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Abstract A new response spectrum method, which is named complex multiple-support
response spectrum (CMSRS) method in this article, is developed for seismic analysis of non-
classically damped linear system subjected to spatially varying multiple-supported ground
motion. The CMSRS method is based on fundamental principles of random vibration theory
and properly accounts for the effect of correlation between the support motions as well as
between the modal displacement and velocity responses of structure, and provides an reason-
able and acceptable estimate of the peak response in term of peak seismic ground motions
and response spectra at the support points and the coherency function. Meanwhile, three new
cross-correlation coefficients or cross covariance especially for the non-classically damped
linear structures with multiple-supports excitations are derived under the same assumptions
of the MSRS method of classically damped system. The CMSRS method is examined and
compared to the results of time history analyses in two numerical examples of non-classically
damped structures in consideration of the coherences of spatially variable ground motion.
The results show that for non-classically damped structure, the cross terms representing the
cross covariance between the pseudo-static and dynamic component are also quite small
just as same as classically damped system. In addition, it is found that the usual way of
neglecting all the off-diagonal elements in transformed damping matrix in modal coordi-
nates in order to make the concerned non-classically damped structure to become remaining
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proportional damping property will bring some errors in the case of subjected to spatially
excited inhomogeneous ground motion.

Keywords Non-classical damping · Multiple-support excitations · Response spectrum ·
Seismic ground motion

Introduction

The seismic energy releases from earthquake source and propagates in earth’s crust and then
reaches to ground surface in form of seismic waves. Because the seismic waves on different
surface points come from different routes and via different topographical formation and
geological structures, the ground motion at different point of an area are generally different.
For buildings with small plane size, such as normal public and residential buildings, the
spatial variation of ground motions could be ignored. But the spatial variation of ground
motions could affect significantly for the long span structure (Housner et al. 1990), such as
large bridge, nuclear power station, tunnel, dam and aqueduct.

At present, in the structural engineering practice, representation of the input excitation
in term of power spectral density function (PSDF) is not as popular as the mean response
spectrum from the practice design point of view. Also, in earthquake engineering, frequency
characteristics of ground motion are commonly incorporated in the analysis through response
spectrum, and many existing structural codes and specification are based on the response
spectrum method. However, use of the response spectrum method for long span structures
involving multiple-support excitation is not straightforward. Several investigators extended
the response spectrum method for the case of multiple-support excitation. A simple and
approximate response spectrum technique was proposed for the multiple-support excitation
problem by Rutenberg and Heidebrecht (1987). Dong and Wieland (1988) studied the response
spectrum method for multiple-support excitations by comparison with the time history
using several combination rules. Yamamura and Tanaka (1990) studied the response of flex-
ible MDOF systems to multiple-support excitations by dividing the ground motion of the
supports into independent subgroups, whereas inside each subgroup it is considered per-
fectly correlated. Berrah and Kausel (1992) included the coherency effect in the response
spectrum analysis of structures. Der Kiureghian (1991, 1992, 1997) developed a responses
spectrum method for multiple-support excitations using the principles of random vibration
for classically damped linear system. In addition, much advanced researches on dynamic
response analysis method of structure subjected to multiple-support excitations have been
done by many researchers (Lou and Ku 1995; Allam and Datta 2000; Kato et al. 2002, 2003;
Heredia-Zavoni and Leyva 2003; Liu et al. 2005).

Recently, the dynamic analysis of non-classically damped linear systems has been paid
more attention because it is noticed that there are many structures whose damping are
non-uniform, for instance, soil-structure interacting system, composite or hybrid structures
composed of different materials with different damping and structures equipped with sup-
plemental linear viscous dampers, such as oil dampers. Following similar procedures as
deduction of multiple-support response spectrum analysis (MSRS) algorithm (Der Kiureghian,
1991, 1992, 1997) for classically damped linear system, a new response spectrum method
is developed for seismic response analysis of non-classically damped linear systems sub-
jected to spatially varying multiple-support ground motion, which is named CMSRS method
in this article. This method is based on fundamental principles of random vibration theory
and properly accounts for the effect of correlation between the support motions as well as
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between the modal displacement and velocity responses of structure, and provides an reason-
able estimate of the peak response in term of peak ground motions and response spectra at
the support points and the coherency function with certain accuracy. Meanwhile, three new
cross-correlation coefficients or cross covariance especially for the non-classically damped
structures with multiple-support excitations are derived under the same assumptions of the
MSRS method for classically damped system, i.e., cross-correlation coefficient between
ground displacement and oscillator velocity response, and the cross-correlation coefficients
of velocity-velocity and displacement-velocity of oscillators. Furthermore, two numerical
examples have been used to examine the desirability of CMSRS method, and the comparison
results with time history analysis show this method is acceptable from viewpoint of engi-
neering. Also, it is found that, for non-classically damped linear structure, the cross term
representing the covariance between the pseudo-static component and dynamic component
is usually smaller compared to the corresponding individual covariance responses of pseudo-
static and dynamic components. In addition, if adopting corresponding proportional damping
system, which is deduced through neglecting all the off-diagonal elements in transformed
damping matrix in modal coordinates of the non-classically damped linear structural system,
some errors will be brought in.

Equations of motion

The equations of motion for a discrete, N -degree-of-freedom linear structural system sub-
jected to m support motions can be written in the partitioned matrix form (Clough and Penzien
1975)

[
M Mc

MT
c Mg

]{
ÿ
ü

}
+

[
C Cc

CT
c Cg

]{
ẏ
u̇

}
+

[
K K c

K T
c K g

]{
y
u

}
=

{
0
P

}
(1)

where, M, C and K are the N × N mass, damping and stiffness matrices associated with
the unconstrained degrees of freedom, respectively; Mg , Cg and K g are the m×m matrices
associated with the support degrees of freedom, and m is the numbers of constrained degrees
of freedom; Mc, Cc and K c are N × m coupling matrices associated with both sets of
degrees of freedom; P is the m-vector of reacting forces at the support degrees of freedom;
y is the total displacement vector at the unconstrained degrees of freedom, u is the m-vector
of prescribed support displacements.

