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Abstract
The main thesis defended in this paper is that, interpreted in the light of reflections of 
Peirce and Poincaré, one can found in mathematical reasoning a non-logical symp-
tom that may be aesthetic in Goodman’s sense. This symptom is called exemplifica-
tion and serves to distinguish between only logically correct and even explanatory 
proofs. It broadens the scope of aesthetics to include all activities involving sym-
bolic systems and blurs the boundaries between logic and aesthetics in mathematics. 
It gives a better understanding of Poincaré’s thesis that to affect aesthetic value to 
certain properties is not simply an added value, a bonus that somehow rewards the 
mathematician’s mechanical labor, but on the contrary, taking the aesthetic value 
into account can be helpful to mathematical practice. As an example, three proofs of 
the irrationality of √2 are compared for their aesthetic functioning.

Keywords  Mathematical reasoning · Aesthetics · Goodman · Exemplification · 
Poincaré · Peirce

1  Introduction

The question of the relationship between mathematics and aesthetics is often under-
stood in terms of the role mathematics can play in artistic fields: mathematics in 
art. This is the case, for example, when we consider the mathematical underpin-
ning of a piece of music, or perspective in a painting. At the level of the mathemati-
cal community, the question takes another direction, that of the role of aesthetics 
within mathematics. Indeed, it’s well known that mathematicians like to defend the 
aesthetic aspect of their science and it’s rare not to find a mention of the beauty of 
this science, the elegance of a theory or the harmonious symmetry of a particular 
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equation in retrospective writings, public lectures, popular mathematical works, or 
honorary speeches:

“The true spirit of joy, of exaltation, the feeling of being more than a man, 
which are the touchstone of the highest excellence, are to be found in math-
ematics as in poetry”,

notes le Lionnais (1962, 438).1 In associating mathematics with the arts, he 
makes an art-historical distinction between “romanticism and classicism”, the for-
mer indulging in “striking effects and aiming at paroxysm”, the latter.

“fulfills us, either through its simplicity, or through a controlled variety, or 
even when it combines these two impressions in a harmoniously arranged con-
struction” (Le Lionnais 1962, 438-440).

So, for mathematicians, aesthetics does not confine itself to a subjective feeling 
but is responsible for a harmonious combination of simplicity and variety, which 
could contribute to better understanding. However, as as Ulianov Montano Juarez 
remarks (2014, XIV), such an attitude is based on the premise that mathematics is 
considered an art from the outset, so that Le Lionnais’ distinction between classical 
and romantic aesthetics concerns rather a style of art. Indeed, I think it is too undif-
ferentiated to simply reduce the ‘knowing that’ of science to the ‘knowing how’ of 
the arts, because acquaintance (kennen) also plays a role in the sciences and recog-
nizing (erkennen) in the arts.

Now, the use of aesthetics in mathematics “is best addressed in the context of 
an aesthetic theory” (Montano, ibid.). However, contrary to Montano, my approach 
is not a naturalistic one which should cohere as much as possible with empirical 
findings, studying for example “phenomena involved in mathematician’s judgments, 
like ‘Cantor’s notion of infinity is beautiful’ or ‘proofs by cases are cumbersome’” 
(ibid.). “The question of how to interpret what mathematicians mean when they use 
aesthetic expressions” (Montano 2014, XIV) is not the main focus here, but rather a 
consequence of my considerations. I ask if there are processes in mathematics which 
are symptomatic of an aesthetic expression, regardless of whether mathematicians 
have recognized this or not, and if so, whether the recognized phenomenon was 
described as aesthetic or otherwise.

