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Abstract. This paper is concerned with testing the validity of the ground motions estimated
by combining a boundary integral equation method to simulate dynamic rupture along finite
faults with a finite difference method to compute the subsequent wave propagation. The vali-
dation exercise is conducted by comparing the calculated ground motions at about 100 hypo-
thetical stations surrounding the pure strike-slip and pure reverse faults with those estimated
by recent ground motion estimation equations derived by regression analysis of observed
strong-motion data. The validity of the ground motions with respect to their amplitude, fre-
quency content and duration is examined. It is found that the numerical simulation method
adopted leads to ground motions that are mainly compatible with the magnitude and dis-
tance dependence modelled by empirical equations but that the choice of a low stress drop
leads to ground motions that are smaller than generally observed. In addition, the scatter in
the simulated ground motions, for which a laterally homogeneous crust and standard rock
site were used, is of the same order as the scatter in observed motions therefore, close to
the fault, variations in source propagation likely contribute a significant proportion of the
scatter in observed motions in comparison with travel-path and site effects.

Key words: attenuation relations, boundary integral equation method, finite difference
method, ground motion estimation equations, simulated ground motions, uncertainty

1. Introduction

Ground motions close to the fault are influenced directly by the rup-
ture process. Hereafter, these ground motions are termed ‘near-field’ or
‘near-source’ ground motions in agreement with common engineering seis-
mology terminology. Such rupture processes are very heterogeneous due
to the existence of asperities and barriers, the fault geometry, fault seg-
mentation and so forth. The rupture process can be simulated without
any hypotheses on rupture area, amount of slip, rupture time, rupture
directivity and slip-time function, but based on the mechanics controlled
by an initial condition and some stress-slip constitutive law on the fault
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(dynamic rupture simulation). Compared to kinematic source models that
are usually used for strong ground motion simulations, dynamic rupture
simulations can propose possible rupture scenarios of different magnitudes
under a given seismotectonic situation. This is a great advantage in evalu-
ating the resultant strong ground motion even though it is still difficult to
tune the model parameters.

The validity of simulations of seismic wave propagation from the
dynamic rupture simulation has been only verified at low frequencies for
near-field strong ground motion (Olsen et al., 1997; Peyrat et al., 2001;
Aochi and Fukuyama, 2002; Aochi and Madariaga, 2003). Olsen et al.
(1997) and Peyrat et al. (2001) simulate the 1992 Landers, California,
earthquake using a finite difference method (FDM) along a planar fault
on which dynamic rupture spontaneously propagates following a certain
stress-slip condition, and compare the synthetic and observed seismograms
in the range 0.07–0.5 Hz. Aochi and Fukuyama (2002) simulate the same
earthquake using a boundary integral equation method (BIEM) for spon-
taneous rupture propagation along a complex fault geometry and use
a discrete wavenumber method (DWM) (Bouchon, 1981) for consequent
wave propagation in a similar frequency range (0.05–0.3 Hz). Aochi and
Madariaga (2003) model the 1999 Izmit, Turkey, earthquake using a com-
bination of BIEM and FDM for the entire process from spontaneous
dynamic rupture propagation along a complex fault geometry to seismic
wave propagation in the near field, and display the synthetic seismograms
by applying a bandpass filter with cut-offs at 0.07 and 1 Hz. It was diffi-
cult to precisely reproduce seismograms even at a frequency of 1 Hz in
these simulations due to the existence of complexities in the source pro-
cess, medium heterogeneity and site effects. Therefore, we need to identify
for which range of frequencies our numerical scheme coupled with dynamic
rupture is valid for strong ground motion prediction by comparing it to
other common schemes that use kinematic or stochastic source models or,
as in this study, empirical ground motion estimation equations (GMEEs)
(commonly called attenuation relations).

