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Abstract The paper contains a discussion of the inelastic dynamic magnification of seismic
shear forces in cantilever walls with rectangular cross-sections. An extensive parametric study
was performed in order to determine the reliability of the procedure in Eurocode 8 (EC8).
A large number of single cantilever walls which are characteristic for the design practice in
Europe and designed to satisfy all the EC8 requirements were analysed. The results obtained
with the (modified) code procedures were compared with the results of inelastic response
history analyses. If properly applied, the EC8 procedure for DCH walls usually yields good
results for the base shears. However, as presently formulated and understood in the EC8, it
can yield significantly incorrect results (overestimations of up to 40%). For this reason three
modifications were introduced: (1) Keintzel’s formula, which is adopted in EC8, should be
used in combination with the seismic shears obtained by considering the first mode of the
excitation only; (2) the upper limit of the shear magnification factor should be related to the
total shear force; and (3) a variable shear magnification factor along the height of the wall
should be applied. The present procedure in EC8 for DCM structures (using a constant shear
magnification factor of 1.5 for all walls) is non-conservative. For DCM walls it is strongly
recommended that the same procedure as required for DCH walls be used.
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1 Introduction

At the design level, the actual shear forces in reinforced concrete structural walls due to
seismic loads are, typically, considerably higher than the forces foreseen by the equivalent
linear-elastic lateral force analysis, or by the modal response spectrum analysis specified
in the codes. Simply said, this magnification occurs due to flexural overstrength and the
amplified effect of the higher modes in the inelastic range. This seismic shear magnification
phenomenon, which was first documented by Blakeley et al. (1975), can lead to the brit-
tle shear failure of the walls. A possible enlargement of seismic shear demands caused by
dynamic effects was also indicated in the response of a full scale 7-storey RC structural wall
tested on a shake table at University of California, San Diego (Panagiotou et al. 2007). An
effective design procedure which could be used to assess the realistic shear demand in RC
structural walls is therefore needed.

The Eurocode design provisions (CEN 2004) provide a related shear magnification
factor ε, which is used to multiply the values obtained by the linear-elastic lateral force
or modal response spectrum analysis. For ductility class medium (DCM) walls, a simple
constant factor ε = 1.5 is used. For walls which enter far into the inelastic range (ductil-
ity class high—DCH structures), larger shear magnifications are expected, and the factor
ε should be calculated using the expression proposed by Keintzel (1990), which explicitly
takes into account the effect of higher modes in the inelastic range and flexural overstrength
as explained in Fardis (2009). However, recent research work performed by Rutenberg and
Nsieri (2006), Kappos and Antoniadis (2007) and Priestley et al. (2007) has shown that the
Eurocode procedure needs some modifications in order to provide an improved estimate of
shear magnification factors. In particular, the work of Rutenberg and Nsieri has demonstrated
that the ε factor is too low for DCM walls, and is also frequently conservative for DCH walls.

Kentzel’s research was certainly up-to-date in the time when it was published, but the
supporting parameter study was rather limited with respect to the criteria of modern earth-
quake engineering. For this reason an extensive parametric study of the inelastic response
of multi-storey cantilever structural walls, designed according to Eurocode 8 (CEN 2004),
was performed in order to determine the reliability of the Eurocode procedure for the deter-
mination of seismic shear demand in structural walls. The geometric characteristics of the
walls were carefully chosen to represent realistic construction practice. Whereas Keintzel’s
expression (if properly applied) was found to be adequate in many cases, some shortcomings
in such an application were identified, and further improvements of the ε factor are proposed
in the paper.

2 Magnification of seismic shear forces in cantilever walls

2.1 General description of the problem

It is assumed that the Eurocode 8 (EC8) design procedure confines yielding of the longitu-
dinal reinforcement to the section at the base of the multi-storey cantilever wall (no plastic
hinges are expected in the upper stories). After a plastic hinge has formed at the base of the
wall, the inelastic wall may be interpreted as an equivalent elastic system (e.g. considering
the secant stiffness) when discussing the vibration modes and related seismic forces. During
the inelastic response the influence of the higher modes on shear demand is amplified in
comparison with the first mode contribution (see Sect. 2.2). This lowers the position of the
resultant of the seismic forces, making it closer to the base of the wall (Fig. 1). With the
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Fig. 1 Lateral seismic forces
distribution corresponding to an a
elastic and b inelastic response of
a cantilever wall
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given bending moment at the base, which is equal to the flexural capacity of the wall, it is
clear that the resultant seismic force (i.e. the shear force) will increase.