From the Eq. 1, we can get:

M ÿ + C ẏ + K y = − (Mc ü + Cc u̇ + K cu) (2)

In the analysis of such system, it is common to decompose the response y into pseudo-static
component ys and dynamic component yd . Following the conventional procedure, we get

y = ys + yd (3)

here pseudo-static component ys is structural displacement caused by forced supports dis-
placements statistically. Substituting Eq. 3 into Eq. 2, we can obtain the following equation

M ÿd + C ẏd + K yd

= −
([

M Mc
] {

ÿs

ü

}
+ [

C Cc
] {

ẏs

u̇

}
+ [

K K c
] {

ys

u

})
(4)
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In fact for the each instantaneous, the third term in the right-hand of Eq. 4 always remains
zero, and then we can gain the following relationship

ys = −K−1 K cu = Ru (5)

in which R = −K−1 K c is denoted the influence matrix.
Substituting Eq. 5 into Eq. 4, the dynamic component of the response is obtained in the

differential form

M ÿd + C ẏd + K yd = − (M R − Mc) ü − (C R − Cc) u̇ (6)

Whether classical damping structures or not, the damping forces on the right-side of Eq. 6
might be neglected, which are normally believed to be much smaller than the corresponding
inertia forces, the other part standing on the same side. Therefore Eq. 6 can be simplified as

M ÿd + C ẏd + K yd = − (M R − Mc) ü (7)

It is noted that Mc = 0 if a lumped mass model is used. In this paper, since we assume
Mc = 0 as usual, and hence Eq. 7 can be written

M ÿd + C ẏd + K yd = −M Rü (8)

Complex mode superposition method of seismic response for non-classically damped
system

For the classically damped linear system, as we know, the free vibration equation correspond-
ing to Eq. 8 is able to be decoupled to classical modes if the damping matrix satisfies neces-
sary and satisfactory condition proved by Caughey (1960) and Caughey and O’Kelly (1965).
However, for the non-classically damped linear system, neglecting the effect of damping
matrix will produce some errors. Therefore, Eq. 8 can be solved by using decoupled method
suggested by Foss (1958), i.e.,

H ẋ + Dx = −üg H E (9)

in which

H =
[

0 M
M C

]
, D =

[−M 0
0 K

]
, x =

[
ẏd

yd

]
, E =

[
R
0

]
(10)

The solution of eigenproblem corresponding Eq. 9 can be transformed into the solution
of following equation

D� = −µH� (11)

in which µ and � are generic eigenvalue and eigenvector respectively, and according to
formula (10), � can be given as

� = [
µφ φ

]T
(12)

where φ is the complex mode shape vector which is regarded φ = ϕ + iψ .
Because matrices M,C and K are symmetric in general and so the eigenvalues and the

eigenvectors of Eq. 11 normally occurs in complex conjugate pairs, but for highly damped
systems, an even number of them can be real (Inman and Andry Jr 1980). However, in
some other particular cases, some of the eigenvalues could be multi-fold, which means the
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characteristics equation of the non-classically damped system comprises re-roots. These
cases will not be handled in this article.
Suppose:

µ j = −α j + iβ j (13)

where α j = ζ jω j , β j = ωDj = ω j

√
1− ζ 2

j are damping coefficient and damping

frequency of the j th mode respectively, the free vibration frequency ω j and the correspond-
ing critical damping ratio ζ j can be deduced from the general orthogonality relations (Foss
1958).
Substitute transformation

x =
2N∑
j=1

� j s j (t) (14)

into Eq. 9 and employ the generated orthogonal relation of eigenvectors, the decoupled
equations of motion are obtained as

ṡ j (t)+ µ j s j (t) = −
m∑

k=1

ηk j ügk (t) (15)

in which, s j (t) is the displacement response of the j th SDOF oscillator with frequency ω j

and damping ratio ζ j at the given input force. The index k denotes the degree of freedom
associated with the prescribed support motion, the subscript j denotes the mode number, and
µ j represents the structural complex eigenvalue, i.e.,

µ j =
(
� j

)T D� j(
� j

)T H� j

(16)

and ηk j is the modal participation factor given by

ηk j = (� j )
T H Ek

L j
(17)

where Ek is the kth column of the matrix E, a composite matrix of influence matrix R and
zero matrix, and denominator L j is given by

L j =
(
� j

)T H� j (18)

Separating the right part of Eq. 18 into real and imaginary parts, the following formula is
available after some simplification.

L j = e j + i f j (19)

in which

e j = −2α j ((ϕ j )
T Mϕ j − (ψ j )

T Mψ j )− 4β j (ϕ j )
T Mψ j + (ϕ j )

T Cϕ j

−(ψ j )
T Cψ j (20)

f j = 2β j

(
(ϕ j )

T Mϕ j − (ψ j )
T Mψ j

)
− 4α j (ϕ j )

T Mψ j + 2(ϕ j )
T Cψ j (21)
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Substituting Eq. 19 into Eq. 17 and separating the numerator of right part of Eq. 17, modal
participation factor can be expressed as

ηk j = 1

e2
j + f 2

j

[
e j (ϕ j )

T M Rk + f j (ψ j )
T M Rk + i

(
e j (ψ j )

T M Rk − f j (ϕ j )
T M Rk

)]

(22)

It is convenient to define a normalized response qkj (t), representing the response of
a single-degree-of-freedom oscillator with unit mass, frequency ω j and damping ratio ζ j ,
which is subjected to the base motion ük (t). Substituting Eq. 22 into Eq. 14 and combining
the terms consisted of a pair of conjugated complex modes, we can get

yd(t) =
m∑

k=1

N∑
j=1

[
Ak j qk j (t)+ Bk j q̇k j (t)

]
(23)

in which

Ak j = − 2

e2
j + f 2

j

[
(ζ j pk j +

√
1− ζ 2

j wk j )ϕ j + (ζ jwk j −
√

1− ζ 2
j pk j )ψ j

]
ω j (24)

Bk j = − 2

e2
j + f 2

j

(
pkjϕ j + wk jψ j

)
(25)

pkj = e j ck j + f j dk j , wk j = f j ck j − e j dk j ,

ck j = (ϕ j )
T M Rk, dkj = (ψ j )

T M Rk (26)

and qkj (t) can be expressed as solution of the following equation.

q̈k j (t)+ 2ζ jω j q̇k j (t)+ ω2
j qk j (t) = −ük(t) (27)

It is worth pointing out that Eq. 23 in this article is apparently the same as Eq. 25 in Igusa
et al.’s paper (1984), except an extra summation is introduced here to consider the influence of
multiple-support excitation, and Wang (1994) also gave similar results. However we use real
value form formula (Zhou et al. 2004) to calculate the coefficient vectors involved in Eq. 23
efficiently. A generic response quantity or effect of interest, z (t) (e.g., a nodal displacement,
an internal force, stress or strain component), in general can be expresses as a linear function
of the nodal displacements y (t), i.e.,

z (t) = vT y (t) = vT
[

ys (t)+ yd (t)
]

(28)

where v is a response transfer vector which usually depends on the geometry and stiffness
properties of the structure. Substituting for the pseudo-static component and for the dynamic
component in terms of the normalized modal responses, the generic response z (t) is written
as

z (t) =
m∑

k=1

gkuk (t)+
m∑

k=1

N∑
j=1

[
akj qk j (t)+ bkj q̇k j (t)

]
(29)

where, gk = vT Rk, akj = vT Ak j , bkj = vT Bk j are denoted effective influence
coefficients and effective modal participation factors, respectively. It is important to note
that gk , akj and bkj are functions only of the structural properties, and that qkj (t) is depen-
dent only on the j th modal frequency and damping ratio and the kth input motion. Clearly,
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the first sum on the right-hand side of Eq. 29 represents the pseudo-static component of the
response and the double-sum term represents the dynamic component.

