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Abstract Pure type systems arise as a generalisation of simply typed lambda

calculus. The contemporary development of mathematics has renewed the interest

in type theories, as they are not just the object of mere historical research, but have

an active role in the development of computational science and core mathematics. It

is worth exploring some of them in depth, particularly predicative Martin-Löf’s

intuitionistic type theory and impredicative Coquand’s calculus of constructions.

The logical and philosophical differences and similarities between them will be

studied, showing the relationship between these type theories and other fields of

logic.

Keywords Higher-order logic � Type theory � Intuitionistic logic � Lambda

calculus � Foundations of mathematics

1 Introduction

This paper is an overview of generalised type systems, in particular normalising

dependent systems, focusing on a comparison between predicative and impredica-

tive dependent theories. It is intended as a very basic introduction, so no previous

knowledge of the topic is assumed. The first part of the paper is dedicated to

preliminary notions of k-calculus and simple type theory, and the second one to the

questions regarding generalised type systems.

Type theories arose as an alternative to set theory due to some contradictory

situations that appear in naı̈ve set theory when considering certain definitions of

sets. The most important example is Russell’s paradox, which involves the set of all

sets that are not members of themselves, R ¼ fxjx 62 xg (Cfr. Russell 1903, 1980). It
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is clear that this set is a member of itself if and only if it is not a member of itself,

which is contradictory. The discovery of this paradox revealed a fatal flaw in naı̈ve

logic and forced to reconsider their basic principles. Logicians and mathematicians

tackled this problem by restricting the way sets can be formed with two basic

approaches:

• Formulation of axiomatised set theories (ZFC, NBG…). Instead of relying on a

principle of unrestricted comprehension, these systems have a version of an

axiom or rule of separation, which needs a previously defined set in order to

build a new one from it and a certain predicate ranging over its elements.

• Type theories. In layman’s terms, a type is almost the same thing as a set, except

that types form a hierarchy that avoids self-reference, since a type contains

elements of a lower range. In this paper we will cover some aspects of the

development of type theories.

Self-reference, which plays a crucial part in many paradoxes like this, is closely

related to impredicativity; a definition is impredicative if it quantifies over a set

containing the entity being defined, and predicative otherwise. Russell’s paradox is

impredicative, and some authors like Russell himself or Poincaré thought that

impredicativity was problematic, arguing that impredicative definitions lead to a

vicious circle. However, many basic mathematical definitions are impredicative

(e.g. least upper bound) and Ramsey (Cfr. 1978) stated that many impredicative

definitions are actually harmless and non-circular. Predicative mathematics avoids

any problem regarding impredicativity by relying only on predicative principles, but

the rejection of impredicative definitions leaves out some very important ones, such

as power sets, making thus the task of predicative mathematics quite difficult. The

the vast majority of mathematicians have continued being impredicative, but we

will see later how new predicative theories emerge again in generalised type

theories.

Although several authors such as Russell, Ramsey or Gödel created their own

versions of type theory, probably the most remarkable one is Church’s system. Its

main feature is that it is formulated in k-calculus. From now on we will focus on

type theories based on it, that is, typed k-calculus. In order to understand them

properly, we will study some basic notions of untyped k-calculus, before dealing

with typed theories.

2 Simple Type Theory

2.1 Untyped Lambda Calculus

Lambda calculus (kC) is a formal system created by Church in order to deal with the

notions of recursion and computability in connection to the problem of halting

(Entscheidungsproblem). Instead of relying on elements and sets as primitives, it

uses k-terms, which are used to explore the concept of function.
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The set of k-terms, or just terms in short, is defined recursively from a countable

set of variables Var. Using Backus–Naur notation, formation of terms can be

expressed in the following scheme, where x is any variable, E and F are arbitrary

terms and the dots denote optional constant terms:

E;F :¼ xjkx � EjðEFÞj. . .

In other words, the set K of terms can be defined recursively as follows:

• If x 2 Var; x 2 K.

• If E 2 K; F 2 K, then ðEFÞ 2 K.

• If E 2 K and x 2 Var; kx � E 2 K.

