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Abstract An equivalent linear substructure approximation of the soil–foundation–structure
interaction is proposed in this paper. Based on the inherent linearity of the approach, the
solution of the structural and the soil domain is obtained simultaneously, incorporating the
effects of the primary and secondary soil nonlinearities. The proposed approximation is estab-
lished theoretically and then validated against centrifuge benchmark soil–foundation–struc-
ture interaction tests. The equivalent linear substructure approximation is proved to simulate
efficiently the effects of the nonlinear soil behavior on the soil–foundation–structure system
under a strong earthquake ground motion.

Keywords Soil–foundation–structure interaction · Substructure ·
Equivalent linear · Centrifuge

1 Introduction

In the soil–foundation–structure interaction (SFSI) there are two types of nonlinearities that
might arise under strong ground shaking (Roesset and Tassoulas 1982). The first type is the
primary nonlinearity, stemming from the seismic wave induced deformations in the free-
field soil. This nonlinearity arises from the nonlinear behavior of the soil as a material,
typically associated with a reduction in the shear strain modulus and an increase in the hys-
teretic dissipation of energy. This type of nonlinearity, which becomes more pronounced
with increasing level of ground shaking and soil deformation, is typically addressed in engi-
neering and research practice and well established methods exist for its consideration in the
dynamic soil–foundation–structure interaction (SFSI) analyses. The secondary nonlinearity
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is the one arising from the stresses induced back in the soil from the oscillation of the struc-
ture. Secondary nonlinearity may be important in the design of underground structures and
lifelines. Nevertheless, according to Mylonakis et al. (2006) no simple realistic solution has
been reported in the literature for this latter type of nonlinearity.

Two basic methods and various alternates exist for the analysis of the SFSI phenomenon.
In the direct method the entire soil–foundation–structure system is analyzed in a single step,
usually by a finite element model. The direct method accepts material and geometrical non-
linearity, but for a three-dimensional nonlinear dynamic analysis it is still very expensive in
computational terms and has inherent problems in satisfying the radiation condition of the
wave field towards infinity. The substructure method, on the other hand, is widely used in
practice, as it is relatively easy to interpret physically the interaction effects. Many numerical
tools exist for the analysis of each subdomain, depending on the complexity of the model,
and ranging from simple equivalent mass-spring-dashpot systems (Veletsos and Meek 1974;
Bielak 1975; Gazetas 1983; Stewart et al. 1999) to complicated finite element or boundary
element models (Bode et al. 2002; Karabalis 2004). The coupling of the interacting subdo-
mains is done through the concept of the foundation dynamic impedance functions (Veletsos
and Verbic 1973; Gazetas 1991).

In the current state-of-practice, in order to introduce a true nonlinear behavior for the soil in
a SFSI analysis, the only feasible way seems to be through a direct finite element approach.
Nevertheless, the computational cost of a three-dimensional full nonlinear dynamic SFSI
analysis is prohibitively expensive at present. On the contrary, the substructure method and
the simple, yet realistic, concept of the impedance functions, emerge the need for simplified
procedures to be developed, able to simulate adequately the effects of the nonlinear behavior
of the soil in a soil–foundation–structure interaction analysis. Furthermore, no direct com-
parison has been reported in the literature between an equivalent linear SFSI approach and
experimental results.

In this paper an equivalent linear substructure approximation of the SFSI is proposed. The
theoretical background of the procedure is presented, strengthening the succeeding numerical
application. The developed numerical method is finally validated against centrifuge bench-
mark tests. The equivalent linear substructure approximation is proved to simulate efficiently
the effects of the nonlinear soil behavior on the soil–foundation–structure system under a
strong earthquake ground motion.

2 Model presentation

2.1 Linear formulation of SFSI

2.1.1 Domain definition and notations

Aubry and Clouteau (1992) and Clouteau and Aubry (2003) developed an analytical for-
mulation of the SFSI phenomenon, based on the substructure technique. This approach was
integrated in the numerical code MISS3D (Clouteau 2005), performing SFSI analyses in
the linear elastic or viscoelastic domain. The definition of the complete system is shown in
Fig. 1. It consists of the unbounded domain of the soil �s and the structure �b. The interfaces
between the soil and the foundation and between the foundation and the structure are denoted
by �sf and �bf , respectively, while their free boundaries are �sa and �ba. Each subdomain
is assumed to have mass density ρk, k = s, b. The system is subjected to an incident wave
field ui (x, t) propagating from the halfspace, assumed to be unaffected by the presence of
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Fig. 1 Definition of the global
system

the structure. The displacement field in each subdomain k is denoted by uk and the traction
vector on the interfaces by tk , oriented by the external normal n. For a vector a:

ts(us) · a = σ(us) : (n ⊗ a) (1)

where : designates the contraction of two tensors, · is the scalar product and
⊗

is the tensor
product of two vectors. The stress tensor �k is associated with the displacement field uk in
each domain. In the soil, the response can be modeled by the equation of Navier, assuming
small deformations:

σ (us) = λ [∇ (us)] Id + 2µsε (us)

εi j = 1
2

(
∂i u j + ∂ j ui

) (2)

where εi j is the strain tensor associated with the displacements ui and u j , λs and µs are the
elastic Lame’s coefficients for the soil. Assuming small deformations ε, the displacement
vectors ui and us verify the Navier equations in the soil:

∇σs(us) = ρs∂ttus in �s

∇σs(ui ) = ρs∂ttui

(3)

while ub satisfies the Navier equations in the structure domain �b:

∇σb(ub) = ρb∂ttub in �b (4)