Numerical stability and disturbance in FDM schemes have been well
studied, while those in the BIEM during dynamic rupture simulation are
rarely discussed. This is because macroscopic features such as rupture
velocity, rupture direction and slip distribution are the focus of current
seismological studies. In this article, we simulate seismic wave propaga-
tion using a FDM based on various rupture scenarios simulated by the
BIEM used by Aochi et al. (2000), Aochi and Fukuyama (2002) and
Aochi and Madariaga (2003). In contrast to point comparisons that have
been conducted for this method in the aforementioned articles, here we
check its general validity by comparing the simulated ground motions in
terms of their amplitude, frequency content and duration with motions
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predicted by GMEEs for a number of different strong-motion parame-
ters. The strong-motion parameters chosen are: peak ground acceleration
(PGA), peak ground velocity (PGV), response spectral acceleration for 5%
damping at five periods (SA), Arias intensity (AI) (Arias, 1970) and relative
significant duration (interval between 5 and 95% of total Arias intensity)
(RSD) (Trifunac and Brady, 1975). It is important to compare the scatter
within the simulations with that within observed data. Also, to check the
internal consistency of the simulated ground motions, we compare the cor-
relations between these ground-motion parameters using the simulated data
with those observed within real data.

2. Simulation Method

In this section, we discuss the simulation methods used in this study for
dynamic rupture of the fault and for the subsequent wave propagation.
Table I shows a list of model parameters in the lead author’s previous sim-
ulations with, for comparison, those used in this study.

2.1. dynamic rupture simulation using the BIEM

The BIEM is useful for simulations of the dynamic rupture propagation on
faults, because of its accuracy in stress-velocity evaluation around the crack
tip and its flexibility with respect to fault geometry thanks to the math-
ematical formulations beginning with the representative theorem of the
elastic medium. All previous simulations of dynamic rupture propagation
listed in Table I were computed using a 3D BIEM (Aochi et al., 2000) for-

Table I. List of model parameters used in previous and current simulations. From left to
right, (1) earthquake, (2) magnitude, (3) number of scenarios shown, (4) grid size in the
BIEM, (5) time step in the BIEM, (6) shear-wave velocity in the BIEM, (7) numerical
method for calculating seismic wave propagation after the BIEM simulation results, (8) dis-
played frequency range in near-field ground motions and (9) reference

Earthquake Mw No. �s �t Vs Method Frequency Reference
(m) (s) (km/s) (Hz)

Landers 7.2 4 750 0.060 3.52 DWM 0.05–0.3 Aochi and Fukuyama
(2002) and Aochi et al.
(2003)

Izmit 7.6 5 1000 0.083 3.54 FDM 0.07–1 Aochi and Madariaga
(2003)

Northridge 6.7 9 400 0.032 3.64 FDM <1 Aochi and Olsen (2004)
– 5.9–6.5 7 256 0.021 3.46 FDM Full range This study
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mulated in an infinite uniform elastic medium. The discretization within
BIEMs is not a discrete sampling procedure such as in FDMs, but a
mathematically strict formulation in which the slip velocity is constant on
a single squared grid during a single time step. We then carry out the con-
volutions (once in time, twice in space) for every concerned point in the
medium, so that calculation becomes more expensive for larger models. As
seen in Table I, the currently available computer resources (CPU time) limit
the BIEM resolution to, at best, a size of spatial cell on the earthquake
fault of 256 m for events of magnitudes between 5.9 and 7.6.

The rupture process in all these simulations like many others’ studies is
controlled by the form of slip-weakening friction law (Ida, 1972; Palmer
and Rice, 1973), which describes the evolution of fault strength during
fault slip (a more detailed explanation is given in the appendix). This law
contains a scale parameter Dc called the slip-weakening distance, which
was found to be of the order of 10 cm during the 1995 Kobe and the
1992 Landers earthquakes (Ide and Takeo, 1997; Olsen et al., 1997). From
the numerical point-of-view, this Dc value limits the simulation resolution
together with the cell size on the fault, that is, a smaller Dc requires a
‘numerically’ smaller cell size to preserve accuracy.