Simplification rules for parentheses can be applied as usual: outer parentheses are

omitted and left association is assumed, so EFG stands for ((EF)G); abstraction is

right associative, so kx � ky � E stands for kx � ðky � EÞ; abstractions can be expressed

in contracted mode, for example kxy � E instead of kx � ky � E.

Variables may occur bound in a term by the k abstraction or be free: in kx � xy x is

bound and y is free. A basic and important operation is the substitution of variables

for terms. We will write P½x :¼ t� to indicate the substitution of the variable x in

P for the term t. For example, xyx½x :¼ z� and xyx½x :¼ ab� gives out zyz and abyab

respectively, since all x have been substituted by z and ab. Substitution is the basis

of a-conversion and b-reduction.

a-Conversion Variable names are conventional, so any variable in a term can be

renamed, that is, substituted by another variable which does not occur in the term.

This is called a-conversion: kx � x can be converted to ky � y, so they are equivalent

under a-conversion, kx � x!a ky � y. Since the new variables must not occur in the

term, kx � xy!a ky � yy is wrong, whereas kx � xy!a kz � zy is correct.

b-Reduction and Operational Semantics of k C Term evaluation in kC is based on

b-reduction, the application of functions over their arguments substituting the bound

variables in the function by their corresponding arguments (actual process may be

more complex, but for the sake of simplicity this work will focus solely on b-

reduction as the basis of term evaluation):

ðkx � EÞF ¼) E½x :¼ F�
ðkx � xyÞa ¼) xy½x :¼ a� ¼) ay

After a b-reduction, a term may or may not need ulterior reduction. A reducible

subterm within a term is usually called a reducible expression or a redex in short. If

a term cannot be reduced further, it is said to be in its normal form, or to be a value.

In k-calculus, any term evaluation converges to a value or diverges. Untyped

lambda calculus is not normalising, that is, it is not always possible to reach a value.

Example Identity function I :¼ kx � x, when applied to a term, gives the same term

as an output:

Axiomathes (2015) 25:61–77 63

123



ðkx � xÞe ¼) x½x :¼ e� ¼) e

Since I is also a term, it can be applied to itself, giving itself as an output:
II ¼) I

ðkx � xÞðkx � xÞ ¼) x½x :¼ kx � x� ¼) kx � x

Example x operator kx � xx takes an input e and gives ee as an output; this new

term may or may not be reduced again. If applied to itself, the result is the same as

the original term and therefore a value is never reached.

xx ¼) xx

ðkx � xxÞðkx � xxÞ ¼) xx x :¼ kx � xx½ � ¼) ðkx � xxÞðkx � xxÞ

Example Sometimes, the reduction of a term gives a more complex term and thus

a value is never reached:

ðkx � xxxÞðkx � xxxÞ ¼) ðkx � xxxÞðkx � xxxÞðkx � xxxÞ ¼)
¼) ðkx � xxxÞðkx � xxxÞðkx � xxxÞðkx � xxxÞ ¼) � � �

Different strategies can be applied to reduce a term. The normal way of reducing

terms is named call-by-value, which means reducing the rightmost redex first. The

opposite strategy, reducing the leftmost redex first, is named call-by-name. There

are many other strategies. However, if the term eventually reaches a normal form, it

holds the Church–Rosser property, that is, the normal form is independent of the

strategy that has been chosen. It is worthwhile noting that this semantics of kC is

operational, since it describes the way k-terms function, not what they denote.

Recursion in kC is possible using fixed point combinators, which are terms

R such as, when over another term T, give

RT ¼) TðRTÞ ¼) TðTðRTÞÞ ¼) � � �

If we make Q :¼ RT then Q :¼ TQ, which is a fixed point, hence its name. There

are infinite fixed point combinators, although the most known is Curry’s

Y combinator.

The following closing remarks can be made:

• Lambda calculus’ foundations rely on the use of abstraction and application:

kx � P is an anonymous function which takes an input x and gives P(x) as an

output. The application PQ is the result of considering term Q as the input of P.

• Recursion allows the construction of complex formulae and is the basis of the

computational power of lambda calculus.

