## Effects of Nitrosyl Iron Complexes with Thiocarbamide and Its Aliphatic Derivatives on Activities of Ca<sup>2+</sup>-ATPase of Sarcoplasmic Reticulum and cGMP Phosphodiesterase L. V. Tatyanenko, N. Yu. Shmatko, N. A. Sanina, O. V. Dobrokhotova, I. Yu. Pikhteleva, A. I. Kotel'nikov, and S. M. Aldoshin

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 163, No. 1, pp. 65-68, January, 2017 Original article submitted April 6, 2016

> We studied the effects of water-soluble cationic dinitrosyl iron complexes with thiocarbamide and its aliphatic derivatives, new synthetic analogs of natural NO donors, active centers of nitrosyl [1Fe-2S]proteins, on activities of Ca<sup>2+</sup>-ATPase of sarcoplasmic reticulum and cGMP phosphodiesterase. Nitrosyl iron complexes [Fe(C<sub>3</sub>N<sub>2</sub>H<sub>8</sub>S)Cl(NO)<sub>2</sub>]<sup>0</sup>[Fe(NO)<sub>2</sub>(C <sub>3</sub>N<sub>2</sub>H<sub>8</sub>S)<sub>2</sub>]<sup>+</sup>Cl<sup>--</sup> (I), [Fe(SC(N(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub>(NO)<sub>2</sub>]Cl (II), [Fe(SC(NH<sub>2</sub>)<sub>2</sub>)<sub>2</sub>(NO)<sub>2</sub>Cl×H<sub>2</sub>O (III), and [Fe(SC(NH<sub>2</sub>)<sub>2</sub>)<sub>2</sub>(NO)<sub>2</sub>]<sub>2</sub>SO<sub>4</sub>×H<sub>2</sub>O (IV) in a concentration of 10<sup>-4</sup> M completely inhibited the transporting and hydrolytic functions of Ca<sup>2+</sup>-ATPase. In a concentration of 10<sup>-5</sup> M, they inhibited active Ca<sup>2+</sup> transport by 57±6, 75±8, 80±8, and 85±9% and ATP hydrolysis by 0, 40±4, 48±5, and 38±4%, respectively. Complex II reversibly and noncompetitively inhibited the hydrolytic function of Ca<sup>2+</sup>-ATPase (K<sub>1</sub>=1.7×10<sup>-6</sup> M). All the studied iron—sulphur complexes in a concentration of 10<sup>-4</sup> M inhibited cGMP phosphodiesterase function. These data suggest that the studied complexes can exhibit antimetastatic, antiaggregation, vasodilatatory, and antihypertensive activities.

> **Key Words:** sarcoplasmic reticulum Ca<sup>2+</sup>-ATPase; cyclic guanosine monophosphate phosphodiesterase; nitrosyl iron complexes

Nitrosyl iron complexes (NIC) of various structural types are hydrolyzed with the formation of NO in proton media [9] and constitute a new class of universal NO donors [2]. Isolation of NO and other degradation products can lead to various manifestations of biological activities of these complexes. We studied new NIC of the following composition:  $[Fe(C_3N_2H_8S)Cl(NO)_2]^0$   $[Fe(NO)_2(C_3N_2H_8S)_2]^+Cl^-$  (I),  $[Fe(SC(N(CH_3)_2)_2(NO)_2]$  C1 (II),  $[Fe(SC(NH_2)_2)_2(NO)_2]_2SO_4 \times H_2O$  (IV). Their synthesis and physicochemical characteristics, including NO donation activity, were described previously [7,8].

Active transport of calcium ions through the membrane of sarcoplasmic reticulum (SPR) is realized at the expense of energy of ATP hydrolysis catalyzed by SPR Ca<sup>2+</sup>-ATPase. Inhibition of Ca<sup>2+</sup> transport modifies the ratio of intra- to extracellular Ca<sup>2+</sup>, this preventing the formation of clots and adhesion of meta-static cells to capillary endothelium [5] and eventually preventing metastatic growth [3,4,6].

Inhibition of cGMP phosphodiesterase (PDE) leads to accumulation of cGMP, a secondary messenger regulating vascular tome and exhibiting antiaggregation activity *in vivo* [1].

We study the effects of new NIC on activities of SPR Ca<sup>2+</sup>-dependent ATPase and cGMP PDE.