Mean-square stationary response of the system under random disturbance

The response spectrum formulation will be developed based on the random vibration theory.
We firstly assume that the support motions ük are jointly stationary processes with zero means,
and that the response in each mode of the structure is also stationary. These assumptions are
reasonable for the intended purpose as long as the fundamental period of vibration of structure
is short in relation to the duration of excitation. The stationary assumption will be relaxed
later when the response spectrum method is developed. Using Eq. 29, the power spectral
density of the generic steady state response z (t) can be written as

Gzz (ω) =
m∑

k=1

m∑
l=1

gk gl Guk ul (iω)+ 2
m∑

k=1

m∑
l=1

N∑
j=1

(
gkal j + iωgkbl j

)
Hj (−iω)Guk ül

+
m∑

k=1

m∑
l=1

N∑
i=1

N∑
j=1

(
aki al j + 2iωbki al j + ω2bki bl j

)

×Hi (iω) Hj (−iω)Gük ül (iω) (30)

in which Gxy (iω) denotes the cross-power spectral density of processes x and y, and

Hi (iω) =
(
ω2

i − ω2 + 2iζiωiω
)−1

represents the frequency response function of mode i .
Integrating over the frequency domain−∞ < ω <∞, the mean-square response is obtained
as

σ 2
z =

m∑
k=1

m∑
l=1

gk glρuk ulσukσul + 2
m∑

k=1

m∑
l=1

N∑
j=1

[
gkal jρuk ql j σukσql j + gkbl jρuk q̇l j σukσq̇l j

]

+
m∑

k=1

m∑
l=1

N∑
i=1

N∑
j=1

[
aki al jρqki ql j σqki σql j + 2bki al jρq̇ki ql j σq̇ki σql j

+ bki bl jρq̇ki q̇l j σq̇ki σq̇l j

]
(31)

in which σuk and σqki are the mean-square-root of ground displacement uk (t) and normal-
ized modal displacement response qki (t), and the terms ρuk ul , ρukql j and ρqki ql j are the
corresponding cross-correlation coefficient, which were discussed by Der Kiuerghian (1991,
1992). In addition, σq̇ki represents the mean-square-root of velocity response q̇ki (t) and can
be given by the integral

σ 2
q̇ki
=
∞∫
−∞

ω2 |Hi (iω)|2 Gük ük (ω)dω (32)

in which Gük ük (ω) is the real-valued power spectral densities of acceleration processes,
which is input motion here. And the cross-correlation coefficient ρuk q̇l j , ρq̇ki ql j and ρq̇ki q̇l j

related to the modal velocity response in Eq. 31 can be defined by
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ρuk q̇l j =
1

σukσq̇l j

∞∫
−∞

iωHj (−iω)Guk ül (iω)dω (33)

ρq̇ki q̇l j =
1

σq̇ki σq̇l j

∞∫
−∞

ω2 Hi (iω) Hj (−iω)Gük ül (iω)dω (34)

ρq̇ki ql j =
1

σq̇ki σql j

∞∫
−∞

iωHi (iω) Hj (−iω)Gük ül (iω)dω (35)

Each of the above integrands has an anti-symmetric imaginary part and, hence, their integrals
have real values. The three cross-correlation coefficients related to velocity response, ρuk q̇l j ,
ρq̇ki q̇l j and ρq̇ki ql j are newly introduced in this article.

The cross-correlation coefficients in Eqs. 33–35 can be interpreted in terms of a pair of
oscillators representing modes i and j of the structure, which are respectively subjected
to the support motions uk (t) and ul (t). Specifically, ρuk q̇l j denotes the cross-correlation
coefficient between the forced displacement at support k and the modal velocity response
of the oscillator corresponding to mode j at support l, ρq̇ki q̇l j denotes the cross-correlation
coefficient between the velocity responses of the two oscillators associated to modes i and j ,
ρq̇ki ql j denotes the cross-correlation coefficient between the displacement-velocity responses
of the two oscillators associated to modes i and j . These coefficients incorporate all the effects
of cross-modal and cross-support correlations that arise in the response of the structure to
the spatially varying ground motion.

Discussions of cross-correlation coefficients

For the non-classically damped linear structure system, there are six cross-correlation
coefficients included in the Eq. 31. But the variations of cross-correlation coefficients, ρuk ul ,
ρuk ql j and ρqki ql j , are exactly the same as those discussed by Der Kiuerghian (1991, 1992),
so that we will only give the other cross-correlation coefficients related to velocity response,
such as ρuk q̇l j , ρq̇ki q̇l j and ρq̇ki ql j , in this article.

In order to conveniently compare our results with the results calculated by Der Kiuerghian
(1991, 1992), Clough and Penzien’s double filter model (1975) is adopted in this paper and the
filter parameters for firm soil, soft soil and the intermediate soil are the same as the reference
(Der Kiuerghian 1991). Also, the following ground motion coherency function (Luco and
Wong 1986) is used

γkl = exp

[
−

(
aωdkl

vs

)2
]

exp

(
i
ωd L

kl

vapp

)
(36)

in which a is an incoherence factor, dkl denotes the horizontal distance between stations or
supports k and l, d L

kl denotes the projected horizontal distance in the longitudinal direction
of wave propagation. vs is the shear wave velocity of the medium, and vapp is the surface
apparent wave velocity. This model is used throughout the study because of its simplicity
and frequent usage by other investigators.

We still assume that vs and vapp are some kind of ‘average’ values for each pair of supports
k and l or for the entire region. Based on reported values of a and a/vs (Luco and Wong 1986;
Zerva 1990), and considering a reasonable range of distances between stations that might
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be of engineering interest, the parameter adkl/vs is varied between 0 and 2, and d L
kl/vapp is

varied 0, 0.5 and 1.