2.1.1.1 Boundary conditions The boundary conditions can readily be established. In the
soil, the response can be modeled by the equation of Navier, assuming small deformations,
and the following boundary conditions must be satisfied:

• Free-field (traction free) conditions on �sa

• Continuity of traction and displacements on the soil layer interfaces
• Continuity of displacements on the interface with the foundation

us = uf on �sf (5)

• Absence of radiation at infinity

us = ui on �s∞ (6)
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In the foundation, the kinematic conditions are as follows:

• Continuity of the displacements on the interface with the soil

uf = us on �sf (7)

• Continuity of the displacements on the interface with the structure

uf = ub on �bf (8)

In the structure:

• Continuity of the displacements on the interface with the soil on the foundation

ub = us on �bs (9)

• Traction free conditions on �ba

tb(ub) = 0 on �ba (10)

2.1.2 Numerical modeling of the structure

2.1.2.1 Elastodynamic behavior of the structure In the substructure method the structural
domain is modeled separately from the soil domain. Numerous software exist for the model-
ing of the structural response, most conveniently performed with the finite element method
(FEM). Evidently, a structure under strong ground shaking may respond in a nonlinear way.
Nevertheless, the complexity of the interaction of a nonlinear structure with a nonlinear
soil domain reduces the applicability and interest of such an approach. For that reason,
herein the structure is considered to respond in the linear domain. Thus, ub verifies the
equation:

∇σb(ub) + ρbω
2ub = 0 in �b (11)

For any virtual displacement vb, kinematically acceptable, the Principle of the Virtual
Works in the domain of the structure can be written as follows:

−
∫

�b

σ(ub) : ε(vb)dV −
∫

�sf

ts(us) · vbdS = −ω2
∫

�b

ρbub · vbdV (12)

where σ(ub) and ε(vb) are the real stress field and the virtual strain, respectively, in the
structure.

2.1.2.2 Decomposition of the displacement in the structure Assuming the most general case
of a rigid foundation, the displacement field in the structure ub can be decomposed in two
modal bases: the rigid body modal basis uf , due to the rigid body modes of the foundation,
and the flexible modal basis ub0 of the structure, due to the elastic structural deformations:

ub = uf + ub0 in �b (13)

The rigid body modes of the foundation can be written in the form:

uf (x, ω) =
∑

m=1,6

cm(x, ω)Lm(x) ∀x ∈ �f (14)
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where Lm(x) are the six rigid body modes and cm a participation factor depending on the
frequency. The first three modes are the translational and the last three the rotational, with
the principal coordinate axis system passing from the center of gravity of the foundation.
The auxiliary displacement ub0 is decomposed on the flexible modal basis φA,

ub0(x, ω) =
∑

A≥1

qA(x, ω)φA(x) in �b (15)

where φA are the natural fixed-base modes of the elastic structure of natural frequency ωA

and qA a participation factor. Then, the total displacement field ub in the structure will be:

ub(x, ω) =
∑

m=1,6

cm(x, ω)Lm(x) +
∑

A≥1

qA(x, ω)φA(x) in �b (16)

Introducing Eqs. 12, 16, since the deformation ε(Lm) for a rigid body movement Lm is
zero, the following equation is obtained:

−
∑

A>1

qA

∫

�b

σ(ub) : ε(vb)dV −
∫

�sf

ts(us) · vbdS

= −ω2

⎡

⎢
⎣

∑

m=1,6

cm

∫

�b

ρbLm · vbdV +
∑

A>1

qA

∫

�b

ρbφA · vbdV

⎤

⎥
⎦ (17)

The kinematically acceptable virtual displacement vb can be written on the basis of the
rigid body modes of the foundation, vb = Ln , and Eq. 17 produces the Principle of Virtual
Works at the foundation level:

−
∫

�sf

ts(us) · vbdS = −ω2

⎡

⎢
⎣

∑

m=1,6

cm

∫

�b

ρbLm · LndV +
∑

A≥1

qA

∫

�b

ρbφA · LndV

⎤

⎥
⎦ (18)

The first term at the right-hand side of Eq. 18 represents the mass matrix Mb of the struc-
ture, including the foundation mass, assumed to move as a rigid block:

[Mb]mn =
∫

�b

ρbLm LndV (19)

The second term of the right-hand side of the equation represents the equivalent added
structural mass matrix M∗

b due to the vibration of the flexible structure. For any natural
frequency ωA and mode φA:

∑

A≥1

qA

∫

�b

ρbφA · LndV =
∑

m=1,6

cm

⎡

⎢
⎣

∑

A

ω2

ω2
A − ωA

∫

�b

ρbLmφAdV
∫

�b

ρbφA LndV

⎤

⎥
⎦ (20)

The added structural mass Mb can therefore be defined as:

[
M∗

b

]
mn =

∑

A≥1

ω2

ω2
A − ωA

∫

�b

ρbLmφAdV
∫

�b

ρbφA LndV (21)
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Thus,
∑

A≥1

qA

∫

�b

ρbφA · LndV =
∫

�b

ρbub0 · LndV =
∑

m=1,6

cm
[
M∗

b

]
mn (22)

In the case where modal damping ζA is added in the structural mode φA, Eq. 22 is written
as follows:

[
M∗

b

]
mn =

∑

A≥1

ω2

ω2
A + 2iζωωA − ωA

∫

�b

ρb LmφAdV
∫

�b

ρbφA LndV (23)

Implying that for low frequencies the equivalent structural mass tends towards the static rigid
body mass, while for increasing excitation frequency above the fundamental structural fre-
quency the equivalent mass of the vibrating structure will eventually decrease. At the vicinity
of the resonance frequency, the term of the added mass for the higher frequency range acts
as a dashpot, dissipating energy that enters in the structure.