The aesthetic dimension of mathematics has two facets, one of which is evalua-
tive while the second is functional. In the evaluative perspective we recognize the 
beauty of a ‘Monet’ or the mathematician recognize the beauty of a proof. Both 
feelings, although quite different,2 are characterized in modern aesthetics “by […] 
the view that the phenomena related to our perception of beauty are independent 
of any practical or cognitive concerns” (Montano 2014, XII). This aspect is obvi-
ously no longer to be treated according to more or less subjective criteria of taste 
and aesthetic preferences, but in a full theoretical way (Montano 2014, XIII). The 

1  If no translation is given in the bibliography, all translations from French and German are mine. I 
thank an anonymous reviewer for corrections and suggestions.
2  The latter, unlike the former, requires mathematical knowledge; cf. de Rosa (2023, 122).
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second aspect concerns the attribution of a cognitive role to the consideration of the 
aesthetic element and engages philosophical and epistemological questions. Within 
mathematics, it concerns the process of mathematical functioning, such as proof 
construction, and implies, as we shall see, that mathematical reasoning is in some 
cases complemented by an approach possessing aesthetic symptoms.

Montano and others raised a widely discussed problem in the literature: do math-
ematical entities or processes exist that have certain properties, such as harmony, 
architecture, simplicity, symmetry or order, into which one project genuine or meta-
phorical and reductive aesthetic values in the context of a background-understand-
ing? (Montano (2014, 170); McAllister (2005), Novaes (2019)).

My question is similar but different in an essential point: Adopting the functional 
point of view in aesthetics, I am interested in the question of whether there are pro-
cesses in mathematics, for example mathematical proofs, whose aesthetic evaluation 
follows on from a special symbol functioning and is not the consequence of perceiv-
ing properties such as harmony or order. In this perspective, the aesthetic evaluation, 
is just the tip of the iceberg.

2 � The Relevance of Aesthetic Intuition in Mathematical Reasoning 
According to Poincaré

For my argument,3 it is a historically fortunate fact that Henri Poincaré is a math-
ematician, which sometimes suggests ideas in the direction of my last question. 
Nevertheless, he considers that we need an intuition “that makes us divine hidden 
harmonies and relations”.4 This sounds ambiguous regarding an evaluative and cog-
nitive view of aesthetics. In any case, for Poincaré to affect aesthetic value to certain 
properties is not simply an added value, a bonus that somehow rewards the math-
ematician’s mechanical labor, but on the contrary, taking the aesthetic value into 
account can be helpful to mathematical practice. It is not even historically impossi-
ble that he might have influenced the mentor of my subsequently related conceptual 
apparatus, Nelson Goodman. I quote a booklet written in 1911:

“Since the spirit of finesse is necessary to everyone [...] we will conclude that 
literary culture is necessary to scientists [...]. But it is generally believed that 
they need it to become men, not to become scientists; and therein lies the mis-
take” (Poincaré 1911, 25-26).

Goodman seems to insist:

“My argument that the arts must be taken no less seriously than the sciences is 
not that the arts ‘enrich’ us or contribute something warmer and more human, 
but that the sciences as distinguished from technology, and the arts distin-

3  I am returning here to an idea that I developed when the award of Docteur honoris causa of the Uni-
versity of Nancy 2 was conferred to Nelson Goodman (Heinzmann 1997). Since then, I have taken up the 
topic again and again and improved it significantly in this paper.
4  Poincare(1908, 385) and Poincare (1905, 218).



	 Global Philosophy            (2024) 34:9     9   Page 4 of 14

guished from fun, have as their common function the advancement of under-
standing” (Goodman 1979, 619).

For the further interpretation, everything depends on whether intuition mentioned 
by Poincaré only expresses an aesthetic feeling or can be interpreted as the hidden 
expression of a symbolic use that provokes the aesthetic feeling.

