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Abstract Structural models of systems of causal connections have become a

common tool in the analysis of the concept of causation. In the present paper I offer

a general argument to show that one of the most powerful definitions of the concept

of actual cause, provided within the structural models framework, is not sufficient to

grant a full account of our intuitive judgements about actual causation, so that we

are still waiting for a comprehensive definition. This is done not simply by focusing

on a set of case studies, but by arguing that our intuitions about two different kinds

of causal patterns, i.e., overdetermination and counterdetermination, cannot be

addressed using that definition.

Keywords Causality · Counterfactuals · Causal graphs · Causal models · Structural

equations · Overdetermination

1 Introduction

In the last two decades structural models of causal connections have played a central

role in the analysis of the concepts of causation and actual cause, and in Halpern and

Pearl (2005) an interesting and highly sophisticated definition of actual cause, based

on a structural account, is provided.1 However, a number of scholars have put into

question the adequacy of any definition of this kind, highlighting that further

conditions are required in order to account for our intuitive judgements about actual
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1 As far as I know, this is the most complete definition now at our disposal. It constitutes a development

of the definition given in Halpern and Pearl (2001), and benefits from the analysis provided by Hitchcock

(2001).
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causation.2 In the present paper, I present a structural reason why this attractive

definition cannot account for such judgements and that, as a consequence, we are

still waiting for a comprehensive definition of actual causation. The paper is

subdivided into four parts: in the first one, the basic concepts underlying the

construction of structural models are introduced; in the second one, two special

kinds of causal determination, i.e., over- and counterdetermination, are defined and

analysed; in the third one, the difficulties posed by cases of these kinds are

discussed; finally, it is shown that it is not possible to give a uniform account of the

intuitive judgements about the causal role played by events involved in over- and

counterdetermination.

2 The Structural Analysis of Causation

According to the standpoint proposed in Pearl (2000),3 a causal model is a model of

a causal system, which is a system of causal connections between events. The basic

idea underlying such standpoint is that a causal system can be represented in terms

of variables, their values, and a set of equations that determine the way in which the

variables are causally connected. For example, if we want to model a system where

a light is operated by a switch, we can assume that the system is described by two

two-valued variables and one equation as follows: Y for light on, where Y = 1 if the

light is on and Y = 0 otherwise; X for switch up, where X = 1 if the switch is up

and X = 0 otherwise; Y = X, so that we assume that the light is on if and only if the

switch is up.

2.1 Causal Models

The variables in a causal model are subdivided into endogenous and exogenous
ones: exogenous variables are the ones whose values are taken as given, while the

values of endogenous variables are determined by means of a set of structural

equations, representing the causal connections modelled in the system.

Definition 1.1 Causal model U;V;R;E.

A causal model M is a 4-tuple 〈U;V;R;E〉 where

(1) U is a set of variables (exogenous variables)

(2) V is a set of variables (endogenous variables)

(3) R is a function assigning a set of values to variables in U ∪ V
(4) E is a function assigning a structural equation to each variable in V

2 See, for instance, Menzies (2004b), Woodward (2006), Hall (2004), Hall (2007), Hitchcock (2007), and

Halpern and Hitchcock (2014).
3 This standpoint, adopted with minor modifications by Halpern and Pearl (2001), Hitchcock (2001),

Woodward (2003), Halpern and Pearl (2005), can be now considered the standard view about modelling

causation using structural equations.
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Intuitively, a structural equation E(X), usually written as X = ƒ(X), where X is a

sequence of variables in U ∪ V, is a function determining the value of X given the

values of the variables in X. It is essential to notice that a structural equation codifies
both the kind of dependence on X and the fact that X is the dependent variable,

namely that X is the determined variable.4 In addition, if X = ƒ(X) then every

variable Xi ∈ X is an essential argument, in the sense that there is at least one setting

of values of the other variables in X and a pair of distinct values xi and xi′ of Xi, such

that X takes distinct values depending on Xi = xi or xi′ in the given setting.

Therefore, if X = ƒ(X) and Xi ∈ X, then Xi can be said to be a potential cause of X,
since there is a context in which the value of X depends only on the value taken by

Xi.

Example 1.1 Let’s suppose we intend to model the case of a man shot by two

killers. Then the causal model would be the 4-tuple 〈U;V;R;E〉 in which:

● U includes a variable U necessary to render the connections stated in the

structural equations deterministic.

● V includes the three significant variables: S1 for the first shooting; S2 for the

second shooting; K for the killing.

● R is such that R(U) = R(S1) = R(S2) = R(K) = {1,0}; 1 if the event

represented by the variable occurred, 0 otherwise.

● E is such that S1 = U, S2 = U, K = max(S1,S2), so that the man would die, if

either the first or the second killer shoots.

When U takes the value 1, the information conveyed by this model can be

partially described using the following graphical representation:

S1 = 1

S2 = 1

K = 1U = 1

In a graph of this kind nodes represent variables and arrows causal dependencies,

while the kind of dependence is not represented.