In modelling real earthquakes in previous studies, the results of the
BIEM were presented at 1 Hz, that is, in snapshots of every 1 s, because
the synthetic seismograms are compared up to 1 Hz with the observations,
like in many seismic inversion analyses of finite source models. With respect
to purely numerical issues, we should be able to model higher frequencies
(more detail) in the rupture process. This is an important objective of this
study.

2.2. wave propagation simulations

In previous studies (Table I), two methods (DWM and FDM) were used
for simulating seismic wave propagation from faults. The advantage of the
DWM is numerical accuracy over a wide range of frequencies, however the
medium structure is limited to stratified layers and it is time consuming to
calculate motions at many points. On the other hand, although FDMs are
not better with respect to numerical accuracy, they have the principal mer-
its of being able to treat any heterogeneous medium and in allowing vol-
umetric visualization of wave propagation without increasing the number
of numerical calculations. Added to these benefits, rapid computer devel-
opments since the 1990s have improved the various FDMs and they now
allow larger and larger calculations for practical applications. Thus in this
study we use a FDM for calculating the synthetic seismograms.

Our FDM, the same as in Aochi and Madariaga (2003) and Aochi and
Olsen (2004), is based on the standard formulation of the fourth-order
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staggered grid in a 3D isotropic elastic medium (Olsen, 1994; Graves,
1996). We follow the same treatments of free surface and attenuation as
Graves (1996), the same interface between BIEM and FDM as Olsen et al.
(1999) and the same absorbing boundary condition as Collino and Tsogka
(2001). The numerical stability of the FDM is easy to check for a unit
point source with a known frequency content. Our dynamic source model
has complex frequency content, which may include both physical signals
and numerical noise, therefore there are no analytical equations available.
Unlike a point source model, our rupture area evolves spatially with time
and the slip history varies along the fault so that it is almost impossible
to analytically estimate the frequency content of the radiated seismic wave
at the source. This is why we statistically compare near-field synthetic seis-
mograms with empirical relations. This procedure will allow us to distin-
guish different effects at various frequencies due to the source mechanism,
the path or simply numerical disturbance.

3. Scenarios Simulated

In this article, we consider a blind fault system consisting of a single planar
fault with different fault parameters (strike, dip and rake) embedded in an
elastic medium. Figure 1 shows all the configurations of the fault orienta-
tion and the location of hypothetical seismic stations, where the simulated
ground motions are examined. Table II gives details of the fault parame-
ters for each simulated scenario. The reason why the same fault dimension
have different magnitudes (Scenarios 4–6) is the effect of dynamic rupture
due to differing slip directions. The depth of the top of the fault is fixed
at 1 km and a hypocenter location is assumed at the bottom corner of each
fault. This allows us to clearly study the asymmetric effect of dynamic rup-
ture propagation. Our simulations consist of two parts: dynamic rupture
progress using the BIEM and seismic wave propagation using the FDM.
Below we show some examples of simulated wave propagation and discuss
the simulated ground motions, which are our interest in this paper. Details
of rupture simulation are given in the appendix.

Synthetic seismograms are calculated, based on the seven earthquake
simulations, at imaginary stations located every 5 km on the ground sur-
face (Figure 1). A simple 1D crustal model (Table III) is assumed in order
to avoid any unnecessary numerical disturbance due to the complexity in
wave propagation. Under our available computational environment (Xeon
3.06 GHz ×24 at maximum), we can afford to calculate 32 million grid
points (corresponding to 400 × 400 × 200) including a finite source model.
We simulate ground motions in two regions for one rupture simulation by
shifting the calculating region as shown in Figure 1, simply because the
total area is too large to handle in one run. Through our preliminary sim-
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Figure 1. Map of fault orientations and the location of points where the ground
motions are examined. Broken lines show the real model area simulated each time
using the FDM, stars represent hypocenters assumed in each simulation and dots are
the stations. Also see Table II.

