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Abstract The specific barrier model (SBM) is a particular case of a composite earthquake
source model where the seismic moment is distributed in a deterministic manner on a rect-
angular fault plane on the basis of moment and area constraints. It is assumed that the fault
surface is composed of an aggregate of subevents of equal diameter, the ‘barrier interval’.
Furthermore, the subevents are assumed to rupture randomly and statistically independent
of one another as the rupture front sweeps the fault plane. In the formulation of the far-field
source spectrum of the SBM the ‘arrival time’ of the seismic radiation emitted by each sub-
event is specified via a probability density function (PDF). In the SBM the subevents are
assumed to be of equal sizes (an assumption relaxed in a companion paper, referred to as
Part I) and the PDF of ‘arrival times’ is assumed to be uniform. In this study we investigate
the effects of different PDFs of ‘arrival times’ on the far-field source spectrum of the SBM.
Different PDFs of ‘arrival times’ affect the source spectra primarily at the intermediate fre-
quency range (between the first and second corner frequencies). Such effects become more
pronounced as the earthquake magnitude increases. The far-field spectrum of seismic energy
observed/recorded at a site depends on the location of the site relative to the causative fault
plane, the location of rupture initiation (hypocenter) and the onset times of the rupturing
subevents. All the above factors are effectively taken into account by the ‘isochrons’, which
vary with source-site geometry. We investigate the selection of the appropriate PDF of seismic
energy arrival times at a given site by computing isochrons for a grid of stations surrounding
the earthquake fault, represented by the SBM. We show that only for stations located in a
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direction normal to the fault plane is the assumption of uniform PDF of ‘arrival times’ valid.
At other sites non-uniform PDFs of ‘arrival times’ are observed. We identify and categorize
the prevalent types of PDFs by directivity (forward vs. backward vs. neutral) and source-site
distance (near-fault vs. far-field), show examples in which we group the stations accordingly.
We investigate the effects of the different PDF-groups on the SBM source spectrum. Selection
of the appropriate PDF for a given source-site configuration when simulating strong ground
motions using the SBM in the context of the stochastic method is expected to yield more
self-consistent, and physically realistic simulations.

Keywords Earthquake · Specific barrier model · Far-field source spectra ·
Isochron · Directivity

1 Introduction

In earthquake prone regions where strong-motion data is scarce, the reliability of strong
ground motion simulations depends heavily on realistic source, path and site models. Due
to the inherent uncertainty and randomness of earthquake processes and crustal heteroge-
neities, reducing the standard error associated with empirical attenuation relationships has
proven difficult (Trifunac and Brune 1970; Douglas 2010). Additionally, such relationships
are strictly speaking not valid outside the range which the data define. Therefore, it is strongly
recommended to seek physically realistic models, especially of the earthquake source, for
ground motion simulation. The specific barrier model (SBM) is such a model in which a
complete, yet parsimonious and self-consistent description is provided of the faulting pro-
cesses that are responsible for the generation of high-frequency waves (� 1 Hz). It has been
successfully applied in the context of the stochastic modeling approach, using random vibra-
tion theory, on the basis of the closed-form expression of the far-field source spectrum of the
SBM (Halldorsson and Papageorgiou 2005). Furthermore, the model is especially well suited
for physically realistic, fast and efficient strong-motion simulations, both in the near-fault as
well as far-field regions of a finite earthquake source (Mavroeidis and Papageorgiou 2003;
Halldorsson et al. 2007, 2011).

In a companion paper (Part I) of the present study we revisit the SBM as a particular case
of a composite seismic source model according to which the seismic moment is distributed
in a deterministic manner on the fault plane on the basis of moment and area constraints
(Halldorsson and Papageorgiou 2012). Namely, in formulating the model it is assumed that a
rectangular fault surface is composed of an aggregate of subevents of equal diameter, the “bar-
rier interval”. Furthermore, the subevents are assumed to rupture randomly and statistically
independent of one another as the rupture front sweeps the fault plane. In the aforementioned
study basic assumptions regarding subevent size of the SBM were relaxed. By allowing
subevent sizes to vary according to various prescribed probability density functions (PDF),
closed form expressions of the corresponding far-field source spectra of the composite source
were derived. It was shown that high-frequency spectral asymptotes corresponding to dif-
ferent types of size-distributions and for realistic size-ranges do not differ significantly from
those associated with the SBM, for a constant local stress drop. Furthermore, the difference
is likely to be less than the expected uncertainty associated with local stress drop values
determined from strong-motion data. Thus, despite its simplifying assumptions, the SBM
appears to be the most simple, yet effective, way to capture the essential characteristics of
a composite seismic source. This is especially advantageous for consistent strong-motion
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modeling in the ‘near-fault’, as well as in the ‘far-field’ region for earthquake engineering
applications (Mavroeidis and Papageorgiou 2003; Halldorsson et al. 2007, 2011).