In what follows only acyclic models are considered. These are models in which E
defines a set of acyclic structural equations, i.e., a set of equations linking variables

ordered in V by a total ordering \, such that if X \ Y, then X is independent of

Y. Intuitively, acyclic models are models in which, if a variable Y is dependent on a

variable X, then X is independent of Y and of any variable directly or indirectly

4 Thus, X = Y and Y = X are indeed different structural equations: the first one states that X has the same

value of Y and the value of X is causally dependent on the value of Y, while the second equation states that
X has the same value of Y and the value of Y is causally dependent on the value of X. Hence, the order of
occurrence in a structural equation is crucial for distinguishing causes and effects.
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dependent on Y. Acyclic models are described using acyclic graphs and are

deterministic: once the values of the exogenous variables are specified, the set of

equations suffices to determine the value of each endogenous variable.

2.2 Variants of Causal Models

A set of structural equations fixes the background knowledge concerning general

causal dependencies between event types. This knowledge is then used to identify

actual causal dependencies between event tokens. In order to do so, we need a

method to describe counterfactual connections. Such a method is provided by

introducing variants of causal models, representing the way in which models change

under external interventions.5

Definition 1.2 X-variant of a causal model M: M(X = x).

Let M = 〈U;V;R;E〉 be a causal model.

An X-variant M(X = x) of M a is a 4-tuple 〈U ′,V′,R′,E′〉 where

(1) U ′ = U is the set of exogenous variables

(2) V′ = V is the set of endogenous variables

(3) R′ = R is the function assigning a set of values to variables in U ′ ∪ V′
(4) E′ = E for variables other than X, while E′(X) is the equation X = x

The definition of X-variant of M can be generalized in a straightforward way to

sets X of variables. Using variants of a causal model we can construe a

counterfactual statement as a statement describing how the world would have been

given a change of the value of some variables.

Example 1.2 Let’s consider the model introduced before. If the exogenous variable

U is set to 0, the graph turns into

S1 = 0

S2 = 0

K = 0U = 0

We could now want to know what would have happened if the first killer had shot

the man. In the present framework, the answer is given by considering the S1 = 1

variant of the model:

5 Thus, in a sense, the proposed theory is a counterfactual theory of causation, capturing many aspects of

Lewis’ first theory. See Lewis (1973a, b, 1979), Yablo (2002), and Menzies (2004a) .
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S1 = 1

S2 = 0

K = 1U = 0

In this variant the man would have been killed. Notice that there is no arrow

connecting U to S1, since, as a result of substituting S1 = 1 for the original equation,

the dependence of S1 on U is not working any more.

2.3 Semantics

Following Halpern and Pearl (2005), I will use capital letters both as linguistic and as

metalinguistic signs for general variables, and small letters both as linguistic and as

metalinguistic signs for values of a variable. A basic formula is one of the form X= x,
for X ∈ V and x ∈R(X). A basic causal formula is a one of the form [X = x](X = x),
where X= x states that the variables in the sequenceX take the values in the sequence

x. A formula is valuated at a possible world in a model, where a possible world is

specified, in acyclic models, by setting the exogenous variables to some values.

(i) M ⊨u X = x stands for

X = x is true at u in the model M.

(ii) M ⊨u [X = x](X = x) stands for
X = x is true at u in the (X = x)-variant of M.

Being true at u means being true when the variables in U take the values in

u. Boolean combinations of basic formulas are defined in the usual way.

Definition 1.3 Actual cause at the world u in a model M.

X = x is an actual cause of φ at u in M iff

AC1: M ⊨u X = x ∧ φ
AC2: there exists a set X ⊆ V\X and a setting x, x′ of X, X′ such that

(i) M ⊨u [X = x, X = x′]φ
(ii) ∀ A ⊆ X, B ⊆ V\X, b (M ⊨u A = a =[ M ⊨u [A = a, B = b, X = x]φ)6

The idea underlying the definition is simple. AC1 states that both the cause and

the effect are actual events. AC2 states that X = x is, in a sense, a necessary and

6 The present definition is a slight modification of the original Definition 3.1 in Halpern and Pearl (2005).

In Definition 1.3 only basic events are allowed as actual causes, but this limitation is only apparent. The

original definition includes a further condition stating that the set of events identifying the actual cause

has to be minimal; given this condition, it can be proved that such a set can only be a singleton.
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sufficient condition for φ to obtain: necessary, since, according to (i), there are

circumstances, determined by X = x, where if X = x was not actual, φ would not

obtain; sufficient, since, according to (ii), changing the actual values of the variables

not in X cannot prevent X = x from causing φ.7

Remark In what follows we will consider only models with three endogenous

binary variables. In such models, Definition 1.3 can be so restated:

X1 = x is an actual cause of φ at u in M if and only if

AC1: X1 = x1 ∧ φ
AC2, there exist x*1 ∈ R(X1), x*2 ∈ R(X2) such that

(i) M ⊨u [X1 = x*1, X2 = x*2]φ
(ii) M ⊨u [X1 = x1, X2 = x*2]φ ∧ [X1 = x1, X2 = x2]φ

where X2 = x2 is the actual value of X2: M ⊨u X2 = x2..