In his dispute with “logicians”, Poincaré refuses their conviction, that a logical 
correct proof is always sufficient for our understanding of this proof. Mathematical 
reasoning and derivation in formal logic are not in a simple correspondence rela-
tionship. To translate an existing mathematical proof in a formal derivation is not 
unambiguous: it might tell us more about the method of reconstruction than about 
what gets reconstructed. The logical structure of a reconstructing formal system is, 
at best, underdetermined by the reconstructed fragment of mathematics (Leitgeb 
2009). This may be the reason that today’s admitted validity of a logical, i. e. topic-
neutral, inference from a proposition p to a proposition q (in Tarski’s conception: 
every model of p is a model of q) is not enough to sustain epistemic growth of math-
ematical knowledge. According to Poincaré, such a growth requires rather that p and 
q are seen as united by “epistemic condensers”. Detlefsen (1992, p. 360) formulated 
this in a pointed way: “Poincaré was not so much opposed to logicism as to the logi-
cization of mathematical proof”. The following question arises: What does it mean 
that the premises and the conclusion of mathematical reasoning are unified by “epis-
temic condensers”—that are devices which serve to “abridge our reasonings and our 
calculations”? (Detlefsen 1992, 360 and Poincaré 1908, 440).

Poincaré’s answer is complex and multifaceted:
He insists on the non-invariance of mathematical reasoning with respect to its 

content and advances, so to speak, a local conception of reasoning. So, the epistemic 
condensation “signifies a grasp of how the movement from premises to conclusion 
contributes to the ‘development’ of some architectural theme of local subject-matter. 
In short, it marks the presence of a comprehending ‘universal’ in the differences 
through which it persists” (Detlefsen 1992, 361). Thanks to “fortunate inventions of 
language” that introduce an order-structure, the complexity of a domain of objects 
is made more harmonious by introducing of an invariance (see Poincaré 1908, 375). 
In mathematical reasoning, understanding is placed in the context of “mathematical 
architectures”.

In other words, Poincaré does not limit himself to “blind (ungrounded) correct 
judgments”. Stated differently, he considers the Bolzanian reduction “of the validity 
of an inference between judgements to a corresponding logical consequence among 
suitable propositions” (Sundholm 2012, 945) insufficient for understanding. For 
Poincaré all genuinely mathematical inferences—i.e., those which are not syllogistic 
or elementary combinatorial—are synthetic, since they all close a gap by ‘putting 
together’ the premises and conclusion, which ‘goes behind’ the premises’ (Detlefsen 
1992, 363).5

5  The general universal of the architecture closing such gaps is especially emphasized by Poincaré for 
the principle of complete induction on $$\mathbb{N}$$ but the axiom of choice has the same synthetic 
a priori character as the induction: The axiom of choice “is a synthetic a priori judgment […] although I 
am favorably disposed to accept Zermelo’s axiom, I reject his proof” (Poincare 1906), 313, 315).
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Unfortunately, Poincaré did neither explain his metaphor of architecture, his 
criterion of harmony reinforced by a principle of economy of thought nor his use 
of intuition, central to mathematical reasoning, nor their interrelationship, so that 
their modern interpretation depends on the general way to extend and partially to 
transform Poincaré’s reflections.

In the following I use the term ‘explanatory reasoning’ to express that reason-
ing gives a proof-understanding what does not yet imply that it gives an under-
standing of the proved result. According to Poincaré’s position the explanatory 
function is only a disguised element of any mathematico-logical proof that should 
be made explicit: in Science and Hypothesis, he uses the term “implicit axioms" 
for what we now call tacit presuppositions, that are premises “that geometers [i. 
e. the mathematicians] accept without explicitly stating” (Poincaré 1902, 38). In 
the Value of Science, Poincaré explains:

“The logician cuts up, so to speak, each demonstration into a very great 
number of elementary operations; when we have examined these operations 
one after the other and ascertained that each is correct, are we to think we 
have grasped the real meaning of the demonstration? Shall we have under-
stood it even when, by an effort of memory, we have become able to repeat 
this proof by reproducing all these elementary operations in just the order 
in which the inventor has arranged them; that I know not what (emphasis 
G.H.), which makes the unity of the demonstration, will completely elude 
us. […]
Pure analysis puts at our disposal a multitude of procedures whose infalli-
bility it guarantees. […] We need a faculty which makes us see the end from 
afar, and intuition is this faculty” (Poincaré 1905, 217-218).