Table II. Simulation setting tested in this study. Fault length (L), width (W ), strike
(φ), dip (δ), rake (λ) and the obtained moment magnitude (Mw). Depth to the upper
edge of the faults is 1 km (see also Figure 1)

No. L (km) W (km) φ(◦) δ(◦) λ(◦) Mw

1 8.192 8.192 20 90 180 5.9
2 8.192 8.192 45 45 90 5.9
3 8.192 8.192 75 25 90 5.9
4 16.384 8.192 20 90 180 6.2
5 16.384 8.192 45 45 90 6.1
6 16.384 8.192 75 25 90 6.1
7 32.768 12.288 30 90 180 6.5
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Table III. Crustal structure model used in
the FDM simulations

Depth (km) Vp (m/s) Vs (m/s) Q

0 4000 2000 60
1 6000 3264 300

ulations (Aochi and Douglas, 2005), it is found that FDM grid size should
be much smaller than BIEM grid size, so that we choose a FDM grid size
of 100 m in this study (time step is set to be 0.005 s). The BIEM-FDM
interface at 10 Hz is also found to be sufficient for discussing our target fre-
quency up to 10 Hz, which may be generated in our dynamic rupture sim-
ulation, but in reality the given FDM grid size strictly limits the reliable
frequency up to a few Hz. We prefer not to apply any filtering to the calcu-
lated seismograms after testing some low-pass filters to confirm no signifi-
cant high-frequency oscillations, although seismologists usually focus only
on a limited frequency range. This is because one of our main purposes
is to know the practical limitation of the BIEM-FDM hybrid method and
because the raw calculation results are required for further simulations of
site effects.

Figure 2 shows two examples of the numerical simulations. The first
example (scenario 4) shows the typical features of this sort of strike-slip
fault: symmetry with respect to the fault trace, strong directivity in the
northern direction and small amplitude of the vertical component (z). On
the other hand, the second example (scenario 5) demonstrates a typical fea-
ture of reverse faulting: the appearance of a large vertical component on
the hanging wall. Figure 3 shows simulated velocity time-histories for this
scenario, again showing strong directivity effects close to the source.

4. Validation of the Simulation Method

It is important to validate the simulated motions with respect to their
characteristics in terms of amplitude, frequency content and duration so
that they can be used with confidence for non-linear engineering anal-
ysis that requires time-histories that are realistic with respect to these
three characteristics. Anderson (2004) proposes a quantitative measure of
the goodness-of-fit between synthetic and observed accelerograms using
ten different criteria that measure different aspects of the motions. The
ground motion simulations discussed here are for simplified rupture sce-
narios and ideally located stations therefore it is impossible to compare
the simulations directly with observations like has been done in the past
(e.g., Silva et al., 1999; Aochi and Madariaga, 2003; Douglas et al., 2004).



218 H. AOCHI & J. DOUGLAS

Figure 2. Snapshots of three components of simulated ground motion velocity for Sce-
narios 4 (left) and 5 (right).

Therefore, in order to validate the simulations they are compared with
predictions from ground-motion models derived from regression analysis
of observed data (e.g., Douglas, 2003). Since here the simulated ground
motions are not compared with other time-histories but only with esti-
mated strong-motion parameters it is not possible to use all the ten mea-
surements Anderson (2004) proposes. However, a similarly broad range of
parameters is chosen to measure the match between different aspects of
simulated and observed motions. An optimum evaluation requiring limited
computation would investigate a series of strong-motion parameters that
are poorly correlated (orthogonal), and hence measure different aspects of
ground motions, but which are ultimately useful as input to fragility curves
for seismic risk assessment. The estimates from the GMEEs are assumed to
model the expected average ground motions for a given magnitude, distance
and mechanism and the expected scatter in ground motions is modelled
by the associated standard deviation of the equations used. Table IV gives
details of the equations selected.
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Figure 3. Velocity time-histories (NS component) simulated for Scenario 5. The box
represents the surface projection of the rupture and the star shows the location of the
epicentre.