## MATERIALS AND METHODS

The following reagents were used: cGMP, nucleotidase (cobra venom), ATP (Sigma; without additional purification), histidine, human albumin, imidazole,

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia. *Address for correspondence:* kotel@icp.ac.ru. I. Yu. Pikhteleva

| Compound | Active Ca <sup>2+</sup> transport |                   |                    | ATP hydrolysis     |                    |                   |
|----------|-----------------------------------|-------------------|--------------------|--------------------|--------------------|-------------------|
| index    | 10 <sup>4</sup> M                 | 10 <sup>5</sup> M | 10 <sup>-6</sup> M | 10 <sup>-4</sup> M | 10 <sup>-5</sup> M | 10 <sup>6</sup> M |
| I        | 100±10*                           | 57±6*             | 19±2               | 100±10*            | 0                  | 0*                |
| II       | 100±10*                           | 75±8*             | 56±6*              | 100±10*            | 40±4               | 28±3*             |
| Ш        | 100±10*                           | 80±8*             | 19±2               | 100±10*            | 48±4*              | 28±3*             |
| IV       | 100±10*                           | 85±8*             | 28±3*              | 100±10*            | 38±3               | 17±2              |

**TABLE 1.** Effects of NIC in Studied Concentrations on Inhibition of SPR Ca<sup>2+</sup>-ATPase Activity (% of control; n=3-6; M±m)

Note. \*p<0.05 in comparison with the control.

DMSO, EDTA, trichloroacetic acid, sucrose,  $MgCl_2$ , NaCl, KCl, CaCl<sub>2</sub>, sodium oxalate, and ammonium molybdate (MoNH<sub>4</sub>; Reachim) after appropriate additional purification.

Ca<sup>2+</sup>-ATPase of SPR was isolated from rabbit hind paw white muscles. Specific activity of Ca<sup>2+</sup>-ATPase was 15  $\mu$ mol/mg protein/min. Hydrolytic activity of Ca<sup>2+</sup>-ATPase was calculated from the slope of ATP hydrolysis kinetic curve.

Inhibition of the enzyme hydrolytic activity was calculated by the formula:

$$I=100(A_0-A)/A_0,$$

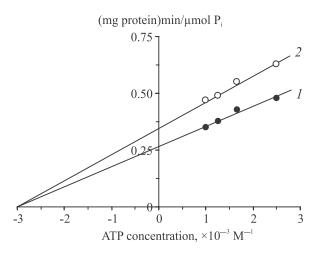
where I is activity,  $A_0$  and A are specific content of inorganic phosphorus (P<sub>i</sub>) in the control and experimental (in the presence of the complex) samples.

The increment of  $Ca^{2+}$  concentration was evaluated by the kinetics of their absorption by SPR vesicles. The kinetics of SPR  $Ca^{2+}$ -ATPase inhibition was evaluated by the dependence of reaction rate on substrate concentration (ATP) in the presence of  $10^{-5}$  M NIC II and without it.

The reversibility of NIC I-IV effect was evaluated by dialysis of SPR Ca<sup>2+</sup>-ATPase buffer solution containing NIC I-IV in a concentration of 10<sup>-5</sup> M against a 100-fold excess of NIC-free buffer for 24 h at 4°C. cGMP PDE was isolated from Wistar rat brain cortex. Activity of cGMP PDE was evaluated by the level of inorganic phosphorus released from GMP after addition of nucleotidase.

The effects of NIC on activities of SPR  $Ca^{2+}$ -ATPase and cGMP PDE were studied after 3-min preincubation of the preparations with the enzyme. All the studied NIC were prepared in argon medium before addition to the reaction mixture.

## RESULTS


NIC I-IV in a concentration of  $10^{-4}$  M inhibited active transport of Ca<sup>2+</sup> and hydrolysis of ATP by 100% (Table 1). In a concentration of  $10^{-5}$  M, they inhibited active Ca<sup>2+</sup> transport by 57-85% and to a lesser extent (by 19-56%) hydrolysis of ATP, thus uncoupling the hydrolytic and transporting functions of the enzyme. This was paralleled by changes in the ratio of extrato intracellular calcium ions (normally ATP:Ca 1:2), which disturbed platelet aggregation and their binding with metastatic tumor cells and prevented adhesion of these cells to the vascular walls [5].

The effects of dialysis on SPR  $Ca^{2+}$ -ATPase activity (Table 2) in the presence and absence of NIC confirmed reversible effect of the studied NIC on the

**TABLE 2.** Effects of NIC (0.01 mM) on Hydrolytic and Transporting Function of SPR Ca<sup>2+</sup>-ATPase before and after Dialysis (% of control; n=3;  $M\pm m$ )

| Compound index | Before dia                | lysis          | After dialysis            |                |  |
|----------------|---------------------------|----------------|---------------------------|----------------|--|
|                | Active transport of Ca2++ | ATP hydrolysis | Active transport of Ca2++ | ATP hydrolysis |  |
| 1              | 57±8                      | 0              | 0*                        | 0              |  |
| II             | 75±8                      | 40±4           | 0*                        | 0*             |  |
| III            | 80±8                      | 48±4           | 20±2*                     | 0*             |  |
| IV             | 85±8                      | 38±3           | 25±3*                     | 0*             |  |

Note. \*p<0.01 in comparison with the corresponding value before dialysis.