Equation 18 can be written more consistently in a matrix form:

−
∫

�sf

ts(us) · LndS = −ω2

⎡

⎣
∑

m=1,6

cm
{
[Mb]mn + [

M∗
b

]
mn

}
⎤

⎦ (24)

The sum of the two masses of Eqs. 19 and 23 express the equivalent mass of the structure.
The right-hand term of Eq. 24 expresses the effect of the inertial interaction on the system
response.

2.1.3 Numerical modeling of the soil

2.1.3.1 Elastodynamic behavior of the soil The unbounded domain of the soil is modeled
with the Navier elastodynamic equations. Thus, in the frequency domain, in every soil layer
the displacement field of the soil us verifies the following equation:

∇σs(us) + ρsω
2us = 0 in �s (25)

Moreover, the incident wave field ui , representing the free-field ground motion in the
absence of the structure, has to be compatible with the soil stratigraphy. Subsequently, the
following equations have to be assured:

∇σs(ui ) + ρsω
2ui = 0 in �s (26)

ts(ui ) = 0 on �sa (27)

2.1.3.2 Decomposition of the displacement in the soil On the other hand, in the unbounded
soil domain the displacement field us is decomposed in two separate fields, the displace-
ment due to the incident wave field ui and the displacement due to the total diffracted wave
field ud:

us = ui + ud in �s (28)

The linearity of the problem implies that the boundary conditions imposed to us and ui

are satisfied also by ud:

∇σs(ud) + ρsω
2ud = 0 in �s (29)
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ts(ud) = 0 on �sa (30)

The only difference between the boundary conditions imposed on ud and those of us and
ui are on �s∞ and �sf . Following Eqs. 6 and 14, the boundary conditions of ui and us forced
by �s∞ and �sf , impose to ud:

ud = 0 on �s∞
ud = −ui +

∑

m=1,6

cm Lm on �sf (31)

The first equation of Eq. 31 states the radiation condition towards infinity, while the sec-
ond one suggests a further decomposition of the total displacement us in the soil into two
secondary displacements. The first component is the displacement due to local diffraction of
the incident wave field on the foundation assumed fixed, and the second component is the
displacement due to radiation caused by a unitary foundation movement along the mth rigid
base mode.

The local diffracted ud0 and the radiated udm displacements verify the Navier’s equation
in the soil, the free surface conditions on �sa and the radiation condition at infinity, notably:

∇σs(ud0) + ρsω
2ud0 = 0 in �s

ud0 = 0 in �b (32)

ts(ud0) = 0 on �sa

ud0 = −ui on �sf

and for the radiated wave fields udm, m = 1, 6, in the soil:

∇σs(udm) + ρsω
2udm = 0 in �s

ts(udm) = 0 on �sa (33)

udm = Lm on �sf

Finally, the total displacement field in the soil will be the weighted sum of the incident
ui , the locally diffracted ud0 and the radiated udm wave fields:

us = ui + ud0 +
∑

m=1,6

cmudm in �s (34)

The forces imposed on the structure will be:

ts(us) = ts(ui ) + ts(ud) on �sf (35)

or, after Eq. 34,

ts(us) = ts(ui + ud0) +
∑

m=1,6

cmtsudm on �sf (36)

This vector represents the effects of the diffraction of the incident wave field on the foun-
dation, showing clearly the difference between the kinematic response of the free-field and
the foundation. It reflects the effects of the earthquake on the foundation and is referred to
as kinematic interaction. By multiplying Eq. 36 by Ln (n = 1, 6) and integrating on �sf

the following expression is obtained:
∫

�sf

ts(us) · LndS =
∑

m=1,6

cm

∫

�sf

ts(udm)LndS+
∫

�sf

ts(ui + ud0)LndS (37)
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The first term on the right-hand side of Eq. 37 represents the generalized dynamic
impedance of the soil Ks

[Ks]nm =
∫

�sf

ts(udm)LndS (38)

evaluated at the soil-foundation interface �sf when subjected to the foundation kinematics,
and the second term is the opposite equivalent seismic force Fs

[Fs]n = −
∫

�sf

ts(ui + ud0)LndS (39)

introduced at the foundation level by the earthquake ground motion.
The generalized dynamic soil impedance matrix is complex, as in the frequency domain

the viscoelastic soil model introduces a complex part in the radiated wave field udm due
to the soil damping. Furthermore, the vibration of the foundation induces additional wave
field in the soil, which dissipates energy propagating towards the infinity (radiation condition
towards the infinity).

2.1.4 Fundamental equation of SFSI

From Eqs. 37 and 24, the general system of equations of soil-structure interaction can be
formulated, having six equations with six unknowns:

[
[Ks] − ω2 (

[Mb] + [
M∗

b

])] {c} = {Fs} (40)

where c is the unknown displacement vector for the six modes of vibration at the center of
the foundation.

2.2 Equivalent linear formulation of SFSI

2.2.1 Theoretical approximation

The shear strain level that the soil exhibits during an earthquake is related to the equivalent
linear soil properties, namely the shear modulus G and damping ξ , and therefore an iterative
procedure is required to ensure that the soil properties used in the analysis are compatible
with the level of strain. The shear modulus reduction is reported to vary dramatically due to
softening and should be representative of the site conditions (Ghosh and Madabhushi 2007).
In a typical equivalent linear analysis, initial estimates of G and ξ are made, usually based on
a linear elastic approximation, and then iterative linear analyses are performed, recalculating
in each iteration the soil properties based on the estimated level of shear strain response. The
procedure ends when the shear modulus and damping converge to an almost constant value.
The equivalent linear modeling of the soil behavior is assumed to be well established, at least
in the moderate to high frequency range, in the engineering practice and, thus, no further
details are needed.