Cross-correlation coefficient ρuk q̇l j between ground displacement at station k and oscillator
velocity response of different modes at station l.

There is a cross-correlation coefficient ρuk q̇l j existing in non-classically damped linear struc-
ture system, which is different from classically damped linear structure system. Figures 1
and 2 respectively show the plots of the cross-correlation coefficient ρuk q̇l j when the two
supports k and l have roughly firm or soft soil conditions, and the wave traveling direction
is along the route from support k to support l. For intermediate soil condition, ρuk q̇l j takes
values between that of firm and soft sites, and the corresponding curves are omitted here for
the sake of brevity.

Because ρuk q̇l j is a function of the oscillator frequency ω j and the damping ratios ζ j for
arbitrary mode j , we have to firstly determinate the values of damping ratio. The curves of
this function versus possible ω j values for a preset damping ratio ζ j = 0.05 respectively
for roughly firm soil and roughly soft soil condition are shown in Figs. 1 and 2. These
three pairs of curves from left to right are for increasing values of the wave passage effect
as defined by parameter d L

kl/vapp , whereas each pair of curves are respectively for values
adkl/vs = 0 and 0.5, representing cases without and with the effect of incoherence. As
mentioned previously, the considered ranges of parameter values have included the values of
interest in most application. It can be seen from the left plots in Figs 1 and 2 that the cross-
correlation coefficient ρuk q̇l j = 0 at the starting value of ω j = 0, and then takes negative

Fig. 1 Cross-correlation coefficient ρuk q̇l j between ground displacement at support k and modal oscillator
velocity response at Support l (in the case of roughly firm soil condition)
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Fig. 2 Cross-correlation coefficient ρuk q̇l j between ground displacement at support k and modal oscillator
velocity response at support l (in the case of roughly soft soil condition)

values, reaches minimum and tends zero as increasingω j , but for intermediate and right plots
the cross-correlation coefficient ρuk q̇l j takes maximum positive values at the starting value
of ω j = 0 and gradually tends zero as increasing ω j . Furthermore some differences of the
ρuk q̇l j curves can be observed in the case of firm soil as shown in the plots of Fig. 1, whereas
the two curves corresponding to adkl/vs = 0 and adkl/vs = 0.5 shown in the plots of Fig.
2 are almost same. However, for the values ofω j for normal structures, sayω j/2π > 0.5 Hz,
ρuk q̇l j is very small in all the cases shown in Figs. 1 and 2 that means only for long period
structures the influences coming from cross correlation ρuk q̇l j between ground displacement
at support k and modal oscillator velocity response at support l are of significance.

Cross-correlation coefficient ρq̇ki q̇l j between velocity responses of oscillators of different
modes at supports k and l.

The cross-correlation coefficient ρq̇ki q̇l j in Eq. 31 for non-classically damped linear structure
system is a function of the frequencies and damping ratios of the two modal oscillators,
ωi , ω j and ζi , ζ j corresponding to two different modes, respectively, and the parameters
defining the coherency function and the site soil conditions at supports k and l, when the
two supports have similar firm soil conditions, and waves travel first at support k and then
at supportl. Figures 3, 4 show the plots of this function in terms of ω j at given damping
ratios ζi = ζ j = 0.05. Since many parameters are involved, only two values for the
incoherence and wave passage parameters and three values of frequency of modal oscillator
are considered, i.e., adkl/vs = 0 and 0.1, d L

kl/vapp = 0 and 0.5, and ωi/2π = 1, 2 and
4 Hz.
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Figure 3 is for the case of d L
kl/vapp = 0 without the wave passage effect. It can be seen

that in the case of adkl/vs = 0, the incoherence uniformly reduces the value of the cross-
correlation coefficient especially when ωi/2π = 2 and 4 Hz. For the firm soil condition
with broad-band excitation, it is easy to find that the cross-correlation coefficient for the case
without the incoherence effect is identical to the coefficient used in the CCQC combination
rule (Zhou et al. 2004), which is based on the white noise approximation and steady state
response assumption. It is also worth noting that the coefficient ρq̇ki q̇l j is basically positive
if absence of the wave passage effect due to d L

kl/vapp = 0. Figure 4 is for roughly firm soil
conditions and including the effect of wave passage in terms of d L

kl/vapp = 0.5. The curves
now can be oscillatory and taken on positive as well as negative values depending upon the
value of d L

kl/vapp .

Cross-correlation coefficient ρq̇ki ql j between displacement-velocity responses of oscillators
of different modes at supports k and l.

The variation law of displacement-velocity response cross-correlation coefficient ρq̇ki ql j

between modes i and j , which has positive and negative peaks, is obviously different and
more complex compared to that of velocity-velocity response as we have seen from the
curves shown in Figs. 3 and 4. By using the same method, we have deduced the variation
curve of cross-correlation coefficient ρq̇ki ql j against ω j as shown in Figs. 5 and 6. It can be
seen from the figures that both wave passage effect and incoherence effect can reduce the
value of coefficient ρq̇ki ql j .

Fig. 3 Cross-correlation coefficient ρq̇ki q̇l j between velocity response of modal oscillators at supports k and l

(in the case of roughly firm soil condition and d L
kl/vapp = 0)
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Fig. 4 Cross-correlation coefficient ρq̇ki q̇l j between velocity responses of modal oscillators at supports k and

l (in the case of roughly firm soil condition and d L
kl/vapp = 0.5)

Fig. 5 Cross-correlation coefficient ρq̇ki ql j between Displacement-velocity responses of oscillators of

different modes at supports k and l (in the case of roughly firm soil condition and d L
kl/vapp = 0)
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Fig. 6 Cross-correlation coefficient ρq̇ki ql j between displacement-velocity responses of oscillators of

different modes at supports k and l (in the case of roughly firm soil condition and d L
kl/vapp = 0.5)

Multiple support response spectrum method for non-classically damped linear system

Based on above discussions in Sect. 5, the multiple-support response spectrum method
for non-classically damped linear system is deduced following previous works
(Der Kiuerghian 1991, 1992; Zerva 1990), which is named CMSRS method in this
paper. Now let uk,max = E[max |uk (t)|] denote the mean value of the peak displacement at
support k, and Dk (ωi , ζi ) = E [max |qki (t)|] denote the mean response spectrum ordinate
for the oscillator of mode i , representing the mean peak relative displacement response of
the oscillator of frequency ωi and damping ratio ζi to the base motion uk (t). If assume the
root-mean-squares of the ground displacement, oscillator displacement response and velocity
response for different modes, i.e., σugk , σqki and σq̇ki are proportional to the peak values of
the seismic response (Zerva 1990), then we can get

|z (t)|max =
{

m∑
k=1

m∑
l=1

gk glρuk ul uk,maxul,max

+2
m∑

k=1

m∑
l=1

N∑
j=1

[(
gkal jρuk ql j + gkbl jω jρuk q̇l j

)
uk,max Dl

(
ω j , ζ j

)]