2.2 Factors contributing to the shear force magnification

2.2.1 The influence of overstrength

A consideration of simple equilibrium shows that flexural overstrength (i.e. the ratio between
the actual flexural resistance and the design bending moment) increases the design seismic
shear forces. The increase is predominantly related to the first mode response (see also
Sect. 2.2.3 and “Appendix”).

2.2.2 Influence of the period shift

By analysing the vibration modes of an equivalent elastic system representing a hinged wall, it
can be observed that after a plastic hinge is formed at the base the first mode shape and period
significantly change while the higher mode characteristics remain practically unchanged.

Due to the softening of the structural wall in the inelastic range, the first mode spectrum
value typically diminishes, whereas the spectrum values for the higher modes remain on the
plateau of the spectrum. The relative influence of the higher modes therefore increases in the
inelastic range.

2.2.3 Amplified influence of the higher modes

The first mode seismic forces contribute most of the overall seismic moment at the base of
the wall, which is limited by its flexural resistance (see also Fig. 17 in “Appendix”). Energy
dissipation is therefore predominantly limited to the flexural response in the first mode. Con-
sequently, the first mode shear forces are reduced due to the energy dissipating mechanism,
whereas the shear forces due to the higher modes are not. This significantly increases the
relative contribution of the higher modes to the shear force which occurs during the inelastic
response.
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3 The Eurocode procedure

Eurocode 8 requires that the shear forces obtained by the equivalent elastic analysis V ′
Ed are

multiplied (over the complete height of the wall) by the shear magnification factor ε, in order
to obtain the design shear forces VEd :

VEd = ε · V ′
Ed (1)

In the case of DCM structures, this shear magnification factor can be simply taken as ε = 1.5.
For DCH walls (which enter far into the inelastic range), the shear magnification factor is

calculated from the expression (2) that was originally proposed by Keintzel (1990):

ε = q ·
√(

γRd

q
· MRd

MEd

)2

+ 0.1 ·
(

Se(TC )

Se(T1)

)2 {≤ q
≥ 1.5

(2)

where:

q is the behaviour (seismic force reduction) factor used in the design;
MEd is the design bending moment at the base of the wall;
MRd is the design flexural resistance at the base of the wall;
γRd is the factor to account for overstrength due to steel strain-hardening;
T1 is the fundamental period of vibration of the building in the direction

of shear forces;
TC is the upper limit period of the constant spectral acceleration region

of the spectrum;
Se(T ) is the ordinate of the elastic response spectrum.

The background of expression (2) is given below (see also “Appendix”).
Keintzel (1990) performed a parametric study, comparing the results obtained by means

of the equivalent elastic code procedure and inelastic response history analyses. Based on the
results of this study, he assumed that modal combination can also be applied in the inelastic
range, and that only the contribution of the first two modes is important (see also Fig. 17b in
“Appendix”):

V ∗
Ed =

√(
V ′

Ed,1

)2 +
(

V ′
Ed,2

)2
(3)

where:

V ∗
Ed is the design seismic shear at the base of the wall as defined by Keintzel;

V ′
Ed,1 is the seismic shear at the base of the wall due to the first mode;

V ′
Ed,2 is the seismic shear at the base of the wall due to the second mode.

Keintzel further assumed that the level of the reduction of seismic forces belonging to each
mode is proportional to the level of the seismic moment at the base of the wall contributed by
the excitation of that mode. For this reason (see Fig. 17a in “Appendix”) practically only the
contribution of the first mode should be reduced by q (as assumed in the standard equivalent
elastic design), whereas the contribution of the second mode should be elastic/unreduced
(q · V ′

Ed,2):

V ∗
Ed =

√(
V ′

Ed,1

)2 +
(

q · V ′
Ed,2

)2
(4)

Considering that flexural overstrength affects only the first mode shears, and that in the
response spectrum analysis the contribution of the second mode at the base is about

√
0.1 ·
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Se(T2)/Se(T1) (Keintzel’s research concerned only the seismic shears at the base) of the first
mode (see Fig. 17c in “Appendix”), the following expression (5) can be derived:

VEd = V ∗
Ed =

√(
MRd

MEd
· γRd · V ′

Ed,1

)2

+
(

q · V ′
Ed,1 · √

0.1 · Se(TC )

Se(T1)

)2

(5)

Expression (2) is obtained by removing the factor V ′
Ed,1 · q out of the square root in Eq. (5):

VEd = V ′
Ed,1 · q ·

√(
γRd

q
· MRd

MEd

)2

+
(√

0.1 · Se(TC )

Se(T1)

)2

= V ′
Ed,1 · ε (6)

It is important to note that according to the presented derivation Keintzel’s magnification
factor should be applied to the seismic shear forces obtained by the equivalent elastic anal-
ysis, considering only the first mode of excitation. It should also be added that although the
assumption V ′

Ed,2/V ′
Ed,1 = √

0.1 ·Se(T2)/Se(T1) is valid only at the base of cantilever walls,
EC8 imposes the application of Eq. (2) for all seismic shear forces along the entire height.