• kC is equivalent to a Turing machine, and therefore is an abstract model of a

programming language (Landin 1965). In kC, Boolean values are possible and

natural numbers can be defined in the form of Church’s numerals, and there are
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also logical and arithmetical operations over them and flux control operators. It

is not decidable, so in principle it is not possible to know whether the evaluation

of a term will end or not. Whereas TM is the model of imperative programming

languages, kC is the basis of functional ones.

2.2 Simply Typed Lambda Calculus

Simply typed lambda calculus was also originally developed by Church (1940,

1941). It is a higher order logic system based on lambda calculus and it uses the

same syntax. We will not see the original formulation of Church here, but a more

recent one which will allow us to connect with current developments.

A simply typed lambda calculus (STLC) has a non-empty set of base types. The

rest of the types, which are function types, can be built from them by the application

of the type constructor!. Types and terms can be defined by recursive rules, where

E and F are any terms, r and s any types, x any variable, b a base type, and the dots

denote optional terms belonging to a given type:

r; s :¼ bjr! s

E;F :¼ xjkx : r � EjEFj. . .

kx : r � E is also written kxr � E, the first form will be preferred, although the

second one will be used sometimes in order to increase clarity. There are two styles

of typing, Church style and Curry style. Although in a subtle way, their differences

are not only syntactical, but also semantical. In Curry style, variable types are not

explicitly stated, whereas in Church style it is imperative to declare the type of

every variable. The problems with Curry style will not be discussed here, and this

entire section refers only to Church style. The following paragraphs will focus on

the difference between well-formed terms (actually they are called pre-terms) and

well-typed terms.

In typed theories there are typing environments, also called variable assignments,

which are (possibly empty) sets of associations between types and variables, so each

variable has its type, and we write x : r. In a typing environment, a typing judgment

C ‘ E : r is a statement of the fact that, under environment C, term E is well-formed

and has type r. In other words, it asserts that E is a term of type r if and only if its

free variables are of the types specified in the typing environment.

Typing Rules The associations between terms and types are maintained by typing

rules, which are inference rules from a group of premises to a conclusion, all of

them being typing judgments. The following typing rules specify how to assign a

type to a certain well-formed syntactic construction, where VAR stands for variable

(a variable within a context is a well-typed term), ABS for abstraction (given a

variable and a well-typed term, the k-abstraction of the term is well-typed) and APP

for application (the application of two well-typed terms is also well-typed):
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In STLC well formed terms may be not well-typed, and the typability of terms

are given by the previous rules, so the set of well-typed terms is a proper subset of

the set of all well formed terms. For example, ðkx : r � xÞðy : sÞ is well formed since

it can be built following the mentioned syntactic rules of formation, but not well-

typed, because it does not satisfy rule APP, since kx : r � x has type r! r and y has

type s. In this case, its evaluation gives as an output an error.

Provided that the types are right, term evaluation is based on b-reduction, like in

untyped k-calculus:

We can also consider the void type 0 with no terms and the unit type with a single

term, � : 1 such as for any type T, it holds kxT � � : 1. Since type 0 has no terms, it is

also easy to see that we can not construct a valid term of type T ! 0.

STLC can be extended to STLC with pairs, in which the product type r� s
appears, which is the type of pairs of terms (s, t). The notation for types and terms in

a system with two type constructors, ! and � is the following:

r; s :¼ bjr! sjr� s

E;F :¼ xjkx : Er � FjEFjðE;FÞ

The rules for the formation and elimination of pairs are the following:

p1 and p2 are respectively the first and second projection of the pair, so p1ðe; f Þ ¼
e and p2ðe; f Þ ¼ f . Both STLC and STLC with pairs are strongly normalising, that

is, the evaluation of a term eventually gives a value if it is well-typed or an error if

not, and therefore they are decidable. In this way, STLC and its derivatives may

serve as a basis for type checking, which has its practical, computational

applications. Not all well-formed terms are well-typed, unlike untyped kC, which
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has no typing restrictions. Because of it, STLC and STLC with pairs are not Turing-

complete, since they are not equivalent to kC, and they are less expressive than it.

Type Theories and Category Theory Until now, we have considered syntactical

and operational aspects of type theories, neglecting their semantical facet. Now we

are going to see the semantical application of category theory to type theories.