+
m∑

k=1

m∑
l=1

N∑
i=1

N∑
j=1

[(
aki al jρqki ql j + 2bki al jωiρq̇ki ql j + bki bl jωiω jρq̇ki q̇l j

)

×Dk (ωi , ζi ) Dl
(
ω j , ζ j

)] }1/2

(37)
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The above formula represents the response spectrum combination rule for the peak re-
sponse of the multiple-support structure for the non-classically damped linear system, that is,
CMSRS method as precedent mentioned. When coefficients ρugk q̇l j = ρq̇ki ql j = ρq̇ki q̇l j =
0, Eq. 37 will be reduced to the results deduced by Der Kiureghian (1991, 1992, 1997), which
is based on classically damped linear systems.

Furthermore, since the cross-correlation coefficients between ground displacement and
the modal displacement and velocity response of oscillator, ρuk ql j and ρuk q̇l j , are relatively
small, which can be seen from preceding discussions in Sect. 5.1, the Eq. 37 can be simplified
as

|z (t)|max =
{

m∑
k=1

m∑
l=1

gk glρuk ul uk,maxul,max

+
m∑

k=1

m∑
l=1

N∑
i=1

N∑
j=1

[(
aki al jρqki ql j + 2bki al jωiρq̇ki ql j + bki bl jωiω jρq̇ki q̇l j

)

×Dk (ωi , ζi ) Dl
(
ω j , ζ j

)] }1/2

(38)

Numerical example

In this paper, it is assumed that the soil conditions at the supports are identical, and the NS
component of the El Centro earthquake acceleration recorded on May 18, 1940 earthquake
in California, which contains energy over a broad range of frequencies and has been broadly
used in earthquake response analyses, is selected as ground motion input. The earthquake
velocity and displacement used in this paper can be attained through integration for the
earthquake acceleration recorded. Furthermore, the displacement response spectra for the
different natural periods and corresponding damping ratios will be calculated in terms of
the selected El Centro record. The consistent power spectral density is assumed to be Clough
and Penzien’s double filter model (1975), which is only used in determining the cross-
correlation coefficients.

Furthermore, five different cases of input support motion are discussed, i.e.,
Case 1: Uniform support input
This is the case where all support inputs along the same direction are identical. In this

case, the spatial coherence function of ground motion is defined as: γkl (iω) = 1.0 for any
supports k and l.

Case 2: Only wave passage effect included
The support motion may essentially be correlated because only the phase effect is con-

sidered. In this case the incoherence factor a = 0 with surface apparent wave velocity
vapp = 400 m/s;

Case 3: Only incoherence effect included
In this case, the phase effect in the spatial coherence function caused by wave propagation

affect is neglected, that is, only incoherence effect is included and let vapp = ∞ with
vs/α = 600 m/s;

Case 4: General input
Both wave passage and incoherence effects are included and suppose vapp = 400 m/s

and vs/α = 600 m/s;
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Case 5: Independent support input
This is the case where the support inputs are considered to be statistically independent

and uncorrelated with each other. And in this case the coherence function is set equal to zero
for k �= l, i.e., γkl (iω) = 0.0 for k �= l.

Example 1

Here is an exemplary structure originally taken from reference (Clough and Penzien 1993).
Thus we consider a rigid bar in Fig. 7, which has additional lumped mass m/2 at each end
and length L = 10 ft and total uniformly distributed mass is m. This bar is rigidly attached to
the top of a weightless column of length L and in addition there is a lateral spring support at
mid-height of the bar, as shown in Fig. 7. The mass matrix and the stiffness matrix responding
to the Eq. 1 are shown as,

M = m

6

[
5 1
1 5

]
,

K = E I

L3

[
30.5 −7.5
−7.5 6.5

]
,

Kc = E I

L3

[−5 −18
−5 6

]
,

Kg = E I

L3

[
10 0
0 12

]
.

where m = 0.4kip.s2/ f t , E I/L3 = 3.0kips/ f t . And the displacement vector of the
structure corresponding Eq. 1 can be obtained as

[
y1 y2 uga ugb

]T
, here y1, y2 and uga ,

ugb are the displacements at both the ends of the bar with uniformly distributed mass and the
support displacements respectively as shown in Fig. 7. In this example there are two supports
to be disturbed. Firstly suppose the damping matrix C complies following Rayleigh rule, i.e.,
C = αM + βK , where α = 0.2(1/s.), β = 0.00173(s).

Now transform the exemplary structure into a non-proportionally damped system by equip-
ping a supplemental damper on the first inter-storey, which results in abrupt changes both in

L

2

L

2

L

3

10EI
k

L
=

2

m

2

m

2y

1y

EI

gau

gbu

m
m

L
=

Fig. 7 Exemplary structure
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the stiffness and damping. The corresponding changes to K and C matrices are such that

K (1, 1)← 1.05K (1, 1) ,C (1, 1)← 41.0C (1, 1)

and remain all the other elements in matrix K and C unchanged. Via complex mode analysis
procedure, the modal properties of the damper-added structure are obtained, as given in
columns 2 and 4 in Table 1. Columns 3 and 5 of Table 1 show modal properties of the damper-
added structure if proportional damping is assumed, that means the off-diagonal elements
in the modal-transformed damping matrix, which is calculated from the mode matrix of the
corresponding non-damping system, are ignored. These results show that the damping ratio
of the 2-th mode is greatly underestimated although their natural period is approximate to
each other.

In order to examine the correctness of complex mode superposition method and the
involved parameters, Eq. 2 is solved by Newmark-β numerical integration (integration step
0.02s and parameters r = 0.05, β = 0.25) under the uniform ground displacement of the
selected El Centro record, in which we assume Mc = 0 and Cc = 0 as mentioned in Sect. 2.
The column 2 of Table 2 lists the results calculated using Newmark-β method. The results
obtained from complex mode superposition method are listed in columns 3 and 4 of Table 2.
Column 3 gives the results considering the damping matrix C in calculation of dynamic
response component yd , as shown in Eq. 6, which are identical with the results in column
2 calculated by Newmark-β numerical integration and illustrate the analytical method for
calculating seismic response of non-classically damped linear system with multiple-support
excitations is validate. The results in column 4 do not consider the effect of damping matrix
associated the support ground motion velocity, as shown in right side of Eq. 6 that means
those results are obtained from Eq. 7. Compare the results in columns 3 and 4, it can be seen
that neglecting the damping forces on the right-hand of Eq. 6 will not produce large errors,
as shown in column 5 of Table 2, though the structure is non-classical damping system in
this example.