Although the rigor of the proof is all the greater than the gaps are smaller and 
a proof without gaps is explicit and can be verified step by step, such a verifica-
tion is sufficient to understand that a proof is right but not yet sufficient to under-
stand why it is right. This requires aesthetic intuition:

“It may be surprising to see emotional sensibility invoked à propos of 
mathematical demonstrations which, it would seem, can interest only the 
intellect. This would be to forget the feeling of mathematical beauty, of 
the harmony of numbers and forms, of geometrical elegance. This is a true 
aesthetic feeling that all real mathematicians know, and surely it belongs 
to emotional sensibility […] This harmony is at once a satisfaction of our 
aesthetic needs and an aid to the mind, sustaining and guiding” (Poincaré, 
1908, 391).

Good proofs characterize the border space between logic and aesthetics. Because 
aesthetics is “responsible for generating new ideas and insights that could not be 
described by logical aspects alone”, Nathalie Sinclair calls “generative aspect” this 
distinguishing feature of the mathematical mind (Sinclair 2004, 264).

The main goal, what needs to be solved, is to have a look for the general char-
acterization for the generative aspect of aesthetic sensibility in mathematics as a 
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symbolic system. While defending the functional aspect of aesthetics, the tradi-
tional trait of Poincaré consists in the fact that he associates aesthetic in math-
ematics with properties to which he attributes an aesthetic merit, i.e. intellectual 
beauty. Leaving aside this essential trait, the lines I draw here use Nelson Good-
man’s research of the way aesthetics works, by adding some features of Peirce’s 
pragmaticism.

3 � Goodman’s Languages of Art6

The theoretical foundation of Goodman’s approach to aesthetics is Poincaré’s insight 
that aesthetic experience in mathematics can be linked to cognitive experience. 
This is nothing new: the link between aesthetics and cognition has been established 
since Greek antiquity and persisted right up to the birth of aesthetics and under-
went a clear break after Kant’s Third Critique. However, from the beginning of the 
twentieth century and the development of conceptual art, aesthetics was once again 
thought of as a means of cognition and Goodman occupies a major place in the 
advocacy of this position:

“Rating works of art or scientific discoveries according to their greatness mat-
ters much less then comprehending and projecting them. Delight is a dividend 
that comes with the achievement of new insights by means of either science 
or art. […] The philosophy of science and the philosophy of art are embraced 
within epistemology conceived as the philosophy of the understanding” 
(Goodman 1984, 148).

Although Goodman displaces the problems of aesthetics into the language of art, 
emotions and evaluations are not excluded, but he creates a new link between cogni-
tion and emotion. Critics often ask:

“But isn’t [Goodman] cutting out all that is really important in aesthetics, all 
the so-called pleasure and value?” (Goodman 1997, 19)

His answer is: The intention is precisely to describe the general considerations 
on which such pleasure and value are based (Goodman 1997, 19). Pleasure is subor-
dinated to cognition in the sense of understanding not through the consideration of 
specific properties but through the specific use of a symbolic system.

To this end, it replaces the essentialist question “what is art?” with the question 
“when is there art?”. In doing so, he establishes his theory outside the framework 
usually reserved for aesthetics, that delimited by the fine arts. In fact, he notes,

“we have to avoid confusing the notion of art with the notion of good art. The 
said truth is that, if you think of it, most works of art are bad. All you have to 
do is to go looking at most exhibitions” (Goodman 1997, 18).

6  Cf. on this section the excellent thesis of Jullien (2008) and Heinzmann (2007).
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The shift from the analysis of aesthetic merit to that of aesthetic functioning, and 
the cognitive conception of aesthetic experience, are two closely related points in 
Goodman’s theory of extending the fields of application of aesthetics to all activities 
involving symbolic systems7:

“Even among works of art and aesthetic experiences of evident excellence, the 
emotive component varies widely—from, say, a late Rembrandt to a late Mon-
drian, or from a Brahms to a Webern quartet. The Mondrian and the Webern 
are not obviously more emotive than Newton’s or Einstein’s laws; and a line 
between emotive and cognitive is less likely to mark off the aesthetic neatly 
from the scientific than to mark off some aesthetic objects and experiences 
from others” (Goodman 1969, 246–247).”