While in Part I we relaxed assumptions regarding the size distribution of the subevent
population, we kept the assumption that the ‘arrival times’ of the seismic radiation emitted
by the subevents were uniformly distributed over the time window of motion at a recording
station (observation point). In the present study (Part II) however, we keep the assumption
regarding subevent size distribution of the SBM (i.e., all subevents have the same size) but
investigate the effects of various distributions of ‘arrival times’ at a station. [Parenthetically
we note that we use the term ‘arrival times’ following Davenport (1970), while for the same
concept, Wennerberg (1990), used the term ‘delay times’ or ‘lags’.] The ‘arrival times’ vary
with source-site geometry, and this variation is effectively captured by the isochrons on the
fault plane (Spudich and Frazer 1984). We consider the arrival times to be a random variable
because earthquake sources are highly complex (e.g., generally, the rupture front is not cir-
cular, the subevents are not perfect circles with perfectly defined centers, and subevents are
not uniformly distributed on the fault plane, etc.). The random ‘arrival times’ can therefore
also be viewed as means to effectively account for such uncertainties in the modeling. Thus,
we investigate the effect of variations of the PDF of ‘arrival times’ on the seismic radiation
received at a given site by computing isochrons on a vertical fault plane of the SBM for
each station of a hypothetical grid of stations. We show that, for stations located in the far-
field and in a direction normal to the fault plane, the assumption of uniform PDF of ‘arrival
times’ is valid. At other sites non-uniform PDFs of ‘arrival times’ are generally observed.
We identify and categorize the prevalent groups of PDFs by directivity (forward vs. back-
ward vs. neutral) and proximity to the fault plane (near-fault vs. far-field). As the PDF of
‘arrival times’ enters directly into the formulation of the far-field spectrum radiated from a
composite source, the SBM source spectrum varies depending on the source-site geometry.
Thus, selecting the appropriate PDF for a given source-site configuration when simulating
strong ground motions using the SBM in the stochastic method is expected to enhance the
physical basis of such simulations.

2 The specific barrier model

The specific barrier model was introduced and developed by Papageorgiou and Aki (1983a,b)
for the quantitative description of heterogeneous rupture (see also Papageorgiou and Aki
1985; Aki and Papageorgiou 1988; Papageorgiou 1988, 2003). According to the SBM the
seismic fault may be visualized as a rectangular fault of length L and width W which consists
of an aggregate of N circular subevents (shear cracks) of equal diameter, 2ρo (the “barrier
interval”) on which a uniform stress drop, �σL , (referred to as the “local stress drop”) takes
place and spreads radially with constant rupture velocity v (see Fig. 1a). The seismic moment
of each subevent is

M◦i = 16

7
�σLρ3◦ (1)

(Eshelby 1957; Keilis-Borok 1959) and is released when subevent rupture is triggered by the
sweeping (with velocity V ) rupture front. An analytical expression of the far-field radiation
emitted by a circular crack has been derived by Sato and Hirasawa (1973) and is used in
the SBM to represent the radiation of the subevents. For simplicity, Papageorgiou (1988)
approximated the far-field source displacement spectrum of each subevent by an “ω-square”
spectrum (Aki 1967) as
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Fig. 1 a A schematic view of the SBM representing the earthquake fault consisting of equal-size subevents
arranged in a non-overlapping manner on the fault plane. Subevent rupture starts at the center of each crack
associated with a ‘local stress drop’ �σL and spreads radially outwards (the rupture fronts at successive time
instants are denoted by the light circles) until it is arrested by the barriers, denoted by the shaded area between
the cracks. b A schematic plot of the earthquake source spectra of the SBM for two magnitudes, Mw5.5 and
7.5, showing the loci of the first and second corner frequencies, and the effects of fmax. Also shown are the
dependencies of the spectral levels below and above the first and second corner frequencies, respectively, on
stress drops and main source area Ao (from Part I)

∼
Ṁ◦i ( f ) = M◦i

1 + ( f/ f2)2 (2)

where f2 is the “patch” corner frequency related to the size of the subevent, given by

f2 = Csβ

2πρ◦
(3)

averaged over the focal sphere, and Cs is model dependent and an implicit function of the
ratio v/β [1.72 ≤ Cs ≤ 1.85 for 0.7 ≤ v/β ≤ 0.9] for the symmetric circular crack (Sato
and Hirasawa 1973; Aki and Richards 1980), where β is the shear wave velocity in the
vicinity of the source.