3 Basic Cases of Over- and Counterdetermination

In this section the central concepts of over- and counterdetermination are introduced.

Cases of causal overdetermination arewell-known in literature about causation, since they

are used to provide counterexamples to simple counterfactual analyses of causation.Cases

of counterdetermination are, in a sense, the negative counterparts of the former ones and

can be used to block more sophisticated counterfactual analyses of causation.8

3.1 Primary and Backup Overdetermination (Pre-emption)

Definition 2.1 (i) an event is overdetermined, by primary overdetermination,

when it occurs in a context where it has two potential causes, both of which are

actual; (ii) an event is overdetermined, by pre-emption, when it occurs in a context

where it has two potential causes, the second one being activated if the first one is

not actual or does not succeed in becoming actual.

Case 1 The basic model of primary overdetermination.

Equations

X1 = U

X2 = U

Y = max(X1,X2)

X1 = 1

X2 = 1

Y = 1U = 0

7 The same basic idea constitutes the starting point for the substantially similar definitions proposed in

Hitchcock (2001), pp. 286–290, and Woodward (2003), pp. 77–85.
8 By the way, the classical examples suggesting that causation is not in general transitive are cases of

counterdetermination. See, for instance, McDermott (1995) and Hitchcock (2001).
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Example 2.1 Two killers shoot at a man; each shot is sufficient to cause the man to

die.

X1 = 1 := the target is hit by bullet 1

X2 = 1 := the target is hit by bullet 2

Y = 1 := the target dies

In accordance with intuitions I take to be standard, Definition 1.3 picks out both

X1 = 1 and X2 = 1 as actual causes of Y = 1. To verify that X1 = 1 is an actual cause

of Y = 1, put X = 〈X2〉 and x = 〈0〉:

AC2, (i) M ⊨u [X1 = 0, X2 = 0](Y = 0)

AC2, (ii) M ⊨u [X1 = 1, X2 = 0](Y = 1) ∧ [X1 = 1, X2 = 1](Y = 1)

Case 2 Basic model of backup overdetermination = pre-emption

Equations:

X1 = U

X2 = 1–X1

Y = max(X1,X2)

X1 = 1

X2 = 0

Y = 1U = 1

Example 2.2 A killer shoots at a man, his shot being sufficient to cause the man to

die; another killer supports the first, being ready to shoot the man, if the first one

does not hit him.

X1 = 1 := the target is hit by bullet 1

X2 = 0 := the target is not hit by bullet 2

Y = 1 := the target dies

In this case too, Definition 1.3 agrees with our intuitions in picking out only

X1 = 1 as actual causes of Y = 1. Put X = 〈X2〉 and x = 〈0〉:

AC2, (i) M ⊨u [X1 = 0, X2 = 0](Y = 0)

AC2, (ii) M ⊨u [X1 = 1, X2 = 0](Y = 1)

X2 = 0 is not an actual cause, since M ⊨u [X1 = 0, X2 = 0](Y = 0).

Focusing on the models just illustrated, we can conclude that the intuitive

concept of overdetermination is captured by Y = max(X1,X2) and that the distinction

between primary and backup overdetermination is captured by the pair of equations

determining the value of X2.
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3.2 Primary and Backup Counterdetermination (Prevention)

Definition 2.2 (i) an event is counterdetermined by primary counterdetermination

when it occurs in a context where there are an agent cause and a counteragent cause,

both of which are actual causes; (ii) an event is prevented when it occurs in a

context where there are an agent cause and a counteragent cause, the second one

being activated by the fact that the first one is or becomes actual.

Case 3 The basic model of primary counterdetermination.

Equations

X1 = U

X2 = U

Y = max(X1,1-X2)

X1 = 1

X2 = 1

Y = 0U = 0

Example 2.3 A killer puts poison into the king’s tea; the king’s tea is usually

checked for poisons; the check detects the presence of the poison; the king is given

another cup of tea.

X1 = 1 := the killer poisons the king’s tea

X2 = 1 := the king’s tea is substitute

Y = 0 := the king does not die

Case 4 Basic model of backup counterdetermination = prevention.

Equations:

X1 = U

X2 = X1

Y = min(X1,1-X2)

X1 = 1

X2 = 1

Y = 0U = 1

Example 2.4 A killer puts poison in the king’s tea; a bodyguard responds by

pouring an antidote in the king’s tea; the antidote is not lethal when taken by itself

and neutralizes the poison in the king’s tea.

X1 = 1 := the killer poisons the king’s tea

X2 = 1 := the bodyguard pours the antidote

Y = 0 := the king does not die

In both cases, the standard causal judgement seems to be that X2 = 1 is the only

actual cause of Y = 0, and Definition 1.3 picks out this very cause. In fact, choose

X = 〈X1〉 and x = 〈1〉:

AC2, (i) M ⊨u [X1 = 1, X2 = 0](Y = 1)

AC2, (ii) M ⊨u [X1 = 1, X2 = 1](Y = 0)
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X1 = 1 is not an actual cause, since M ⊨u [X1 = 1, X2 = 1](Y = 0).