Category theory was developed by Eilenberg and MacLane (1945) for the study of

algebraic topology, but it soon showed to be useful in many other fields. Its

connection to logic has been studied since the works of Lawvere (1963); in this

paper we will also follow the works of Lambek and Scott (1988). Lawvere and other

authors have also studied category theory as a new approach to the foundations of

mathematics, dealing with abstract mathematical structures, instead of using the

traditional set-theoretical frame.

A category C is made of objects and morphisms or arrows between objects. Each

morphism has as a domain a given object and as codomain another one, so for example

morphism f : A! B has domðf Þ ¼ A and codðf Þ ¼ B. The composition of arrows is

associative, ðfgÞh ¼ f ðghÞ, and for every object X there is an identity arrow 1X :
X ! X such as for an arbitrary pair of morphisms g : Y ! X and f : X ! Z; f 1X ¼ f

and 1Xg ¼ g. There can be additional compositions of objects that will be useful later,

such as the product X � Y of two objects X and Y, which is an object Z ¼ X � Y with

two projection morphisms p1 and p2 satisfying p1Z ¼ X and p2Z ¼ Y ; the

exponential or power object XY can be seen as the class of all morphisms from Y to

X (the actual definition is more complex, but for the purposes of this paper, this

definition is valid). A category has a given structure that can be simple or complex,

and we can be consider categories made of categories. We call functors the mappings

between these categories preserving the structure from one category into the other.

There is a bidirectional relationship between categories and type theories

(Cfr. Asperti and Longo 1991). Type theories can be interpreted using category theory,

and conversely, we can formalise categories in the language of type theories. Generally,

we can say that the relation between a type theory and its corresponding category is akin

to syntax vs semantics. We can show this studying the relationship between STLC with

pairs and Cartesian closed categories (Cfr. Lambek and Scott 1988).

A category is a Cartesian closed category (CCC) if and only if it has a terminal

object T such as for every object X there is a unique morphism X ! T , and if for any

two objects X and Y there exists the product X � Y and the exponential object XY . We

can see that the elements of STLC T form a CCC: we can consider base types of T as

objects, and it is easy to see that type 1 can be interpreted as the terminal object

T. Constant terms a of a given type A can be seen as morphisms a : 1! A from the

terminal object to their corresponding object A, and more broadly, terms can be

interpreted as morphisms, whereas application of terms equates to composition of

morphisms. For every object A there is an identity function 1A which can be seen as the

identity morphism for A, and it can be proved that composition of terms is associative.

Product type A� B equates to the product of objects, and function type A! B is

interpreted as the power object BA, which is the class of equivalence of all morphisms

from A to B with a free variable of type A. Therefore, we have that the interpretation of

T ; SynðT Þ, is a category, and more precisely a CCC which we can call C0.
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Conversely, we can see that the structure of a given CCC C can be described

using the language of a STLC T 0 ¼ LangðCÞ, where LangðCÞ is the smallest type

theory that preserves the structure of the category, that is, T 0 is the internal language

of C (Cfr. Johnstone 2003). We can denote the terminal object T with the unit type,

and assign a type to each object in the category. Product of objects and exponential

objects equate to product types and function types respectively, and for each

morphism f between objects X and Y, there is a term kxX � f with a type X ! Y .

Actually, this relation between categories and type theories is subtler, since given

a CCC C and a STLC T with the same structure, the internal language of the

category LangðCÞ is not equal to T , but homomorphical to it (LangðCÞ ffi T ), and

the same with the semantical interpretation of the theory, SynðT Þ ffi C. Syn and Lang

are actually two functors between categories, so we can succinctly write their

relationship in this way: C�
Lang

Syn
T (Table 1).

3 The Lambda Cube and Generalised Type Systems

From the 70s onwards there have been prominent new works in the field of type

theories. A complex family of typed lambda systems, each with their own features,

flaws and strengths, has been developed from Church’s simple type theory. There are

several reasons that explain this renewed interest. Firstly, some practical reasons: type

theory is closely related to proof theory and therefore to computing and typechecking.

Secondly, from a theoretical point of view, the rise of category theory and further

developments into their connections to logic have been the object of intensive

research, as type theories can be studied from a categorical point of view. In relation to

this, there have been renewed efforts in the research of type theories as an alternative

foundation of mathematics, particularly in constructive mathematics, mainly since the

works of Per Martin-Löf, and new fields within logic and mathematics such as

homotopical type theory have appeared, advancing this study.