However, the traditional equivalent linear approach for the soil behavior has to be updated
in a SFSI analysis, in order to accommodate for the secondary nonlinearities arising from
the structural oscillation. Moreover, as the soil behaves in a nonlinear way, the response
of the system depends also on the input motion. In contrast with a linear SFSI analy-
sis, in the equivalent linear approximation the characteristics of the input seismic signal
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Fig. 2 Deconvolution of the
motion from the outcropping
bedrock to a control point at the
bedrock interface under the soil
profile

affect the response of the soil–foundation–structure system and thus, have to be taken into
account.

Based on the inherent linearity of the problem, the response of the soil is calculated with an
equivalent linear procedure simultaneously with the response of the linear structure. Then, the
total response is obtained by linear superposition. The updated iterative procedure operates
as follows:

1. Initial estimates are made of the shear modulus G( j) and damping ξ( j) for each soil layer
j, as shown in Fig. 2. These initially estimated values correspond to the linear elastic char-
acteristics of the soil in the very low strain range, neglecting the presence of the structure.
That is, the initial shear modulus G and damping ξ are estimated for each soil layer j
at free-field soil conditions. Moreover, shear modulus reduction G/Gmax and damping ξ

curves are chosen for each soil layer to represent its nonlinear behavior.
2. The earthquake input ground motion is chosen and applied on outcropping bedrock, as

shown in Fig. 2.
3. The ground motion at a control point on the interface between the bedrock and the soil

profile is evaluated with linear deconvolution of the input ground motion (Fig. 2). The
displacement field is calculated in the halfspace using standard one-dimensional wave
propagation equations and the equivalent linear properties G( j) and damping ξ( j) of each
soil layer j.

4. A linear convolution analysis is performed for the analysis of the soil–foundation–struc-
ture system. The estimated values of G( j) and ξ( j) are used to calculate the response in the
unbounded soil domain, when subjected to the ground motion defined in the previous step
on the control point on the bedrock. Meanwhile, the response of the structure is computed
for the same input ground motion, along with the foundation vibration, which creates an
additional wave field emanating away from the foundation in the soil.

5. The shear strain time history is calculated in the soil as the inverse Fourier of the shear
strain response in the frequency domain. The latter is estimated as a linear superposition
of the soil response subjected to two simultaneous phenomena: (a) the incident free-field
wave field propagating upwards from the halfspace and (b) the emanating wave field
because of the foundation vibration propagating downwards, as shown at the bottom of
Fig. 2.

6. The effective shear strain γeff( j) for each soil layer j is calculated as a portion of the max-
imum shear strain amplitude γmax( j), usually taken as the 65% of the peak value where j
is the soil layer number and i is the iteration number.

γ
(i)
eff ( j) = Rγ · γ

(i)
max ( j) where Rγ = 0.65 (41)
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Fig. 3 Updated iterative
equivalent linear approach in the
substructure method. The novel
aspects of the procedure are
highlighted by dashed line

7. From the estimated effective shear strain γ
(i)
eff( j) in the j th layer and i th iteration, the new

equivalent linear values for the shear modulus G(i+1)
( j) and damping ξ

(i+1)
( j) are calculated

with linear interpolation with the provided shear modulus reduction G/Gmax and damping
ξ curves. These updated values will be used in the next i + 1 iteration.

8. The new, updated, ground motion at the control point on the bedrock (Fig. 2) is calcu-
lated for the next iteration i + 1. To this end, deconvolution of the input ground motion
to the control point is performed, taking into account the updated equivalent linear soil
properties G(i+1)

( j) and of the i + 1 iteration.
9. Steps 3 to 8 are repeated until the difference between the computed shear modulus and

damping ratio values in two consecutive iterations are lower than a certain predefined limit
in all soil layers. Convergence was found to be achieved for not more than five iterations
with an error of 5%.

The aforementioned procedure, shown in the flowchart of Fig. 3, is implemented in the
numerical code MISS3D-EqL.

2.2.2 Numerical modeling aspects

For the numerical modeling of the problem, assumptions like the following are made in the
numerical solution. Detailed description of the numerical procedure can be found in Pitilakis
(2006).
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Fig. 4 Structural model
considered in the SFSI analyses

• The structure is modeled as an equivalent SDOF with structural mass m, height h, natu-
ral frequency fo and modal damping ζ . The foundation is assumed to be rigid massless
rectangular plate resting on the surface of the soil, with dimensions lx -by-ly , meshed with
quadrilateral finite elements. Even though arbitrary shaped foundations are met in practice,
the rectangular foundation is assumed to be a representative generalization. The column
of the structure is assumed to be clumped at a point in the geometrical center of the surface
foundation, as shown in Fig. 4.

• The soil profile is modeled as infinite horizontal layers of thickness hs( j), with shear wave
velocity Vs( j), uniform mass density ρs( j), hysteretic damping ratio ξs( j) and Poisson’s
ratio νs( j). In addition, shear modulus reduction and damping curves are assigned to every
soil layer j , expressing its nonlinear behavior. The underlying bedrock is modeled as an
infinite soil layer.