Keintzel also assumed that ε is limited by the upper value of q . The same assumption was
adopted in EC8. Whereas it is true that the upper bound for VEd should be the elastic value
VE = q · V ′

Ed (as applied in EC8), the assumption in Keintzel’s original procedure that VE

equals V ′
Ed,1 ·q , neglecting the contribution of higher modes, is not valid. This will be further

discussed in the continuation of this paper.
It is obvious that Keintzel’s derivation involves a series of quite crude assumptions and

approximations. First of all, the concept valid in the elastic range is used also in the inelastic
range. Since this procedure was originally validated by a very limited parametric study, a
more complete study, presented in the next section, was performed.

4 The parametric study: the input parameters

The actual shear magnifications were determined by the inelastic response analyses and com-
pared with the values obtained by the EC8 (Keintzel’s) procedure as described in the previous
section.

In the first stage of the study 24 walls, typical for the construction practice in Europe, were
designed according to the Eurocode provisions. All of the design and minimum requirements
for DCH walls were considered. The number of stories (n) varied from 4 to 20. Within each
group of walls having the same number of stories the following parameters were varied,
depending on the design requirements and the feasibility of the construction:

– the length of the wall lw (between 2 and 8 m);
– the wall-to-floor area ratio r f = Aw/A f (1.5, 2.0 and 2.5%).

All walls had rectangular cross sections. The thickness of the walls was bw = 30 cm and all
storeys were hs = 3.0 m high.

4.1 Field of application

Only the effects of shear magnification in cantilever walls have been discussed. Additional
factors such as torsional effects and the influence of varying axial forces in coupled walls
and dual structures were not considered. The results therefore apply only to uncoupled walls
with similar lengths, which are regular in plan and elevation. It was also assumed that the
EC8 design procedure precludes plastic hinging in the upper stories of the wall.
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4.2 Design considerations

The walls were designed according to the provisions of Eurocode 8 for ductility class high
(DCH) walls, using modal response spectrum analysis and considering a behaviour factor
of q = q0 · αu/α1 = 4.0 · 1.1 = 4.4, representing regular flexible uncoupled wall systems.
The vertical load corresponding to the seismic design situation was 10 kN/m2. The attributed
floor masses mi and the vertical non-seismic loads Fi were determined by taking into account
the wall-to-floor area ratio r f = Aw/A f . The requirements in the Slovenian national Annex
to Eurocode 2 (CEN 2005) were also considered: (i) the minimum amount of total vertical
reinforcement in the walls was As,vmin = 0.003 · Ac and (ii) the minimum size of the vertical
reinforcing bars in the boundary elements was 12 mm. Standard C30/37 concrete and S500
steel were used in the design.

4.3 Notation of the walls and their characteristics

The analysed walls were tagged 1–24. The variation of the basic input parameters—the num-
ber of storeys (n), the length of the wall (lw), and the wall-to-floor area ratio Aw/A f are
illustrated in Fig. 2a, b, where the integers on the horizontal axes represent each individual
wall. As said above, the number of storeys varied from 4 to 20. The length of the walls
varied from 2 to 8 m. The length of the 20-storey high wall was 8 m due to the serviceability
limit state—SLS requirements. The wall-to-floor area ratio r f = Aw/A f varied between
1.5 and 2.5%. Combinations which did not fulfil all the EC8 requirements (including SLS)
were eliminated. Each combination of the basic input parameters is reflected in the nat-
ural periods and overstrength factors, which are the key parameters in the present study.
The values of the first (T1) and second (T2) periods are shown in Fig. 2c. They show that
the values corresponding to T2 < TC (TC is the upper limit period of the constant spectral
acceleration region) and to T1 > TC are typical for mid-rise buildings in everyday design
practice.

The flexural overstrength factors (Fig. 2d) were in most cases less than 2.0. Larger over-
strength factors were observed in the case of the 6.0 m long 4-storey walls, and in the 16 and
20-storey walls for which the length of the wall had been determined by the SLS criteria.
Note that the overstrength factors were calculated on the basis of the design material char-
acteristics. Compatibly with this assumption, the overstrength factor γRd in the expression
(2) for the ε factor was taken as 1.0 (no overstrength due to material characteristics was
considered, either in the design or in the analysis).