Goodman’s semiotic approach to aesthetics blurs the boundaries between science 
and art. Of course, he is by no means concerned with unification, but merely shows 
that the difference is not to be found in the contrast between affective and cognitive 
but concerns a different use of symbols. The difference should rather be sought in 
the manner of construction than in the assumption that science discovers, and art 
creates. In this sense, Poincaré recommended a humanistic education above all for 
the creators in science. This is why Goodman’s theory of mathematics seems for me 
the obvious choice to interpret Poincaré.

Goodman gives five syntactic and semantic symptoms that often distinguish the 
aesthetic from the non-aesthetic (Goodman 1978, 67–68), although he notes that 
“it’s true that some of these symptoms are common to certain arts and others are 
not, […so] we still don’t have a distinction” (Goodman 1997, 18): hence a symptom 
being neither a sufficient nor a necessary criterion, I want to limit myself in math-
ematics to the symptom of “exemplification”.8

It is distinguished from denotation, which, as an instrument of representation, 
goes from a predicate to an object to which this predicate can be applied, by its 
direction: exemplification, as the instrument of expression, goes from the object to 
the predicate. More precisely, the object that exemplifies a predicate that applies to 
it possesses the properties, literally or metaphorically, that the predicate denotes. 
But this does not mean that an object exemplifies all the features it possesses. An 
inscription of ‘red’ written in blue denotes all red objects but does not exemplify 
the predicate ‘to be red’, whereas it can exemplify the predicate ‘to be blue’, pro-
vided that reference is made to it. A metaphorical exemplification is, for instance, a 
painting which expresses sadness in spite of the fact that paintings cannot literally 

7  On this point see Morizot (1996, 14).
8  The other three symptoms are “syntactic density”, “relative repleteness”, and “multiple and complex 
reference”: intuitively, a symbolic system is syntactically dense when there’s no way to exhaustively list 
each character, no way to go through them, no way to isolate them from each other (Goodman 1969, 
135–137). By introducing syntactic density, Goodman allows an initial classification between images and 
non-images. To distinguish images from diagrams, he introduces another syntactic symptom: relative 
repleteness, which makes of the difference between images and diagrams a matter of degree (Goodman 
1969, 230); multiple and complex reference is present “where a symbol performs several integrated and 
interacting referential functions” (Goodman 1978, 68).
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be sad. An object to which the predicate applies without reference from the object 
to the predicate is an instance of the predicate. We shouldn’t think that symbolic 
systems can be neatly and definitively divided into denotative and exemplificative: a 
tailor’s sample book usually functions as an exemplification system, with each piece 
of cloth exemplifying its color, texture and so on. But it can also be used to show 
what a tailor’s sample is.

4 � Proof‑Understanding as an Aesthetic Function

First of all, it is necessary to draw attention to a possible misinterpretation which 
can be described as follows with Wagner (2001, 369–370):

“[I] argue that since topic-neutral logical inference might not suffice for 
insight, one needs a topic-specific route from a premise A to a proposition p 
that the ‘universal medium’ of logic cannot provide. […] The argument given 
does not […] suggest that for some knowable p, no deduction of p from A 
would provide adequate knowledge or insight [for an agent S]. It suggests 
rather that the state of having sufficient knowledge cannot be identical with or 
causally guaranteed by the state of having deduced p. […] [We have to make 
it explicit]. If [some proof] enlightens S while [another] does not, there is a 
cognitive epistemological difference that logicism leaves unexplained”.

This is my subject.
In the literature, one can find a broad range of attempts to precise what makes 

a proof more understandable than another with respect to the theorem proved. 9 In 
contrast, the understanding of the proof itself received much less attention, if only 
there were no logical gaps.