The low-frequency radiation from the subevent population is summed up coherently and
is proportional to the seismic moment of the main event M◦ = M◦i N . On the other hand,
the high-frequency radiation from the subevents is summed up incoherently in the far-field
region (Papageorgiou and Aki 1983a). The far-field spectrum of the SBM was originally
presented by Papageorgiou and Aki (1985) who combined the then available description of
the high frequency radiation to that of the low frequency. In a later publication, Papageorgiou
(1988), exploiting a closed form expression of the far-field radiation of a composite source
derived by Joyner and Boore (1986), presented a closed form expression of the far-field
radiation of the SBM (for a comprehensive discussion see Part I). Subsequently, Halldorsson
and Papageorgiou (2005) modified slightly the abovementioned closed form expression by
introducing a high-frequency ‘source complexity factor’, ζ , into the expression, as follows

S(M◦, f, ζ ) =
√

Nζ + N (N − ζ )

(
sin(π f T0)

π f T0

)2

(2π f )2
∼
Ṁ◦i ( f ) (4)

The high-frequency complexity factor is required to account for the observed high-fre-
quency deviation from self-similar source spectral scaling of earthquakes in interplate tectonic
regimes [ζ = 102η, η = sm (Mw − Mcr ) where sm = −0.12 and Mcr = 6.35)]. For
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more details the reader is referred to Halldorsson and Papageorgiou (2005) and references
therein.

The parameter T0 is the duration of pulse-train (emitted by the subevents as they rupture)
that is received at a station. An estimate of T0 may be obtained by calculating the duration
of faulting of the composite source, which is inversely proportional to the (first) corner fre-
quency of the source spectrum, T0 = C̃/ f◦, where C̃ is a model dependent constant (e.g.,
Silver 1983). For simplicity and convenience we proceed by assuming geometric and kine-
matic similarity of the main event and its subevents. On this basis the first corner frequency
becomes

f◦ = Csβ

2π R◦
(5)

where R◦ is the radius of an ‘equivalent’ circular main source of area A◦ = LW with seismic
moment

M◦ = 16

7
�σG R3◦ (6)

where �σG is referred to as the “global stress drop”. Following Papageorgiou (1988) we
set C̃ = Cs/4 so that the first corner frequency of the SBM conforms with the locus of
Gusev (1983) corner frequencies of empirical source spectra. This in turn implies that the
corresponding duration of rupture is

T0 = Cs

4 f◦
(7)

We acknowledge that one could adopt a more sophisticated relation of the (first) corner fre-
quency to the characteristic dimension(s) of the main event, however, it should be pointed
out that the above simplification has no significant effect on the overall source spectrum of
the SBM, while it allows for the following concise expressions relating the barrier interval
to the number of subevents (Eqs. 27 & 28 of Part I)

2ρ◦ = 4

π

�σG

�σL
2R◦ (8)

N =
(π

4

)3
(

�σL

�σG

)2

(9)

Therefore, in order to construct the seismic spectrum (see Fig. 1b) of the SBM for an earth-
quake event of a given seismic moment, one needs the values of the global and local stress
drops and the expressions (8) & (9) given above. We note that Halldorsson and Papageorgiou
(2005), in re-calibrating the SBM, have provided values for (i) the global stress drop �σG

based on data in the published literature, and (ii) the local stress drop �σL from inversion to
strong-motion data for three different tectonic regions (see also Foster et al. 2012).

3 Distributions of pulse ‘arrival times’ and effects on far-field source spectra

The expectation of the squared absolute value of the Fourier amplitude of the far-field spec-
trum of a composite source that consists of subevents of random sizes is expressed as (Joyner
and Boore 1986)
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E
[|S (ω)|2] = N · E

[|SR (ω, R)|2]
+N (N − 1) ·

∣∣∣ f̃T (ω)

∣∣∣2 · {E [|SR (ω, R)|]}2 (10)

where SR (ω, R) is the subevent seismic spectrum and f̃T (ω) is the ‘characteristic function’
of the random variable T , which represents the arrival time (at a station/observation point)
of the radiation emitted by a subevent rupture (Joyner and Boore 1986; Halldorsson and
Papageorgiou 2012). [Parenthetically we mention that Eq. (10) is in essence a statement of
Campbell’s theorem (see Rice 1944, 1945; Middleton 1960; and Lin 1967; and references
therein; see also Lin and Cai 1995) for a pulse-train of finite duration.] In the formulation
of the far-field spectrum of the SBM in Eq. (4), we substitute the subevent seismic spectrum
from Eq. (2) into Eq. (10) and calculate the expectations that appear on the right hand side. In
the original studies (Joyner and Boore 1986; Papageorgiou 1988) the PDF of ‘arrival times’
was assumed to be constant over the time interval 0 to T0. In this case the PDF is expressed
as

fT (t) = 1

T0
, t ∈ [0; T0] (11)

The Fourier transform of fT (t) is denoted by f̄T (ω), and is referred to as the ‘characteristic
function’ of the R.V. T (Papoulis 1965). The squared amplitude of the characteristic function,
corresponding to the PDF in Eq. (11), is

∣∣∣ f̃T (ω)

∣∣∣2 = sin2
(

ωT0

2

) /(
ωT0

2

)2

(12)

where ω = 2π f is the circular frequency. Substituting this expression into Eq. (10) and

taking the square root i.e., |SC (ω) | =
√

E
[|S (ω)|2], we obtain the Fourier amplitude of the

far-field source spectrum of the SBM that appears in Eq. (4) (apart from the high-frequency
complexity factor). For more information the reader is referred to Part I and references therein
(Halldorsson and Papageorgiou 2012).