4.4 Analytical model and analysis considerations

Modal response spectrum analyses were carried with ETABS (CSI 2009), using standard
analysis parameters. The elastic flexural and shear stiffness properties equalled one-half of
the corresponding stiffness of the uncracked elements. Eurocode design response spectra for
PG A = 0.25 g (design ground acceleration ag = 0.25 g corresponds to the zone with the
highest seismic hazard in the Republic of Slovenia) and soil type C (very frequent type of
soil in the Republic of Slovenia) were used. The attributed discrete floor masses mi and the
vertical non-seismic loads Fi corresponded to the attributed floor areas Ai . The values of mi

and Fi are reported in Table 1.
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Fig. 2 Notation of the analysed walls, the variation of the basic input parameters and the corresponding
actual shear magnification: a lengths of the walls—lw [m]; b wall-to-floor ratio—Aw/A f [%]; c first and
second periods of the walls T1[s] and T2[s] compared with TC [s]; d overstrength factors ω; e actual shear
magnifications VI A/V ′

Ed

As the walls were designed to exhibit inelastic flexural deformation only at their bases,
the nonlinear model was obtained by adding a nonlinear hinge controlled by bi-linear Takeda
hysteresis rules at the base of the wall (Fig. 3). A separate study showed that the seismic shear
force results are not significantly dependent on the choice of unloading stiffness or pinching
parameters. The resulting shears varied up to 10% depending on the hysteretic parameters.
The model with Takeda hysteretic rules with unloading factor β = 0.5 yielded approximately
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Table 1 The values of the attributed floor masses mi and vertical non-seismic loads Fi according to the
notation of the walls

Wall tag i 1 2 3 4 5 6 7 8 9 10 11 12

mi [t] 41 31 61 46 122 92 31 61 46 122 92 61

Fi [kN] 200 150 300 225 600 450 150 300 225 600 450 300

Wall tag i 13 14 15 16 17 18 19 20 21 22 23 24

mi [t] 46 122 92 92 69 55 122 92 73 92 73 98

Fi [kN] 225 600 450 450 337 270 600 450 360 450 360 480

Fig. 3 Analytical model for
inelastic response history analysis
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mean values of seismic shears. Therefore it was selected as the most appropriate for the pur-
poses of the research. To enable proper comparisons, the same initial stiffness was chosen
for the elastic and (bi-linear) inelastic models. The moment-curvature section analyses were
performed in OpenSees (2008) in order to obtain the characteristic moments and curvatures
for the wall cross section at its base. The equivalent plastic hinge length L P was determined
according to Priestley et al. (2007). As it is explained in Priestley et al. (2007), the plastic cur-
vature should be considered as constant over L P . This procedure also takes into account the
deformations caused by the slippage of longitudinal reinforcement along the embedment in
the foundation by adding the length of strain penetration in foundations L S P to the total value
of L P . Design values for the material strengths were used in the response history analysis in
order to facilitate comparisons with the equivalent elastic design procedures (note again that
no material overstrength was considered in the calculation of the ε factor). This procedure
was chosen in order to eliminate the uncertainties related to overstrength factor evaluation.
Five percent mass and current stiffness proportional Rayleigh damping was considered in
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Fig. 4 The elastic response spectra (5% damping) of 14 artificial accelerograms used in the analysis compared
with the Eurocode spectrum for soil type C and ag = 0.25 g (thick line)

the first and second modes. The response history analyses were performed using OpenSees
(2008).

4.5 Input motions

14 artificial accelerograms with spectra matching the EC8 elastic spectrum for soil type C
and ag = 0.25 g were used in the response history analyses (Fig. 4). The accelerograms were
generated using the program SYNTH (Naumoski 1998).

5 Parametric study: results for the shear magnification factors

The actual shear magnification is defined by the ratio VI A/V ′
Ed . V ′

Ed is the base shear obtained
by response spectrum analysis considering all important modes (as typically considered by
designers). The value VI A is the mean value of the maximum seismic shear at the base of the
wall, obtained by using the 14 selected accelerograms.

Figure 2e illustrates large shear magnifications, in particular for structures with longer
fundamental periods and large flexural overstrengths, resulting in VI A/V ′

Ed ratios of up to
4.3. As expected, the upper value of VI A/V ′

Ed is approximately equal to the behaviour fac-
tor q = 4.4, since the upper bound for the seismic shear force should be the elastic value
VE = V ′

Ed · q . Shear magnification factors larger than 3 were calculated for the walls with
12 and more storeys, whereas the magnification coefficients for lower buildings (with the
exception of 6.0 m long 4-storey walls, which have very high overstrengths) varied between
2.0 and 3.0.