Focusing on these models, we can conclude that the intuitive concept of

counterdetermination is captured by Y = min(X1,1 − X2) and that the distinction

between primary and backup counterdetermination is captured by the pair of

equation determining the value of X2.

At first sight, Definition 1.3 copes well with cases of both over- and

counterdetermination. Still, it is possible to present situations in which our intuitive

judgements are not in agreement with the outcomes of the definition.

4 Puzzling Cases of Overdetermination and Counterdetermination

Let us begin with a presentation of what I take to be our intuitive causal judgements

about cases of over- and counterdetermination, where the initial conditions are

possibly changed by varying the value of one or both of the variables representing

the potential causes. These judgements can be either just instinctive judgements or

the consequences of a critical application of some general principle. The principle I

will take into consideration, as the one underlying most of our judgements, is the

following

Principle of existential inertia (PEI):

(i) If no cause is activated, then a variable maintains its actual value.

(ii) If a variable maintains its actual value, then no net cause is activated.

PEI is an ontological counterpart of the physical Principle of inertia, where forces
play the role of causes and change in velocity is the relevant effect.

In stating the principle of existential inertia it was assumed that a net cause is a

potential cause whose effect is not counterbalanced by other potential causes in the

circumstances. Thus, if a potential cause is activated, and a dependent variable, say

Y, maintains its value, say Y = 0, then other potential causes, balancing the effect of

the first one, are active or activated, so that no net effect occurs. In cases of balance,

causes can act either symmetrically or asymmetrically: they act symmetrically when

each of them, in the absence of the other, would cause a change of the value of Y,
and act asymmetrically when only one of them, in the absence of the other, would

cause that change. As an example, consider the following situations:

(a) a spring acting on a given object

is counterbalanced by a similar spring.

(b) a spring acting on a given object

is counterbalanced by a wall.
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If the causes act symmetrically, both of them are considered as actual causes of the

maintenance of a value: in case (a) the object is at rest because two causes act in opposite

directions; removing one cause would change the state of rest. If, on the contrary, they act

asymmetrically, only the cause thatwould not change the object’s state is considered as an

actual cause: in (b) the object is at rest because the wall prevents an otherwise possible

motion; removing the spring would not change the state of rest.

4.1 Primary Overdetermination

Primary overdetermination is given by the presence of two causes acting at once, or

almost at once, in the same direction.9 Having Example 2.1 in mind, it seems to be

standard to assume that, when the variable Xi takes the value 1, then Xi = 1 is an

actual cause of Y = 1, whereas, if both variables take the value 0, then no change

occurs and nothing counts as a cause of Y = 0.

PEI leads to the same result. If Y turns to 1, then a cause is activated. The cause

can be X1 = 1, X2 = 1, or the conjunction of both. If Y maintains the value 0, then no

net cause is activated; but X1 = 0 and X2 = 0 are not counterbalancing causes;

therefore neither X1 = 0 nor X2 = 0 is an actual cause of Y = 0.

Remark In the following tables, “I-cause = ☑” indicates that the corresponding

actual event is judged as an actual cause according to our intuition, while “D-

cause = ☑” indicates that the actual event is judged as an actual cause according to

Definition 1.3.

Four possible worlds:

Variable Equation Value I-cause D-cause

World 1

X1 X1 = U 1 ☑ ☑

X2 X2 = U 1 ☑ ☑

Y Y = max(X1,X2) 1

World 2

X1 X1 = 1 − U 0 ☐ ☐

X2 X2 = U 1 ☑ ☑

Y Y = max(X1,X2) 1

World 3

X1 X1 = U 1 ☑ ☑

X2 X2 = 1 − U 0 ☐ ☐

Y Y = max(X1,X2) 1

World 4

X1 X1 = 1 − U 0 ☐ ☑

X2 X2 = 1 − U 0 ☐ ☑

Y Y = max(X1,X2) 0

9 Primary overdetermination is also called symmetric overdetermination.
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In the last case, the intuitive judgements differ from the ones based on Definition

1.3, since, following the definition, both X1 = 0 and X2 = 0 are actual causes of

Y = 0. To see why, for example, X1 = 0 is an actual cause of Y = 0, choose

X = 〈X2〉 and x = 〈0〉. Then:

AC2, (i) M ⊨u [X1 = 1, X2 = 0](Y = 1)

AC2, (ii) M ⊨u [X1 = 0, X2 = 0](Y = 0)

However, it could be said that the situation depicted as world 4 should not be

modelled by introducing three variables, since the negative events play no role in

that situation. If we accept this suggestion, the problem concerning judgements

about causation at world 4 does not arise.

