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Abstract
The question “what is an interpretation?” is often intertwined with the perhaps even 
harder question “what is a scientific theory?”. Given this proximity, we try to clarify 
the first question to acquire some ground for the latter. The quarrel between the syn-
tactic and semantic conceptions of scientific theories occupied a large part of the 
scenario of the philosophy of science in the 20th century. For many authors, one of 
the two currents needed to be victorious. We endorse that such debate, at least in the 
terms commonly expressed, can be misleading. We argue that the traditional notion 
of “interpretation” within the syntax/semantic debate is not the same as that of the 
debate concerning the interpretation of quantum mechanics. As much as the term 
is the same, the term “interpretation” as employed in quantum mechanics has its 
meaning beyond (pure) logic. Our main focus here lies on the formal aspects of the 
solutions to the measurement problem. There are many versions of quantum theory, 
many of them incompatible with each other. In order to encompass a wider variety 
of approaches to quantum theory, we propose a different one with an emphasis on 
pure formalism. This perspective has the intent of elucidating the role of each so-
called “interpretation” of quantum mechanics, as well as the precise origin of the 
need to interpret it.
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1 Introduction

If one desires to inquire about what quantum theory is, the availability of a pleth-
ora of its “interpretations” seems to be a good place to start. Notably, the specifici-
ties of what the term “interpretation” means in the particular context of the cluster 
of quantum theories deviate significantly from what traditionally was meant in the 
debate revolving around the syntactic and semantic characterizations of scientific 
theories. Roughly speaking, the mainstream debate unfolds as follows: in syntac-
tic approaches, scientific theories are identified as sets of formalized sentences and 
some “connection” rules; in semantic approaches, scientific theories are identified 
as classes of models. The main question of the traditional debate is: which is more 
appropriate? or, perhaps, none of them?

The problem of interpretation of non-relativistic quantum mechanics (QM) 
played a major role and, in fact, shaped the roads paved by the philosophy of science 
since its birth in the 20th century. The debates in philosophy of science revolving 
around the characterization of what scientific theories are were concurrent with the 
first steps of the development of quantum theory. Perhaps this is one reason why 
philosophers found it difficult to incorporate it with extant concepts. The newly 
introduced complexities and the strangeness of this new “theory” also contributed 
to his problematic reception. These difficulties, of course, were not particular to the 
philosophers. Not only then, but also today, it’s unclear how to globally interpret its 
results also to the working/field scientist. Even worse: it isn’t clear what is to “inter-
pret” QM!

We will address all of these issues here, and (hopefully) settle some of them. The 
structure of this paper is as follows. In Sects. 2 and 3, respectively, we present the 
classic syntactic and semantic approaches to scientific theories. In Sect. 4, we dis-
cussed arguments for the unification of the two approaches, taking into account the 
recent literature on the subject. In Sect. 5, we discuss the problems that arise when 
trying to understand the current scientific enterprise in this traditional scheme, using 
QM as an example. In particular, we analyze textbook and set-theoretical formula-
tions of quantum theory to illustrate the fact that these formulations are formulations 
of an already interpreted quantum theory, therefore not being the theory that is inter-
preted by so-called interpretations of quantum mechanics. In Sect. 6, we present a 
concrete proposal for the unification of the syntactic and semantic approach, called 
QMbas . In addition to illustrating a point of convergence between the syntactic and 
semantic views, the QMbas is presented as a structure with postulates sufficiently 
general not to commit itself in advance to any interpretation; the price, however, 
is to deprive it of the status of “scientific theory”, since it is a purely mathematical 
formulation, with no mention of physical systems or any other terms that refer to 
the realm of experience. To solve this problem, which we call the “isolation prob-
lem”, the general postulates of QMbas must be instantiated in physical theories, with 
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specific axioms that refer to the physical domain—this is what we call “interpreting” 
quantum mechanics, being the subject of Sect. 7, we where present three applica-
tions of our proposal, instantiating QMbas purely theoretical postulates in specific 
axioms: on quantum theory with collapse, one with branching, and one with hidden 
variables. We conclude in Sect. 8.

2  Interpreting Scientific Theories I: Syntactical Approach

Those who first tried to incorporate quantum theory within the philosophy of sci-
ence were the logical positivists and empiricists. Their preferred approach was to 
formalize [or, at least, provide a formalized sketch] the products of scientific dis-
course and reconstruct the somewhat convoluted forms, on which scientific theories 
were generated, more systematically. Historically, the syntactic view ascended along 
with this program. But since the decline of logical positivism, semantic views—that 
are based on revisions of the initial syntactical program—are, then, considered to be 
the current new orthodoxy (cf. Contessa 2006).

Unfortunately, the whole endeavor of the syntactical approach was often identi-
fied by a straw man version of it. The “Received View on scientific theories”, as 
termed by Putnam (1966, p. 240), became a sort of automatic identification of any 
formal approach to the syntactic approach. The semantic approach also, as we will 
see, meets a similar fate. Therefore, distinguishing between straw man aspects of 
each one and their fundamental characteristics seems to pose as a good warm-up for 
this discussion.

Among the main tenets of the syntactical approach is the possibility of a formal 
treatment of scientific theories as an axiomatic calculus. The broader sense of the 
syntactical approach, however, can be characterized in numerous ways. We will dis-
tinguish between the “radical” and “moderate” versions.

2.1  The Radical Syntactical Approach

The syntactical approach has often been wrongly identified exclusively with regards 
to the radical syntactic approach in the past. Mainly as a package rooted in the the-
ses put forth by several members of the Vienna Circle at different times, the radi-
cal syntactic approach to scientific theories is commonly characterized by five main 
requirements, succinctly presented by Krause and Arenhart (2016, p. 4):

Language: the non-logical vocabulary of the scientific formal language is divided 
in two parts: the theoretical terms ( VT ) and the observational terms ( VO ), being 
the latter closely related to empirical phenomena and the former prima facie not.
Logic: the formal language was constructed by a set of logical axioms, which 
gives rise to its underlying logic.
Theoretical postulates: a set of VT sentences that are taken as postulates.
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Semantics for VO : observational terms are indirectly connected to VT , which is 
related to a theory of meaning based on a version of the criterion of verifiability.
Correspondence rules: set of sentences that connects VT to VO , that is, relates 
purely theoretical parts of scientific theories with empirical data, given an inter-
pretation to it.

From this perspective, the radical syntacticist answer to the question of “what is a 
scientific theory?” is (in a few words): an axiomatic calculus with theoretical axi-
oms connected to empirical observations through correspondence rules. This also 
suggests how a theory can be interpreted (and named as such): to interpret, then, 
is to connect the theory with objects in the world according to specific rules. As 
the name suggests, the theoretical vocabulary VT relates to possible observable 
events, while the observational vocabulary VO relates to objects that can be directly 
observed by an experimental arrangement. This is, perhaps, the most intuitive way 
to see the distinction within the use of a formal language: whereas the objects des-
ignated by VO can, at least in principle, be observed, the objects designated by VT 
can only be obtained by means of a calculus. Consider, for example, the concept 
of “density” (D): in basic chemistry textbooks, it is said that density is the ratio of 
the mass (m) to the volume (v) of a given material (solid, liquid or gaseous), yield-
ing the following equation: D =

m

v
 . Notice that the physical quantities m and v can 

be obtained employing measuring devices, thus counting as observational terms,1 
whereas D can be indirectly obtained through the equation, therefore constituting an 
example of a theoretical term.

These features were subject to criticism, inasmuch as the radical syntactic 
approach has historically been closely linked to the Logical Positivist program. 
Suppe (2000, S103) forged a very succinct list of some reasons that led to the decline 
of the radical syntactic view. According to Suppe, the two most serious objections 
related to the view are the untenability of its observational-theoretical distinction 
and a “[… ] confusion of meaning relationships, experimental design, measurement, 
and causal relationships some of which are not properly parts of theories” concern-
ing the correspondence rules.

The most criticized, if not the most controversial, aspect of the radical syntac-
tic approach lies in the proposed division of vocabulary between observable VO 
and non-observable (theoretical) VT terms, a fundamental point for the effective 
application of correspondence rules. As pointed out by Dalla Chiara and di Fran-
cia (1979,  pp.  148–149), a simple observation of a fish through an aquarium, for 
example, may be considered a theoretical term to some extent, inasmuch the lens 
precludes a direct observation required for VO.2 Similarly, Krause and Arenhart 
(2016, p. 5) point out that a purely theoretical term, such as “electric current”, could 

1 We will try to clear up confusion related to the terms “language” and “meaning”. Terms are the lin-
guistic representations for certain quantities—for example, the term “mass” designates the physical quan-
tity known as mass. Measuring, thus, is related to quantities, not their linguistic representations. In this 
sense, terms, of course, cannot be measured.
2 Probably the first author to point out this problem was Maxwell (1962).
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be, in principle, directly experienced simply by putting one’s finger inside an elec-
tric socket. Therefore, this distinction was viewed to be highly implausible, and as 
such does not seem fit to serve (in a non-arbitrary way) as a foundation for scientific 
theories.3

Such aspects, responsible for bringing issues to the syntactic approach, are 
entirely exclusive of the radical approach, while also being somewhat disposable (or 
circumvented). Thus, it can be said that they do not configure essential traits of the 
syntactic view per se. However, as one of the main tenets of syntactic approaches is 
the formalization of scientific theories according to a formal language, there is a line 
of criticism that encompasses the syntactic view as a whole: the restrictions made 
upon the employment of formal languages as an appropriate tool to capture what a 
scientific theory is.

Such aforementioned formal language may be considered to be a first-order 
language.4 This point is easily accepted to what concerns formal theories such as 
mathematics or logic, however, seems inadequate when considering formal descrip-
tion of scientific theories (cf. Suppes 2002, p. 4), given that most contemporary sci-
entific theories involve more than simple relations among elements of the domains 
(cf. Krause and Arenhart 2016, Sect. 6.1). Generally, order-1 structures encompass 
a non-empty domain D and distinguished elements of D, n-ary relations on D and n-
ary functions on D. An order-n structure, n > 1 , may encompass elements, relations 
and operations of higher orders, not only dealing with the individuals of D, but also 
with collections or properties of such individuals, and so on.

Moreover, the attempt of applying this kind of formalization to relatively compli-
cated scientific theories would be, at very best, impractical. Consider, for example, 
a scientific theory such as QM: before formalizing the theory itself, one would first 
need to formalize several general ideas related to set theory, as well as the required 
mathematics (such as several topics of standard functional analysis, e.g., Hilbert 
spaces, differential calculus, etc.). This kind of criticism makes the ideal of formali-
zation virtually useless for actual scientific practice—which is a serious constraint.

Nevertheless, as Lutz (2015) pointed out, there seems to be no textual evidence 
that the proponents of the radical syntactic approach restricted the language of for-
malization to order-1 structures. In addition, the alleged obligatory requirement 
of preliminary formalization from scratch seems not to exist—notably, there is no 
documentation of such requirement made by proponents of the radical syntactic 
approach. Therefore, this criticism seems to configure yet another straw man attack 
on the radical syntactic approach (Lutz 2012).