In Heinzmann (1997), I proposed a “pragmatic” way out based on Peirce’s dis-
tinction between corollarial and theorematic reasoning analyzed in Heinzmann 
(1994), that I would like to use to distinguish between logically correct and also 
‘explanatory reasoning’’ in the sense I defined this expression. But I don’t pass 
judgment on the appropriateness of all the steps in Peirce’s proposal and interpret it 
with Goodman’s eyes.

Peirce uses his distinction between corollarial and theorematic reasoning to 
explain the extensive character of mathematical cognition without having to resort 
to the device of assuming a synthetic a priori element. The deductive process lead-
ing to a corollary is limited to conceptual level and corresponds to formal inferences 
realized only in marginal cases, e.g. in syllogistics and elementary arithmetic (Pei-
rce, NE. IV, 237). A theorematic proof, instead, requires retrogression to the level 
of action: “Thinking in general terms is not enough. It is necessary that something 
should be done” (CP 4.233) he says.

According to a suggestion by Hintikka (1973, 1980), “a valid deductive step is 
theorematic, if it increases the number of layers of quantifiers in the propositions in 

9  e.g. Steiner (1978), Kitcher (1989), Tappenden (2005), Frans and Weber (2014).
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question.” Although this solution is technically brilliant, the translation of the differ-
ence in question into a formal language neglects Peirce’s pragmatic context.

Following my own interpretation, the characterization of ‘theorematic’ defines 
reasoning where in the pragmatic context the semiotically mediated reference of 
syntax takes effect. A theorematic proof of a proposition is not given by a finite 
column of propositions but requires a diagrammatic interpretation of the premise10 
yielding to a procedure of preference of possible interpretations, and so to a modal 
interpretation of reasoning. Given the fact, that an axiomatic system can be con-
ceived as a pragmatic determination of the meaning of a 2nd order concept, this 
concept can be understood as a sign. So, it is possible to define the claim formulated 
in Peirce celebrated maxim11 as semiosis, in which, through an illustrative sequence 
of interpretants, a more and more differentiated semiotic classification of the object 
will be achieved.

By this process, the premise of a reasoning is translated into a diagram, by which 
one considers and “experiments” different forms of the premise. To determine a 
theorematic consequence means to choose one such form in eliminating the others; 
so theorematic acceptability is relative to a semantic purpose. The conclusion is a 
necessary one, if the transformations have a schematic character and are not only 
particular modifications embodying the premise.

Goodman’s inspiration from Peirce’s semiotics being well noted by his interpret-
ers (cf. e.g. Cometti 1997, 39), I propose to argue that Peirce’s diagram could be 
understood as an exemplification in Goodman’s sense. More precisely, proof-under-
standing can be identified with a translation of a premise into an exemplification, by 
which one express “experiments” of different forms. This leads us to the following 
definition:

One understands a proof better if it contains an aesthetic symbol use. This is 
the case if some partial steps of the proof can be interpreted as exemplifica-
tions of a general idea (schema). The explanatory content grows proportionally 
to the number of aesthetic proof steps.

Contrary to Goodman’s explicit statement that.

“presence or absence of one or more of [the symptoms] does not qualify or 
disqualify anything as aesthetic; nor does the extent to which these features 
are present measure the extent to which an object or experience is aesthetic” 
(Goodman 1978, 68),

I support the hypothesis that different acts of exemplification precisely define 
degree of aesthetics in mathematics.