Table 1 Modal properties of the non-proportional damping structure

Mode number Modal periods (s) Modal damping ratios (%)

Exact Based on proportional
damping assumption

Exact Based on proportional
damping assumption

1 0.9619 1.0580 15.48 15.57
2 0.3625 0.3409 78.31 54.98

Table 2 Maximum displacement of y1 and y2 (cm)

Response Eq. 2

Numerical integration
using Newmark-β

Complex mode superposition method

In consideration
of damping

Without consideration
of damping

Errors(%)

y1 59.8023 59.8023 61.0880 2.15
y2 59.0580 59.0580 61.1718 3.58
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Now, let us examine the six cross-correlation coefficients ρuk ul , ρuk ql j , ρuk q̇l j , ρqki ql j ,
ρq̇ki q̇l j andρq̇ki ql j . Table 3 lists the calculation results forρuk ul , the cross-correlation coefficient
between the ground displacements at the various supports. These coefficients are independent
of the direction of wave propagation and hence identical results are obtained for support pairs
such as 1, 2 and 2, 1. For Case 1, because the motions are completely correlated, the correlation
coefficient must be unity, and for Case 5 they are zero because the motions are statistically
independent. The remaining cases corresponding to conditions of partial correlation, and
ρuk ul is found to be between zero and 1.0 and in this example near 1.0.

Table 4 gives the cross-correlation coefficients ρukql j between the displacement at support
k and the displacement response of an oscillator represent a given mode at supportl. Table 5
shows the ρuk q̇l j , the cross-correlation coefficient between the displacement at support k and
the velocity response of a modal oscillator at support l. These coefficients are not symmetric
with respect to k and l when the wave passage effect is present and, hence, for Cases 2 and
4 different values are obtained for each ordered combination of support pairs, e.g., for (1,
2) and (2, 1). The correlation coefficient ρukql j is found to be relatively small (<0.2) for
all cases, and ρuk q̇l j is much smaller than cross-correlation ρukql j as shown in Tables 4 and
5. The influences of the wave passage and incoherence effects can be observed separately
by comparing the results for Cases 1 and 2 and Cases 1 and 3, respectively, whereas their
combined influence can be observed via comparing Cases 1 and 4. Here i and j represent
numbers of modes and k and l are numbers of support as mentioned.

Table 6 lists the cross-correlation coefficients ρqki ql j between the displacement responses
of the modal oscillators at supports k and l. Table 7 shows the cross-correlation coefficients
ρq̇ki q̇l j between the velocity responses of the modal oscillators at supports k and l. For each
case and pair of supports, a 2 × 2 correlation matrix is given in the tables. In Cases 2 and
4 where the wave passage effect is included, the matrix is asymmetric and is given in form
of full matrix both for ρqki ql j and ρq̇ki q̇l j . In Cases 1, 3 the matrix is symmetric and Case
5 is zero matrix as shown in Tables 6 and 7. In Cases 2 and 4, the correlation matrices for
support combinations (2, 1) can be obtained by using of the symmetry rule ρqki ql j = ρql j qki

Table 3 Cross-correlation coefficients ρuk ul

Case 1 2 3 4 5

Supports (k, l) (1,1); (2,2) 1 1 1 1 1
(1,2); (2,1) 1 0.9983 0.9985 0.9969 0

Table 4 Cross-correlation coefficients ρuk ql j

Case Concerned supports pair (k, l) Mode of non-classical
damping Structure

Mode of proportional
damping assumption

1 2 1 2

1 All = 1–5 Any k, l k = l 0.2164 0.3142 0.0905 0.0622
2 (1,2) 0.1960 0.2377 0.0824 0.0566

(2,1) 0.2843 0.3384 0.0990 0.0652
3 (1, 2) and (2, 1) 0.2167 0.3117 0.0906 0.0610
4 (1, 2) 0.1967 0.2839 0.0827 0.0562

(2, 1) 0.2372 0.3336 0.0989 0.0632
5 Any k �= l 0 0 0 0
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Table 5 Cross-correlation coefficients ρuk q̇l j

Case Concerned supports pair (k, l) Mode of non-classical
damping Structure

Mode of proportional
damping assumption

1 2 1 2

1 All = 1–5 Any k, l k = l −0.0838 −0.0598 −0.0374 −0.0068
2 (1,2) −0.0783 −0.0659 −0.0348 −0.0092

(2,1) −0.0840 −0.0412 −0.0382 −0.0014
3 (1, 2) and (2, 1) −0.0815 −0.0546 −0.0366 −0.0056
4 (1, 2) −0.0774 −0.0622 −0.0345 −0.0083

(2, 1) −0.0806 −0.0371 −0.0369 −0.0004
5 Any k �= l 0 0 0 0

Table 6 Cross-correlation coefficients ρqki ql j

Case Concerned supports pairs (k, l) Mode number Mode of non-classical
damping Structure

Mode of proportional
damping assumption

1 2 1 2

1 All = 1–5 Any k, l k = l 1 1 0.3348 1 −0.0125
2 0.3348 1 −0.0125 1

2 (1,2) 1 0.9687 0.4824 0.9750 0.0012
2 0.1759 0.8959 −0.0226 0.7785

3 (1,2) 1 0.9726 0.3300 0.9780 −0.0109
2 0.3300 0.9138 −0.0109 0.8154

4 (1,2) 1 0.9427 0.4670 0.9537 0.0016
2 0.1836 0.8305 −0.0198 0.6364

5 Any k �= l 1 0 0 0 0
2 0 0 0 0

Table 7 Cross-correlation coefficients ρq̇ki q̇l j

Case Concerned supports
pairs (k, l)

Mode number Mode of non-classical
damping structure

Mode of proportional
damping assumption

1 2 1 2

1 All = 1–5 Any k, lk = l 1 1 0.1018 1 −0.0232
2 0.0108 1 −0.0232 1

2 (1,2) 1 0.9453 0.3143 0.9716 −0.0046
2 −0.1663 0.7169 −0.0432 0.7684

3 (1,2) 1 0.9537 0.0824 0.9752 −0.0234
2 0.0824 0.7856 −0.0234 0.8077

4 (1,2) 1 0.9065 0.2741 0.9483 −0.0067
2 −0.1329 0.6183 −0.0387 0.6226

5 Any k �= l 1 0 0 0 0
2 0 0 0 0

and ρq̇ki q̇l j = ρq̇l j q̇ki . That is, the correlation matrix for support combinations (2, 1) is the
transpose of the matrix for the combinations (1, 2).