Lastly, it is relevant to address the criticism of the radical syntactic approach 
termed the “individuation problem”. This objection states that the radical syntactic 

3 It’s not our point here to discuss, in a profound way, how the traditional distinction can be if necessary, 
safeguarded [a more detailed discussion can be found at Silva (2013, pp. 144–151)]. D Lewis (1970) and 
Maxwell (1962) suggested how this can be done from a realist perspective and the recent developments 
in the structural realist view of theories depend/draw heavily on an adequate distinction between observa-
tional and theoretical terms.
4 From this point forward, we will adopt the notation presented by Krause and Arenhart (2016), who call 
first-order structures as “order-1”, and high-order structures (e.g., with n > 1 ) as “order-n”.
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approach identifies a theory with regard to its linguistic formulation. But if theories 
are not [only] linguistic entities, the conclusion that follows is that theories are indi-
viduated incorrectly by the radical syntactic view. Similar to several of the criticisms 
briefly presented in this section, the individuation problem would represent a severe 
drawback of the radical syntactic approach, were it legitimate, since it would render 
impossible to formulate, for example, the same theory using different vocabularies.

This, however, appears not to be the case, insofar as there seems to be, again, no 
evidence that the radical syntactic approach is committed to this sort of individua-
tion of theories based on a specific formal vocabulary. It seems, in fact, that the radi-
cal syntactic approach does not necessarily promise to provide an explication of the 
concept of “scientific theory” in this general sense, and even refraining to talk about 
it in general, focusing on particular examples of formalizations. For Rudolf Carnap, 
for example, this is particularly misleading. Given that his whole approach to the 
formalization of theories was relying precisely on allowing the tentative employ-
ment of more than one linguistic framework.

This seems to be yet another widespread misunderstanding concerning both syn-
tactic and semantic approaches to characterization of scientific theories (Krause 
and Arenhart 2016, p. 8). If it were to do so, such attempt would be made to fall 
since not every scientific theory is well [or completely] developed—and perhaps will 
never be5—to the point that allows it to be axiomatized as a (purely) formal system.

Following Lutz (2015, Sect. 5) and Krause and Arenhart (2016, p. 9), proposals 
of the radical syntactic approach should be seen as a rational reconstruction of par-
ticular scientific theories—thus avoiding (parts of) the individuation problem. This 
formal reconstruction, in turn, should be understood as an horizon rather than as a 
criterion of which theories ought to meet in order to be considered as such scientific 
theories.

The preliminary discussion here presented allows us to proceed to a more sensi-
ble conception of syntactical approaches, which we will call the “moderate syntacti-
cal approach”.

2.2  The Moderate Syntactical Approach

As pointed out by Krause and Arenhart (2016, p. 6), it is possible to refrain from 
most controversial aspects of the radical syntactical approach without forfeiting the 
syntactical approach: one is not obliged to adhere, say, to a verificationist theory of 
meaning (Hempel, for example, never accepted it and still maintained the syntactical 
approach; Carnap also revised his initial formulations, distancing from verification-
ism, but never abandoned the syntactical approach completely). The same goes for 
accepting the relation between theories and experience via specific rules of corre-
spondence or the division of vocabulary between VT and VO in order to employ a 
syntactic view of scientific theories. Perhaps a division is indeed necessary, but one 
can assume the use of a distinction as a provisional methodological commitment 

5 Something that, again, Carnap was aware (cf. Carnap 1966, p. 193)
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without necessarily committing to a particular distinction in the sense that it is more 
ontologically correct or more fundamental than others. Maxwell (1962, p. 13), for 
example, employed this strategy and favoring a division between theoretical vocabu-
lary and “quickly decidable” vocabulary. There does not seem to be a restriction on 
the terms of VO in relation to any origin or epistemic priority; thus, a fundamental 
(essentialist) distinction between two types of language, VO and VT , is not required.

The “demystification” of the syntactic view is not, however, widely known. The 
effort to rule out the most problematic features of the radical syntactic approach, 
while sticking to basic tenets of the syntactic view is precisely what constitutes the 
“moderate syntactical approach”. Following Lutz (2015, p. 5) and Krause and Aren-
hart (2016, p. 10), the main traits of the view can be presented as follows:

Formal language: a scientific theory can be presented in a formal language of 
order-n.
Theoretical equivalence: an equivalence between theories can be put forth so that 
different formulations could count as the same theory.
Partial interpretation: some sentences of the formal language must be partially 
interpreted in the sense that the theoretical language of the theory refers to empir-
ical objects, thus granting that the theory is an empirical theory.

The theoretical equivalence feature seems to act as a clarification of the individua-
tion problem allegedly presented in the radical syntactic view. Accepting the com-
mitment to the individuation of a theory as formulated in one unique language 
makes it possible to accept equivalent formulations of a theory (cf. Halvorson 
2012, p. 191).

Before advancing in direction to our main goal, however, it is fit to digress 
towards the notion of “axiomatization”, which plays a central role within this discus-
sion. As pointed out by Suppe (1977, p. 110), the conflation between axiomatiza-
tion and formalization can lead to several misunderstandings. “Axiomatization” may 
be defined as an organization of a body of knowledge (such as a scientific theory) 
to clarify its structure, by singling out certain concepts as primitive (or undefined) 
and others as defined or derived. The main point achieved by such definition is the 
possibility of presenting the theory as a deductive system, in which certain proposi-
tions singled out as axioms may provide the deductive derivation of all other propo-
sitions. It should be remarked that the matter of axiomatization is marked by sev-
eral misunderstandings concerning its corrigibility. In the traditional sense, named 
“concrete axiomatization”, axioms are taken to be sacred truths, immutable by their 
own nature. Fortunately, this is not relevant to the current situation of mathematical 
development, which conversely defines axioms as expressions of tacit assumptions, 
in order to make them explicit. Quoting Dalla Chiara and di Francia (1979, p. 134): 
“[t]o axiomatize is not to dogmatize!”. Once a theory is properly axiomatized, it can 
be interpreted within its axiomatic constraints, that is, the domain of interpretation 
is restrained to the situations in which the axioms are true. This observation leads to 
the formalization of a theory: for such an interpretation to be considered precise, one 
must replace its language with a formal (artificial) syntax.
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As for partial interpretation, it is noteworthy to reiterate that this concept carries 
no commitment to a specific set of correspondence rules, thus allegedly distancing 
from the radical syntactic approach. Moreover, the criticism to which this notion 
was subjected seems to significantly weakens when the dichotomy between VT and 
VO is properly understood.

And so, this leaves us with the other contentious problem. Without going into 
much detail, it is well-known that the theoretical/observational distinction was sub-
ject to a great number of critical reactions in the philosophical literature (Popper, 
Putnam, Quine—to only mention a few—argued for the untenability of the distinc-
tion) and, as the usual textbook history goes, gave rise to one of the fatal blows 
responsible for the demise of the logical positivist program.

It is however important to note that the bulk of these criticisms was not directed 
to the tenability of drawing such a distinction, but to the stronger idea that it could 
play the role of a counterpart in “reality”. What Carnap had in mind was somewhat 
different. According to him, in the analysis of the language of science, there is no 
question about the “fair” or “correct” use of the term “observable”. “Observable” 
and “unobservable” represent the two poles of a methodological continuum and 
should not be seen as giving rise to a fixed and irrevocable demarcation. To be able 
to draw the distinction in this precise manner, we would first need to have a defini-
tive description of our perceptual apparatus but, given the actual development of sci-
ence, we have not yet [if ever] achieved this point. On the other hand, Carnap points 
out that, even if the choice of an exact dividing line has to be arbitrary, at least for 
practical purposes it can be regarded as clear enough.6 More specifically, Carnap 
adopted the general strategy of first defending the practical utility of a distinction 
between terms and then recognizing that it is not irrevocable and subject to varia-
tions. As any stipulation motivated by the convenience of structuring the language 
of science, this separation is flexible and subject to the (often practical) interests of 
the person who carries it out.7 Carnap, therefore, refrains from justifying—or trying 
to ground—the distinction as if it directly represented a fundamental property of 
terms or their referents, i.e, he opts out of drawing a distinction and instead charac-
terizes it as a merely methodological tool, without the need of “reflecting” or “cut-
ting nature at its joints”. This agnostic methodological approach was later adopted 
by Maxwell (1962), as well as by David Lewis (1970) in “How to Define Theoreti-
cal Terms”: observational terms for Carnap [O-terms] are assumed by D Lewis to 
represent “original terms”, or “old terms”, i.e., terms that are understood prior to 
the appearance of a new theory T, without any restriction as to whether these terms 
belong to an observational language in contradistinction to a theoretical language.8

6 (cf. Carnap 1959, p. 158) and Carnap (1966, p. 228).
7 In this sense, Carnap is in partial disagreement with Quine’s holism: i.e., recognizing the continuum 
between theoretical and observational terms—and so only partially agreeing with Quine’s holism—but 
allowing a distinction to be justified (only) by practical purposes, suspending the judgment about its 
“nature”, that he would regard as a (suspicious) metaphysical commitment.
8 For a detailed discussion see Silva (2020, pp. 87–95).
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This line of thought renders the famous criticisms—viz. Putnam 
(1966,  pp.  244–248) and Achinstein (1968,  pp.  85–91)—regarding the Received 
View’s partial interpretation inaccurate when the moderate syntactic approach is 
at stake. The notion of partial interpretation is used here in the sense of attributing 
partial meaning to sentences,9 e.g., physical meaning. Moreover, as argued by Suppe 
(1989), this particular feature of the moderate syntactical approach makes sense only 
when attached to semantic concepts such as metalanguage:

Since it would appear that little more can be said syntactically in the way of 
characterizing partial interpretation, if we are to find an adequate analysis of 
the concept, we must turn to semantic considerations. (Suppe 1989, p. 43).

In this sense, a physical theory allegedly assigns physical meaning (through seman-
tics) to a purely mathematical language that is not necessarily connected to any-
thing but mathematics. The plot thickens right here since this position corrobo-
rates our thesis enunciated previously: moderate versions of syntactic and semantic 
approaches converge, rather than compete with each other.10

Let’s take this hook to move on to the analysis of the semantic approach.

3  Interpreting Scientific Theories II: Semantic Approach

The most basic aspect of the semantic approach is the identification of a scientific 
theory as a class of models.11 Here, we adhere to the Suppesian set-theoretical 
development of models, called by Krause and Arenhart (2016, p. 11) the “hegem-
onic version of the semantic approach”. This choice is made mainly due to the fact, 
as put by da Costa and French (2000),  “models” are said to be structures (of one 
kind or another) in all these accounts, and as such this notion may configure a better 
path to the philosophical purposes of this study due to its generality.

Therefore, mentioning the concept of a “model”, it should be assumed the accept-
ance of a set-theoretical entity, typically built in a set theory. In this context the 
usual Zermelo–Fraenkel set theory. The following sections present the radical and 
the moderate version of this view of semantic approaches, beginning with a more 
radical stance.