The results for the shear magnification factors are further illustrated in relation to the first
period T1 in Fig. 5, and the overstrength factors ω = MRd/MEd in Fig. 6. The analyses
reconfirmed that these two parameters should be taken into account when evaluating the
shear magnification factors in structural walls. The results also suggest that the application
of a uniform magnification factor for all types of walls (as in the case of DCM design) can
lead to inappropriate estimates of the seismic shear forces.
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Fig. 5 Actual shear magnifications VI A/V ′
Ed plotted against T1

Fig. 6 Actual shear magnifications VI A/V ′
Ed plotted against the overstrength factor

6 Verification of the shear magnification factors in the Eurocode

6.1 Verification of the EC8 procedure

The values of the EC8 seismic design shear forces at the base of the walls (denoted by
VEd = VEd,EC8) are compared with those obtained by inelastic response history analysis
(denoted as VI A). The values for VEd,EC8 were derived according to Eq. (1) using the seis-
mic shear forces obtained by modal response spectrum analysis, taking into account all the
important modes (denoted by V ′

Ed ), as is common in the design practice. The normalised
results VEd,EC8/VI A are illustrated in Figs. 7, 8, 9 by squares.

In Fig. 7 the results are presented by wall configuration tags. It seems that the EC8 pro-
cedure works fine for the 4, 6, 16 and 20-storey walls, whereas the shear magnifications
for the mid-rise 8 and 12-storey walls are considerably overestimated (up to 40% for the
12-storey wall with lw = 4.5 m and Aw/A f = 2.5%). Similarly Fig. 8, which plots the
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Fig. 7 Values for VEd,EC8/VI A (indicated by square markers) and VEd,K eintzel/VI A (indicated by trian-
gular markers) compared to the actual shear magnifications (shown by a grey horizontal line). Each integer
on the horizontal axis denotes an analysed wall configuration

Fig. 8 Values VEd,EC8/VI A (indicated by square markers) and VEd,K eintzel/VI A (indicated by triangular
markers) compared to the actual shear magnifications (shown by a grey horizontal line) in relation to T1

Fig. 9 Values for VEd,EC8/VI A (indicated by square markers) and VEd,K eintzel/VI A (indicated by trian-
gular markers) compared to the actual shear magnifications (shown by a grey horizontal line) in relation to
the overstrength factor
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relation between VEd,EC8/VI A and the fundamental period T1, suggests that EC8 works fine
for walls with T1 < 1.0 s and T1 > 2.5 s. In the mid period range EC8 overestimates the
shear forces.

The conservative results, which EC8 provides in the case of the mid-rise walls in the
mid period range, are not difficult to explain. As noted in Sect. 3, Keintzel’s formula should
be used in combination with the seismic shears obtained by considering the first mode of
the excitation only. Since EC8 does not specify this requirement, designers would typically
follow the established practice with standard programs considering all important modes. In
the case of flexible buildings (walls), where the contribution of the higher modes is important
even in the elastic range, this would yield conservative results. Even greater conservativ-
ism would be expected in the case of long-period walls. However for these walls original
Keintzel’s procedure yields very unconservative values (the upper bound of ε is too low;
see the next sub-section). These two errors compensate each other. So it seems that the EC8
procedure yields good results for flexible walls, although in reality this is the result of two
wrong assumptions.

6.2 Verification of Keintzel’s original procedure

Within Keintzel’s original procedure, results (denoted by VEd,K eintzel) are obtained by mul-
tiplying the shears taking into account only the contribution of the first mode (V ′

Ed,1) and
magnification factor obtained by using expression (2).

The results VEd,K eintzel/VI A are presented in Figs. 7, 8, 9 where they have been plotted
against the walls’ tags, T1, and ω, respectively. The figures show that Keintzel’s procedure
(although based on a very simple parametric study) provides a very good estimate of the
shear magnifications for walls with T1 < 2.0 s. This corresponds to the analysed walls with
8 or less storeys, as well as to the 6.0 m long 12-storey walls. In other cases (T1 > 2.0 s) the
actual shears are significantly underestimated. Moreover, this discrepancy increases rapidly
for higher values of T1 (Fig. 8).

It has been determined that the reason for these discrepancies lies in the inappropriate
formulation of the upper bound for the shear magnification factor in the Keintzel’s expres-
sion. The upper bound should be defined based on the total shear force obtained by the
equivalent elastic analysis (considering all important modes), and not on the shear force
obtained by considering the fundamental mode only (as is consistent with Keintzel’s original
procedure).

7 Possible improvements of the procedure given in EC8

The analyses in the previous section have clearly indicated possible modifications and
improvements.

First, the ε factor, as proposed by Keintzel, should be applied to the shear forces obtained
by considering only the fundamental mode (V ′

Ed,1) in the equivalent elastic response spec-
trum analysis. Most modern computer codes are able to identify the contribution of the each
mode separately.