4.2 Backup Overdetermination

Backup overdetermination is given by the presence of two causes, acting in the

same direction, where the second cause is activated by the first one not being or not

becoming actual.10 Having Example 2.2 in mind, it seems to be standard to assume

that when a variable Xi takes the value 1, the other being = 0, then Xi = 1 is the sole

actual cause of Y = 1, unless Xi = 1 prevents effects that in any case would be

prevented by an already existing condition.11

PEI leads to the same result. Since Y turns to 1 anyway, a cause is activated, and

the cause can be X1 = 1, X2 = 1, or the conjunction of both.

Two possible worlds:

Variable Equation Value I-cause D-cause

World 1

X1 X1 = U 1 ☑ ☑

X2 X2 = 1 − X1 0 ☐ ☐

Y Y = max(X1,X2) 1

World 2

X1 X1 = 1 − U 0 ☐ ☐

X2 X2 = 1 − X1 1 ☑ ☑

Y Y = max(X1,X2) 1

In this case, judgements based on Definition 1.3 seem to be wholly consistent, or

almost wholly consistent, with intuitive judgements.

10 Notice that early preemption, late preemption, and trumping preemption are all species of backup

overdetermination.
11 A classic example of this exception is given in McDermott (1995): a man catches a cricket ball in a

context in which the next things in the ball’s direction of motion are a solid brick wall and a window. In

this case only few people would say that the man’s action prevented the ball hitting the window.
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4.3 Primary Counterdetermination

Primary counterdetermination is given by the presence of two causes acting at once

in opposite directions, where one of them prevails over the other one.12 Having

Example 2.3 in mind, it seems to be standard to assume that, when the variable X1

takes the value 1, within a context where X2 takes the value 0, then X1 = 1 is an

actual cause of Y = 1, while, within a context where X2 takes the value 1, X2 = 1 is

an actual cause of Y = 0. Moreover, we are inclined to assume that, when the

variable X1 takes the value 0, there are no actual causes of Y = 0, independently of

the value taken by X2: Y = 0 because nothing acted for changing this value.

PEI leads to the same result. If Y turns to 1, then a cause is activated and the

cause can be X1 = 1 only, because the occurrence of either X2 = 1 or the

conjunction X1 = 1 and X2 = 1 is not sufficient to change the value of Y. If
Y maintains the value 0, then no net cause is activated. Thus, either no actual cause

or at least two counterbalancing causes occur. X1 = 1 and X2 = 1 constitute a pair of

counterbalancing causes, and, since their action is asymmetrical, X2 = 1 is the actual

cause of Y = 0.

Counterdetermination: the four possible worlds.

Variable Equation Value I-cause D-cause

World 1

X1 X1 = U 1 ☐ ☐

X2 X2 = U 1 ☑ ☑

Y Y = min(X1,1 − X2) 0

World 2

X1 X1 = 1–U 0 ☐ ☑

X2 X2 = U 1 ☐ ☑

Y Y = min(X1,1 − X2) 0

World 3

X1 X1 = U 1 ☑ ☑

X2 X2 = 1–U 0 ☐ ☑

Y Y = min(X1,1 − X2) 1

World 4

X1 X1 = 1 − U 0 ☐ ☑

X2 X2 = 1 − U 0 ☐ ☐

Y Y = min(X1,1 − X2) 0

Counterdetermination represents the main problem for Definition 1.3: it is not

difficult to see that our intuitive judgements differ from the ones based on Definition

1.3 in three of the four possible cases.

12 See Hiddleston (2005) and Halpern and Hitchcock (2014) for a more extended presentation.

440 Axiomathes (2016) 26:429–450

123



4.4 Backup Counterdetermination Viz. Prevention

Prevention is given by the presence of two causes, acting in opposite directions, where

the second cause is activated by the first one being or becoming actual. Having

Example 2.4 in mind, it seems to be safe to assume that, when the agent cause is actual,

the induced actuality of the counteragent cause is the actual cause of the fact that the

world does not change, while, when the agent cause is not actual, the fact that the world

does not change has no causes, because nothing is acting to change anything.

PEI leads to the same result. Since Y maintains the value 0 anyway, then either no

cause is activated or two counterbalancing causes occur. If X1 = 1, then X1 = 1 and

X2 = 1 are counterbalancing causes, and X2 = 1 is the actual cause of Y = 0. If

X1 = 0, then no cause is activated, and no actual cause occurs.

Two possible worlds:

Variable Equation Value I-cause D-cause

World 1

X1 X1 = U 1 ☐ ☐

X2 X2 = X1 1 ☑ ☑

Y Y = min(X1,1 − X2) 0

World 2

X1 X1 = 1 − U 0 ☐ ☑

X2 X2 = X1 0 ☐ ☐

Y Y = min(X1,1 − X2) 0

In this case too, judgements based on Definition 1.3 are not wholly consistent

with intuitive judgements. To see that at world 2 X1 = 0 is an actual cause of Y = 0

choose X = 〈X2〉 and x = 〈0〉. Then:

AC2, (i) M ⊨u [X1 = 1, X2 = 0](Y = 1)

AC2, (ii) M ⊨u [X1 = 0, X2 = 0](Y = 0).