9 It is noteworthy to mention that the terminology of “partial interpretation” is employed here in a non-
standard way. It shall not to confused with its standard meaning: if every elementary statement in a the-
ory T has a correspondent in its models, then it is considered to be a “full interpretation”; otherwise, it is 
a “partial interpretation” (cf. Haskell (1963, p. 48).
10 We’ll say more about this in Sect. 4.
11 It is not our goal to discuss the implications of this view for scientific realism; the reader interested in 
this subject may find a helpful discussion in Chakravartty (2001) and references therein.
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3.1  The Radical Semantic Approach

Following Krause and Arenhart (2016, p. 11), the radical syntactic approach would 
assume the following three theses that scientific theories should comply: a scientific 
theory is a class of its models; it is language-independent; models are understood 
as set theoretical structures. According to radical semanticists, “scientific theories 
are classes of models”. Traditionally, mostly due to Tarski (1956), a “model” M 
is defined as an ordered pair such as M = ⟨D, I⟩ where the domain D is a non-
empty set and I  is the interpretation function. Intuitively, the interpretation function 
I  involves the interpretation of a language L (the object-language), which means 
assigning the function truth-values in a metalanguage trough mapping of the non-
logical elements of a formal language, relating each symbol to an element in D, the 
domain of interpretation: individual constants, functions and predicate symbols. In 
this sense, to interpret a theory is to correlate a language with set-theoretical ele-
ments of a structure, in a purely formal manner—the point is that this notion of 
interpretation is does not go anywhere outside set theory.

More specifically, the standard textbook approach of this matter (Chang and 
Keisler 1990, pp. 18–36) goes as follows: order-1 models are defined as structures in 
the form of the ordered pair ⟨D, I⟩ (with the domain D ≠ ∅ ), where the interpreta-
tion function I  maps each one of the constant symbols c to a constant x ∈ D , each 
m-place function symbols F to an m-place function G ∶ Dm

⟶ D on D, and each n-
ary relation symbols S to an n-ary relation R ⊆ Dn on D. Constants and relations on 
D are extensional concepts, and thus two relations {R,R�} are identical if they have 
the same extension, that is, if ∀x

[
(x ∈ R) ↔ (x ∈ R�)

]
 , then R = R�.12 However, the 

existence of two different relation symbols {S, S�} with the same extension of their 
interpretation is possible. If a structure ⟨D, I⟩ contains an exclusive interpretation 
for multiple relation symbols {Si}i∈I that maps every S to the same R, there would 
be only one relation, so its image would lead to ⟨D, {R}⟩ . As remarked by Hodges 
(1993, pp. 1–4) and Lutz (2015, p. 11), this extensional account of relations is pre-
cisely the involvement with language. These kinds of structures, formalized with a 
vocabulary, are called ‘labeled structures’.

As famously stated by van Fraassen (1989, p. 366), however, the independence 
of a specific language (i.e., a syntax) should be a fundamental trait of the semantic 
view: without it, its motivation is lost when “[… ] models are defined, as in many 
standard logic texts, to be partially linguistic entities, each yoked to a particular 
syntax.” Thus, the requirement of language independence seems to seriously con-
strain this traditional Tarskian-like account of models, since it is precisely “yoked to 
a particular syntax”. In fact, Halvorson (2012) argues that any appeal of language, 
e.g. the labeled-structure account of models, could turn the semantic approach into a 
syntactic approach.

Moreover, the traditional characterization of “models” via labeled structures 
is very restrictive. Since it quantifies over elements of D, it only functions when 
considering order-1 structures, which are not able to comprise most of the best 

12 Although Chang and Keisler (1990) work only with order-1 structures, the idea can be generalized.
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contemporary scientific theories. Thus, when adopting models for the characteriza-
tion of scientific theories, this definition presents itself as problematic. As Bueno 
and Krause (2007) argued, the literature on models is elusive in this aspect, and any 
semantic approach which attempts to characterize scientific theories needs some 
sort of re-conceptualization when intending to characterize contemporary physical 
theories such as QM. The major drawback presented by this stance is that a proper 
model theory needs to be comprised exclusively in order-1 structures: strictly speak-
ing, there is no model theory for order-n structures,13 since fundamental theorems 
of standard model theory (such as the Löwenheim–Skølem theorem) only holds for 
systems of order-1 logic.

The set-theoretical characterization of structures poses as the most common 
alternative for the traditional, language-dependent, account of models as labeled 
structures. Following this characterization, M is defined as a n-tuple such a 
M = ⟨D,Ri⟩i∈I where D is a non-empty set and Ri stands for a family of relations 
on the elements of D. Note that Ri does not relate only elements of D, therefore it 
could give rise to order-n structures (with n > 1 ). As for the language-independence 
criterion, this type of structure is defined independently from a specific vocabulary 
when written as n-tuples containing a domain and a family of relations (comprised 
of functions and constants). This can be seen clearly in order-1 structures, through 
the definition of the algebraic structure of “group”. A group G may be written as 
⟨G, ◦, e,−⟩ , where: “G” is a non-empty set; “ ◦ ” is a binary operation (the compo-
sition function on G); “e” is the neutral (identity) element; and “−” is the inverse 
(opposite) operation. As an example of an order-n structure there is the case of “top-
ological space”, written as the structure ⟨D, �⟩ , with � ∈ �(�(D)) , since � is a fam-
ily of subsets of D. In cases such as this, the family of relations Ri is interpreted 
as an indexed structure, so the structure could be written as ⟨D,R0,… ,Rn⟩ and the 
position of the relations of D in the structure takes the role of the index, so that it 
could be read as ⟨D, {Ri}i∈{1,…,n}⟩ . It should be noted that indexed structures contain 
more information than the image of an interpretation of labeled structures.

3.2  Moderate Semantic Approach

In the light of the foregoing, it seems reasonable to drop the “language independ-
ence” requirement from the basic traits of the semantic approach to scientific theo-
ries. Call, then, the semantic approach following this decision a moderate semantic 
approach. Is it, however, enough to fix an answer for the question of “what is a sci-
entific theory?” in indexed structures? As it will be argued, not quite so. Consider 
the discussion of group theory previously presented, written as the ordered quad-
ruple ⟨G, ◦, e,−⟩ : is this an exhaustive answer to the inquiry on what is a class of 
groups? No. Alternatively, one can argue that a group can be represented by the 

13 This is also the case for non-standard semantics, such as Henkin semantics, see Henkin (1950) and 
Enderton (2015, Sect. 3). Nevertheless, we will stick with the standard case.
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triple ⟨G, ◦,−⟩ , the triple ⟨G, e, ◦⟩ , or, yet, the pair ⟨G, ◦⟩.14 None of these structures 
are the same, and therefore language seems to be important here.

So there seems to be a dilemma: on the one hand, models comprise a vocabulary 
when identified as labeled structures which yields a not so different result from the 
syntactic approach (cf. Halvorson 2012); moreover, if such a language is of order-n, 
then it is not covered by any model theory at all. On the other hand, models identi-
fied as indexed structures do not result in much semantics at stake, insofar as the 
models do not make anything true. Furthermore, considering a language-free ideal 
scenario, there shall be no language according to which the structures are inter-
preted: the semantic approach to scientific theories, then, in agreement with this 
fairly general characterization, would refer solely to purely formal set-theoretical 
structures—which are unsound point, since scientific theories must relate to empiri-
cal data in some manner (cf. Lutz 2015, p. 14).

4  Interlude: Towards a Unified Approach

A fairly well-accepted settlement to this so-called “dilemma” has been presented by 
Craver (2008), Krause, Arenhart, and Moraes (2011), Lutz (2015), and Halvorson 
(2016). That is precisely the recognition that issues concerning the “labeled struc-
ture” and the “indexed structure” views on the semantic approach arise only when 
one accepts the ideal of identifying scientific theories with something (e.g., these 
formulations). As soon as this ideal is abandoned, it becomes clear that both views 
are attempts to apprehend aspects of scientific theorizing, in the sense that they are 
distinct representations of scientific theories—and thus do not attempt to provide 
the essence of scientific theorizing itself. In this sense, these views must not be con-
sidered as competitors, which is perhaps the major upshot of recent debate.

Following the adaptation made by Lutz (2015, Sect.  5.3) of the argument pre-
sented by Halvorson (2016, Sect. 2), it is possible to interpret an indexed structure 
(semantic) as a labeled structure (syntactic). Consider the structure A as follows: 
A = ⟨D,R1⟩, where D = {a, ⟨a, a⟩} and R1 = {⟨a, a⟩} . Presented as such, it is not 
clear in this indexed structure whether R1 describes a relation over a set of elements 
or over a set of tuples of elements of the domain. As a result, it is also unclear what 
this structure is. If one understands a mathematical structure solely as a set of math-
ematical entities endowed with mathematical relations, it is not possible to advance 
from this point. To push the argument a little further, consider now the structure A′ : 
A� =

⟨
D�,R�

1

⟩
, where D� = {a, b, ⟨a, b⟩} and R�

1
= {⟨a, b⟩} . A question arises: are A 

and A′ isomorphic structures? This information is not provided by the description. 
The answer lies in the arity of relations R1 and R′

1
 , that is, in their classification as 

unary or binary relations. Thus, if a bijective function f ∶ D → D and if ⟨l,m⟩∈R1
 , 

then ⟨f (l), f (m)⟩∈R1
 . This crucial information is not explicitly given: if the relations 

have the same arity, yes; otherwise, no. However, to explicitly provide information 
regarding non-logical terms of the structure (e.g., a mapping from the index set of 

14 For simplicity, from this point forward the description of these structures’ components shall be fixed 
as defined in the previous paragraph.
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the indexed structures to the elements or types of elements of the structure) is to 
transform the indexed structure into a labeled structure, since the result carries the 
indexed set’s index taken as a vocabulary (Chang and Keisler 1990, p. 19).15 In other 
words, the indexed structure may be converted to a Tarskian-like structure when the 
index set I is defined as the non-logical vocabulary of a language, thus transforming 
the indexed set into a labeled set with concern to the indexation status of interpreta-
tion. Therefore, as Krause and Arenhart (2016, p. 16) argue, “[…] an isomorphism 
may be defined both in the presence as well in the absence of a language in which 
the structures are interpreted”, rendering both approaches to models meaningful.

As Lutz (2015, Sect.  7) states, “[…] the syntax-semantics debate was about a 
distinction that marks no difference”, to the extent that one approach can be freely 
translated into another. Moreover, Krause and Arenhart (2016, p. 17) remarked that, 
specifically within the semantic approach, the discussion related to whether or not 
to include the requirement for language independence is unimportant considering 
that both structures (language-dependent and “independent” are convertible into one 
another). In fact, that is precisely what Suppes (1967) means when distinguishing 
between the complementary intrinsic and extrinsic approaches to theories: the for-
mer consists in the axiomatization via linguistic resources (e.g., via labeled struc-
tures, or syntactically); when no such axiomatization is viable, one can proceed with 
the latter by characterizing the class of models of the theory directly in set theory.

Ultimately, it seems that philosophers of science have not provided a satisfying 
answer to the question of “what is a scientific theory?”, as its most plausible answer 
would be, after all, “I don’t know”. Although an answer concerning what a scientific 
theory is in its essence could not be provided, we may say in which ways it could 
be represented for explication purposes. In that sense, both syntactic and semantic 
tools can be employed in philosophical inquiry.