• A range of frequencies is chosen, in which the SFSI analysis will be performed. This range
is selected based on the Fourier spectrum of the recorded input acceleration time history
and the hysteretic damping ratio. The frequency step depends on the irregularity of the
Fourier spectrum. Actually, a resonance peak at a frequency fo and with damping β is of
width 2β fo, and thus a frequency step smaller than the width of the peak is required for
its capture. The physical criteria for the frequency sampling can be summarized as:

• minimum frequency = first non-zero frequency of the signal
• maximum frequency = maximum frequency of the signal
• step d f ≤ min(β fo)

• The displacement time history to be used as input ground motion in the analysis is the prod-
uct of a baseline correction (Boore et al. 2002) and double integration of the acceleration
recorded at outcropping bedrock.

The response in the soil domain is calculated at a series of control points. These control
points are chosen in the soil on the vertical axis. In each horizontal soil layer, two control
points, u(i)

1( j) and u(i)
2( j) are placed at a distance of dh(i)

( j)/2 on both sides of the midpoint of
the soil layer, following the vertical direction. The subscript j stands for the soil layer, when
i is the iteration number. The distance dh(i)

( j) of the control points in the j th soil layer is
calculated in every soil layer j ,

dh(i)
( j) ≤ minV (i)

s( j)

10 fmax
(42)
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Fig. 5 Horizontal and vertical
position of the control points in
the soil, at which the soil response
is calculated by MISS3D-EqL
(a) Selection of control points in
the soil in the vertical direction,
where the response of the soil is
going to be calculated.
(b) Placement on the control
points in the horizontal plane

where dh(i)
( j) is the vertical distance of the two control points in the j th soil layer for the i th

iteration, minV (i)
s( j) is the minimum shear wave velocity of the soil layer j for the i th iteration

and fmax is the maximum frequency of the wave field. Figure 5a shows the selection of two
control points u1( j) and u2( j) and their relative distance dh( j) in an arbitrary soil layer j . The
series of the control points follows the vertical axis that passes at a distance of 1/4 of each side
from the corner of the rectangular foundation, as seen in Fig. 5b. The deepest control point is
the one on the interface between the soil and the bedrock, used for the linear deconvolution
of the motion recorded on outcropping bedrock as well.

The foundation-structure system is modeled as a 7 d f model, with 6 d f expressing the
rigid body movement of the solid foundation and the seventh degree of freedom being the hor-
izontal structural displacement of the mass. The participation factors of each one of the seven
modes of the foundation-structure system are calculated by standard rigid body dynamics
(Chopra 2001).

The analysis of the SFSI problem in each iteration is executed with MISS3D. The soil–
foundation–structure system is excited by unitary SV waves, propagating upwards in the
vertical direction and polarized in the horizontal direction of the structural degree of free-
dom. The response in the soil is calculated at the control points chosen as shown in Fig. 5.
The response is calculated in the form of an incident wave displacement and a total diffracted
wave displacement, i.e., the locally diffracted wave and the radiated from the foundation in
the soil, their sum being the total wave:

us = ui + ud (43)

From the displacement response to the unitary waves, frequency response functions (FRF)
are estimated for the selected frequency range, between the control point on the bedrock and
the various control points in the soil. At the same time, the FRF for the foundation-structure
degrees of freedom are calculated. In any case, the first iteration of the equivalent linear
analysis corresponds to a linear SFSI analysis and the response is saved for reference.
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2.3 Discussion on the secondary nonlinearities

The response of the soil may differ significantly from the free-field conditions when the
structural vibration is considered, especially for the case of unusually heavy oscillating struc-
tures. While most of the studies focus on the effect of the soil secondary nonlinearity on the
structural system (Halabian and Naggar 2002), limited interest is shown on the effect of
the structural oscillation on the soil response. Besides, the aforementioned effects of heavy
oscillating structures on the soil response may be more pronounced in the case of an equiva-
lent linear analysis of the unbounded soil domain. Illustrating these effects, Fig. 6 shows the
calculated shear strain time histories in the middle of the uppermost soil layer of a fictitious
soil–foundation–structure system, for four different cases. The structure is a water tower, with
total oscillating mass of 1000 tones concentrated at a height equal to the foundation width.

Fig. 6 Shear strain time history
in the middle of the uppermost
soil layer for linear (a) and
equivalent linear (b) soil
behavior, taking into account the
existence of the structure and soil
nonlinearity. (a) Shear strain γ in
the middle of the uppermost soil
layer for linear soil behavior.
(b) Shear strain γ in the middle
of the uppermost soil layer for
equivalent linear soil behavior
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The foundation-structure system is founded on the free surface of a soft soil profile. The soil
consists of a 6 m thick soft clayey silt layer with Vs = 130 m/s, overlying a relatively stiffer
clayey soil material with shear wave velocity ranging up to Vs = 280 m/s. The shear wave
velocity of the upper 30 m of the soil profile is equal to Vs30 = 209 m/s, which classifies the
soil to the category C of EC8. The complete system is subjected to the Aegion 1995, Greece
strong earthquake record and has the same initial properties in all four cases.

Figure 6a presents the shear strain time histories immediately below the foundation assum-
ing linear soil behavior, for free-field conditions (solid line), and for the complete soil–
foundation–structure system (dashed line). Furthermore, Fig. 6b shows the same shear strain
time histories but for equivalent linear soil behavior.

It is seen in Fig. 6 that for the same earthquake ground motion and the same initial condi-
tions, the soil response depends on two parameters, the linear or nonlinear soil behavior and
the existence or non-existence of the structure.