4.5 A Possible Response

How the discrepancies noticed in the precedent analysis can be coped with? In

Halpern and Pearl (2005) it is observed that we only have to disallow some worlds

as serious possibilities. Halpern and Pearl consider the following situation13:

Suzy goes away on vacation, leaving her favourite plant in the hands of Billy,

who has promised to water it. Billy fails to do so, and the plant die. But

Vladimir Putin also failed to do so. Therefore, if we allow Billy’s omission to

13 See Halpern and Pearl (2005), p. 25. This example is taken into account in Hall and Paul (2003), and

exhibits a paradigmatic case of multiplication of causes.
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water the plant as a cause of its death, then we have to allow Putin’s omission

as a cause as well.

This situation can be treat using two strategies: the first one consists in disallowing

models including exotic variables, i.e., variables not corresponding to serious

possibilities; the second and more general one, the one adopted in Halpern and Pearl

(2005), consists in allowing all the possible models, but disallowing some possible

worlds, i.e., some settings of the variables, e.g. the setting where Putin waters the

plant. In this way, modelling becomes much more flexible and almost all the cases

are treatable with success.14 As an example, in cases of primary overdetermination,

it is possible to disallow world 4 to achieve a perfect correspondence between

intuitive and “official” judgements.

Is a solution of this kind satisfactory? The problem here is given not only by the

introduction of a subjective element in the construction of causal models,15 but

mainly by the circularity involved in the process by which the construction of such

models is accomplished. Why we are willing to exclude some world as a serious

possibility? I think that, in answering this question, one has to make use of her

causal intuitions about the world. So, why one makes the choice of disallowing the

setting in which Putin waters the plant? Because there is no causal connection

linking Putin to the situation depicted in the previous example.16

However, even if one is disposed to embrace the proposed strategy, other cases

seem to put into question its efficacy.

5 New Puzzling Cases

As we have seen, in our simplified models backup over- and counterdetermination

are represented using these sets of equations:

overdetermination counterdetermination

X1 ¼ U X1 ¼ U

X2 ¼ 1�X1 X2 ¼ X

Y ¼ max X1;X2ð Þ Y ¼ min X1; 1�X2ð Þ
However, a different kind of backup over- and counterdetermination can be mod-

elled using the following sets of equations:

14 See also Hitchcock (2001), pp. 290–98 and Woodward (2003), ch. 2, § 2.8 on causation, omission, and

serious possibilities. The strategy followed by Halpern and Pearl can be considered as a formalization of

Woodward’s approach in coping with puzzling examples.
15 See Halpern and Pearl (2005): “As the examples have shown, much depends on choosing the “right”

set of variables with which to model a situation, which ones to make exogenous, and which to make

endogenous. While the examples have suggested some heuristics for making appropriate choices, we do

not have a general theory for how to make these choices. We view this as an important direction for future

research.”. See also Woodward (2003), pp. 88–91, where the subjectivity problem is faced trying to show

that at least in part the subjective choice of models and worlds is based on objective facts about how the

world works.
16 The strategy of distinguishing default and deviant worlds, see Hitchcock (2007) and Hall (2007), seem

to undergo a similar critique, unless the distinction is made without relying on our causal intuitions.
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overdetermination counterdetermination

X1 ¼ U X1 ¼ U

X2 ¼ 1�X1 X2 ¼ X1

Y ¼ if X1 ¼ X2; 0; 1ð Þ Y ¼ if X1 ¼ X2; 0; 1ð Þ
Note for the sake of brevity I’m going to use the if(C,x,y) function, which returns x,
if condition C is true, and y, if the condition is false. Accordingly, Y = if

(X1 = X2;0;1) states that Y = 0, if X1 = X2, and 1 otherwise.

Which is the difference between the first and the second kind of overdetermi-

nation? Let us consider an example.

Example 4.1 Circuit consisting of a light bulb and two switches, S1 and S2.

If switch 1 is ON, then the light is on. If switch 2 is ON,

then the light is ON. But, if both switches are ON, then

the light is OFF. In fact, when switch 1 is ON it

changes the way in which switch 2 works

0        1

1        0

switch 2     switch 1

Now, two men are sent for turning the light on. The task of the first one is to

switch S1 on, while the task of the second one is to switch S2 on just in case the first

man does not achieve his task. Let’s assume that the first man has success. The

causal model looks as follows:

Equations:

X1 = U

X2 = 1–X1

Y = if(X1=X2;0;1)

X1 = 1

X2 = 0

Y = 1U = 1

X1 = 1 := S1 is ON

X2 = 0 := S2 is OFF

Y = 1 := the light is ON
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I think it is right to say that Y = 1 is overdetermined by backup

overdetermination.