All the equations selected use moment magnitude (Mw) therefore no
magnitude conversion was required. Distances to the surface projection
of the fault and to the rupture plane of the fault were calculated for all
the stations and the seven scenarios. All motions were computed for rock
conditions since no near-surface low-velocity layers were included in the
simulation. To obtain the empirical parameters, we directly analyse the raw
synthetic seismograms without applying any filtering.

In this article, residuals, ε, are defined as: ε = log10(yemp)− log10(ysyn)=
log10(yemp/ysyn), where yemp is the strong-motion parameter predicted using
the empirical equations and ysyn is the strong-motion parameter from the
synthetic accelerogram.
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Table IV. Strong-motion parameters investigated and the empirical equations used for their
prediction

Parameter Equation Distance metric Components Notes

PGA Ambraseys et al. df L, V

(2005a, b)
PGV Campbell (1997, ds M, V Since the faults considered

2000, 2001) here are at depths of 1 km,
ds equals dr.

SA Ambraseys et al. df L, V For natural periods 0.1, 0.2,
(2005a, b) 0.5, 1.0 and 2.0 s and ratio

of critical damping of 5%.
AI Travasarou et al. dr M

(2003)
RSD Abrahamson and dr M, V

Silva (1996)

where df is distance to the surface projection of rupture (Joyner–Boore distance), dr is rup-
ture distance, ds is seismogenic distance, L is larger horizontal component, M is mean of the
horizontal components and V is vertical component.

4.1. residuals

Synthetic accelerograms are rarely shown for such a model when this type
of FDM is used. However, PGA is one of the parameters most of inter-
est to engineering seismologists. Figure 4 shows the residuals between the
empirical estimates and the simulations for horizontal PGA with respect
to scenario and distance. We note again that no filtering process is applied
to the calculated accelerograms. Thus we need to careful consider the fre-
quency range for which the simulations are valid.

Table V gives the computed mean bias and standard deviations for
PGA. From Figure 4 it can be seen that the residuals are reasonably con-
stant with scenario and distance and hence the dependence on magnitude,
distance and mechanism of the simulations is similar to that modelled by
the GMEE. However, the absolute value of the PGA is significantly under-
estimated (a factor of about four) by the simulations. Part of this underes-
timation is due to the lack of shallow low-velocity layers within the crustal
model, which are common even at stations on rock and which amplify
short-period motions (Boore and Joyner, 1997). The main reason for this
underestimation originates from our choice of fault rupture parameters, as
explained in detail in Section 4.2.

The PGV is the mostly favoured parameter to display FDM simula-
tions, because the method is formulated in terms of stress-velocity. Figure 5
shows the residuals between the empirical estimates and the simulations for
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Figure 4. Residuals between the empirical estimates and the simulations for horizontal
PGA with respect to scenario and distance to the surface projection of rupture.

Table V. Computed means (µ) and standard deviations (σ ) of the residuals
for the investigated parameters and the standard deviations estimated using
observed data (from the selected ground motion estimation equations) (σemp)

Horizontal Vertical

Parameter µ σ σemp µ σ σemp

PGA 0.62 0.35 0.26−0.30 0.56 0.32 0.28
PGV 0.41 0.23 0.17−0.24 0.23 0.32 0.22−0.27
SA(0.1 s) 0.67 0.39 0.27−0.32 0.82 0.38 0.31
SA(0.2 s) 0.71 0.48 0.28−0.33 0.76 0.29 0.26−0.29
SA(0.5 s) 0.84 0.38 0.30−0.35 0.69 0.35 0.30
SA(1.0 s) 0.71 0.26 0.33 0.45 0.45 0.30
SA(2.0 s) 0.41 0.24 0.31 0.39 0.42 0.32
AI 1.13 0.71 0.46−0.53 – – –
RSD −0.17 0.14 0.21 −0.23 0.20 0.20