A characteristic of Eq. (12) is that it decays proportionally to ω−2 and has spectral “holes”
i.e., periodic set of zeros at ω = p (2π/T0) where p is a positive integer (Joyner and Boore
1986; Wyss and Brune 1967). Furthermore, being the characteristic function of the R.V. T ,
its limits as f approaches 0 and ∞ are one and zero, respectively (Papoulis 1965). It follows
that the low-frequency limit of the source displacement spectrum in Eq. (10) is equal to the
cumulative seismic moment M◦ while the high-frequency limit of the source acceleration
spectrum is ∼ √

N f 2
2 M◦i (for self-similar scaling η = 0). At low-frequencies therefore,

energy is summed coherently (conserving the moment), while in the high-frequency range,
the radiated spectra of the individual subevents are summed up incoherently. Consequently,
in the high frequency range spectral amplitudes are proportional to the square root of the
number of subevents (Papageorgiou and Aki 1983a). The general role of fT (t) on the source
spectrum of the SBM can thus be investigated in terms of Eqs. (10) and (12). This is illustrated
in Fig. 2a showing how the displacement spectrum expressed by Eq. (10) is the summation of
two dominant (at different ends of the spectrum) terms: at long periods, the dominant term is

N (N − 1) ·
∣∣∣ f̃T (ω)

∣∣∣2 · {E [|SR (ω, R)|]}2, while at high frequencies spectral amplitudes are

controlled by the term N · E
[|SR (ω, R)|2]. In the same figure one can observe also that the

shape of | f̃T (ω)|2 affects the spectra primarily in the intermediate frequency range ( f1 to f2).
In general therefore, the role of | f̃T (ω)|2 is essentially that of a transition “agent” between
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Fig. 2 a The SBM displacement spectrum for a Mw6.5 event with �σG = 30 bar and �σL = 161 bar. The
solid line is the aggregate seismic spectrum and the dashed and dot-dashed lines indicate the contribution
of the first and second terms, respectively, on the right hand side of Eq. (10) (from Part I). b The constant
PDF of subevent rupture times (normalized by T0) displayed along with three hypothetical PDFs of quadratic,
trigonometric and combination of uniform and quadratic terms, respectively

the coherent and incoherent spectral ranges (see e.g., Frankel 1991), while the number of
subevents determine the low- and high-frequency asymptotes (see Part I).

While the uniform distribution of ‘arrival times’ appears to be both a physically reason-
able and simple assumption, other distributions may of course be assumed. [For example,
Wennerberg 1990 selected a f̃T (ω) that was proportional to the spectral ratio of the source
spectrum and the main event to that of the subevent. However, his choice of f̃T (ω) does not
satisfy the requirement that a characteristic function should satisfy, i.e. limω→∞ f̃T (ω) = 0,
and therefore his selection of f̃T (ω) does not correspond to any PDF.] In the present work,
we start by postulating a PDF fT (t) (the selected fT (t) may be motivated by empirical
observations as it will become evident below, and it must always satisfy the conditions of
‘nonnegativeness’ fT (t) ≥ 0 and ‘unit area’ ∫+∞−∞ fT (t) dt = 1) and we compute in a
straightforward way the corresponding f̃T (ω). As a simple exercise we postulated a qua-
dratic, a trigonometric, and a combination of uniform and quadratic PDFs, shown in Fig. 2b.
The respective | f̃T (ω)|2 are shown in Fig. 3i and in all cases, the low- and high-frequency
limits are 0 and 1, respectively as expected, but different corner frequencies and spectral
falloff rates are observed. The effects that these functions have on the SBM source spectrum
is shown in Fig. 3ii for the case of a Mw 5.8 interplate event (�σG = 30 bar, �σL = 161
bar). The effects are seen to be dominated by the different values of the corner frequency
of the | f̃T (ω)|2-functions in Fig. 3i. The different assumptions of PDFs of ‘arrival times’ in
effect change the apparent value of the lower corner frequency of the source spectrum, as well
as the intermediate slope between the lower and upper corner frequencies of the composite
event. In any case, the effects are evident and warrant further consideration.