Example 4.2 A killer puts poison in the king’s tea; a bodyguard responds by

pouring an antidote in the king’s tea; the antidote neutralizes the poison in the king’s

tea, but it is lethal when taken by itself. The model is:

Equations:

X1 = U

X2 = 1–X1

Y = if(X1=X2;0;1)

X1 = 1

X2 = 1

Y = 1U = 1

X1 = 1 := the killer poisons the king’s tea

X2 = 1 := the bodyguard pours the antidote

Y = 0 := the king does not die

Example 4.1 is a case of backup overdetermination, since there is a second potential

cause thatwould be activated by the failure of the first one to become actual. Nevertheless,

if both causes became actual, there would be no effect. Similarly Example 4.2 is a case of

backup counterdetermination, since there is a counteragent cause activated by the fact that

the first one becomes actual. Nevertheless, if only the counteragent cause became actual,

there would be an undesired effect. Notice that, in such cases, the strategy of disallowing

some setting of the variables cannot be followed, since there is no exotic setting.

5.1 A Second Kind of Backup Overdetermination

What implications do these new kinds of over- and counterdetermination have for

the matching of Definition 1.3 with our intuitive judgements?

In such cases we are inclined to say that, when X1 takes the value 1, then X1 = 1

is the actual cause of Y = 1, and, when X1 takes the value 0, then X2 = 1 is the actual

cause of Y = 1.

Two possible worlds:

Variable Equation Value I-cause D-cause

World 1

X1 X1 = U 1 ☑ ☑

X2 X2 = 1 − X1 0 ☐ ☑

Y Y = if(X1 = X2;0;1) 1

World 2

X1 X1 = 1 − U 0 ☐ ☑

X2 X2 = 1 − X1 1 ☑ ☑

Y Y = if(X1 = X2;0;1) 1
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The output based on Definition 1.3 is rather surprising: both variables have an

active causal role. Choose X = 〈X1〉 and x = 〈1〉 to check that X2 = 0 is an actual

cause at world 1, and X = 〈X2〉 and x = 〈1〉 to check that X1 = 0 is an actual cause at

world 2.

5.2 A Second Kind of Backup Counterdetermination

In such cases we are inclined to say that, if X1 takes the value 1, then X2 = 1 is the

actual cause of Y = 0, and that, if X1 takes the value 0, then neither X1 nor X2 is an

actual cause of Y = 0.

Two possible worlds:

Variable Equation Value I-cause D-cause

World 1

X1 X1 = U 1 ☐ ☑

X2 X2 = X1 1 ☑ ☑

Y Y = if(X1 = X2;0;1) 0

World 2

X1 X1 = 1 − U 0 ☐ ☑

X2 X2 = X1 0 ☐ ☑

Y Y = if(X1 = X2;0;1) 0

The output based on Definition 1.3 is: in both cases both variables have an active

causal role. To check that X1 = 1 is an actual cause at world 1, choose X = 〈X2〉 and
x = 〈1〉. To check that X1 = 0 is an actual cause at world 2, choose X = 〈X2〉 and
x = 〈0〉. Finally, to check that X2 = 0 is an actual cause at world 2, choose X = 〈X1〉
and x = 〈0〉.

Remark Notice that our intuitive judgements concerning causation in the

preceding cases are supported by another general principle.

Principle of existential import it is impossible for the same event in the same

model, i.e., given the same causal connections, to be caused both by the occurrence

and by the non-occurrence of the same event.

This principle is contradicted by the outputs based on Definition 1.3, since, both

in Example 4.1 and in Example 4.2 a certain event is picked out as a cause both

when it occurs and when it does not occur.

5.3 A Structural Difficulty

Let us now move to what I take to be the last crucial drawback concerning

Definition 1.3. It is impossible, within the framework based on this definition, to

account for our intuitions concerning the differences between over- and counter-

determination. Actually, basic causal models of over- and counterdetermination
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share, in a sense, the same structure. Let’s denote with X* the event that is dual with

respect to X (e.g. if X stand for being ON, X* stands for being OFF). We can transform

a model of counterdetermination into a model of overdetermination, and vice versa,

simply by operating the following transformations: X1 → X1*; X2 → X2; Y → Y*.
Primary overdetermination:

X1 ¼ U ! X�
1 ¼ 1� U

X2 ¼ U ! X2 ¼ U

Y ¼ max X1;X2ð Þ ! Y� ¼ min 1� X1; 1� X2ð Þ ¼ min X�
1 ; 1� X2

� �

Backup overdetermination:

X1 ¼ U ! X�
1 ¼ 1� U

X2 ¼ 1� X1 ! X2 ¼ X�
1

Y ¼ max X1;X2ð Þ ! Y� ¼ min 1� X1; 1� X2ð Þ ¼ min X�
1 ; 1� X2

� �

Second kind of backup overdetermination:

X1 ¼ U ! X�
1 ¼ 1�U

X2 ¼ 1� X1 ! X2 ¼ X�
1

Y ¼ if X1 ¼ X2; 0; 1ð Þ ! Y� ¼ if X1 ¼ X2; 1; 0ð Þ ¼ if X�
1 ¼ X2; 0; 1

� �

Thus, every possible world in a model for a case of overdetermination can be

transformed into a possible world in a model for a case of counterdetermination.