Based on the discussion presented so far, it is relevant to notice that both the 
syntactic and the semantic approaches are live options in the current practice of phi-
losophy of science. Even if both approaches are viable, they are not considered to be 
equally adequate to treat scientific theories philosophically. For instance, notice that 
models are models of something: when they are models of some axiomatic, it would 
only make sense to call it “model” as if there is a set of axioms modeled by the struc-
ture. Then, it would be necessary to provide the axioms of the theory before mod-
eling it in a set-theoretical structure. Is not that, however, a major shortcoming of the 
radical syntactic approach mentioned earlier? Recall the syntactic approach: the goal 
is to axiomatize a theory, by describing it from its underlying logic to its specific 
axioms. Therefore, this seems to be inconvenient for the syntactic approaches. Natu-
rally, this is a simple matter when the theory in question is simple as well, such as 
the theory concerning the projective plane. Suppose, however, that the theory to be 
modeled requires several “sub-theories”, which must all be axiomatized. Consider 
QM, which encompasses several underlying theories such as the tensor calculus, 
theory of differential equations, vector spaces, and so on. This would render the axi-
omatization theories that are more complex than those of order-1 such as topology, 
as Suppes (1957, pp. 248–249) states, an “unduly laborious” task, and even “utterly 
impractical” in the case of more complex theories such as QM.
15 See also Lutz (2015, Sect. 5).
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Some authors seem to pursue a syntactic kind of axiomatization, relating the use 
of set theory to axiomatization—either focusing on its vocabulary (Worrall 2007) 
or in a set-theoretical axiomatization of parts of theories (Zahar 2004). According 
to Suppes (1967), this categorizes an “extrinsic approach”. Krause and Arenhart 
(2016, p. 79) argue that this kind of approach either (i) cannot provide its models, 
in the sense that if a set-theory is supposedly consistent, it cannot provide its own 
models in the object language, but only in a metalanguage in which it is constructed. 
This leads to the objection that (ii) this fact would render axiomatization impracti-
cable due to the need for axiomatizing its models in their entirety, which involves 
huge structures. It seems that not everyone would accept this kind of axiomatiza-
tion from scratch, but is not entirely correct, as there are philosophers that would 
not decline this kind of axiomatization. In fact, this is precisely how da Costa and 
Chuaqui (1988) lead their axiomatization process. It should be remarked that both 
Suppes (2002) and da Costa and Chuaqui (1988) consider their approaches to be 
part of the so-called “Suppes’ predicate”, but their approach clearly differs. Krause 
and Arenhart (2016, Chaps. 5, 6) present a detailed discussion on these differences, 
surpasses kinds of axiomatization. However, for the purpose of this paper, a brief 
account of their differences based on different methodological approaches to axiom-
atization suffices. This kind of detailed axiomatization is arguably distant from the 
working scientific practice; by contrast, it is fundamentally the logician’s approach, 
which proves to be more useful to the philosopher of science than to the working 
scientist. Call this approach “rigid axiomatization”—which is also a formalization 
of scientific theories.

At the same time, Suppes (2002) argues that, ideally, all “step-theories” (axio-
matized in the rigid approach) can be presupposed as obtainable within a set the-
ory. This yields that only the specific axioms of the theory must be presented. The 
important point, then, is its set-theoretical structures, which model the theory’s axi-
oms, i.e., the models of the theory. Therefore, this is a less rigid axiomatization, yet 
properly semantic in the sense that the elements of the theory are defined in their 
satisfiability with the axioms.

Regarding the equivalence, Lutz reduces the syntactic approach to the semantic 
approach applying set theory in order to demonstrate a certain equivalence. Note, 
however, that such equivalence is made in a set theory! Thus, it is not a neutral 
mode of assessing an equivalence between theories. In a way, this begs the ques-
tion regarding the equivalence of the two approaches. These are tacit assumptions 
that commonly go unnoticed but can be questioned. Something similar could be said 
of Halvorson, who presents this equivalence in a stronger theory, namely in a cat-
egory theory. Mutatis mutandis, category theory faces the same problem stressed 
when addressing set theory: the semantic approach is already bought in advance by 
the authors who claim to establish an equivalence between the syntactic and seman-
tic approaches. However, it is still possible to question whether it is conceivable to 
establish a theoretical equivalence from a “cosmic exile”. We believe it is not.
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5  Interpreting Scientific Theories III: Physics Beyond Logic

So far, we have climbed a hill to see the debate in a panoramic way. Now it’s time to 
go down to the mean sea level, to analyze how well the syntactic and semantic char-
acterizations about the interpretation of scientific theories deal with fundamental 
physics. From what has been discussed so far, we have seen what it means to inter-
pret a scientific theory according to two major trends in contemporary philosophy of 
science. The question now is to check whether this debate helps us to understand the 
current state of the art in a fundamental physical theory, such as QM. Let us take a 
first look at the present situation in fundamental physics. The measurement problem 
is, in QM, the reason why the theory needs to be interpreted.16 Thanks to Maudlin 
(1995), the measurement problem can be simply put as a checklist of three simple 
questions: 

1. Is the quantum description complete?
2. Is the quantum description linear?
3. Are there measurement outcomes?

One must say “no” to at least one of those questions in order to solve the measure-
ment problem (which is then defined by the problematic conjunction of those three 
items). For now, let us take that claim at face value: QM needs to be interpreted, and 
to do so is to solve the measurement problem. What then? No correspondence rules, 
structures, or models. Just physics. Seems odd, ain’t it?

It is fair to state that almost no one engaged in work on the “interpretation” of 
quantum theory thinks they are trying to settle the sorts of questions addressed in 
the other debate, or vice versa. However, there are several approaches to quantum 
theory that conflates theory and interpretation. Let us see two cases: textbook QM 
and recent approaches to the axiomatization of QM via Suppes predicates.

5.1  Textbook Approaches

Here is a standard textbook approach to the axiomatization of QM, mainly due to the 
work on von Neumann (1955) in this field. The following is based on Cohen-Tan-
noudji, Diu, and Laloe (1991, Chap. 3). QM is obtained with five basic axioms (the 
notions of “state”, “system”, and “observable” are taken as primitive). We should 
acknowledge that the presentation of the axioms is given in a very informal way, as 
it serves mainly to illustrate the point that we are trying to make, viz., that textbook 
approaches to the axiomatization of QM axiomatizes an already-interpreted quan-
tum theory. Often we find a presentation of the axioms that goes like this. 

1. Physical systems are defined by a vector in a Hilbert space H;

16 This issue is discussed in more detail in Sect. 6.
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2. Observables are measurable physical quantities described by a self-adjoint opera-
tor Â , and such operators are the eigenvalues;

3. A probability is assigned to measurement outcomes in the form of the Born rule: 
Prob(ak)Â = ��ak��

2
= ��⟨ak�𝜓k⟩��

2;
4. A dynamics to unmeasured systems (usually in the form of the Schrödinger equa-

tion, in which its result may be a vector sum called “superposition”): 

5. The projection postulate, in which the measurement outcomes are described as 
reduction superposed states in the form of 

The two first axioms associate primitive concepts with mathematical entities; the 
third one defines the statistics for measurement outcomes; the fourth defines the 
dynamics for undisturbed systems (i.e., for systems that are not subject of measure-
ment); the fifth defines the dynamics for disturbed systems (i.e., for systems that 
are subject of measurement). Let us quote a presentation of this axiom by Cohen-
Tannoudji, Diu, and Laloe (1991, p. 221):

If the measurement of the physical quantity A on the system in the state ��⟩ 
gives the result an , the state of the system immediately after the measurement 
is the normalized projection Pn��⟩√

⟨��Pn��⟩
 , of ��⟩ onto the eigenstate with an . 

(Cohen-Tannoudji, Diu, and Laloe 1991, p. 221).

We find also something similar, albeit with a more detailed projection algebra, in 
Messiah (1961, pp. 260–263). In d’Espagnat (2003, pp. 46–50) we can read that the 
collapse is a theorem of the presentation of QM. In fact, d’Espagnat (2003, p. 50) 
acknowledges that “[t]his [collapse] theorem is often stated as an independent postu-
late. We see here that it can be proved on the basis of the other quantum rules”.

As Auyang (1995,  p.  21) stresses, in order to make empirical statements, the 
concept of “measurement” represents a “phenomenological statement” about actual 
(laboratorial) measurement outcomes, rather than a statement buildable within the 
theoretical apparatus constructed so far. Goldstein (2009,  p.  501) emphasizes that 
the projection postulate (or “collapse” or “measurement”) plays this phenomeno-
logical role in standard quantum mechanics:

In standard quantum theory, the projection postulate plays a crucial but con-
troversial role: crucial, because standard quantum theory makes contact with 
physics and the results of experiments via the measurement axioms of quan-
tum theory, the most important of which is the projection postulate; and con-
troversial, because the projection postulate appears to conflict with Schröding-
er’s equation. (Goldstein 2009, p. 501).

(1)iℏ
���(t)⟩

�t
= H��(t)⟩,

n�

i=1

ai
���i⟩ ⟶ ���k⟩k∈i.
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We can see an interesting parallel between the projection rules and the positivists’ 
rules of correspondence: it is only via this phenomenological statement that QM 
makes reference to physical concepts. But notice that the projection rule is not gen-
eral enough to encompass the multiplicity of interpretations of QM (more on that 
later). For now, it suffices to say that, unlike the first four axioms, there is little con-
sensus about the relationship between them and the fifth one, for its conjunction 
is a problematic issue known as the ‘measurement problem’. This problem lies at 
the heart of QM, and it is usually seen as a dividing mark between interpretations 
of QM. As remarked by Peter Lewis (2016, p. 50), without an answer to this, QM 
is trivialized; Ruetsche (2018,  p.  296) goes even further, calling that problem an 
“empirical contradiction”. We do not think that a formal contradiction is involved, 
even in standard QM. A closer look at the measurement problem is needed to 
explain such a view since many assumptions were made, and it is not clear whether 
there is a formal manner to state this so-called contradiction. Regarding informal 
proof, Esfeld (2019, p. 223), claims that Maudlin’s taxonomy became the standard 
way of stating the measurement problem in QM17:

If the entire system is completely described by the wave function [1], and if the 
wave function always evolves according to the Schrödinger equation [2], then, 
due to the linearity of this wave equation, superpositions and entangled states 
will, in general, be preserved. Consequently, a measurement of the cat will, in 
general, not have a determinate outcome […]. (Esfeld 2019, p. 223).