4 Distributions of pulse ‘arrival times’ and their physical manifestations

Simulation of earthquake ground motion using the SBM relies (at least in part) on the observed
fact (e.g. Trifunac and Brune 1970; Wyss and Brune 1967; Vallée and Bouchon 2004) that
earthquake seismograms can be, reasonably well, simulated by using a relatively small
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Fig. 3 i The squared FAS of the PDFs fT (t) of rupture times shown in Fig. 2b i.e., plots (a)–(d) correspond
to the uniform, quadratic, trigonometric, and the combined uniform and quadratic PDFs, respectively. ii The
corresponding SBM source acceleration spectra. The dashed gray lines in (i) show the spectral slope of the
FAS of the uniform PDF

number of resolvable, energetically significant subevents. The subevents of the SBM are
assumed to rupture statistically independently of one another as the expanding rupture front
sweeps the fault plane (Papageorgiou and Aki 1983a). Such a rupture process had been antic-
ipated by Housner (1947, 1955). Figure 4a, b shows on the left the fault planes of a Mw6.5
earthquake event modeled using the SBM. An expanding circular rupture front, originating
at the hypocenter (located at 0.8W downdip and denoted by a star), sweeps the fault plane
with constant sweeping rupture velocity V = 0.75β (unilaterally in Fig. 4a and bilaterally in
Fig. 4b). The solid lines denote the rupture front at successive time instants (contour interval
�t = 1.5 s) over the rupture duration. Subevent rupture commences when the rupture front
reaches its center (Halldorsson et al. 2011). We refer to the above time instant as the subevent
‘onset’ time.

Let us consider now a line which is normal to the fault plane at its hypocenter. Consider
now a station located on this line and at a very large distance (ideally infinite) from the
fault plane. For such a station, the lines representing the expanding rupture front in Fig. 4a,
b coincide also with the ‘isochrons’ corresponding to the station. [We remind the reader
that an ‘isochron’ (corresponding to a station) is the locus of points on the fault plane the
(instantaneous/impulsive) radiations of which reach the station simultaneously.] Therefore,
it is evident that for such a station the sequence of ‘arrival times’ is exactly the same as
that of the subevent ‘onset times’, just delayed in time by a lag equal to the time it takes
for the (impulsive signals emitted from all the points of an isochron) to travel the distance
from the fault plane to the station. [This is why some authors (e.g. Wennerberg 1990) refer
to the ‘arrival times’ as ‘delay’ or ‘lag’ times.] For the particular station under discussion,
we can obtain an estimate of the (time-varying) normalized rate of the ‘arrival times’ by
dividing the duration of radiation T0 into bins, counting the subevents that ruptured over the
duration of one such bin (centered at time tk), say n(tk ), and dividing this number by the total
number of subevents N , i.e.

(
n(tk )/N

)
. This procedure has been followed in preparing the

corresponding histograms on the right of Fig. 4a, b. These histograms provide estimates of
the PDF, fT (t), from which estimates of f̃T (ω) may be obtained. It is evident that fT (t) is
essentially a normalized (and time varying) rate of arrivals of pulses at the station.
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Fig. 4 The contours of the sweeping rupture front at successive time instants (1.5 s) following the initial
break at the hypocenter (star) on a rectangular fault of a Mw6.5 earthquake represented by the SBM. Two
rupture types are considered: unilateral (a) and bilateral (b). Also shown are the corresponding histograms of
energy arrival times for far-field stations on the fault normal (in which case the contours are isochrons)

At this point we observe that selecting a different station that does not conform to the
above-stated requirements, the isochrons cease to coincide with the curves describing the
position of the rupture front at consecutive times, and in order to estimate the normalized rate
of ‘arrival times’ we have to calculate and trace on the fault plane the corresponding isochrons.

Therefore, in estimating ground motion, using the source spectrum of the SBM (Eq. 10),
that accounts properly for the source-station geometry, we should use the appropriate f̃T (ω),
estimated, as described above, by using the concept of the isochrons.

Solving the above-stated problem analytically is formidable, and thus we chose to proceed
in a semi-empirical way. Specifically, we generated a grid of hypothetical stations surround-
ing earthquakes of different magnitudes, modeled by the interplate SBM (the values of the
parameters that we selected are those estimated by Halldorsson and Papageorgiou (2005)
who calibrated the SBM to earthquake events of three different tectonic regions): Mw5.5,
with fault aspect ratio of 5 × 3 subevents (Fig. 5, top row panels); Mw6.5, with fault aspect
ratio of 7 × 2 subevents (Fig. 5, middle row panels); and Mw7.5, with fault aspect ratio of
14 × 1 subevents (Fig. 5, bottom row panels). In Fig. 5, stations are denoted by triangles, and
the earthquake events are assumed to take place on vertical fault planes that rupture either
unilaterally (Fig. 5, right panels; the epicenter is located at the ‘southern’ end of the fault
and propagation is towards ‘north’) or bilaterally (Fig. 5, left panels; the epicenter is located
mid-way along the fault) For each station ( j) we trace on the fault plane the corresponding
isochrons, which also provide the corresponding total duration T ( j)

0 of motion at the station.