10  A diagram in the sense of Peirce, "is in the first place a Token, or singular object used as a Sign" N.E. 
IV. 315, note. 1 (circa 1906). Cf. even N.E. IV, X (S.d.) and N.E. II. 968 (c. 1873) where Peirce criticizes 
the "distrust of intuition" of Weierstraß or N.E. III. 101 where he interprets Klein’s intuition as "observa-
tion of diagrams".
11  "Consider what effects that might conceivably have practical bearing you conceive the object of your 
conception to have. Then your conception of those effects is the whole of your conception of the object” 
(C.P., 5.422; Peirce 1878/79, p. 48 and C.P. 5.402).
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5 � Mathematical Examples

In the literature, diagrammatic proofs in the ordinary sense12 and visual thinking in 
geometry are often used as examples of aesthetic proofs, because they use properties 
to which one attribute an aesthetic value. However, in these studies the focus is less 
on the question of the presuppositions necessary to attribute properties an aesthetic 
value or function than on the question of their evidential force. In contrast, the prob-
lem in analysis and algebra is exactly dual: here it is not the power of proof that is in 
question, but the aesthetic character.

The frequency with which proofs of the irrationality of √2 is cited to illustrate 
the beauty of mathematics13 seems reason enough to examine if these proofs or 
some of them are better understood by the symptom presented.14

How to achieve a good understanding of the proof of the theorem The square root 
of 2 is not rational?

There are numerous proofs, including graphical ones,15 but I will select only 
three. Their short discussion will show that there exist different symptoms of an aes-
thetic language use in some of the proofs.16

Proof 1  (involving just one prime number: 2).

A rational number is a fraction p/q, where p and q are integers; we will assume 
that p and q have no common factor, since, if they do, it can be eliminated. To say 
that “√2 is not rational” is simply to say that √2 cannot be written in the form (p/q).

We suppose it could be written in this form and deduce a contradiction:

Multiplying both sides of (A) with q and squaring both sides gives.

Concerning formula (B), Papert (1978, 5) remarks:

“All subjects who have become more than very superficially involved in the 
problem show unmistakable signs of excitement and pleasure when the hit on 
the last equation [B]”.

My interpretation explains the reason for the excitement: The sentences (A) 
and (B) are two representations of the same equation. But the internal relationship 
between the singular terms p, q ​​and 2 can be read in two ways: 2q2 and p2 are both 
instantiations of the relation “ = ” which denote them, and they are exemplifications 

(A)
√

2 = p∕q

(B) 2q2 = p2

12  in contrast to Peirc’s semiotic view of diagrams.
13  Cf. e.g. Hardy (1940), Papert (1978) or Spies (2013, 232–243).
14  In Heinzmann (1997, 141–143), I gave a topological example for exemplification.
15  Cf. e.g. Van Bendegem (2008).
16  Cf. on the following remarks Heinzmann (2015 and 2016).
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of the predicate “even number”, because numbers divisible by 2 are even by defi-
nition. Equations (A) and (B) are logical equivalent but (B) “makes in addition an 
exemplifying assertion that is necessary for the proof to “succeed” (Wolkenbauer 
2009, 6)17. The “ambiguity between the meanings not only makes the proof possible 
[…but] it enriches our aesthetic experience of mathematical reasoning. [This] differ-
ence between denotation and exemplification is something that cannot be resolved 
by the syntax of the expressions alone” (Wolkenhauer 2009, 6). Now, as William 
Byers argues, ambiguity is a crucial mechanism in mathematics that “transforms the 
mathematical landscape from the static to one that is dynamic” (Byers 2010, 26). 
The described dynamic switch from denotation to exemplification is exactly such 
a creative ambiguity possessing an aesthetic interpretation. However, you may say, 
exemplification is not very central in the demonstration, which continues as follows:

(C) If p2 is even, p itself has to be even.18

(D) If p is even, then p = 2c for some integer value c. Substituting 2c for p in (B) 
gives.

2q2 = (2c)2 = 4c2 and, by dividing by 2:
q2 = 2c.2
So q2 is even and according to (C) q is itself even. This contradicts the assump-

tion that p/q is reduced to lowest terms.

Proof 2  (involving the set of all prime numbers).

Proof by prime power expansion:

(A)	 √2 = p/q. Then
(B)	 2q2 = p2.