It is essential, however, to (at least apparently) determine measurement outcomes 
[3], hence the informal inconsistency. In order to state the measurement problem 
more precisely, consider the following case. Suppose that one wants to measure a 
position observable of a physical system, denoted as ‘ Â ’, by means of a macroscopic 
apparatus denoted as ‘ M̂ ’. This will be done, in principle, through the interaction 
of these two physical systems. Suppose, further, that the initial state of Â in t0 is 
��0⟩ =

∑
i ci��i⟩ and that the initial state of M̂ is ��0⟩ , meaning the apparatus presents 

no reading, i.e., it is in the reset button. For M̂ to fulfill its purposes as a measuring 
device, it must be prepared in a certain way in which it is susceptible to measure 
some quantities of the system of interest Â , to yield an eigenvector of Â . However, 
by means of Û only, the state of the composite system HÂ ⊗HM̂ , represented by

evolves to

(2)�𝜓⟩⊗ �𝜑0⟩ =
�

n�

i=1

ci�𝛼i⟩
�

⊗ �𝜑0⟩

17 Another way of stating such problem is relating “open” and “closed” systems—see Pessoa Junior 
(1997). This work, however, sticks to Maudlin’s taxonomy as it better relates to the literature here consid-
ered.
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for any t ≠ 0 . Remarkably, this result is not an eigenstate of either Â or M̂ , meaning 
that the measurement process must be something else other than the application of 
Û . Following the notation adopted so far, the measurement process is described in 
the form

with the probability given by the statistical algorithm stated in P3.
To explain why and how this change in the dynamics occurs is one of the central 

issues of approaches to the measurement problem, while the attempts to overcome 
these changes are subject to the so-called interpretations of QM. The central point 
of the matter is, then: how can one reconcile what the theory predicts with what is 
observed? The answer is: “by interpreting it!”

However, what does it mean to interpret QM, exactly? Notice that the projection 
postulate is implicit in this textbook formulation of the measurement problem. We 
wish to stress that the point of departure for interpreting QM is already being taken 
from a specific interpretation of QM! We will take a closer look at this in the next 
Sect. 6.

5.2  Suppes Predicates

Now let us look at Krause and Arenhart’s (2016, Sect. 5.8.1) presentation of an “axi-
omatization of non-relativistic quantum mechanics” via Suppes predicates. Accord-
ing to Krause and Arenhart (2016, pp. 105–107), a quantum-mechanical structure is 
a tuple of the form:

where S is the set of physical systems, {Hi} the set of Hilbert subspaces, {Âij} the 
set of self-adjoint operators, {Ûik} the set of unitary operators, and B(ℝ) is the col-
lection of Borel sets over the set of real numbers. And then they present seven pos-
tulates (or axioms) of such structure. The first one relates the physical systems with 
Hilbert (sub-)spaces. The second one deals with superpositions. The third defines 
self-adjoint operators and the fourth deals with eigenvalues. The 5th axiom gives the 
Born Rule, the 6th presents the Schödinger equation through the unitary operators, 
and the 7th postulate presents collapse.

But notice: by including the collapse between the axioms, they are implicitly 
rejecting Maudlin’s item 2. Thus, they commit themselves to an interpretation of 

(3)Û(t)

��
n�

i=1

ci�𝛼i⟩
�

⊗ �𝜑0⟩
�
→ Û(t)

n�

i=1

ci
�
�𝛼i⟩⊗ �𝜑i⟩

�

(4)
n�

i=1

ci
�
�𝛼i⟩⊗ �𝜑i⟩

�
→

�
�𝛼w⟩⊗ �𝜑w⟩

�
,

(5)QM =
⟨
S, {Hi}, {Âij}, {Ûik}B(ℝ)

⟩



1261

1 3

Axiomathes (2022) 32:1243–1279 

QM. So this cannot be the quantum theory that is interpreted, in the sense of solving 
the measurement problem; the above-mentioned structure is not the quantum theory 
that gives rise to the measurement problem at all. This axiomatization is not an axi-
omatization of quantum theory per se, but an axiomatization of an interpretation 
of QM. So, the models are not standing for an interpretation in this case, but they 
are representing an already interpreted structure.18 But the term “interpretation” 
here gains another sense, which differs from the uses in the syntactic and semantic 
approaches. Thus it is clear that the axiomatization presented by Krause and Aren-
hart (2016) have its own models and an interpretation function, and so on, but this 
is not related with the solution of the measurement problem. That is the sui generis 
sense of the word “interpretation” used in the context of QM.

5.3  Towards a New Approach

Since some crucial aspects of the previous debate are needed to discuss the efforts 
of interpreting QM, an assessment of the matter shall be provided, even if in pass-
ing. The syntax is needed to better specify some concepts, as well as semantics, 
in order to interpret scientific theories—recall that a purely syntactical approach is 
rigid enough to preclude this possibility.

As discussed above, interpreting a scientific theory (according to the syntactic 
and semantic views) is an issue mainly concerned with concepts in logic. In the syn-
tactic approach, to interpret is to connect an axiomatic system with empirical data. 
Take as a rough example the following: suppose a structure S = ⟨F,A,R⟩ , where 
F  is the set of formulas, A are the axioms, and R are the rules of inference. To 
interpret S  is to add a “physical counterpart”. In order to do so, consider the lan-
guage LS  of the system S  ; consider also the addition of new symbols to its primi-
tive alphabet (which may be denominated after ‘theoretical terms’), as well as the 
addition to S  of a set (not necessarily finite) of “specific axioms” of the new system 
S

∗ . The rules in R remain the same. Evidently, there is now an extended axiomatic 
system, which may be denominated as a ‘theory’. In this manner, S∗ = ⟨F∗,A∗,R⟩ , 
where F∗ represents the new set of formulas obtained by the application of the 
grammatical rules of LS  to the finite sequence of the extended alphabet, and A∗ is 
the union of A with the new specific axioms. Thereby, one may go from mathemat-
ics to physics.

As stated by Wallace (2012, p. 17), to do so is to surpass the “bare formalism” 
to an empirically adequate theory, which, in the specific case of QM, is the intro-
duction of the concept of measurement: “[…] if we are to extract empirical content 
from the mathematics, we seem to have to introduce the notion of measurement as a 
fundamental concept”. Such introduction leads to the measurement problem—we’ll 
come back to that later.

As for the semantic approach, all that one is required to do in order to interpret a 
physical theory such as A∗ is to find the models in which its axioms A∗ are true. But 
is that the case with regard to QM? In case there was a single method to axiomatize 
QM, then to interpret QM would mean finding the models in which its axioms were 
true. However, were it not the case, both the syntactic and the semantic approach 
18 In the sense of the word ‘interpretation’, as usually employed in QM.
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present a relevant issue, and an interpretation of QM does not have the same mean-
ing as an interpretation in logic.

Unfortunately, this seems to be precisely the case. Different interpretations of 
QM have different axioms. For the sake of argument, take as an example only two 
“families” of interpretations of QM: the collapse interpretations and the no-col-
lapse interpretations. They have different axioms (i.e., the collapse). How to pro-
ceed, then? From now on, we discuss our guess as to the correct way to proceed 
in this matter. What is usually called “QM” has several interpretations. There is a 
wide philosophical debate about interpretations of axiom theories. The concept of 
interpretation cannot be used in the same way when dealing with QM. The concept 
of “interpretation of QM” is not yet properly defined, neither being a correspond-
ence between theoretical and empirical aspects of the theory, (as it is in the syntactic 
approach), nor a function that crosses domains of a structure (as it happens in the 
semantic approach). The case of QM is, as we already mentioned, sui generis in 
this sense, which does not conform to traditional characterizations about scientific 
theories. Therefore, it is clear that it should not follow the parameters of the concept 
of ‘interpretation’ based on such approaches. In other words, logic in no way an end-
game to the discussion about the interpretation of QM—not, at least, in the present 
state of the debate. From a philosophical point of view, the word ‘interpretation’, as 
commonly used in QM, is an unfortunate choice.19

It is a settled fact that QM can be formulated in several ways (cf. Styer et  al. 
2002). Since the seminal work of von Neumann (1955) on the axiomatization of 
QM, developments and debates on QM employ, predominantly, the Hilbert space 
formulation.20 However, when adhering to such formulation, one can still be both-
ered with the problematic question: what is QM?

It is a widespread belief that the formalism of QM can be interpreted in numerous 
ways (Jammer 1974; P Lewis 2016), as if a single theory, The QM—with a capi-
tal “T”—exists. There are several axiomatic approaches to this so-called Quantum 
Theory (cf. Muller 2003; Krause and Arenhart 2016), and from this Theory, various 
interpretations emerge as solutions to the measurement problem (Friederich 2014, 
Chap. 2). This was recently criticized by Acuña (2021) and Wallace (2020b, 2020a) 
as a categorical mistake that most approaches to the “interpretation of QM” leads to 
(cf. Ney and Albert, 2013 for a contemporary example of this). As Ćirković (2005) 
stresses, different “interpretations” of QM, such as collapse and no-collapse inter-
pretations, yield different experimental outcomes, and, therefore, be considered dif-
ferent full-blooded quantum theories. Indeed, as Ćirković (2005) stated, there are 
many thought experiments that, in principle, yield different results depending on 
whether one accepts or abandons the axiom of collapse. These results cannot, in 

19 In his “Against ‘measurement”’, Bell (1990) put forth his famous critique of how the notion of “meas-
urement” is ill-defined and even inadequate to the context of the foundations of QM. Our goal here is 
essentially to do the same, but with the term “interpretation”.
20 For a critical summary of various formulations of QM, see Wightman (1976), Gudder (1979), Styer 
et al. (2002), and references therein.
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fact, be currently tested in practice, contributing to the unfeasibility of opting for a 
theory.

The so-called ‘interpretations of QM’, then, are claimed not to consider the 
same set of axioms (regarding the collapse axiom) neither the same set of equa-
tions (regarding the Schrödinger equation), so that interpretations do not depart from 
the same point in order to “interpret” a single theory. Along these lines, Maudlin 
(1995, p. 7) stresses that “[a]ny real solution [to the measurement problem] demands 
new physics”. This explains the followed statement made by Sklar (2003, p. 281): “I 
doubt that one can draw any principled line between replacing a theory and ‘merely 
interpreting’ it”. Ćirković (2005, pp. 821–822) argues as follows: theory T and T ′ are 
different theories if at least one of the three following criteria is fulfilled: 

1. T predicts new phenomena, nonexistent in T ′ , subject to empirical verification 
(even if only in principle);

2. The formal parts of T and T ′ are different;
3. T and T ′ differ in the description of observed phenomena.

Undisputed cases, such as spontaneous-collapse theories (Ghirardi, Rimini, and 
Weber 1986) are set aside from this discussion.21 The most difficult cases, repre-
sented by collapse and no-collapse versions of QM, constitute the cases of interest 
here. It is safe to state that these cases do not satisfy item 1. Item 2 may be disputed, 
as collapse and no-collapse versions of QM can be placed in “external” descriptions 
as different structures, with different axioms (e.g., one structure with the collapse 
axiom, and another structure without it). Since other mathematical aspects of both 
approaches (e.g., the equations) remain the same, it becomes easy to see how item 2 
is traditionally considered unfulfilled in this case. Although we disagree with such 
an assessment, we will not put it in dispute at this moment, in accordance with the 
standard practice. Therefore, the debate shall move onto item 3.