Pure Type Systems STLC can be considered as the basis of a family of type systems

that have been named pure type systems (PTS) or generalized type systems (GTS).

Table 1 Correspondence between CCC and STLC

Type theory Category theory

Types Objects

Unit type (> or 1) Terminal object

Product type A� B Product of objects A� B

Function type A! B Exponential object BA

Terms Morphisms

Pair of terms (f, g) Pair of morphisms (f, g)

Projections of terms, p1 and p2 Projections of morphisms, p1and p2

Abstraction kxA � f : B Arrow f : A! B with a free variable x : A

Application fg Composition of arrows fg
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They are a group of type systems that, unlike STLC, allow dependencies between

types and terms. Broadly speaking, the main difference between a simply typed theory

and a pure type system is that the latter allows judgments over types. In STLC types

and terms are two disjoint groups, in PTS this distinction is blurred or erased.

Instead of creating confusing categories such as types of types, types of types of

types and so on, the concepts of kind and sort are used instead, which are

generalisations of the notion of type. H, also called Prop, is any usual type of terms

or propositions. h or Type denotes the higher-order type of a type. The set of sorts is

thus S ¼ fH;hg. A kind H! h maps from a type of terms to a certain kind of

types and so on. In a given context, it can be asserted that r : h for specifying that r
is a valid type in the same way that e : r. The scheme for kinds and expressions in

PTS is the following, where V is any variable and S any sort and K any kind (P
operator will be explained later):

K :¼ HjhjK ! K

T ;U :¼ V jSjTUjkV : T � UjPV : T � U

Not all PTS are normalising, that is, when evaluated not all of them reach a value.

In the next subsections we will study a more reduced family of generalised type

theories, all of which are decidable and normalising.

3.1 Barendregt’s Lambda Cube

Barendregt (1991) considers four possible relations between terms and types: terms

depending on terms, types on types, terms on types and types on terms. If we omit

the first one, we have three possibilities that can be represented as axes of a cube,

other features such as subtyping could be represented in additional dimensions (also

Cfr. Barendregt 1992) (Fig. 1).

These three possibilities considered by Barendregt are the following:

λ→ λP

λ2 λP2

λω λP

λω λPω

ω

Fig. 1 Barendregt’s lambda
cube
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• Type polymorphism (terms depending on types, h! H): universal quantifica-

tion over types in order to be able to define type variables. System k2, also called

system F, which was discovered independently by Girard (1972) and Reynolds

(1974), is a second order lambda calculus or polymorphic lambda calculus.

Example In simple type theory there is no unified identity function, unlike I :¼
kx � x of untyped kC. Instead of a single function, in STLC there is a family of identity

functions, one function kx : r � x for each type r. If quantification over types is

allowed, then the previous idea can be formalised succinctly in the way system F does:

Ka � kxa � x : 8a � a! a

Analogously to the way simply typed lambda calculus defines types and terms, so

does system F, being b a base type and a any type variable:

r; s :¼ bjajr! sj8a � r
E;F :¼ xjEFjkx : r � EjKa � E

Unlike in STLC, types can appear in terms, like the case of the previous example

Ka � kxa � x.

Two new rules for introduction (8I) and elimination (8E) of generalisation over

types:

• Type constructors (types depending on types, h! h): abstraction of new types

from previous ones. This is a remarkable implementation, because new types are

built within the language, not the metalanguage of kinds (Roorda 2000). There

will be rules for kinds and expressions (which comprise both types and terms)

instead of for types and terms. kx calculus (Girard 1972) and system Fx=k2x use

type constructors.

Rules for this implementation can be quite complex and they will not be covered

here. Product type is a simple example of this feature. Other type constructors such

as list constructors or higher order types are within this category.