(C’) Assume that every positive integer (except the number 1) can be represented 
in exactly one way apart from rearrangement as a product of one or more primes 
(this result is known as The Fundamental Theorem of Arithmetic). Factor both, p and 
q, into a product of primes. p2 and q2 are factored into a product of the very same 
primes as p and q, each taken twice. Therefore, the prime number 2 has an even 
exponent in the prime factorization p2 and q2; consequently, it has an odd one in the 
prime factorization of 2q2. Contradiction to the assumed Fundamental Theorem.

The proof of the fundamental theorem of arithmetic uses, for example, Euclid’s 
lemma (if a prime divides the product of two numbers, it must divide at least one of 
those numbers), and mathematical induction:

IC ∶ [E(I) ∧ ∀n(N(n) ∧ E(n) → E(nI))] → ∀n(N(n) → E(n)).

17  (A) is not an exemplification of the predicate “rational number” because it doesn’t metaphorically pos-
sess the quality of rational number.
18  Proof by contraposition (using classical logic): If p is odd, then p2 is; p = 2 k + 1; p2 = (2 k + 1)2 = 4k2 
+ 4 k + 1.
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Without analyzing the different lemma’s of the proof, it seems difficult to con-
sider instances of the induction schema as exemplifications of the schema, which 
is ineradicably more complex: For an arbitrary number n, we can certainly indicate 
an operation that leads to a proof of E(n), but it is impossible to indicate a uniform 
form of proof, because the length of the proof, that is, the number of applications, 
depends on n, in such a way that a singular proof, for a certain argument, cannot be 
considered, given its internal structure, as an exemplification of the scheme of proof: 
it’s just an instance.

It remains to notice that the working mahematician even may object that we 
should proof a theorem by using a powerful result only if the strength and breadth of 
the latter are really necessary.

Proof 3  A short proof of the irrationality of √2 can be obtained from the Rational 
root theorem, that is, if p(x) is a monic polynomial with integer coefficients, then 
any rational root of p(x) is necessarily an integer.

So, one starts with the formula.

and obtains:

It follows that root √2 of p(x) is either an integer or irrational. Because √2 is not 
an integer, √2 must therefore be irrational.

This proof seems to presuppose a fundamental use of exemplification:
The schema of polynomial equations with integer coefficients.

are instantiated by a monic polynomial equation.

that exemplifies the general polynomial, and finally submitted to special valua-
tions. Mathematically, Bézout’s identity can be used to show that the proof of the 
Rational root theorem itself is based on a series of exemplifications (see details in 
Heinzmann (2016, 160–161)). According to the given symptom, this proof is there-
fore more aesthetic than the other two. Or put it differently: this proof exemplifies 
metaphorically better beauty (Goodman/Elgin 1988, chap I.6).

In conclusion, to show aesthetic elements in a proof presupposes that we can 
identify the symbolic functioning in the reasoning; we need to be able to distin-
guish those parts of the proof that contain exemplifications. This is the analytical 
explanation of the problem raised by Poincaré in relation to the fact that it is not 
enough to understand the logical operations of a demonstration step by step in order 
to truly understand why it is a proof. The understanding why a demonstration is 
correct requires that we know how to make it work in accordance with an aesthetic 

√

2 = x

2 = x2or p(x) = x2 − 2

anx
n + an−1x

n−1 +… a
0
= 0

x2 − 2
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symptom, since our attention must not be focused solely on its denotative function 
but also, and above all, on what it exemplifies. That is the translation in Goodman’s 
spirit of Poincaré’s injunction: “le mathématicien doit travailler en artiste” (Poin-
caré1905, 282).

One main challenge remains open: in trivial cases, the rigor of a mathematical 
proof consists in its translation in a gapless logical chain of deductions. In less triv-
ial proofs, this translation become a modal character. But the working mathemati-
cian considers a proof as rigorous without convincing himself that a translation in 
gapless logical chain is possible. My guess is that he limits himself to understanding 
the proof without having to carry out the logical correctness of all the proof steps. If 
this is correct, the above intuitive-aesthetic considerations, and thus the explanatory 
proofs, could have a much more general scope than just distinguishing good proofs.
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