Table 8 is the cross-correlation coefficients ρq̇ki ql j between the velocity and displacement
responses of the oscillators at supports k and l. Similarly, for each case and pair of supports,
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Table 8 Cross-correlation coefficients ρq̇ki ql j

Case Supports Mode number Mode of non-classical
damping structure

Mode of proportional
damping assumption

1 2 1 2

1 All = 1–5 Any k, l k = l 1 0 0.6297 0 0.0554
2 −0.3373 0 −0.0183 0

2 (1,2) 1 −0.2466 0.5282 −0.2217 0.0646
2 −0.3287 −0.4209 −0.0108 −0.6258

3 (1,2) 1 0 0.5804 0 0.0497
2 −0.3109 0 −0.0164 0

4 (1,2) 1 −0.2357 0.4945 −0.2163 0.0598
2 −0.3042 −0.3416 −0.0093 −0.5060

5 Any k �= l 1 0 0 0 0
2 0 0 0 0

a 2 × 2 correlation matrix is given in the table. For this coefficient ρq̇ki ql j , the matrix is
asymmetric and the full elements are given in Cases 1, 2, 3 and 4. In Cases 2 and 4, the
correlation matrices for support combinations 2, 1 can be obtained by used of the symmetry
rule ρq̇ki ql j = ρql j q̇ki .

The peak responses y1 and y2 are listed in Table 9. The third column lists the results
of non-classically damped linear system for each case calculated by Eq. 37, and the fourth
column is the result coming from the simplified Eq. 38. It can be seen that neglecting the
cross-correlation coefficients between ground displacement and the displacement and veloc-
ity response of oscillator, or the cross term representing the cross covariance between the
pseudo-static component and dynamic component will not produce large errors. Furthermore,
the results obtained from proportional damping assumption are listed in columns 5 and 6.
From the comparison of these results, we can see that for this simple non-classical damping
system, the results calculated by proposed CMSRS method is closer to exact solution although
proportional damping assumption does not bring large errors. It is worth pointing out that
the results for the above example show that the influence of spatial variability of the ground
motion on the response of a multiple-support structure is fairly significant. It can be seen that
the peak response of the non-classical damping structure y1 and y2 computed from CMSRS

Table 9 The peak response y1 and y2 of the non-classical damping structure (cm)

Response Case CMSRS method Based on proportional
damping assumption

Eq. 37 Eq. 38 Eq. 37 Eq. 38

y1 1 60.1234 61.0456 65.0875 65.3322
2 60.0170 61.0166 65.0500 65.3051
3 60.1030 61.0236 65.0634 65.3080
4 60.0392 60.9956 65.0266 65.2816
5 42.5929 43.2041 46.1057 47.0391

y2 1 59.8639 61.8484 65.5097 66.1767
2 60.1891 61.9098 65.5765 66.2267
3 59.9241 61.9044 65.5547 66.2213
4 60.0428 61.9641 65.6201 66.2700
5 43.2357 44.3397 46.2762 47.3475
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method are nearer to the results calculated from Newmark-β numerical integration and the
proportional damping assumption is somewhat overestimate the displacement responses in
this example.

This simple example can be regarded as an introduction to considerate the response of
non-classically damped linear system under multiple-support seismic excitation. However,
the influences of the inhomogeneous support ground motion on the peak responses in this
example are not very significant. In order to clarify the influences of the inhomogeneous
support ground motion on the peak responses of the non-classically damped linear structural
systems, in consideration of large span structure is needed.

Example 2

Now the three-span continuous beam in Fig. 8 is considered, which has uniform mass and
stiffness properties and simple support. As shown in Fig. 8, the beam is discretized into eight
elements along each L = 40 m span and the mass of each element is lumped half at each
end of the element. Assume that E I/m = 4.28×105 m4/s2, where E I denotes the flexural
rigidity and m denotes the mass per unit length of the beam. The modal damping ratio is
assumed to be 5modes at first. The mid-span placements u1, u2 and the bending moment
M at the support 2 indicated in Fig. 8 are optioned for comparing the calculated results
from various methods and different cases. For the convenience of notation, these response
quantities are scaled and collected in a dimensionless response vector z defined as

z = [z1z2z3] = 103 ×
[

u1

L

u2

L

L M

E I

]

Now additional isolators are installed in the middle-bearings 2 and 3, which are simplified
as columns with low stiffness, E I = 1.48×109 N·m2 and short height, H = 0.3m equipped
with viscous dampers in parallel with each of the two columns respectively, thus the original
structure will be transformed into a non-proportionally damped system as that have been
done in example 1. In this example we also consider five cases as mentioned in example 1,
but in Case 2 to Case 4 we let vapp = 200 m/s and vs/α = 300 m/s. Table 10 lists the
modal periods and damping ratios of the first four modes for the non-classically damped linear

1u 2u

,EI m
1 2 3 4

M

40.00m 40.00m 40.00m

Fig. 8 Example structure

Table 10 Modal properties of the non-proportional damping structure

Modal number Modal periods (s) Modal damping ratios (%)

Exact Based on proportional
damping assumption

Exact Based on proportional
damping assumption

1 0.7131 0.7851 3.41 5.00
2 0.6955 0.7203 4.50 2.11
3 0.6867 0.4048 5.00 1.41
4 0.2582 0.2312 4.09 5.00
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system. Similarly, the corresponding results obtained from proportional damping assumption
are also listed in columns 3 and 5 of Table 10. It can be seen from Table 10 that both the period
and damping ratio of the corresponding proportional damping system comprise certain errors
compared to exact values calculated from non-classically damped system.

For this example, we still use Newmark-β numerical integration to solve Eq. 2, in which
we assume Mc = 0, Cc = 0 and the input motion is the same as example 1, i.e., the uniform
ground displacement of the selected El Centro record, the computational results zNewmark

are listed in the column 2 of Table 11. The corresponding results obtained from complex
mode superposition method according to Eq. 2 are listed in columns 3 and 4 of Table 11.
These results once more illustrate the analytical method for calculating seismic response
of non-classically damped linear system with multiple support excitations is correct. The
different results are given respectively in columns 3 and 4 according to whether considering
the damping matrix C in calculation of dynamic response component yd or not, it can be seen
that neglecting the damping forces on the right-hand of Eq. 6 will not produce large errors,
as shown in column 5 of Table 11, though the structure is non-classical damping system.