However, the intuitive judgements about cases of over- and counterdetermination do

not allow for such transformations: indeed, in cases of counterdetermination, it

seems impossible for both the agent and the counteragent cause to be actual causes

of the same effect, especially when the agent cause is not actual. Therefore, the

intuitively acknowledged asymmetry between over- and counterdetermination is not

reflected in the treatment based on the application of Definition 1.3.

Example 4.3 Consider the following model:

Equations

X1 = U

X2 = U

Y = min(X1,1-X2)

X1 = 0

X2 = 1

Y = 0U = 0

X1 = 0 := the king’s tea is not poisoned

X2 = 1 := the king’s tea contains an antidote

Y = 0 := the king is not death.

The model can be transformed into:

446 Axiomathes (2016) 26:429–450

123



Equations

X1 = U

X2 = U

Y* = max(X*1,X2)

X*1= 1

X2 = 1

Y* = 0U = 0

X*1 = 1 := the king’s tea is poison-free

X2 = 1 := the king’s tea contains an antidote

Y* = 1 := the king lives

According to our intuition on primary overdetermination, both X*1 = 1 and

X2 = 1 should be actual causes of Y* = 1. However, according to our intuition on

primary counterdetermination, neither X1 = 0, i.e., X*1 = 1, nor X2 = 1 should be an

actual cause of Y* = 1.

Example 4.4 Existent and non-existent threats.17

X1 = 1

X3 = 1

A = 0U = 1
X2 = 1

Y = 1

Equations : X1 ¼ X2 ¼ X3 ¼ U1;
A ¼ min X2; 1�X3ð Þ;
Y ¼ min X1; 1�Að Þ:

Such a model can be used to represent situations of causation by double preven-

tion18: if the value of X3 was not 1, the value of A would be 1, and, consequently, the

value of A would be 0. Thus, X3 = 1 prevents A from preventing Y = 1, and, in

accord with our intuition, Definition 1.3 picks out X3 = 1 as an actual cause of

Y = 1: choose X = 〈X2〉 and x = 〈1〉.

17 An analysis of cases of threats, as cases of causation by double prevention, is provided by Hall. See

Hall (2007).
18 See Hall (2007), p. 120: “The family sleeps peacefully through the night, in part because the watchful

police have nabbed the thief before he can enter the house”.
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Let us now consider a different possible world on the same model:

X1 = 1

X3 = 1

A = 0U = 1
X2 = 0

Y = 1

Equations : X1 ¼ X3 ¼ U;X2 ¼ 1�U;
A ¼ min X2; 1�X3ð Þ;
Y ¼ min X1; 1�Að Þ:

In this case, we would hardly say that X3 = 1 is an actual cause of Y = 1, since

X3 = 1 prevents nothing. Still, this is not the outcome of Definition 1.3: again,

choose X = 〈X2〉 and x = 〈1〉.
The above mentioned situation is just another case of failure in distinguishing

overdetermination and counterdetermination. The fragment

X3 = 1

A = 0U = 1
X2 = 0

is an example of counterdetermination. By transforming it, one gets

X = 1

A* = 1U = 1
X*2= 1

which is an instance of overdetermination. In the latter case we have no problem in

saying that both X*2 = 1 and X3 = 1 are actual causes of A* = 1, but in the former

one we would not count X3 = 1 as an actual cause, given that it seems to cause

nothing.

In conclusion, the possibility of transforming models of overdetermination into

models of counterdetermination leads us into problems. Therefore, since this kind of

transformation is allowed if Definition 1.3 is accepted, this definition appears to be

unable to meet our basic causal intuitions.

6 Conclusion

The use of causal models for analysing causation has several advantages. It provides

a definite representation of causal connections and a general framework in which

one can try to determine what actual causation is. Furthermore, it provides a
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procedure for defining factual and counterfactual dependencies, giving the

opportunity of developing a definition of actual causation based on the relation of

counterfactual dependency. Finally, the basic principles it involves, i.e., using

variables to represent states and events, using structural equations to represent

causal connections between events, and using structural interventions to model

counterfactual dependencies and to offer a description of the way the world would

have been, if some events were not have been actual, fit well both with the

philosophical way of addressing causation and with the scientific way of modelling

dynamical systems. Still, it seems to be in need of further development in order to

cope with all of our intuitive judgements about actual causation. As we have seen,

Definition 1.3 is too permissive, while the proposed extended version seems to

obscure the progress made in stating that definition, attributing too much power to

our subjective choices, indeed our causally oriented subjective choices, concerning

the introduction of variables and the selection of allowable settings. Taking into

account the results of the foregoing sections, the most promising direction for future

research seems to be that of improving the definition proposed by Halpern and

Pearl, introducing further necessary conditions, in order (i) to limit its permissive-

ness, and (ii) to account for the correspondence between intuitive causal judgements

and judgements based on the application of general principles, such as the principle

of existential inertia and the principle of existential import. In particular it would

seems promising to make the approach dynamic, by taking into account the way in

which a causal system evolves from different initial conditions, so to work with

structural relations characterizing pair of worlds, modelling initial and final

conditions, rather than a single world, modelling the outcome of an intervention.
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