Thus far, collapse and no-collapse approaches to QM are empirically indiscern-
ible, meaning that both lead to the same set of laboratorial (i.e. empirical) conse-
quences. However, what to say of conceivable experiments, even those not forth-
coming in the near future? As Ćirković (2005, sec. 3) emphasizes, there are several 
thought experiments available in the literature that should not go unnoticed.22 Con-
sidering that thought experiments demonstrate experimental differences according 
to the adoption of collapse or no-collapse approaches to quantum phenomena, item 
3 could be considered the epistemologically weakest of the three items. Recently, 
Dürr and Lazarovici (2020, p. viii) stressed, albeit with other reasons in mind, that 
the word “interpretation” is a weak one when referring to QM.

A poem is interpreted if you want to elicit some deeper meaning from the alle-
gorical language. However, physical theories are not formulated in allegories, 

22 For a brief analysis of seven thought experiments that show the differences in experimental results 
between collapse and no-collapse approaches versions of QM, see Ćirković (2005, pp. 823–834).

21 For those cases, see the references cited in Ćirković (2005, p. 821).
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but with precise mathematical laws, and these are not interpreted, but ana-
lyzed. So the goal of physics must be to formulate theories that are so clear 
and precise that any form of interpretation—what was the author trying to say 
there?—is superfluous. (Dürr and Lazarovici 2020, p. viii).

The situation seems to amount to one’s definition of ‘quantum theory’, arising the 
following dilemma. First off, if the accepted definition is excessively narrow, one 
is unable to comprise several theoretical programs for investigating the phenomena 
on a quantum level, commonly referred to as QM. This appears to pose a pragmati-
cal drawback for the narrow definition of ‘theory’, as numerous working physicists 
inclined to different solutions of the measurement problem could work in various 
subjects without ever disagreeing, even without realizing that they are working with 
distinct physical theories.

On the other hand, if one’s definition is too wide, one may substantially conflate dif-
ferent nuances of several theoretical approaches to quantum phenomena, such as differ-
ent predictions of experimental outcomes, or different ways of calculating the motion 
of a quantum object. In this sense, QM presents a unique case in which the theory’s 
very axioms depend on a choice of interpretation.

This paper proposes a characterization of a “quantum theory” considering a modifi-
cation of the semantic approach, that is, by stating basic requirements in order to obtain 
the theory’s specific axioms, offering a basic formulation of QM that can serve as a 
common ground for several theoretical programs on the study of quantum phenomena. 
Collapse (von Neumann 1955) and no-collapse (Everett 1957) theories are the exam-
ples that serve as focuses of this discussion. We should mention that Wallace (2020b) 
recently made a similar suggestion, regarding the Hilbert-space formulation of QM as 
a theoretical framework within which concrete quantum theories can be expressed. Our 
proposal goes in the same direction, differing in the ways that such framework is taken 
to be, and how it is expressed by so-called “interpretations”.

The offering of a basic scheme, considering convenient set-theoretical tools, allows 
for further definition of the differences among several approaches to quantum phenom-
ena. Furthermore, the additional assumptions traditionally made upon such a basic 
scheme clarify the modifications resulting from each response to a foundational prob-
lem concerning the basic structure in order to obtain the axioms of the theory at stake.

This basic structure is here called “ QMbas ”. With these efforts, this work seeks to 
advance towards a more accurate account of what QM could be and what it means 
to interpret it. In our terms, QM is formed by a basic mathematical structure QMbas . 
To interpret QM, then, means to instantiate the General Principles of QMbas (purely 
formal) into specific (physical) axioms, interpretations of QMbas are quantum theo-
ries—in contrast, QMbas is a purely formal system, which is what we call the “isola-
tion problem”. By doing that, one constraint that the specific axioms of interpreted 
quantum theories should obey is the measurement problem. In this sense, the notion 
of “interpretation” of QM is introduced here as the very axiomatic structure of each 
subsequent “quantum theory” that solves the measurement problem.
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The idea that interpretations are indeed different quantum theories has been pro-
posed before (Ćirković 2005), and the description of the measurement problem and 
its potential solutions are also not new (Maudlin 1995). The novelty of this paper is 
to show precisely what is interpreted, and how it is done. Our guess, as we argue, 
is that this is done with specific modifications to a basic structure of general postu-
lates. Moreover, we argue that uninterpreted QM is not yet a physical theory. This 
was proposed before by de Ronde (2016), who calls QM a “proto-theory” and by 
Wallace (2020b), whose proposal is close to ours. Just as Wallace (2020b), we main-
tain that an “uninterpreted QM” (here understood as “ QMbas ”) is not a physical the-
ory yet—it is a purely formal scheme that furnishes the grounds on which physical 
theories (quantum theories) are constructed.

6  Presenting QMbas

We present a semantic characterization of QM, briefly explained as follows.23 
Assuming that a semantic axiomatization can be done at least in principle, the 
adequate manner to axiomatize parts of present-day physics, such as the Standard 
Model of particle physics, is still unknown. Moreover, it should be noted that this 
study works exclusively at the broader, informal level, for simplicity of presentation. 
For the sake of precision, if the reader thinks necessary, the Zermelo–Fraenkel set 
theory with the axiom of Choice can be assumed. “Axiomatize”, then, simply means 
that non-trivial assumptions are at stake. Therefore, this paper does not, of course, 
present a full axiomatization of QM from scratch. As we mentioned in Sect. 4, this 
would be a (Herculean) task.24

A major problem of presenting QM according to the semantic approach is the fact 
that a quantum theory depends on its axioms. Simultaneously, the theory’s axioms 
largely depend on the chosen interpretation, since QM can be presented with differ-
ent axioms motivated by a given choice of interpretation. Consequently, as previ-
ously stated, the frontiers between replacing a theory and interpreting it are blurred, 
and this seems to be a sui generis case of QM: if the focus were to lie only on the 
axiomatic structure of QM, it could be presented with different axioms, resulting in 
different QMs, without a common starting point.

For instance, von Neumann (1955) presents QM with the so-called “collapse 
axiom”, whereas Everett (1957) drops this axiom in his approach. As Ćirković 
(2005) argues, however, adopting collapse axiom entails in principle that a par-
ticular set of experimental predictions divergent from those in which such axiom is 
dropped.

Thus, to present an axiomatic structure for each quantum theory does not seem to 
result in a path towards a unified view on QM. The discussion here presents, then, 
precisely this common starting point. For instance, a recent effort to present an axi-
omatization of QM conducted by Krause and Arenhart (2016, Sect.  5.8.1) is also 

23 An earlier version of QMbas was presented in Arroyo (2020, Chap. 2).
24 It is assumed, though, that this can be done—even if not here.
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committed with collapse as an axiom of QM, thus appearing to be an axiomatiza-
tion of an interpretation of QM, and not of QM per se. In order to encompass a 
wider variety of approaches to QM, we propose a different definition of QM with 
an emphasis on a purely formal system. So, instead of presenting its axioms, some-
thing similar to the role played by axiom schema in systems of logic is attempted. 
In essence, axiom schemata generalize the notion of axiom by stating the rules by 
which axioms are generated. Here, the set of “axiom schema”, in QMbas is labeled as 
“General Principles”, denoted as P . These General Principles may establish a com-
mon ground that can be instantiated in specific axioms of each quantum theory. As 
stated above, we conceive each formalized interpretation of QM as a physical theory 
(Maudlin 1995; Ćirković 2005), in order to allow for the examination of theories 
as different extensions or formulations derived from the same fundamental General 
Principles: hence, a basic scheme for QM.

In our proposal, modifying the semantic approach, to present QM is to present its 
(specific) General Principles. In this way, our definition of QM is a basic scheme of 
common ground to several independent research programs towards quantum phe-
nomena, known as ‘QM’. Each General Principle, in its turn, can be instantiated as a 
theory’s specific axiom.

With these instruments in mind, the basic scheme of QM labeled “ QMbas ”, is 
now presented. It should be clear that there is no claim that this structure is ade-
quate for all cases; rather, limited cases of the standard Hilbert-space formulation of 
QM are being considered, hoping to extract some philosophical lessons from it. For 
instance, only pure states and observables with discrete, non-degenerate spectra are 
being considered. Following the previous discussion, it is possible, then, to elabo-
rate a structure that furnishes the tools for representing a QMbas as a scheme for the 
construction of quantum theories, based on the standard (orthodox) formulation of 
QM. So, QMbas is a structure presented as a triple of the form:

where 

1. F  is the set of formulas of the language of QMbas . F  is obtained from a basic 
language L consisting of a primitive vocabulary and rules of formation25 of 
well-formed formulas or expressions—which in turn are finite sequences of such 
symbols. So, in F  there is a set of purely mathematical, uninterpreted symbols, 
which composes the formal (both logical and non-logical) vocabulary of the 
theory. Many of these symbols acquire their meaning in standard mathematics 
[such as standard functional analysis (Farenick 2016)], which is where they are 
defined; nevertheless, some symbols are specific of QM, such as the bra-ket nota-
tion (known as Dirac’s notation), in which the position of the bras and kets are 
meaningful. For instance, �⋅⟩ is a vector; ⟨⋅�⋅⟩ is a scalar product, and so on.

(6)QMbas = ⟨F,P,R⟩

25 See R ahead.
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2. P is the set of General Principles of QMbas . The General Principles of P are 
stated in the language of F  . Since we are dealing solely with the Hilbert-space 
formulation of QM, the mathematical axioms of QMbas are the axioms of standard 
functional analysis, while the logical axioms and rules of inference of QMbas are 
the axioms and the rules of classical logic. There is an ongoing debate raised from 
the seminal work of Birkhoff and von Neumann (1936), to whom the logic of QM 
is not the classical logic. This discussion will not be covered here. Rather, follow-
ing Dalla Chiara (1977, 1981), we accept that the role of the so-called “quantum 
logic” is not played within the domain of rules of inference. As a consequence, 
Dalla Chiara (1981, p. 337) argues, the general logic of QM is not quantum logic, 
but classical logic; quantum logic is to be introduced as “[… a particular physical 
sub-language of [QM]”. The logic is assumed in the background. Thus, listing 
rules of inference is not necessary there is the desire to introduce some rule as 
one of the principles of QMbas—which is not the case. Therefore, the essential 
matter to be stated here relates to the specific General Principles of the theory, 
which will be informally presented. Again, dealing with the standard Hilbert-
space formulation of QM implies a commitment to a specific set of the theory’s 
General Principles. The General Principles of P are:

P1 [Hilbert space]: a Hilbert space H  is a linear space with inner product, 
complete in relation to the norm introduced by the inner product comprising a 
set of vectors denoted as {��⟩, ��⟩, ��1⟩,…} . The field is usually taken to be 
that of complex numbers, where elements are termed “scalars” and denoted 
by Latin lower-case letters, occasionally with indexes. When H  is infinite-
dimensional, it is assumed to be separable (i.e., it has an enumerable orthogo-
nal basis).
The states of quantum-mechanical systems S are represented by vectors ��⟩ 
in a complex, infinite-dimensional, separable Hilbert space H  . A pure quan-
tum state ��⟩ is a summary of the physical characteristics of S in a specific 
instant of time t. The description of S employing ��⟩ consists of constant char-
acteristics (such as mass, charge, spin, etc., of the system) and variable charac-
teristics changing over time. A state of a quantum system can be represented 
by a unitary vector ��⟩ (also called ‘state vector’), which norm is unity, up to 
a phase factor. If ��⟩ represents a state, then ei���⟩ also represents the same 
state, where � is the phase factor (an arbitrary number).
The set of all states permissible for a quantum system to assume is theoreti-
cally represented by the concept of “state space”, a complex H  . ��i⟩ and ��j⟩ 
are orthogonal if ⟨�i��j⟩ = 0 and orthonormal if ⟨�i��j⟩ = �ij , where �ij = 0 if 
i ≠ j and �ij = 1 if i = j.
Vectors can be represented as a linear combination (sum) of other vectors. In 
the same sense, a state can be represented as a linear combination of other 
states. A set of vectors ��i⟩ forms a basis of H  if every vector in H  can be 
written as a linear combination of its members and this set of vectors is lin-
early independent. So ��⟩ can be written as a set of basis states {��⟩} in the 
form: 
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where ci ∈ ℂ are the Fourier coefficients ci = ⟨�i��⟩ , where the basis is com-
posed by orthonormal vectors. According to the theorem of Gram–Schmidt, 
every vector space with an inner product has an orthonormal basis. This is the 
superposition principle. Intuitively, the sum of quantities of the same type is 
also a quantity of that same type. Thus, as the sum of two lengths is a length, 
the superposition principle asserts that the sum of states of a quantum system 
is a state of such a quantum system.
P2 [Quantization algorithm]: the elements of set A, termed “observables”, are 
represented by self-adjoint operators in H  . The quantization algorithm intro-
duces a set of basis states in which the states of observables can be revealed 
upon measurement.
A self-adjoint operator is a linear transformation of a Hilbert space H  into 
itself, and its spectrum consists only of real numbers. The self-adjoint operator 
maps one state into another. Thus, a state ��i⟩ for an observable Â is written as 
Â�𝛼i⟩ = ai�𝛼i⟩ . The states ��i⟩ are called the eigenstates of Â ; they are invariant 
under the operation of Â , as Â multiplies the state ��i⟩ by a numerical factor ai . 
From the set of eigenstates {��i⟩} , in the non-degenerate case, it is possible to 
obtain a basis of H  , such that any state ��⟩ can be expressed by superposition 
of states. Since the interest here lies in observables with non-degenerate spec-
tra, each eigenvalue is associated with a single eigenstate.
P3 [Statistical algorithm]: the statistical algorithm does not mention the proba-
bility of a state to have a specific eigenvalue; contrarily, probability and eigen-
value are concepts related to measurement outcomes. The concept of probabil-
ity is used since the observed result of a single pure state is at stake.
The squared norm of the Fourier coefficients ci = ⟨�i��⟩ is a numerical factor 
|ci|2 which gives the probability for a measurement made upon an observable 
S to yield the eigenvalue ai when the system is in the eigenstate ��⟩ . Therefore, 
for the discrete and non-degenerate state: 

The statistical algorithm states that the eigenvalues are probably found in an 
interval of ℝ . This is frequently called the “Born rule”.
P4 [Dynamics]: the evolution of quantum states is governed by the unitary 
operator Û , which maps the states from ��(t0)⟩ to ��(tx≠�)⟩ in the form of 
Û(t)�𝜓

�
⟩ = �𝜓(t)⟩ . Such temporal evolution is represented by linear, differen-

tial equations. The linearity feature of Û implies that ��1⟩ evolves to �� ′
1
⟩ , and 

��2⟩ evolves to �� ′
2
⟩ , then a��1⟩ + b��2⟩ evolves to a�� �

1
⟩ + b�� �

2
⟩.

3. R is the set of the inference rules of QMbas , that is, a collection of relations 
between finite sets of formulas and formulas. Each relation has an arity n > 0 , 
and are inference rules of QMbas . Following common practice, we assume that 
the rules of inference in R are the standard rules of inference of classical logic.

(7)��⟩ =
�

i

⟨�i��⟩��i⟩ =
�

i

ci��i⟩,

(8)Prob
��⟩
S

(ai) = �⟨�i��⟩�2 = �ci�2



1269

1 3

Axiomathes (2022) 32:1243–1279 

6.1  The Problems of QMbas

There is, however, a crucial problem with QMbas , which prevents even the most 
instrumentalism-inclined theoretician from leaving it at that. We call it the “isolation 
problem”.

Isolation problem: QMbas is not a physical theory, inasmuch as it does not men-
tion physical systems or physical observables.

The name of the problem is after Carnap (1966, p. 237), who stated that “[a] pos-
tulate system in physics cannot have, as mathematical theories have, a splendid iso-
lation from the world”. Here’s the thing about QMbas : it is a kind of “view from 
nowhere”26 in the sense that it is not committed to a particular quantum theory such 
as its contenders presented in Sect. 5. But the thing is that the view also to nowhere! 
This is the price of isolation.

So we need, as Auyang (1995, p. 21) stated, a “[…] phenomenological statement 
that can be empirically verified”. This, in turn, leads to a very known consistency 
constraint that all interpretations of QMbas must obey. Traditionally, the introduc-
tion of such a “phenomenological statement” leads to the measurement problem, to 
which interpretations of QM are essentially responses to Friederich (2014, Chap. 2). 
Recall Maudlin’s taxonomy briefly introduced in Sect. 5, now defined as the con-
junction of assumptions added to the General Principles ( P ) and the phenomeno-
logical statement: 

1. Completeness: the (pure) state vector ��⟩ gives a complete description of S ( P1)
2. Linearity: the state vector ��⟩ is always governed by a linear dynamics ( P4).
3. Unicity: measurement results always have single state vectors as outcomes (phe-

nomenological statement).

While General Principle P4 states that the description of S is governed by Û , the 
phenomenological statement determines that the description of S is not governed by 
Û (but, at best, by a statistical algorithm). Moreover, P1 states that the description 
is complete. Therefore, both General Principles, when considered jointly, seem to 
contradict each other. In this sense, the non-trivial role played by interpretation is 
precisely that of accounting for it: to save the theory’s very consistency.

So things cannot be left as it is. QMbas is hardly what QM is, not even to the most 
shut-up-and-calculate kind of Copenhaguist (cf. Mermin 2004)! Its value is purely 
heuristic as a faithful point of departure from which new quantum theories are built 
upon. Moreover, the phenomenological statement should be addressed by each inter-
pretation of QMbas , e.g., it can be represented by a projection postulate or collapse 
(von Neumann 1955), by a branch-recognition process (Everett 1957), and so on.

Let us see how this unfolds.

26 Not to be confused with the “cosmic exile” mentioned in Sect. 4.



1270 Axiomathes (2022) 32:1243–1279

1 3

7  Interpreting Scientific Theories IV: Building Scientific Theories

Empirical theories must have an empirical subject matter, this is fairly undisputed. 
In the case of physical theories, such as QM, physical systems must be taken into 
account. This is a reason why QMbas is not a physical theory. But even if one grant 
“physicality” to its postulates, the consistency problem should be addressed. When 
one does that, one ends up with the measurement problem—which is frequently 
cashed out in terms of the problem of collapse, as we saw in Sect.  5. In order to 
move away from such misunderstandings, the notion of “interpretation” put forth in 
this section is presented as follows.

According to the reasons offered so far, we can conclude that an interpretation 
of QM must provide: i) a solution to the isolation problem, which is to transform 
QMbas in a physical theory; ii) a solution to the measurement problem, which a solu-
tion requires the refusal of at least one of the three assumptions mentioned earlier, 
made in addition to the General Principles and the phenomenological statement. In 
the language employed thus far, to solve the measurement problem is, therefore, to 
instantiate the General Principles P of the structure QMbas in Eq.  (6) in specific 
axioms A . A solution requires the modification of the elements of P or the modifica-
tion of the phenomenological statement, and the examples in literature are numerous 
(Jammer 1974). In doing so, the specific axioms A are physical axioms. An inter-
pretation, in this sense, is what transforms a purely formal scheme ( QMbas ) into full-
blooded physical theories. To cope with Maudlin’s taxonomy, three examples are 
analyzed: 

 (i) The pilot-wave interpretations (Bohm 1952; Bohm and Hiley 2006) rejects 
assumption 1 according to the General Principle P1 , and instantiates the Gen-
eral Principle P4 in the axiom of dynamics with hidden variables in the dif-
ferential equations of motion, thus originating the pilot-wave quantum theory 
QMpil.

 (ii) The standard collapse interpretation (von Neumann 1955), that rejects assump-
tion 2 in the General Principle P4 and instantiates the phenomenological state-
ment in the axiom of the state vector collapse, thus originating the collapse 
quantum theory QMcol.

 (iii) The branching interpretations (Everett 1957), which rejects assumption 3 in 
the phenomenological statement and instantiates it in the axiom of the branch-
ing process, thus originating the branching quantum theory QMbra.

7.1  Pilot‑Wave Quantum Theory

Bohm’s (1952) pilot-wave solution to the measurement problem is presented as fol-
lows. It modifies (or interprets) QMbas ’s structure, instantiating some of its Gen-
eral Principles in what are called specific axioms of pilot-wave quantum theories by 
denying assumption 1. Therefore, a pilot-wave quantum theory QMpil is a triple:
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where 

1. F  is the language of QMpil , similar to QMbas ’s language, with the introduction of 
the quantum potential Q in F ;

2. Apil are the specific axioms of QMpil (i.e. the instance of the set P of QMpil ). The 
list of Apil is:

Apil1 [Configuration space]: The same as P1 , except for the following remarks. 
The set S represents physical systems. Quantum systems are described in a 
3N-dimensional configuration space Q (not to be confused with the quantum 
potential Q below), not in a Hilbert space H  , where N corresponds to the 
number of particles in the system; the standard ��⟩ wave-function/quantum-
mechanical description is not complete, but is supplemented with extra param-
eters (see Apil4 below).
Apil2 [Quantization Algorithm]: The same as P2 , except with the follow-
ing remarks. The elements of set A are physical observables. Observables 
embody quantum-dynamical variables (position, momentum, non-relativis-
tic spin, and so on), and can be incompatible in the sense of the theoretical 
impossibility of simultaneously obtaining the values of two incompatible 
observables (such as position and momentum). In addition to describing the 
state, an observable also yields the possible outcomes of measurements.
An observable associated with a quantum system is represented by a self-
adjoint operator Â on its Hilbert space. The spectrum of the operator Â indi-
cates the possible values that can be found when the observable in question 
is measured. There are many operators in QM, but only operators in the class 
of Â represent observables. For an observable Â , the spectrum 𝛬(Â) of its rep-
resenting self-adjoint operator stipulates all possible values that the measure-
ments of the physical observables represented by Â may obtain. As we focus 
only on observables within the discrete spectrum, the spectrum of an observa-
ble Â is 𝛬(Â) = {ai} , where {ai}∈ℝ are real numbers named eigenvalues, which 
represent the possible results of experiments, or measurement outcomes.
Apil3 [Statistical Algorithm]: The same as P3.
Apil4 [Hidden-Variable Dynamics]: The same as P4 , except for the follow-
ing remarks. The usual Schrödinger equation (see Equation (1) in Acol4 ) is 
supplemented with additional terms and hidden variables that transform its 
probabilistic nature in a deterministic equation of motion Bohm (1952). 
This additional term Q is called ‘quantum potential’ 

which supplements the differential equations of motion with additional param-
eters. In order to do so, the Schrödinger equation is written in function of the 
potential operator V—instead of the Hamiltonian operator H, to yield the total 
energy of the system, as in Eq. (1), as: 

(9)QMpil = ⟨F,Apil,R⟩

(10)Q =
ℏ2

2m

∇2R

R
,
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where ��⟩ is also re-written in its polar form, decomposed between its ampli-
tude and its phase (Bohm 1952). It is noteworthy to mention that ��⟩ is an 
abbreviation of �𝜓(�̄, t)⟩ , where �̄ stands for spatial coordinates (x, y, z); these 
are position coordinates, taken to be essentially unknown. These are the so-
called hidden variables, thus denying assumption 1. If this is so, the real part 
of the Schrödinger equation can be rewritten in a modified Hamilton–Jacobi 
equation [also known as its “quantum version” (Bohm and Hiley 2006)] as 
follows: 

 Equation (12) is commonly referred to as the “guiding equation” of motion.
Apil5 [Measurement]: a position measurement, for example, simply yields 
the hidden states that were guided by Equation (12) in a purely deterministic 
(albeit statistical via Born rule) manner.