**Fig. 1.** Changes in the rate of ATP hydrolysis by SPR Ca<sup>2+</sup>-ATPase at different substrate concentrations under the effect of NIC II (Lineweaver—Burk coordinates) at different concentrations of ATP substrate without NIC (1) and in the presence of NIC II in a concentration of  $10^{-5}$  M (2).

**TABLE 3.** Effects of NIC on Inhibition of cGMP PDE Activity (% of control; *n*=3-6; *M*±*m*)

| Compound | Concentration, M |       |      |  |  |
|----------|------------------|-------|------|--|--|
| index    | 10-4             | 10—5  | 10-6 |  |  |
|          | 82±8*            | 28±3* | 15±2 |  |  |
| Ш        | 59±6*            | 25±3* | 0    |  |  |
| Ш        | 87±9*            | 23±2* | 40±4 |  |  |
| IV       | 87±9*            | 37±4* | 25±3 |  |  |

Note. \*p<0.05 in comparison with the control.

function of SPR Ca<sup>2+</sup>-ATPase, this indicating their noncovalent binding to the enzyme.

The inhibition constant ( $K_i$ ) was calculated from the maximum rates of ATP hydrolysis for NIC II added to SPR Ca<sup>2+</sup>-ATPase. The complex noncompetitively inhibited the hydrolytic function of SPR Ca<sup>2+</sup>-ATPase with Ki=1.7×10<sup>-6</sup> M (Fig. 1). This fact suggested that NIC II did not bind to the active center of the enzyme. Presumably, NIC II interacted with SPR membrane and modified its structure and function.

All the studied NIC inhibited the function of cGMP PDE (Table 3), this suggesting the antiaggre-

gation, antihypertensive, and vasodilatation activities of these complexes determined by accumulation of secondary messenger cGMP [1].

These data recommend NIC I-IV for further studies on animals as prospective drugs with antimetastatic, antiaggregation, and antihypertensive activities [1-4].

## REFERENCES

- 1. Granik VG, Grigor'ev NB. Nitrogen Oxide (NO). New Way of Drug Development. Moscow, 2004. Russian.
- Zhukova OE, Sanina NA, Fetisova LV, Gerasimova GK. Cytotoxic effect of nitrosyl iron complexes on human tumor cells in vitro. Ross. Bioter. Zh. 2006;5(1):14-20. Russian.
- Tatyanenko LV, Konovalova NP, Bogdanov GN, Dobrokhotova OV, Fedorov BS. Inhibition of active transport of calcium ions by PT(IV) and PD(II) metal complexes. Correlation between the process and the inhibition of growth of experimental metastases. Biomed. Khimiya. 2006;52(1):52-59. Russian.
- Tat'yanenko LV, Konovalova NP, Dobrokhotova OV, Pikhteleva IYu, Mishchenko DV, Fedorov BS, Vystorop IV. Effect of cyclic hydroxamic acids derived from glycine and D,L-alanine on activity of Ca<sup>2+</sup> Mg<sup>2+</sup>-ATPase hydrolases of sarcoplasmic reticulum and cyclic guanosine monophosphate phosphodiesterase. Pharm. Chem. J. 2013;47(5):235-258.
- Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990;50(19):6130-6138.
- Konovalova NP, Volkova LM, Tatyanenko LV. Kotelnikova RA, Yakushchenko TN, Kagiya TV. Inhibitory effect of radiosensitizer AK-2123 on experimental hepatic metastases and Ca<sup>2+</sup> active transport. Neoplasma. 1997;44(6):361-365.
- Sanina NA, Aldoshin SM, Shmatko NYu, Korchagin DV, Shilov GV, Knyazkina EV, Ovanesyan NS, Kulikov AV. Nitrosyl iron complexes with enhanced NO donating ability: synthesis, structure and properties of a new type of salt with the DNIC cations [Fe(SC(NH2)2)2(NO)2]+. New J. Chem. 2015;39:1022-1030.
- Sanina NA, Aldoshin SM, Shmatko NYu, Korchagin DV, Shilov GV, Ovanesyan NS, Kulikov AV. Mesomeric tautomerism of ligand is a novel pathway for synthesis of cationic dinitrosyl iron complexes: X-ray structure and properties of nitrosyl complex with thiourea. Inorg. Chem. Comm. 2014;49:44-47.
- Sanina NA, Syrtsova LA, Shkondina NI, Rudneva TN, Malkova ES, Bazanov TA, Kotel'nikov AI, Aldoshin SM. Reactions of sulfur-nitrosyl iron complexes of "g=2.03" family with hemoglobin (Hb): kinetics of Hb-NO formation in aqueous solutions. Nitric oxide. 2007;16(2):181-188.