We subdivided the total duration T ( j)
0 of energy arriving at each station, into bins and cal-

culated the histogram of
(
n(tk )/N

)
where N is the total number of subevents and n(tk ) is the

number of subevents of the SBM which are contained between two successive isochrons,
�tk seconds apart, and centered in time at tk . The histograms obtained as described above
are estimates of the PDF, f ( j)

T (t), of pulse arrival times for station j . The individual PDFs
(solid curves) are shown in Fig. 5 at their respective stations around the faults.
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Fig. 5 The probability density functions of the energy arrival times plotted on a map of the hypothetical sites
located around the SBM representing earthquakes on vertical faults of magnitudes Mw5.5, 6.5 and 7.5 (top
to bottom, respectively). The PDFs are given for bilateral (left), and unilateral (right) rupture on the fault (see
Fig. 4) where the star denotes the epicentral location and the solid lines the surface projection of the fault
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Fig. 6 a Isochrons contours (plotted at �t = 1.5 s intervals) for a far-field station located on the strike of
the Mw6.5 earthquake on which a bilateral rupture takes place with constant rupture velocity (see Fig. 4). b
The associated histogram and PDF of arrival times at the station. The isochrons reveal the drastic differences
in the numbers of subevents from which seismic energy arrives at the station at the same time (within time
interval �t) in the first part of the strong-motion duration versus the latter parts

The results show that not all stations exhibit a constant rate of pulse arrivals. We highlight
this via Fig. 6 which shows the isochrons on the fault plane corresponding to a site on the
strike of the Mw6.5 earthquake on which a bilateral rupture takes place (Fig. 5, left panel of
middle row). At the initiation of rupture, the isochron velocity is considerably higher than in
the latter part of the rupture. As a consequence, the area swept by the fast expanding isochrons
at the beginning of the rupture is considerably larger as compared to the later part of the rup-
ture. This results in a highly non-uniform pulse arrival rate, as the associated histogram and
PDF shows. On the other hand, sites that experience a uniform distribution of pulse arrivals
are for example the ones closest to the fault normal for Mw7.5 with bilateral rupture. This
is also the case for sites experiencing backward directivity from Mw5.5–7.5 with unilateral
rupture. On the other hand, the forward directivity stations of a unilateral rupture from Mw5.5
and 6.5 experience PDFs that, in general, peak mid-way i.e., most of the pulses arriving at
the sites do so near the middle of the duration. As for a unilateral rupture of the Mw7.5 event,
the near-fault stations experience progressively larger forward directivity effects alongside
the fault, as exhibited by the growing peak in the PDFs with distance from the epicenter.
Further away from the fault these effects subside. In the case of bilateral rupture however,
such forward directivity effects “fan out” away from both ends of the fault and subside with
sites having an increased azimuthal difference from the strike of the fault, until they more or
less even out at sites close to the fault normal. However, in the direction of neutral directivity
these latter sites have somewhat different distributions of arrival times than those in the case
of unilateral rupture.

5 Results and discussion

For a uniform distribution on the fault plane of equal size subevents, such as that of the
SBM, forward directivity is associated with high isochron velocity, with the largest part of
the seismic energy arriving at the beginning of the strong-motion duration. Stations, other
than those in the forward (with respect to the rupturing fault) direction, experience reduced
directivity effects that gradually diminish until they reach a minimum at sites in the neu-
tral or backward direction of rupture. The different isochron distributions on the fault plane
result in PDFs of seismic energy arrival times of various shapes, depending on the geometry
of the station relative to the propagating rupture front. We have classified the various PDF
shapes displayed in Fig. 5 into four groups presented in Table 1, along with representative
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Table 1 Summary of isochron distribution effects on the PDF of arrival times at sites, and their respective
squared absolute Fourier spectra

far-field FF, near-fault NF region, backward BD, neutral ND and forward FD directivity

PDF shapes for each group. They are characterized by directivity, proximity to the fault (i.e.,
near-fault versus far-field), type of rupture and magnitude range. The corresponding squared

Fourier amplitude spectra (FAS) of the PDFs,
∣∣∣ f̃ ( j)

T (ω)

∣∣∣2
, are also shown in Table 1, since

it is through
∣∣∣ f̃ ( j)

T (ω)

∣∣∣2
the FAS that the source spectra of the SBM are affected in Eq. (10).

[We note however, the analysis and Eqs. (4) and (10) are strictly speaking valid only at the
far-field. Therefore, only the PDFs at far-field sites (considered here to be at distances larger
than one source dimension) are considered for application to construct the earthquake source
spectrum corresponding to a given source-station geometry].