In this example, considering the effect of the soil nonlinearity, in free-field conditions
the equivalent linear approximation produces larger shear strain in the soil. Considering the
effect of the existence of the structure, when the complete soil–foundation–structure system
is considered the linear approximation produces the largest shear strain under the founda-
tion. This is attributed to the soil nonlinearity, which induces more damping in the system
causing lower amplification and more rapid fade out of the response. Moreover, it is seen
that the oscillation of the foundation-structure system causes an additional wave field in the
soil in the vicinity of the foundation, which in turn increases the shear strain exhibited by
the soil. Even though in most typical cases the secondary soil nonlinearities can be ignored
compared to the primary nonlinearities (Kausel et al. 1976; Roesset and Tassoulas 1982), in
some cases, such as the one presented above, they can be important, especially for lifelines or
underground structures. Finally, this SFSI effect is not taken into account in typical dynamic
analysis, where the incident wave field in free-field conditions is applied directly as input
motion in the foundation, without taking into consideration the SFSI. In this latter case, the
response in the soil depends only on the soil conditions and is indifferent to the structural
oscillation.

3 Centrifuge testing modeling and validation

While the linear branch of the numerical code was verified against shaking table experimen-
tal results Pitilakis et al. (2008), the equivalent linear substructure approximation described
above is validated by centrifuge tests. In the context of the European project NEMISREF,
benchmark centrifuge experiments were conducted in Cambridge University (UCAM),
Cambridge, UK. The centrifuge apparatus, situated in the Schofield Center, Cambridge,
UK, is documented in Schofield (1980, 1981), Madabhushi et al. (1998) and Brennan and
Madabhushi (2002).

The results of the aforementioned experiments were used to validate the accuracy and
efficiency of the proposed equivalent linear substructure approximation of the SFSI.

3.1 Experimental apparatus

A SDOF structure was tested on a level, dry, thick sand bed. The centrifuge container is
shown in Fig. 7. The rubber layers in between the steel rings around the container have shear
modulus of approximately 1.7 MPa. Aluminum sheets with glued sand were placed in the
interior, at each side of the container, in order to maintain complementary shear stresses
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Fig. 7 Centrifuge container used in the tests at UCAM (Courtesy of UCAM)

during the strong shaking. The soil used in the tests was dry Hostun S28 sand. It was poured
from a hopper inside the container, so that a void ratio of about 0.67 was achieved, filling it
up to a height of 0.340 m. The SDOF structure was placed at the free surface of the soil.

The SDOF structure consists of two square plates of dimensions 0.1 by 0.1 by 0.00635 m
for the structure and 0.1 by 0.1 by 0.00953 m for the foundation. Vertical walls of thickness
0.00163 m were constructed to connect the foundation with the structure. The total height
of the structure is approximately 0.1 m (most accurately 0.0989 m). The total mass of the
foundation-wall-structure system is 1.165 kg and the estimated bearing pressure of the soil
about 57 kPa. From the 1.165 kg of the system mass, 0.525 kg is attributed to the structure
and 0.64 kg to the foundation. Impulse testing of the structure showed that the fundamental
frequency of the model structure is around 76–79 Hz.

Figure 8 shows the instrumented apparatus, with accelerometers in the soil and on the
structure and displacement sensors on the free soil surface and on the top of the structure.

The centrifuge tests were performed at a 50 g environment, imposing a scaling by a factor
of N = 50. The typical scaling factors are presented in Table 1, where M is the mass, L is
the length, T is the time and N is the scaling factor depending on the environment. Prototype
refers to the actual environment at the real site, while Model refers to the scaled, simulated
environment in the centrifuge.
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Fig. 8 Instrumented centrifuge apparatus used in the experiments in UCAM (Courtesy of UCAM)

Table 1 Centrifuge scaling factors

Dimensions Prototype Model, N -g

Stress, pressure ML−1T−2 1 1
Strain – 1 1
Length, displacement L 1 1/N
Velocity LT−1 1 1
Acceleration, gravity LT−2 1 N
Mass M 1 1/N 3

Volume L3 1 1/N 3

Force MLT−2 1 1/N 2

Frequency T −1 1 N

The soil–foundation–structure configuration in the centrifuge was subjected to an arti-
ficial input motion with PGA = 18.55 g, duration 0.5 s and predominant frequency 50 Hz.
After scaling to the prototype conditions, the response in the soil at the base of the container,
recorded at the control point A01 (Fig. 8), is shown in Fig. 9. The earthquake ground motion
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Fig. 9 Acceleration recording at the control point A01 (Fig. 8), after scaling to prototype conditions

induced in the centrifuge container was chosen to be strong enough, so that the nonlinear
behavior of the soil is promoted.

3.2 Numerical modeling

The centrifuge testing was performed, as described in the preceding paragraph, in a 50 g
environment, in order to simulate the prototype scale conditions in the centrifuge appara-
tus. To model the testing numerically, however, the prototype is chosen to be simulated in
MISS3D-EqL.