However, the upper limit of the ε factor should be related to the total shear force. Consid-
ering that the seismic shear force is limited by the elastic value VE and taking into account
the first and the second modes, the upper bound of the shear force (εupper denotes the highest
possible value for ε) is defined by:
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Fig. 10 Values of VEd,EC8/VI A (indicated by square markers), VEd,a/VI A (indicated by shaded triangular
markers), and VEd,b/VI A (indicated by black circular markers) compared to the actual shear magnifications
(shown by a grey horizontal line). Each integer on the horizontal axis denotes an analysed wall configuration

ε · V ′
Ed,1 ≤ VE (7a)

VE = εupper · V ′
Ed,1 = q

√(
V ′

Ed,1

)2 +
(

V ′
Ed,2

)2
(7b)

By introducing V ′
Ed,1 into the right hand side of equation 7a, and considering the relation

between V ′
Ed,1 and V ′

Ed,2 introduced in Sect. 4, the following formulation (8) is obtained for
the upper limit εupper :

εupper =
√

q2 + 0.1 ·
(

q · Se(TC )

Se(T1)

)2

(8)

By considering the upper bound for ε (Eq. 8), which indicates that the first term under the
square root should not be larger than q2, a modified formulation for εa (Eq. 9) is obtained,
which should be used in combination with V ′

Ed,1:

εa = q ·
√(

min
[

γRd
q · MRd

MEd
; 1

])2 + 0.1 ·
(

Se(TC )

Se(T1)

)2

≥ 1.5 (9)

It is important to note that the value of εa is not limited by q and indeed yields values larger
than q for flexible walls (T1 > 2.0 s).

The shear forces obtained by the corrected shear magnification factor (Eq. 9) are denoted
by VEd,a(VEd,a = εa · V ′

Ed,1), and the normalized values VEd,a/VI A are shown in Figs. 10,
11, 12 by shaded triangular markers. The new formulation yields good results for the variation
of both of the main parameters, T1 (Fig. 11) and ω (Fig. 12).

The procedure only slightly underestimates the shear forces, in particular for walls with
higher flexural overstrengths and a significant contribution of the second mode shears V ′

Ed,2
(more flexible walls). This has suggested that better results will be obtained if a portion of the
flexural overstrength is considered also in the second term (under the square root) of Eq. (9),
which represents the contribution of the second mode of excitation. This assumption was
verified. The coefficient which takes into account the influence of flexural overstrength on
the second mode shears ωRd,2 (Eq. 10)

ωRd,2 = 1 + A ·
(

γRd · MRd

MEd
− 1

)
(10)
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I

Fig. 11 Values of VEd,EC8/VI A (indicated by square markers) and VEd,a/VI A (indicated by shaded tri-
angular markers) compared to the actual shear magnifications (shown by a grey horizontal line) in relation
to T1

Fig. 12 Values of VEd,EC8/VI A (indicated by square markers) and VEd,a/VI A (indicated by grey triangu-
lar markers) compared to the actual shear magnifications (shown by a grey horizontal line) in relation to the
overstrength factor

was added to the second term of Eq. (9). By means of regression analysis, A was determined
as having a value of 0.07. Using the new modified expression

εb =q ·
√(

min
[

γRd
q · MRd

MEd
; 1

])2+0.1 ·
((

1+0.07 ·
(

γRd · MRd

MEd
− 1

))
· Se(TC )

Se(T1)

)2

≥ 1.5

(11)

the results (VEd,b = εb · V ′
Ed,1; the black circles in Fig. 10) match the results of the inelastic

analysis very well. However, the background of this expression has not yet been fully verified,
so it will be not discussed in the continuation of this paper.

8 Extended study on 72 wall configurations

The research was further extended to a total of 72 cantilever walls in order to investigate
wall configurations with more pronounced overstrength factors. In practical design, RC ele-
ments are often constructed to have resistance capacities that are considerable higher than
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Fig. 13 Values of VEd,EC8/VI A (indicated by square markers), VEd,a/VI A (indicated by shaded triangu-
lar markers) and VEd,b/VI A (indicated by black circular markers) obtained for the 72 walls analysed in the
extended study, compared to the actual shear magnifications (shown by a grey horizontal line), in relation
to T1

Fig. 14 Values of VEd,EC8/VI A (indicated by square markers) and VEd,a/VI A (indicated by shaded tri-
angular markers) obtained for the 72 walls analysed in the extended study, compared to the actual shear
magnifications (shown by a grey horizontal line) in relation to the overstrength factor

the demands. For example, a frequent design practice is to neglect the contribution of the
longitudinal bars in the web. To consider possible larger overstrengths, the diameter of the
reinforcing bars in the boundary areas of the 24 original walls (designed exactly accord-
ing to the EC8 requirements) was increased in two steps resulting in a total number of 72
walls. Comparisons of the shear forces obtained with the EC8 procedure and with the pro-
posed modified procedure, with the results obtained by means of inelastic response history
analyses, are illustrated in Figs. 13 and 14. They reconfirm and more clearly document the
conclusions of the basic study.