The peak responses of z1, z2 and z3 are listed in Table 12. The 3rd column lists the results
zC M S RS of non-classically damped linear system for each case calculated by Eq. 37, and the
4th column is the ratios obtained by calculating zC M S RS/zNewmark , in which the value of
zNewmark is listed in column 2 of Table 11. It can be seen that the results obtained by CMSRS

Table 11 Maximum responses of z1, z2 and z3

Response Eq. 2

zNewmark Complex mode superposition method

In consideration of damping Without consideration of damping Errors(%)

z1 12.71 12.71 12.72 0.09
z2 17.89 17.89 17.91 0.11
z3 8.02 8.02 8.04 0.26

Table 12 The peak response of the non-classical damping structure

Response Case CMSRS method Based on proportional damping assumption

zC M S RS
zC M S RS

zNewmark

zC M S RS
zCase1

zM S RS
zM S RS

zNewmark

zM S RS
zC M S RS

zM S RS
zCase1

z1 1 13.11 1.03 1 15.98 1.26 1.22 1
2 11.98 0.94 0.914 14.69 1.16 1.23 0.919
3 12.22 0.96 0.932 14.83 1.17 1.21 0.928
4 12.01 0.94 0.916 14.72 1.16 1.23 0.921
5 10.09 0.79 0.770 12.85 1.01 1.27 0.804

z2 1 17.96 1.00 1 20.68 1.16 1.15 1
2 16.67 0.93 0.928 19.27 1.08 1.16 0.932
3 16.70 0.94 0.930 19.29 1.08 1.16 0.932
4 16.68 0.93 0.928 19.31 1.08 1.17 0.933
5 14.11 0.79 0.786 17.51 0.98 1.24 0.847

z3 1 8.53 1.06 1 10.86 1.35 1.27 1
2 7.34 0.92 0.861 9.44 1.18 1.29 0.869
3 7.44 0.93 0.873 9.54 1.19 1.28 0.878
4 10.74 1.34 1.259 12.95 1.61 1.21 1.192
5 24.68 3.00 2.893 31.64 3.95 1.28 2.913
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method will not produce great errors except the Case 5. Furthermore, the 5th column gives
the ratios of each case and the Case 1. It can be seen that for the displacement response z1 and
z2, the results for the different cases are close each other except bending moment response
z3 in Case 5 that means the internal force responses are more sensible than displacement
responses as observed in references (Der Kiuerghian, 1991, 1992, 1997).

Moreover, the results zM S RS based on the proportional damping assumption are listed in
column 6, which is calculated by MSRS method (Der Kiuerghian, 1991, 1992), and the ratio
zM S RS/zNewmark is listed in column 7. For the convenient to illustrate the effect of adopt-
ing proportional damping assumption on the structure response, the ratios zM S RS/zC M S RS

is showed in column 8. It can be seen that the results of adopting proportional damping as-
sumption will be greater than that of CMSRS method, which means the proportional damping
assumption overestimate both the displacement and internal force response in this example.
The amplitude of overestimation normally reaches 10 percent more or less except the moment
responses z3 in Case 2 and Case 3 where the ratio zM S RS/zC M S RS mostly reaches 1.29 as
shown by bold figures in Table 12 in this example. In addition, the ratios of each case and
Case 1 based on proportional damping assumption are listed in column 9. Compare these
results, we found that the results calculated by proposed CMSRS method is closer to exact
solution. However this result is gotten from one particular example. So we can not gain the
general rule about the possible errors caused by proportional assumption in dealing with
seismic responses of non-classically damped linear structural system subjected to multiple
supports ground motion excitation. In order to get more general conclusion further study about
practical examples seems to be very necessary. However in the case of non-proportionally
damped linear structural system with multiple supports seismic excitation, using the proposed
CMSRS method is not only more reasonable but also excludes the unknown errors due to
proportional damping assumption. In addition the influences of the inhomogeneous support
ground motion on the peak responses of the non-classically damped linear structural systems
are not very great in this example but this is not particular for the discussed non-classically
damped linear structural systems. The main purpose of us is to discuss and compare the
difference between proportional and non-proportional damping systems, the detailed discuss
about the influences of inhomogeneous support ground motion on the peak responses beyond
the scope of this paper and retaining for further study.

Conclusions

According to theoretical analysis and numerical examination in this paper, some conclusions
can be obtained as follows:

1. For the non-classically damped linear system, a new response spectrum method is pro-
posed for seismic response analysis of multiple-support structures subjected to spatially
varying ground motion, which is named CMSRS method. This method is based on fun-
damental principles of random vibration theory and properly accounts for the effect of
correlation between the support motions as well as between the modal displacement and
velocity responses of structure, and the three new cross-correlation coefficients or cross
covariance especially for the non-classically damped structures with multiple-support
excitations are deduced in this article. Furthermore, for non-proportionally damped long
span linear structures the proposed CMSRS method provides a reasonable estimate of the
peak response in term of peak ground motions and response spectra at the support points

123



Bull Earthquake Eng (2008) 6:261–284 283

and the coherency function and excludes possible errors caused by using proportional
damping assumption.

2. For the non-classically damped linear structure, the cross term representing the cross
covariance between the pseudo-static and dynamic components is also usually small in
relation to the individual covariance responses of pseudo-static and dynamic components.

3. The deduced proportional damping system through neglecting all the off-diagonal
elements in transformed damping matrix in modal coordinates of the non-classically
damped linear system will bring some unknown errors in the case of subjected to spa-
tially excited inhomogeneous ground motion.

4. The CMSRS method is examined by using time history analyses in two numerical
examples of non-classically damped structures in consideration of the coherences spa-
tially variable ground motion. The results of CMSRS method in two exemplary structures
illustrate good coincidence with that of time history analyses for displacement responses
but for internal force responses still imply certain errors which might be unavailable in
response spectrum mode superposition method.

5. In the discussed two simple examples, the influences of the inhomogeneous support
ground motion on the peak responses of the non-classically damped linear structural
systems are not very great. However this result draws just from these particular example
and we can not assert what situation will be seen in other examples. In order to clarify
the influences of the inhomogeneous support ground motion on the peak responses of
the non-classically damped linear structural systems, more researches have to be done
in future.
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