While the PDF shapes in the first two groups differ, the spectral levels are very similar to
that of the uniform distribution (the dashed lines indicate the spectral slope of the FASs of
group 1). Therefore, the assumption of the uniform-PDF may (as an acceptable approxima-
tion) be valid for the corresponding source-site geometries i.e., those experiencing backward
and neutral directivity effects in the far-field region of unilateral rupture on faults of Mw5.5–
7.5. Also, sites in the far-field and forward direction from a unilateral rupture on a Mw7.5
fault, as well as near-fault sites of a bilateral rupture on faults of Mw5.5–7.5 experiencing
neutral directivity. However, the assumption of uniform PDF is not valid in the cases shown
in the last two colums in Table 1. That would include the far-field sites experiencing neutral
and forward directivity effects from a bidirectional and unidirectional, respectively, rupture
on faults of Mw5.5–6.5. As expected, the most intense forward directivity effects would
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SBM Source Spectra: Interplate earthquakes
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Fig. 7 The far-field source acceleration FAS of the interplate specific barrier model for Mw5.5 and 7.5 and
each of the four groups of PDF shapes that depend on directivity effects from the finite-fault SBM. The first
two groups have effectively the same squared FAS of energy arrival times and have therefore been grouped
together

be experienced by near-fault sites of a unilateral rupture. Near-fault and far-field sites of a
bilateral rupture, on faults of Mw5.5–7.5, even though they display a similar shape for fT (t)
as the one in the case of unilateral rupture, may not experience forward directivity with the
same intensity if the subevents do not rupture symmetrically.

The spectra associated with the last two groups of Table 1 reveal that the spectral levels
and corner frequencies can be quite different from those displayed in the first two groups.
As we have shown, the spectral characteristics of the subevent signal arrival times affect
the aggregate spectrum mainly at the intermediate frequencies. The extent of the effect in
turn depends on magnitude (i.e., over what frequency range the intermediate-part is), and
the stress-drop ratio �σL/�σG (with decreasing stress-drop ratio, the aggregate spectra
approaches the “ω-square” spectrum; see Part I). In any case, for stations which are associ-
ated with strongly non-uniform PDFs, fT (t), of pulse arrival times, it is more consistent to
use the corresponding f̃T (ω) in the source spectrum expressed by Eq. (10).

We take advantage of the grouping in Table 1 for the estimation of directivity effects on
the SBM far-field spectra. For each group we calculate the average of the representative PDFs
and approximate it using a simple functional form (polynomials of the appropriate order),
for which we calculate the squared FAS and present in closed form (see “Appendix”). The
effects of the four groups of PDF shapes on the acceleration source FAS are summarized
in Fig. 7. The figure shows the far-field SBM source spectrum S(M◦, f, ζ ) in Eq. (4) for
interplate earthquakes (sm = −0.12, Mc = 6.35) for two magnitudes, Mw5.5 and 7.5. Note
that the spectra are shown with high-frequency fmax-diminution effects as in Fig. 1b. The
spectra shown by solid lines are associated with a uniform distribution of energy arrival times
(Halldorsson and Papageorgiou 2005, which can be thought to correspond to the PDFs in
the first two groups of Table 1. Although the second group PDF shapes are not constant,
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the effects on the spectra are effectively the same as those of a uniform distribution. On the
other hand, the spectra shown by dotted and dashed lines correspond to the PDFs of arrival
times in groups 3 and 4, respectively. We observe that stations receiving directivity effects
of the form associated with group four in the table have higher spectral levels at intermedi-
ate-frequencies when compared to the spectra associated with a uniform distribution. This
difference becomes greater with magnitude.

As we have noted, the relative effects associated with the different arrival time distribu-
tions only affect the intermediate frequency levels according to the formulation on which the
current analysis is based. In terms of source strength the high-frequency spectral levels of the
SBM are controlled by the stress drops (∼ �σL�σ

−1/3
G ), both of which have been shown

to be constant for earthquakes in a given tectonic region (Halldorsson and Papageorgiou
2005). Additionally however and unrelated to the source strength, if the site is in the forward
direction the higher isochron velocity on the fault manifests itself in strong-motion of shorter
duration and higher relative amplitude, as opposed to a site in the backward direction expe-
riencing relatively lower amplitudes of strong-motion over a longer duration. Consequently,
while the source spectrum may show similar high-frequency spectral levels at the two sites
(see Fig. 7), the high-frequency spectral levels of the site-spectrum will be higher for the site
in the forward direction compared to the site in the backward direction. This feature has not
yet been incorporated into the current result.

6 Conclusions

An expression of the far-field source spectrum radiated from a realistic, yet simple composite
earthquake source model, such as the SBM, can be useful for expedient simulations of seismic
ground motions using the stochastic modeling approach. While the high-frequency source
spectral levels can be affected by the statistical characteristics of the subevent population
(see Part I), the shape of the spectrum of such a composite earthquake source at intermedi-
ate-frequencies is however largely affected by the shape of | f̃T (ω)|2. In the past, the PDF
fT (t) had been assumed to be constant (i.e., uniform distribution of ‘arrival times’). While
a uniform distribution of ‘arrival times’ is the simplest assumption, it is not necessarily valid
for all source-station geometries. We have seen that the fT (t) depends on the source-site
geometry and on the evolution of the rupture front. Both these factors are captured effectively
by the isochrons curves. By postulating different earthquake scenarios on vertical finite-size
faults, modeled using the SBM, and considering two different rupture modes (fault rupture
is associated with a circular rupture front spreading with constant velocity), isochrons have
been constructed corresponding to each station of a grid of stations surrounding the causative
fault. The PDFs of pulse arrival times at each station was estimated using the corresponding
isochrons. Classifying the stations based on the shape of fT (t), we obtained four groups
of stations. In general, stations in the forward (w.r.t. the advancing rupture) direction are
observed to have higher spectral levels at intermediate frequencies as compared with those
at other sites. This is attributed to the higher ‘arrival rate’, especially at the beginning of the
duration of radiation.

