fall into this node. Predicted
values: The predicted target for each node
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Table 3 The ten most reliable decision tree-based rules (i.e. IF-THEN rules) with gain index value of more
than 100 %

Rule no. Node no. IF THEN

1 12 RAISO(6) > 62.5 and MIISO(9)
≤ −43.5 and RARES(14) > 57.5

NEGMB(4)=67

2 26 RAISO(6) ≤ 62.5 and RAMGI(30)
≤ 188.5 and MIREG(13)
≤ −126.5 and AVISO(7) > −23.2
and MIBUG(21) > −11835

NEGMB(4)=54

3 14 RAISO(6) > 62.5 and MIISO(9)
> −43.5 and RAPTR(47) > 1.2

NEGMB(4)=48

4 11 RAISO(6) > 62.5 and MIISO(9)
≤ −43.5 and RARES(14) ≤ 57.5

NEGMB(4)=40

5 25 RAISO(6) ≤ 62.5 and RAMGI(30)
≤ 188.5 and MIREG(13)
≤ −126.5 and AVISO(7) > −23.2
and MIBUG(21) ≤ −11835

NEGMB(4)=38

6 28 RAISO(6) ≤ 62.5 and RAMGI(30)
≤ 188.5 and MIREG(13)
> −126.5 and AVREG(11) ≤ −40
and MXBUG(20) > −5100

NEGMB(4)=28

7 24 RAISO(6) > 62.5 and MIISO(9)
> −43.5 and RAPTR(47) ≤ 1.2
and RAUNR(39) > 23.05

NEGMB(4)=22

8 15 RAISO(6) ≤ 62.5 and RAMGI(30)
≤ 188.5 and MIREG(13)
≤ −126.5 and AVISO(7) ≤ −23.2

NEGMB(4)=21

9 32 RAISO(6) ≤ 62.5 and RAMGI(30)
> 188.5 and MXEMG (3) ≤ 5.3
and AVREG(11) ≤ −163.9 and
RAGRV(22) > 144175

NEGMB(4)=18

10 35 RAISO(6) ≤ 62.5 and RAMGI(30)
> 188.5 and MXEMG(3) > 5.3
and AVBUG(19) ≤ −11430.9 and
RAMGI(30) ≤ 875.5

NEGMB(4)=17

The number listed after each set of initials in Table 3 is its attribute in Table 1

us how much greater the proportion of a given target at each node differs from the overall
proportion.

An index value greater than 100 means the percentage of cases in the target category in
the node exceeds the percentage in the root node. Nodes with gain index values greater than
100 % indicate that a better chance exists of accurate prediction by selecting records from
these nodes instead of random selection from the entire sample. The index values in this
paper show that node 12 has the highest possible rate for the entire data, with a value of
436 %. This node is thus almost 4.4 times more likely to get a hit with these records than
using a random selection. The gain index values show that of the 20 nodes, 10 have index
values greater than 100 %. The rules of the top ten nodes are depicted in Table 3.

The CART methodology sorts the predictor variables in decreasing order of importance.
Interestingly, the constructed decision tree model (Fig. 3) indicates that the isostatic anomaly
is a very important parameter in earthquake prediction. Other important factors in decreas-
ing order of importance include: magnetic anomaly, Bouger anomaly, and gravity anom-
aly respectively. Such results support our previous researches (Zamani and Hashemi 2000;
Zamani and Farahi Ghasre-Aboonasr 2011) which showed that there is a strong correla-
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Fig. 4 The multivariate rule-based seismicity map (MRBSM) of Iran. Indexes are shown in decreasing order
of importance for predicting future earthquakes. For example, node 12 has the highest hazard for future
earthquakes with mb ≥ 4.5. None of offshore Iran and island is included in the data set

tion between seismicity and gravity anomalies in Iran. It seems that, isostatic and Bouger
anomalies caused by the regional variations in lithospheric thickness and/or in density, affect
gravitational stability and thereby the differential stresses responsible for earthquakes.The
results further suggest that despite abundant use in earthquake studies, of Gutenborg-Richter
a- and b-values, these parameters have low correlations with the occurrences of earthquakes
with mb ≥ 4.5. This could be due to the fact that in seismogenic regions where the earth-
quake cycle is slow and/or seismic station coverage is inadequate, it is difficult to collect
statistically significant number of records to determine a- and b-values accurately.
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Fig. 5 Seismicity map of Iran based on 2008 to end 2010 earthquakes with mb ≥ 4.5 (NEIC 2012). This map
correlates well with multivariate rule-based seismicity map (MRBSM) of Iran (Fig. 4). This indicates that the
rules applied have high accuracy

In this work, Multivariate Rule-Based Seismicity Map (MRBSM) is defined as the map of
regions with a high hazard of future earthquakes with mb ≥ 4.5. Use of the above-mentioned
model produced the MRBSM of Iran (Fig. 4)

For further evaluating the performance of the model, it is applied to test set to predict the
2008–2010 earthquake records of previously unseen data (Fig. 5).

When comparing Figs. 4 and 5, one can see that with the exception of a few cases, virtually
the entire earthquake records from the beginning of 2008 to the end of 2010 closely matched
the MRBSM of Iran. The map indicates that Bandar Abbas in the South of Iran, parts of the
Zagros simply folded belt with its NW-SE trend, the Oman line (a limited area in southern
Iran) and the northern portion of the Lut block in eastern Iran are regions of high hazard from
future earthquakes with mb ≥ 4.5.

The result indicates that the novel approach introduced in this paper is a reliable method
for seismic hazard assessment in Iran.This conclusion is worthy of further study to find out if
this approach contributes to the earthquake hazard assessment in other seismogenic regions.
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7 Conclusions

In this paper, a novel approach based on the decision tree rule-extraction technique for earth-
quake hazard assessment is presented. For this purpose a new and updated catalogue of
geological and geophysical data from Iran are used to predict (by rule extraction) the number
of future earthquakes with mb ≥ 4.5. The rules extracted from among the attribute were
significant statistically to assure the mapped patterns are not random and actually relate to
earthquake locations. The CART algorithm was used in a regression-tree mode for prediction
and for rule extraction. The rules extracted were used to produce a future earthquake hazard
map (MRBSM) for Iran (Fig. 4). This map shows onshore regions with high hazard for future
earthquakes occurring with mb ≥ 4.5. These regions are the Bandar Abbas area in the South
of Iran, the Zagros simply folded belt with its NW-SE trend, the Oman line in southern Iran
and the northern portion of Lut block in eastern Iran. The analysis also shows that the iso-
static anomaly correlates best with these earthquakes. Other important factors in decreasing
order of importance are: magnetic intensity, regional Bouger anomaly, Bouger anomaly and
gravity anomaly, respectively. The results further suggest that despite the widespread use in
earthquake analysis of a-and b-values from the Gutenberg-Richter formula, these parameters
have low correlation with the earthquake occurrence in Iran.

The results presented in this paper indicate that the novel approach based on decision tree
rule extraction model is a reliable method to assess earthquake hazard in Iran. The conclusion
is worthy of further study to find out if this approach contributes to the earthquake hazard
analysis in other seismogenic regions.
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