The soil is modeled as a horizontal unbounded soil layer of total thickness 0.340 · 50 =
17 m, overlying a rigid bedrock. The shear wave velocity of the profile is calculated based on
the following procedure: A depth of reference is chosen in the middle of the soil layer in the
centrifuge container, at 0.170 m. This corresponds to a depth of href,prot = 0.170 · 50 = 8.5 m
in prototype conditions. For a reference uniform unit weight γref,prot = 15 kN/m3 in proto-
type conditions of the dry Hostun S28 sand, the total vertical stress at the depth of 8.5 m is:

σv,prot = γ ref,prot · h ref,prot = 15 · 8.5 = 127.5 kPa (44)

For a coefficient of lateral earth pressure at rest Ko = 0.5, the mean stress is in prototype
conditions:

σo,ref,prot = (1 + 2Ko)σv,prot

3
= 85 kPa (45)

For a void ratio e = 0.67, as imposed by the pouring of the sand inside the container, the
reference shear modulus Gref,prot in prototype conditions is:

Gref,prot = 3230
(2.973 − e)2

1 + e
√

σo,ref,prot = 81906 kPa (46)
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Fig. 10 Shear wave velocity
profile in prototype conditions
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In the centrifuge model conditions at a 50 g environment, the uniform unit weight of the
dry Hostun S28 sand is γ50g = 1.5 · 9.81 · 50 = 735.75 kN/m3. For a reference depth of
zref = 0.170 m in the centrifuge container, the mean reference stress is

σo,ref,50g = (1 + 2Ko)(γ50gzref )

3
(47)

and the mean stress at a depth z in the 50 g environment is

σo,50g = (1 + 2Ko)(γ50gz)

3
(48)

The shear modulus G50g at a depth z will then be

G50g = Gref,prot

(
σo,50g

σo,re f,50g

)0.5

(49)

The shear wave velocity profile of the soil profile, in 50g environment, can then be calcu-
lated by the following equation

Vs =
√

G50g

ρ
(50)

where ρ = 1,500 kg/m3 the uniform mass density of the dry Hostun S28 sand. As the
scaling factor in the velocity in prototype conditions and in the 50g environment is 1:1, the
shear wave velocity profile calculated by Eq. 50 in the 50 g environment can be applied in
the prototype conditions as well. The shear wave profile that is introduced in MISS3D-EqL
is shown in Fig. 10, calculated with the aforementioned procedure in prototype conditions.
Control points are placed at the exact locations of the accelerometers set up in the centrifuge
model.

In the soil, in order to take into account its nonlinear behavior, an equivalent linear
approximation is pursued. Several shear modulus reduction and damping curves, commonly
found in the literature (Kokusho 1980; Seed et al. 1986), were tested. After several analy-
ses with varying form of the curves, the shear modulus reduction and damping curves that
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Fig. 11 Lower bound shear modulus reduction and upper bound damping curves for clean sands Seed et al.
(1986), used in the MISS3D-EqL SFSI analysis with equivalent linear soil behavior

are found to best describe the nonlinear behavior of the soil are the curves of the lower
bound shear modulus and upper bound damping curves for clean sands, proposed by Seed
et al. (1986), and shown in Fig. 11. These curves are chosen based on the obtained soil
response, compared to the recorded in the centrifuge. A linear elastic wave propagation
analysis of the soil profile produces a fundamental frequency of the soil at approximately
3.7 Hz.

The structure is modeled as a SDOF oscillator with the mass lumped at the top. In the
centrifuge model, the total mass of the structure is 1.165 kg, corresponding to the sum of the
foundation and the structural mass. The total mass corresponds to a mass of 145,625 kg in
prototype conditions. In the numerical analysis with MISS3D-EqL, however, the foundation
is assumed to be massless. Thus, attributing the total mass of the foundation-structure system
to the concentrated mass at the top of the structure causes the response to decline significantly
from the recorded one. Consequently, only the 0.525 kg of the structural mass is considered
in the numerical analysis. The 76–79 Hz of the natural frequency of the centrifuge SDOF
structure correspond to a fundamental frequency of approximately 1.56 Hz in prototype con-
ditions.

Figure 12 presents the calculated FRF connecting the control point at the base of the cen-
trifuge container (control point A01 in Fig. 8) with the top of the structure. As the input
motion shown in Fig. 9 has significant frequency content in the frequency range lower than
6 Hz, the recorded response is filterer above 6 Hz. The larger peak of the response is well
captured by the equivalent linear model of MISS3D-EqL in terms of frequency and ampli-
tude. This peak at about 1.47 Hz is attributed to the combined effects of the soil softening and
the resonance of the structure. The difference between the linear and the equivalent linear
approach is evidenced when plotting the calculated FRF between the top of the structure
and the base of the container for purely linear soil behavior. The peak resonance frequency
of the soil profile at 3.7 Hz for linear conditions, indicated as the second largest peak of the
FRF in Fig. 12, shifts to lower frequencies (at 1.6 Hz) because of the equivalent linear soil
behavior, with a significant decrease in the amplitude as well, due to energy dissipation. The
resonance of the equivalent linear soil response at 1.6 Hz and the structural response produces
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Fig. 12 Calculated (solid line)
and recorded (dashed line) FRF
relating the top of the structure
with the control point A01, as
well as FRF for purely linear
elastic soil behavior
(dashed-dotted line)
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Fig. 13 Calculated (solid line)
and recorded (dashed line) FRF
relating the top of the structure
with the foundation of the
structure
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the unique large peak at approximately 1.47 Hz, calculated with MISS3D-EqL and recorded
in the centrifuge.

Figure 13 shows the FRF connecting the top of the structure with the side of the foun-
dation. This would produce the FRF of the soil–foundation–structure system, resonating at
a frequency lower than the fixed-base fundamental frequency of the structure at 1.56 Hz.
Neglecting the random vibration noise in the recording, the system responds mainly in one
frequency, at 1.47 Hz.