horizontal PGV with respect to scenario and distance and Table V gives
the computed mean bias and standard deviations for PGV. The residuals
again show no dependence on scenario or distance thereby showing that
the dependence on magnitude, distance and mechanism within the simu-
lated ground motions is similar to that within the GMEE and consequently
similar to that observed in reality. However, again the absolute value of the
ground motion is underestimated (see Section 4.2).

Similar results are found for SA and AI (see Table V). The residuals of
AI show a dependence with distance (see Figure 6), which is thought to be
due to strong directivity effects within the simulations that are not mod-
elled by the selected GMEE.
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Figure 5. Residuals between the empirical estimates and the simulations for horizontal
PGV with respect to scenario and distance to the seismogenic rupture.
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Figure 6. Residuals between the empirical estimates and the simulations for horizontal
AI with respect to scenario and distance to the rupture.

Figure 7 shows the residuals between the empirical estimates and the
simulations for horizontal RSD with respect to scenario and distance.
Table V gives the computed mean bias and standard deviations for RSD.
Table V and Figure 7 show that the relative significant durations of the
simulations closely match those predicted by the empirical equation. This
is in contrast to the amplitude strong-motion parameters discussed above;
relative significant duration is not strongly affected by the choice of fault
rupture parameters and hence the predictions from the simulations are
good. This finding that the duration of strong ground motions can be well
simulated is important because duration effects are becoming increasingly
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Figure 7. Residuals between the empirical estimates and the simulations for horizontal
RSD with respect to scenario and distance to the rupture.

discussed with respect to their importance for evaluating how damaging
ground motions are to structures (e.g., Bommer et al., 2004; Chai, 2005).

4.2. underestimated absolute values in simulations

As shown in the previous section, our simulations give relatively small
average values with respect to those expected for all parameters, except
RSD. The reason for this underestimation is the choice of fault rupture
parameters given in Table VIII in the appendix. Stress drop, defined by the
difference of initial shear and residual stresses, is 3 MPa (30 bar) in all the
simulations. This value is quite reasonable for interplate earthquakes while
this should be larger, about 10 MPa (100 bar), for intraplate earthquakes
(Kanamori and Anderson, 1975). The geometrical configuration of our
simulation (near-field stations) is often seen for intraplate earthquakes, and
the GMEEs chosen were derived from such data. It is found that the aver-
age levels of ground-motion parameters are well estimated when a value of
10 MPa (100 bar) is used for the stress drop (Aochi and Douglas, 2005).
Even when a higher stress drop is used, the standard deviations obtained
remain between 0.2 and 0.3 for most parameters. Hence, we believe that
this scatter is significant as an universal feature of such numerical simula-
tions, therefore we discuss this aspect in the next section.

4.3. scatter in simulations

Table V shows that all the computed standard deviations of the resid-
uals between the synthetics and the empirical equations are similar to
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those computed between observed motions and the empirical equations.
By adjusting the fault rupture parameters we are able to vary the abso-
lute values of the computed parameters, however, the scatter in simulations
always exists with a standard deviation of about 0.2–0.3. When we look
carefully at synthetic seismograms, large amplitudes are observed in the for-
ward direction of rupture propagation, as reported in many studies (e.g.
Somerville et al., 1997). In contrast, it should be noted that amplitudes
are much smaller in the backward direction. Although this is not so often
stated, these small amplitudes cause some of the large residuals observed.

Since the effect of a heterogeneous crust and variations in local site con-
ditions are not included within the simulations, this finding of similar scat-
ter to observational studies suggests that a larger proportion of scatter in
real near-source ground motions is due to source effects than to travel path
or local site effects. If variations in site effects are superimposed onto the
simulated bedrock motions then the scatter in the simulations will increase.