9 Shear force magnifications in DCM walls

The shear magnifications for DCM cantilever walls were also investigated. A similar study
(not shown in detail due to the space limitations) to the one performed for the DCH walls
reconfirmed (see for example, the paper of Rutenberg and Nsieri 2006) that the uniform
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magnification factor ε = 1.5 provided in EC8 for DCM designed walls is inappropriate and
non-conservative.

Although the walls are designed to exhibit moderate inelastic deformations, the amplified
effects of the higher modes in the inelastic range are still very pronounced. Moreover, the
design procedures and feasibility issues usually result in significant overstrength factors,
increasing the shear demands. The analyses have illustrated that the values of the actual
magnifications VI A/V ′

Ed for the analysed walls lie between 1.5 and 3.0.
The uniform factor ε = 1.5 was adequate only for the DCM walls (q = 3.0) with the

first period close to TC or less and having low overstrength factors (γRd ≈1.2). The same
conclusion was obtained by using the proposed formula for εa :

εa
(

q = 3, T1 ≤ TC , γRd = 1.2
) = 3 ·

√(
min

[ 1.2
3 ; 1

])2 + 0.1 · (1.0)2 = 1.53 (12)

The authors therefore suggest the use of the modified procedure proposed for DCH walls in
this paper in the case of DCM walls, too.

10 Seismic shear demand along the height of the walls

Although Keintzel’s equation was derived only for the estimation of the base shear in multi-
storey cantilever walls, Eurocode 8 applies the same magnification factor over the entire
height of the wall. In this section it will be shown that this requirement leads to non-optimal
and in some cases even unsafe design.

It should be recalled that the derivation of the shear magnification factor ε is based on the
assumed ratio between the second mode (higher modes) and first mode contributions to the
(base) shear force. This ratio was assumed to be equal to: 0.3 · Se(T2)/Se(T1). Figure 17c
in “Appendix” shows that in the elastic region this ratio varies considerably along the height
of the wall, being much smaller at the mid-height and much larger at the top of the wall.
Very similar trends were observed in the results of the inelastic response. An example corre-
sponding to one of the analysed 8-storey walls (lw = 3.0 m, Aw/A f = 1.5%) is shown in
Fig. 15.

Fig. 15 Comparison of seismic
shears obtained by inelastic
response history analyses VI A
with the design shears
VEd,a = εa · V ′

Ed,1 for a typical
8 storey wall (lw = 3.0 m,
Aw/A f = 1.5%)
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The idea has therefore been that Keintzel’s magnification factor could be used along
the entire height of the wall, providing that the constant ratio between the contribution of the
higher modes to the contribution of the first mode is replaced by a variable ratio along the
height (Eq. 13):

εa (z) = q ·
√(

min
[

γRd
q · MRd

MEd
; 1

])2 + m (z)2 ·
(

Se(TC )

Se(T1)

)2

≥ 1.5 (13)

The same distribution m(z) of this ratio as in the case of the elastic flexural cantilever beam
(Fig. 17c in “Appendix”) was chosen, fully realizing that this is only an approximation in
the inelastic range and is applicable only to regular walls with no plastic hinges in the upper
stories.

The results VEd,a(z) obtained by using εa(z) in combination with V ′
Ed,1 are presented,

for some selected configurations of the analysed walls, in Fig. 16. The results are compared
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Fig. 16 The results obtained by using VEd,a(z) = εa(z) · V ′
Ed,1 (indicated by a grey line) for 6 selected con-

figurations of the analysed walls compared with the shear envelopes obtained by means of inelastic response
history analyses VI A (indicated by a black line) and the design shears obtained by the basic method VEd,a =
εa(z = 0) · V ′

Ed,1 (indicated by a dashed grey line)
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with the shear envelopes obtained by using inelastic response history analyses VI A and the
design shears obtained by multiplying V ′

Ed,1 with εa(z = 0) along the entire height (the basic
method).

Figure 16 shows that the proposed modification of the procedure yields a very good match
over the entire height of the wall. Similarly good results were obtained for all of the 72 ana-
lysed walls. It is therefore believed that the proposed procedure enables optimum and safe
design over the entire height of the wall.