Figures 14, 15 and 16 show the comparison of the response calculated by MISS3D-EqL
and the recorded response in the soil deposit, at the control points A01, A02 and A03, respec-
tively shown in Fig. 8. The calculated response in the soil matches very well with the recorded
response, in time and in frequency domain.

Figure 17 shows the response at the foundation. The recorded response is provided by the
measurement of the accelerometer at the control point A04 (Fig. 8), while the response by
MISS3D-EqL is calculated at the geometrical center of the foundation. Yet, the matching is
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Fig. 14 Calculated (solid line) and recorded (dashed line) response at the control point A01
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Fig. 15 Calculated (solid line) and recorded (dashed line) response at the control point A02

very good in the time and in the frequency domain, with minor differences arising from the
inadequacy in capturing the resonance peak at 5 Hz, as shown at the bottom of Fig. 17.

In Fig. 18 is presented the comparison of the calculated and recorded response at the con-
trol point at the top of the structure. The structure responds in the frequency range between 0.9
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Fig. 16 Calculated (solid line) and recorded (dashed line) response at the control point A03

5 10 15 20 25 30 35 40
−10

−5

0

5

10
Acceleration at the foundation of the structure

Time (s)

A
cc

. (
m

/s
2 )

 

 
MISS3D−EqL
Recorded

0 1 2 3 4 5 6
0

20

40

60

Frequency (Hz)

F
ou

rie
r 

A
m

pl
.

 

 
MISS3D−EqL
Recorded

Fig. 17 Calculated (solid line) and recorded (dashed line) response at the foundation of the structure

and 2 Hz, as observed at the bottom of Fig. 18. The largest, sharp peak at 1 Hz is caused by the
resonance with the input motion (Fig. 9, top right), while the resonance with the fundamental
frequency of the structure takes place at around 1.47 Hz. The peak due to the resonance with
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Fig. 18 Calculated (solid line) and recorded (dashed line) response at the top of the structure

the input signal is matched pretty well in amplitude. Minor difference exists though in the
amplitude of the resonance peaks of the structure in the range of 1.1–1.6 Hz, the calculated
response being larger. This minor difference in the amplitude of the response of the structure,
in the frequency range between 1.1 and 1.6 Hz, is reflected in the time domain by the minor
difference in amplitude in the time domain, in the fourth to the sixth peak, between 8 and
11 s. From the 11th second of the vibration and on, the system responds at the frequency of
1 Hz and the amplitude of the acceleration is essentially the same, proving that the equivalent
linear substructure approximation is able to simulate efficiently the effects of the nonlin-
ear soil behavior on the soil–foundation–structure system under a strong earthquake ground
motion.

The difference between a linear and an equivalent linear approximation of the soil
behavior in the SFSI analysis is demonstrated in Fig. 19. The acceleration of the structure
is calculated with a linear soil model and an equivalent linear soil model, and then com-
pared with the recorded response. A first observation would be that the amplitude assuming
linear soil conditions is smaller than that for equivalent linear soil behavior. This differ-
ence is explained, however, by reexamining the FRF shown in Fig. 12. The effect of the
soil softening, due to the approximation of the nonlinear behavior through an equivalent
linear behavior, results in a shifting of the fundamental frequency of the soil response from
approximately 3.7 Hz, in linear elastic conditions, down to around 1.6 Hz. The latter res-
onance of the equivalent linear soil, in conjunction with the resonance frequency of the
structure at approximately 1.47 Hz (Fig. 13), creates large amplification of the response
in the vicinity of 1.47 Hz. On the contrary, when a linear approximation is followed for
the soil behavior, this coincidence of the resonant frequencies of the soil (3.7 Hz) and the
structure (1.47 Hz) does not exist. Therefore, the amplitude of the response when an equiv-
alent linear behavior is adopted for the soil is larger than the linear response. Neverthe-
less, the recorded response at the top of the structure is more efficiently captured assuming
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Fig. 19 Calculated (solid line) and recorded (dashed line) response at the top of the structure. The response
of the equivalent linear analysis is compared with the linear soil response (dashed-dotted line) calculated with
the linear MISS3D

equivalent linear soil behavior, enforcing the use of an equivalent linear soil model in the
SFSI analysis.

4 Conclusion

A newly developed numerical procedure is presented and validated, introducing the equiva-
lent linear soil behavior in the substructure approximation of the soil–foundation–structure
interaction. The numerical code MISS3D performs SFSI analyses in the three-dimensional
linear elastic or viscoelastic domain, based on the substructure method. MISS3D is extended
in order to model the nonlinear soil behavior through an equivalent linear approach, resulting
in a numerical tool named MISS3D-EqL. The key point of the proposed procedure is that the
effect of the structural vibration on the soil response is taken into consideration at the same
time as is the response of the soil to the incident wave field.

Moreover, based on the substructure method, the proposed procedure is strengthened by its
simple formulation, providing physical insight and clarity in the phenomenon, while avoid-
ing complexities arising from the FEM solution, such as the radiation condition to infinity.
Furthermore, the aforementioned solution is easily implemented to account approximately,
yet adequately, for the soil nonlinearity in the SFSI, with significantly lower computational
cost.

Concluding, MISS3D-EqL is able to capture adequately the effects of both the primary
and secondary nonlinear soil behavior. Effects of the primary nonlinearity, such as the soil
softening and the larger energy dissipation, augmented by the secondary nonlinear effects
due to the structural vibration, have impact on the response of the complete soil–foundation–
structure system. The equivalent linear substructure approximation, however, is proved to
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simulate efficiently the effects of the nonlinear soil behavior on the soil–foundation–structure
system under a strong earthquake ground motion.
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