4.4. correlations between strong-motion parameters

Another requirement for simulated ground motions is that the correlations
between strong-motion parameters computed from the synthetics are sim-
ilar to those observed in real strong-motion records. This is important
because if the simulated ground motions are used as input to, for exam-
ple, a nonlinear analysis of a structure or a nonlinear site response analy-
sis then in order to obtain results consist with what could occur in practice
correlations between the amplitude, frequency and duration characteristics
of the synthetics (characterised by the strong-motion parameters) must be
realistic.

The data used to derive the equations in Ambraseys et al. (2005a),
which consists of 595 individually corrected triaxial strong-motion records,
was used to compute correlation coefficients between all the strong-motion
parameters investigated here (see Table VII). Comparing Table VI (from
the simulated data) and VII shows that similar correlations are observed
within the simulated data and within the observed data, e.g. weak negative
correlation between duration and amplitude measures and strong positive
correlations between peak ground acceleration and short period spectral
accelerations. Similar results were obtained for vertical components.

5. Conclusions

In this article, we use seven dynamic rupture scenarios, simulated using
a BIEM, of a finite fault as input to a FDM to simulate the generated
ground motions at about one hundred near-source locations. Next nine
strong-motion parameters that characterise the amplitude, frequency and
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Table VI. Computed correlation coefficients between strong-motion parameters computed
from the simulations (horizontal)

Parameter PGA PGV SA(0.1 s) SA(0.2 s) SA(0.5 s) SA(1.0 s) SA(2.0 s) AI RSD

PGA 1.00 0.92 0.95 0.88 0.82 0.72 0.71 0.86 −0.09
PGV 0.92 1.00 0.85 0.87 0.86 0.89 0.85 0.76 −0.14
SA(0.1 s) 0.95 0.85 1.00 0.79 0.76 0.70 0.65 0.84 −0.09
SA(0.2 s) 0.88 0.87 0.79 1.00 0.90 0.67 0.62 0.77 0.09
SA(0.5 s) 0.82 0.86 0.76 0.90 1.00 0.67 0.60 0.70 0.13
SA(1.0 s) 0.75 0.89 0.70 0.67 0.67 1.00 0.90 0.53 −0.30
SA(2.0 s) 0.71 0.85 0.65 0.62 0.60 0.90 1.000 0.53 −0.32
AI 0.86 0.76 0.84 0.77 0.70 0.53 0.53 1.00 0.05
RSD −0.09 −0.14 −0.09 0.09 0.13 −0.30 −0.32 0.05 1.00

Table VII. Computed correlation coefficients between strong-motion parameters computed
from the data of Ambraseys et al. (2005a) (horizontal)

Parameter PGA PGV SA(0.1 s) SA(0.2 s) SA(0.5 s) SA(1.0 s) SA(2.0 s) AI RSD

PGA 1.00 0.84 0.93 0.93 0.83 0.71 0.63 0.78 −0.26
PGV 0.84 1.00 0.73 0.79 0.90 0.92 0.90 0.73 −0.04
SA(0.1 s) 0.93 0.73 1.00 0.86 0.68 0.57 0.54 0.74 −0.29
SA(0.2 s) 0.93 0.79 0.86 1.00 0.77 0.64 0.57 0.80 −0.23
SA(0.5 s) 0.83 0.90 0.68 0.77 1.00 0.85 0.74 0.73 −0.10
SA(1.0 s) 0.71 0.92 0.57 0.64 0.85 1.00 0.87 0.64 0.04
SA(2.0 s) 0.63 0.90 0.54 0.57 0.74 0.87 1.00 0.60 0.11
AI 0.78 0.73 0.74 0.80 0.73 0.64 0.60 1.00 −0.04
RSD −0.26 −0.04 −0.29 −0.23 −0.10 0.04 0.11 −0.04 1.00

duration content of these motions are calculated for all records. Finally, the
residuals of these parameters with respect to estimates of the parameters
given by recent GMEEs for the chosen parameters are computed.

