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We studied the modulating role of cardiac myosin-binding protein C (cMyBP-C) in tropo-
myosin regulation of the actin—myosin interaction. The effect of cMyBP-C on the velocity 
of actin-tropomyosin fi lament sliding over cardiac and slow skeletal myosins was evaluated 
using in vitro motility assay. The effect of cMyBP-C on the actin-tropomyosin fi laments sli-
ding depended on the type of myosin. The regulatory effect of cMyBP-C differs for cardiac 
and slow skeletal myosin because of the presence of specifi c essential light chain (LC1sa) in 
slow skeletal myosin isoform.
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Thick fi lament of striated muscles in vertebrates com-
prises except contractile (actin and myosin) and regu-
latory (troponin and tropomyosin) proteins also other 
proteins such as myosin-binding protein C (MyBP-
C). Three isoforms of MyBP-C have been identifi ed. 
Cardiac isoform of protein C (cMyBP-C) is now in-
tensively studied, because some hereditary cardiomy-
opathies (familial hypertrophic cardiomyopathy) are 
associated with mutations in the gene encoding this 
protein [9].

cMyBP-C molecule consists of 11 immunoglobu-
lin and fi bronectin-like domains. N-terminal C0, C1, 
and C2 domains and the regulatory M-domain bind to 
actin and/or to myosin S2 fragment; while C-terminal 
domains C7-C10 bind to thick fi lament [2]. cMyBP-
C participates in the regulation of heart muscle con-
traction [2,5,12]. Structural data obtained with small 
angle X-ray scattering [15] suggest that cMyBP-C and 
tropomyosin compete for binding with actin. It was 
found that the C0-domain of N-terminal fragment with 
MyBP-C activates thin fi lament via displacement of 
tropomyosin from its inhibitory position on actin to its 
“open” state [2,5].

Here we studied the modulating role of cMyBP-C 
in tropomyosin regulation of the actin—myosin inter-
action. Using in vitro motility assay [1,6,10] we evalu-
ated the infl uence of cMyBP-C on actin-tropomyosin 
fi lament sliding velocity over cardiac and skeletal slow 
myosin.

MATERIALS AND METHODS

Actin was isolated from m. psoas of rabbit using 
standard technique [7]. Cardiac tropomyosin was 
isolated from the left ventricle of bovine heart 
[13]. Rabbit m. semimembranous containing up to 
80-90% of slow isoform of skeletal myosin served as 
the source of slow skeletal myosin [11]. Skeletal and 
cardiac myosin from the left ventricle of rabbit heart 
was prepared by standard method [4] and stored in 
50% glycerol at -20oC. cMyBP-C was isolated from 
chicken heart by the method [3] with modifica-
tions [12].

The actin-tropomyosin fi lament was reconstructed 
by mixing 400 nM rhodamine-phalloidin-labeled fi la-
mentary actin (F-actin) and 100 nM tropomyosin at 
4oC in AB buffer. AB buffer contained (in mM): 25 
KCl, 25 imidazole, 4 MgCl2, 1 EGTA, 10 dithiothreitol 
(pH 7.5).
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The in vitro motility assay was conducted as 
de scribed previously [6] in a 50-μl flow cham-
ber with nitrocellulose surface of a standard de-
sign. First, 50 μl myosin solution in AB buffer with 
high ionic strength (0.5 M KCl) at concentration of 
200 μg/ml was incubated in a fl ow chamber for 2 min. 
Then, the chamber was washed successively with AB 
buffer with high ionic strength and AB buffer, and 
then, 50 μl BSA (0.5 mg/ml) was added for 1 min. 
Then, 500 μg/ml of unstained F-actin in AB buffer 
containing 2 mM ATP was added for 5 min to block 
nonfunctional myosin heads. The chamber was washed 
three times with AB buffer and then, 50 μl of 10 nM 
rhodamine-phalloidin-labeled F-actin or actin-tropo-
myosin fi lament was added for 5 min. Then the fi nal 
portion of AB buffer containing BSA (0.5 mg/ml), 
dithiothreitol (20 mM), ATP (2 mM), tropomyosin 
(100 nM), and oxygen-utilizing system (3.5 mg/ml 
glucose, 0.02 mg/ml catalase, 0.15 mg/ml glucose 
oxidase) was added. In the experiment with actin-
tropomyosin fi laments, AB buffer contained 100 nM 
of tropomyosin to prevent dissociation of tropomyosin 
from actin. cMyBP-C was added to the fl ow chamber 
together with myosin. The concentration of cMyBP-C 
was expressed as molar ratio to myosin. All the experi-
ments were performed at 28oC.