3. R are the rules of inference of QMpil , which are similar to those stated in QMbas.

7.2  Collapse Quantum Theory

The (standard) collapse solution to the measurement problem, as stated by von 
Neumann (1955), modifies (or interprets) the structure of QMbas , instantiating 
some of its General Principles in specific axioms of collapse quantum theories 
by denying assumption 2. It is worth mentioning that the so-called “orthodox 
interpretation” (or the “Copenhagen interpretation”) or QM, as well as all the 
approaches presented in Sect. 5 are instances of what we call a “collapse quantum 
theory”. Therefore, in an axiomatic structure, a collapse quantum theory QMcol is 
a triple:

where 

1. F  is the language of QMcol , the same as QMbas;
2. Acol are the specific axioms of QMcol (i.e. instance of the set P of QMbas ). The 

list of Acol is:

Acol1 [Hilbert space]: the same as P1 , except for the following remark. The set 
S represents physical systems.
Acol2 [Quantization algorithm]: the same as Apil2.
Acol3 [Statistical algorithm]: the same as P3.
Acol4 [Undisturbed dynamics]: Slightly modifies the General Principle P4 ; 
Acol4 states that the temporal dynamics of the set {A} of observable obeys the 

(11)iℏ
���⟩
�t

=
�
−

ℏ

2m
∇2 + V

�
��⟩,

(12)
�S

�t
= −

[
|∇S|2
2m

+ V +
ℏ2

2m

∇2R

R

]

(13)QMcol = ⟨F,Acol,R⟩
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linear evolution of Û only when A is not subject to a measurement process, thus 
denying assumption 2. Moreover, Acol4 instantiates the differential equation 
of motion of P4 in the Schrödinger equation, as presented in Eq.  (1) (where 
i =

√
−1 , ℏ is the Planck constant divided by 2� , and H is the Hamiltonian, 

which gives the energy of the system) in the form of iℏ ���(t)⟩∕�t = H��(t)⟩ , 
where ℏ is the reduced Planck constant and H is the Halmiltonian of the sys-
tem.
Acol5 [Collapse]: when the state of a physical system S described as the super-
posed state 

 is subject to a measurement process, the system S ceases to be described by Û 
and stats being described by the corresponding eigenstate in the form of 

 where ��w⟩ is one of the elements of the expansion, with a probability given by 
the statistic algorithm in P3 , which is �ci�2 = �⟨�i��⟩�2 . It is worth remember-
ing the following: it is agreed that the values of eigenstates are set according 
to measurement results. An eigenstate, however, is not the result of measure-
ment.27 Acol5 states that measurement takes place whenever a quantum system 
interacts with nonquantum-mechanical systems which collapse a superposed 
state in a single eigenstate of Â . As Acol4 declares the limited validity of Û , 
Acol5 states that Â is found in a single, determined state by virtue of its interac-
tion with a other systems.

3. R are the rules of inference of QMcol , similar to those stated in QMbas.

7.3  Branching Quantum Theory

Proceeding the branching solution to the measurement problem, according to Ever-
ett (1957), modifies (or interpret) the structure of QMbas , instantiating some of its 
General Principles in specific axioms of branching quantum theories, by denying 
assumption 3. Therefore, in an axiomatic structure, a branching quantum theory 
QMbra is a triple:

where 

(14)��⟩ =
�

i

ci��i⟩,

(15)��⟩ =
�

i

ci��i⟩ → ��w⟩,

(16)QMbra = ⟨F,Abra,R⟩

27 There is some consensus concerning this mode of presentation of measurement results. For the sake 
of precision, it is essential to emphasize that this applies to measurements of the first kind. There are, 
however, measurements where this does not occur: where the eigenstate does not correspond to the 
eigenvalue. The position measurement satisfies the postulate presented, but, strictly, this does not apply 
to the measurement of energy.
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1. F  is the language of QMbra , likewise QMbas;
2. Abra are the specific axioms of QMbra (i.e. instance of the set P of QMbas ). The 

list of Abra is:

Abra1 [Hilbert space]: the same as P1 , except for the following remark. The set 
S represents physical systems.
Abra2 [Quantization algorithm]: the same as Apil2.
Abra3 [Statistical algorithm]: the same as P3.
Abra4 [Branching]: instantiates, also, the differential equation of motion of P4 
in the Schrödinger equation, similarly to Acol4 , however maintaining its uni-
versal validity. By maintaining the universal validity of Û , every time A is 
described by a superposition, Abra4 says that all terms of such superposition 
exist in different branches.28

Abra5 [Branch recognition]: instantiates the measurement as the recognition of 
a relative branch, considering a single eigenstate of A. It is worth noting that, 
by virtue of Abra4 , all other states of S are equally real in different branches. 
Thus, Abra5 implies the denial of assumption 3: S is found in a single, deter-
mined state by virtue of a recognition of a particular branch of the universe. 
Such determinate outcome, however, is relative to a branch, and not absolute. 
For all practical purposes, Abra5 resembles the concept of collapse, as stated in 
QMcol , but no collapse occurs—just the branching process.

3. R are the rules of inference of QMbra , similar to those stated in QMbas.

Take a QMbra as an example. It is an axiomatic theory (à la Suppes), whose axi-
oms instantiate (or “interpret”) QMbas ’s General Principles and the phenomenologi-
cal statement. In this sense, QMbra is a physical theory (whereas QMbas is not yet) 
capable of making physical predictions. QMcol does the same thing as QMbra does, 
but with different axioms. It is also a physical theory, but different from QMbra . 
The same goes to QMpil . The axioms of quantum theories are not purely formal, 
they are theory-specific physical axioms. QMbas ’s General Principles are not axi-
oms of a physical theory, but very general conditions (of something that is not yet a 
theory) for generating physical theories. Moreover, the physical theories developed 
upon QMbas must meet the consistency constraint and solve the measurement prob-
lem. The specific axioms of QMpil , QMcol and QMbra do not create the measurement 
problem: they are physical theories insofar as they introduce physical concepts (viz., 
the phenomenological statement) to the axiomatic scheme; and they do so in each in 
a specific way to avoid (or solve) the measurement problem.

28 Recall that such a specific axiom is neutral regarding the question whether the states or the systems 
are prone to the branching process.
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8  Final Remarks

This paper presented new horizons to old questions. In particular, we addressed the 
following question: what is QM, and what does it mean to interpret it? We argued 
that QM could not be grasped in its complexity with purely syntactic nor seman-
tic approaches. Because of its interpretation issues, problems such as theory indi-
viduation begin to appear as soon as one starts identifying QM with a single set 
of rules. On the other hand, it seems that all the so-called “interpretations” of QM 
were departing from a shared point. To pinpoint this point of departure, we needed a 
radical move: to postulate a basic framework without reference to physical concepts 
( QMbas ) in a “splendid isolation” from physics.

To be sure, the General Principles of QMbas are very close to those mentioned 
in the textbook approaches to quantum mechanics (Sect.  5). However, even those 
books present an axiomatic formulation of quantum mechanics that includes in their 
axioms the collapse or the postulate of projection. This, in our view, is an inter-
preted version of quantum mechanics, not “The” quantum mechanics that is later 
interpreted. This is a very common feature in many aspects of our lives. Until get-
ting in touch with other cultures, it is natural to think that one is not being part of a 
specific culture. Likewise, the presentations of quantum mechanics in textbooks do 
not feel like presenting quantum mechanics already interpreted; people don’t think 
they are within an interpretation. One reason is that interpretation is the only way 
to talk about the world. However, this obscures the question: what do the interpreta-
tions interpret? This tension was presented in Sect. 5.

Realizing this, we substantially changed the formulation of our QMbas in Sect. 6, 
in the light of the literature on the syntactic and semantic views of scientific theories. 
Our solution was to say that what is interpreted is QMbas , which in turn consists of a 
purely mathematical formalism, that is, something that is not even a physical theory, 
since it remains, in Carnapian terms, in the “splendid isolation” of the world. Thus, 
we removed the mention of QMbas systems and physical observables, leaving this 
to the interpretations. The interpretations, therefore, solve a double problem which 
we introduce, previously called the “measurement problem”: the first one what we 
called the “isolation problem”, which is the placement of QMbas in a purely math-
ematical framework—after all, non-basic quantum mechanics (the “interpreted” 
ones) must be physical theories. Doing so consists, among other things, in the intro-
duction of what we called, after Auyang (1995), a “phenomenological statement” 
which leads to the measurement problem (here presented in the standard version of 
Maudlin concerning the conjunction of the assumptions of completeness, linearity, 
and uniqueness of the results).

In this way, our formulation of the QMbas and the subsequent QMcol , QMpil , 
and QMbra are presented originally. The originality does not lie in the content of 
the axioms of the theories presented, but in the philosophical presentation of the 
understanding of what is an interpretation of quantum mechanics and what is 
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interpreted—as well as the new meaning that the word “interpretation” urges in 
quantum mechanics, i.e., a sui generis sense that escapes the tradition of the debate 
between syntactic and semantic views and urges another use.

In order to close this paper indicating further developments, we should men-
tion very briefly the following. One can reify the theoretical mechanisms of each 
interpretation or not. If they are ontologically reified, then interpretations can have 
an ontological aspect. But someone can be an empiricist and still be on the QMcol 
team.29 To take this as an example: one can reify the cause of the collapse with an 
ontological primitive, e.g., one can state that it is “human consciousness” that causes 
the collapse (cf. Wigner 1983; de Barros and Oas 2017; Arroyo and Arenhart 2019). 
But that is not necessary. The gain of our proposal is to remain neutral with the 
ontological rectification of the theoretical mechanisms of each quantum theory, e.g. 
collapse and consciousness, branching and many worlds, hidden variables, and pilot 
waves. This can be done at another, more profound moment of interpretation, which 
can enrich our understanding of the relationship between theory and the world, and 
will certainly involve debates concerning scientific realism and anti-realism. Such 
questions, while interesting, are beyond the scope of this paper.
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