The analysis presented in this paper, along with that of Part I, generalize the SBM origi-
nally proposed by Papageorgiou and Aki (1983a). These companion studies demonstrate that
while relaxation of certain key assumptions of the SBM introduces variations in the source
spectra, these variations are such that allow us to continue using the SBM in its original form
as an unbiased benchmark for ground motion analysis and simulation.
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Appendix

Equations for approximating general shapes of arrival times PDFs

PDF shapes of group 1 of Table 1 are approximated by Eq. (11) and the corresponding squared
absolute Fourier spectrum is given by Eq. (12).

The average shape of the representative PDF functions in group 2 of Table 1 is approxi-
mated by a straight line

f (t) = at + b, t ∈ [0; T0] (13)

where the following parameters

a = −10−1.9998 log T0−0.1009 (14)

b = 10− log T0+0.1458 (15)

ensure that the PDF has an area of unity over a range of realistic values of T0. The simple
functional form of the PDF enables a concise closed form expression of the corresponding
squared Fourier amplitude spectrum:

∣∣∣ f̃T (ω)

∣∣∣2 = −4

T 2
0 ω4 (2b + T0a)2

((
2a2 + 2T0abω2 + 2b2ω2) cos (T0ω)

+ 2T0a2ω sin (T0ω) − 2T0abω2 − 2a2 − 2b2ω2 − T 2
0 a2ω2) (16)

In the same way, the average shape of the representative PDF functions in group 3 of Table 1
are approximated by a simple function, in this case a 2nd degree polynomial

f (t) = at2 + bt + c , t ∈ [0; T0] (17)

with the following parameters

a = −10−3 log T0+0.7 (18)

b = 10−2 log T0+0.709 (19)

c = 10− log T0−0.95 (20)

The corresponding squared absolute Fourier spectrum is

∣∣∣ f̃T (ω)

∣∣∣2 = 1

ω6 (8a2 + ω2(2b2 − 8ac) + ω4(2T0bc + 2c2 + 2T 3
0 ab + T 4

0 a2

+ T 2
0 (2ac + b2)) + sin (T0ω) (ω3(4T0ac − 2T0b2 − 2T 2

0 ab) − 8T0a2ω)

− 2 cos (T0ω) (4a2 + ω4(T0bc + c2 + T 2
0 ac) + ω2(b2 − 4ac − 2T 2

0 a2)))

(21)
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Similarly, the average shape of the representative PDF functions in group 4 of Table 1 are
approximated by a 3rd degree polynomial

f (t) = at3 + bt2 + ct + d , t ∈ [0; T0] (22)

with the following parameters

a = −10−3.9967 log T0+0.8941 (23)

b = 10−2.9960 log T0+1.2323 (24)

c = −10−1.9957 log T0+1.0881 (25)

d = 10−0.9978 log T0+0.5318 (26)

The corresponding squared absolute Fourier spectrum is

∣∣∣ f̃T (ω)

∣∣∣2 =
(

1

ω8

) (
72a2 + 8ω2 (

b2 − 3ac
)

+ω4 (
2c2 − 12T0ad − 8bd − 6T 6

0 ac − 4T 3
0 ab − 3T04a2)

+ω6(2T0cd + 2d2 + 2T 5
0 ab + T 6

0 a2 + T 4
0

(
2ac + b2)

+ T 2
0

(
2bd + c2) + 2T 3

0 (ad + bc))
)

+
(

1

ω8

)
sin (T0ω) (24T0acω3 − 72T0a2ω + 4T0bdω5 (27)

− 8T0b2ω3 − 2T0c2ω5 + 6T 2
0 adω5 − 2T 2

0 bcω5 − 2T 3
0 acω5

+ 12T 3
0 a2ω3) +

(
1

ω8

)
cos T0ω(24acw2 − 72a2 + 8bdω4

+ 12T0adω4 − 2T0cdω6 − 8b2ω2 − 2c2ω4 − 2d2ω6

− 6T 2
0 acω4 + 4T 3

0 abω4 − 2T 2
0 bdω6 − 2T 3

0 adω6

+ 36T 2
0 a2ω2 + 4T 2

0 b2ω4)
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