11 Conclusions

1. Inelastic dynamic magnification of seismic shear forces in multi-storey cantilever walls
has been discussed in the paper. An extensive parametric study was performed in order
to determine the reliability of the procedure in Eurocode 8. A large number of single
cantilever walls characteristic for the design practice in Europe and designed to conform
to all EC8 requirements were analysed. The results obtained with the (modified) code
procedures were compared with the results of the inelastic response history analyses.

2. Large shear magnification factors (up to the value of the behaviour factor q) were re-
confirmed, although they are questioned by many design practitioners and researchers. In
addition to the large magnifications caused by the amplified effect of the higher modes
in the inelastic range, the flexural overstrength inherent in the EC8 design provisions
further increases the shear demands.

3. The procedure provided in Eurocode 8 to determine seismic shear magnification in DCH
cantilever walls is based on the expression proposed by Keintzel (1990). If properly
applied, this procedure usually yields acceptable (even very good) results for base shears.
However, as presently formulated and understood in EC8, it can yield significantly incor-
rect results (overestimated by up to 40%), in particular in the case of mid-period walls
(1.0 s < T1 < 2.5 s). The results for very flexible walls appear adequate, but this is the
result of two errors cancelling each other out. So the following modifications of the EC8
procedure are proposed:

(3a) Keintzel’s formula should be used in combination with the seismic shears obtained
by considering the first mode of excitation only. Since EC8 does not specify this
requirement, designers typically follow the established practice with standard
programs that take into account all the important modes. In the case of flexible
buildings (walls), where the contribution of the higher modes is important even
in the elastic range, this would yield conservative results.

(3b) The upper limit of the ε factor should be related to the total shear force (not only
to the shear force due to the first mode as assumed in Keintzel’s original formula).

These two improvements could be achieved with only a slightly modified shear mag-
nification factor (the parameters are defined in the main body of the text and in EC8),
which should be used in combination with shear forces determined by considering the
fundamental mode only:

εa = q ·
√(

min
[

γRd
q · MRd

MEd
; 1

])2 + 0.1 ·
(

Se(TC )

Se(T1)

)2

≥ 1.5

4. Very good results were obtained when using the modified shear magnification factor and
procedure. Apart from a consideration of the analytical background of the procedure, the
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authors prefer this (modified) method when compared to some other purely empirical
procedures that have been proposed in the literature.

5. It was reconfirmed that the constant shear magnification factor ε = 1.5, which is used in
EC8 for DCM structures, is typically too low (values of up to 3 were demonstrated by
the inelastic analysis). It is strongly recommended that the same procedure as required
for DCH walls be used also for DCM walls.

6. The shear magnification factor defined in EC8 as well as the proposed modified factor
(εa) are valid for the base shear only. This magnification for the base shear is conservative
at the mid-height of the wall and might be unsafe at the top of the wall. Variable shear
magnification factor along the height of the wall has been proposed and successfully
tested.

Acknowledgments The results presented in this paper are based on work supported by the Slovenian
Research Agency. This support is hereby gratefully acknowledged.

Appendix: Shear forces and bending moments in an elastic flexural cantilever beam

For the purpose of the analysis and derivations in this paper, it has been practical to repre-
sent a slender cantilever shear wall in a mid-rise building by a flexural cantilever beam with
a distributed mass m and a height H . The distribution of elastic shear forces and bending
moments along the height of the cantilever can then be obtained in a closed form by the stan-
dard modal spectrum analysis of continuous elastic systems (i.e. Fajfar 1984). The moment
Mi (z̄) and the shear force Vi (z̄) at the height z̄ = z/H (z is the vertical coordinate—see
Fig. 15) due to the i th mode are expressed as

Mi (z̄) = m · H2 · Sd (Ti ) · M̄i (z̄) (14)

Vi (z̄) = m · H · Sd (Ti ) · V̄i (z̄) (15)

(b)(a) (c)

Fig. 17 The distribution of the normalized bending moments (a) and the normalized shear forces (b) along the
height of the cantilever; (c) the ratio of the second/higher modes normalized shear to the first mode normalized
shear
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where Sd(Ti ) is the ordinate of the elastic acceleration design spectrum at the period Ti . The
normalized functions M̄i (z̄) and V̄i (z̄) are shown in Figs. 17a, b, respectively. For shear
forces, the ratio of the second mode contribution to the first mode contribution is shown by
means of a grey solid line in Fig. 17c. The ratio of the combined second and third mode con-
tribution (roughly equal to the contribution of all higher modes) to the first mode contribution
is shown by means of a black solid line.

It can be observed that:

(a) the contribution of higher modes to the bending moment at the base is negligible;
(b) the ratio of the second mode shear to first mode shear at the base is about 0.3 ≈ √

0.1;
(c) the ratio of the higher and first mode shear varies considerably along the height of the

cantilever.
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