Fluorescent-labeled fi lament was visualized using 
an Axiovert 200 inverted epifl uorescence microscope 
with a 100x/1.45 oil Alpha Plan-Fluar lens (Carl Zeiss) 
and an EMCCD iXon-897BV camera (Andor Techno-
logy). In each fl ow chamber, 10 fi elds were recorded 
for 30 sec each.

The experiments were repeated three times. All 
values are presented as mean±standard deviation. Sig-
nifi cance of differences was assessed by using paired 
t test or nonparametric Mann–Whitney test at p<0.05.

RESULTS

Cardiac tropomyosin slows the velocity of F-actin 
(from 0.50±0.10 to 0.37±0.14 μ/sec) (Fig. 1). Addi-
tion of cMyBP-C in a physiological concentrations 
(cMyBP-C/myosin 1:5) did not affect the sliding ve-
locity of F-actin and increased the velocity of actin-
tropomyosin fi lament to 0.52±0.10 μ/sec.

To elucidate the molecular mechanisms of the ef-
fect of cMyBP-C on tropomyosin regulation of ac-
tin—myosin interaction, we compared the effects of 
cMyBP-C on the velocity of actin-tropomyosin fi la-
ment sliding over cardiac myosin and slow skeletal 
myosin. Slow skeletal myosin contains the same heavy 
myosin β-chain as V3 isoform of cardiac myosin, be-
cause this chain is encoded by the same gene [14], and 
differs from the cardiac myosin only by the composi-
tion of light chains. Tropomyosin did not affect the 

sliding velocity of F-actin over slow skeletal myosin. 
Addition of cMyBP-C in physiological concentrations 
also had no effect on the velocity of actin-tropomyosin 
fi lament (Fig. 2).

We showed that the addition of cMyBP-C in phys-
iological concentration increased the sliding velocity 
of actin-tropomyosin fi lament over cardiac myosin, 
and did not affect its sliding over slow skeletal myo-
sin. Thus, the effect of cMyBP-C on the movement 
of actin-tropomyosin fi laments depends on the type 
of myosin.

Fig. 1. Effect of cMyBP-C on the sliding of F-actin and actin-

tropomyosin filament on cardiac myosin. Concentrations of myosin 

and cMyBP-C loaded into the flow chamber were 300 μg/ml (0.65 

mM) and 20 μg/ml (0.13 mM), respectively, that corresponded to 

1:5 cMyBP-C:myosin molar ratio. *p<0.05 in comparison with control 

(without cMyBP-C).

Fig. 2. Effect of tropomyosin on sliding of F-actin and effect of 

cMyBP-C on the velocity of actin-tropomyosin filament sliding 

over slow skeletal myosin. Concentrations of myosin and cMyBP-

C loaded into the flow chamber were 300 μg/ml (0.65 mM) and 

20 μg/ml (0.13 mM), respectively, that corresponded to 1:5 cMyBP-C: 

myosin molar ratio.
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Slow skeletal myosin from rabbit muscles con-
tains light chains LC1sa, LC1sb, and sLC2. Light 
chains LC1sb and sLC2 are also expressed in the 
myocardium. It was shown [8] that functional charac-
teristics of slow fi laments depend on the molar ratio of 
LC1sa to LC1sb. We found that the regulatory effect 
of cMyBP-C for cardiac and skeletal myosin isoforms 
differed due to the presence of specifi c essential light 
chain (LC1sa) in skeletal myosin isoform.

Thus, the effect of cMyBP-C on tropomyosin 
regulation is related to the type of myosin, namely 
amino acid sequence of myosin light chains. These 
data clarify some regulatory mechanisms of myocar-
dial contractility and help to understand the molecular 
basis of myocardial function.
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