It is found that the strong-motion parameters from the simulations scale
similarly with respect to magnitude, source-to-site distance and mechanism
as observed data, however, the choice of a low stress drop in the BIEM
simulations leads to simulated ground motions that are, in general, lower
than those observed in reality. Relative significant durations of the simu-
lated motions match closely those estimated by the GMEEs at all distances
and for all scenarios. It is found that the scatter in the simulated ground
motions, for which a laterally homogeneous crust and standard rock site
were used, is of the same order as the scatter in observed motions. This
suggests that in the near-source region, variations in source propagation
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contribute a significant proportion of the scatter in observed motions in
comparison with travel-path and site effects. This scatter is not sensitive
to the chosen fault rupture parameters, unlike the absolute values of the
ground-motion parameters implying that the variations in near-field ground
motion originates from details of the rupture process on a finite fault.

In conclusion, the simulation method tested here (the boundary integral
equation method combined with a finite difference scheme) results in sta-
tistically compatible strong ground motion with similar magnitude, distance
and mechanism dependence to that observed in real data. However, fault
rupture parameters should be carefully chosen in future studies.

Acknowledgements

This study was funded by SIS3D and RISQSIS (two internal BRGM
research projects). Mr J. Hancock provided some useful advice on equa-
tions for the estimation of duration and also reviewed the first version of
the article, Ms F. O. Strasser gave us some useful suggestions on observed
periodic oscillations and Dr. J. A. Prieto-Salazar for his suggestions on
different aspects of this work. We thank two anonymous reviewers for their
valuable comments that improved the article.

Appendix

In this section, we detail the dynamic rupture simulations made using the
BIEM. The slip-weakening law used in dynamic rupture simulations is sim-
ply written as:

τ(�u)= τr + (τp − τr)

(
1− �u

Dc

)
H

(
1− �u

Dc

)
(1)

where τp and τr are peak and residual strength, Dc is again called the slip-
weakening distance, and H(·) is the Heaviside function. In all the simula-
tions of earthquakes with magnitudes about 7, the two important factors
(τp − τr) and Dc are taken to be roughly 5 MPa and 12.5 cm, respectively,
so that the resultant slip time functions on faults are similar and reasonable
with respect to various seismological inversion results. The parameters used
in this study are summarised in Table VIII, which are reasonable compared
to those used in previous studies. We begin the simulations in the manner
of Aochi and Ide (2004) who introduced a self-similar rupture growth with-
out any finite initial crack. This procedure is conducted in the 16×16 grids
surrounding the hypocenter.

One typical example (Simulation 4) is shown in Figure 8. In this exam-
ple the rupture begins at the bottom corner of the fault plane and pro-
gresses in a diagonal direction. As we do not assume any heterogeneity on
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Table VIII. Model parameters in the BIEM simulations

Parameter Value

P-wave velocity (Vp) 6000 m/s
Medium density (ρ) 2700 kg/m3

Rigidity (µ) 32.4 GPa
Grid size (�s) 256 m (512 m for simulation No.7)
Time step (�t) 0.043 s (0.085 s for simulation No.7)
Initial shear stress (τ0) 3 MPa
Yielding stress (τp) 5 MPa
Residual stress (τr) 0 MPa
Critical slip displacement (Dc) 12.5 cm (25 cm for simulation No.7)

Figure 8. Snapshots of rupture propagation simulated with BIEM (Simulation 4).

the fault, the rupture process is rather uniform and smooth. The variety
in fault dimension and orientation and in propagation process within the
simulations makes them suitable for the statistical tests conducted in this
paper. Note that the BIEM simulations are made in a finite, homogeneous
elastic medium, and then these results are used as input in the semi-finite,
heterogeneous medium of the FDM simulations.
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