• Dependent types (types depending on terms, H! h): The last possibility is

building types depending on previous types. Here are two possibilities, product

types and dependent sum (or pair) types. Product types (P-types) generalise the

idea of universal quantification. Considering a non-empty type A that will serve

as an index, P-types generate a family of types B(a) depending on every a 2 A.
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If B(x) is a constant type B, then Px:ABðxÞ equals A! B. Conversely, sum types

(R-types) in the form Rx:ABðxÞ, are the type of pairs of terms of the form

ðaA; bB½x:¼A�Þ in which the type of the second element depends on the value of the

first term. Sum types are the equivalent of existential quantification and, if B is a

constant type, Rx:ABðxÞ equals A� B. Two examples of systems with dependent

types are system LF, which is STLC with dependent types, and calculus of

constructions, that will be covered soon.

To sum up (Table 2):

All application and abstraction rules of these systems can be summarised as

follows if we consider the whole cube system (Cfr. Roorda 2000).

Calculus of constructions, which will be mentioned later, allows all of these

extensions and, therefore, it is placed in the uppermost right back the cube. Other

systems such as system F only allow some of them, being placed in other corners.

All of them are strongly normalising, that is, end giving a value or an error in a finite

number of steps.

Semantically, 2-categories (categories over morphisms) or more generally n-

categories and higher-order type theories are related in a way similar to the link

between CCC and STLC. Semantics of these type theories is far more complicated

than the semantics of STLC and, therefore, just a brief sketch will be made. The

starting point of the categorical interpretation of dependent types is the consider-

ation of slice categories, which are categories in which the objects are morphisms

over a given object. It is easy to see the relationship within slice categories and

dependent types, since an object A in which every morphism a gives out a slice

category B(a) can be considered the semantical interpretation of the product type

Table 2 Summary of the

logical systems in the lambda

cube

System Relations Examples

k! H! H STLC

k2 H! H; h! H System F

kx H! H; h! h Weak kx

kx H! H; h! H; h! h System Fx

kP H! H; H! h System LF

kP2 H! H; H! h; h! H kP2

kPx H! H; H! h; h! h Weak kPx

kPx H! H; h! H, H! h, h! h CoC

Axiomathes (2015) 25:61–77 71

123



Px : A � B. Locally closed Cartesian categories (lCCC) are categories in which all

slice categories are CCC and a kind of dependent type theory is the internal

language of lCCC (Seely 1984), in the same way that STLC with pairs is the internal

language of CCC.

3.2 Calculus of Constructions

Coquand’s calculus of constructions (CoC in short) is a higher-order lambda

calculus theory that combines polymorphism and type construction of Girard’s

system Fx with dependent types. The syntax of its kinds and terms is the following:

K :¼ Hjhi ði� 1Þ
r; s;M;N :¼ xjKjPxr � sjkxr �MsjMNs½x:r�

CoC distinguishes between the impredicative type of predicates (H, small types),

a predicative hierarchy of types of types (hi, large types), and the type of all large

types. As in other PTS, from P constructor it is possible to derive the usual logical

operators. CoC also has void type and 1 type, and it is easy to create types for truth

values and natural numbers. It has several variations, such as CoC with inductive

types, but they will not be treated here.

So far, all considered type theories are impredicative. None of them are

problematic, since they are strongly normalising. For example, the polymorphic

identity in System F Kakx : a � x can take as arguments its own type 8a� ! a and

then itself, but in a way that leads to no circularity. Some impredicative theories

such as Girard’s system U are inconsistent, but this is not the case of the type

systems considered in the k-cube.

3.3 Intuitionistic Type Theory

Per Martin-Löf’s intuitionistic type theory (ITT in short) allows to introduce

contemporary predicative theory types in this discussion. It can be considered and

extension of STLC with higher order predicates and quantification over types within a

mathematical constructivist programme. Strictly speaking, ITT does not belong to the

k-cube, but it has an expressive power similar to the one of CoC, so a brief comparison

between them seems reasonable. Semantically, Seely (1984) showed that there is a

relationship between locally Cartesian closed categories and ITT. It has shown some

prominent features in the field of programming due to its connections to proof theory,

and it also aims to serve as a constructivist theory for the foundations of mathematics.

Homotopy type theory expects to follow this aspiration, since the programme of the

Univalent Foundations of Mathematics conceive this field as an extension of ITT with

a homotopical interpretation (Voevodsky et al. 2013).

As has been said before, previous type theories are impredicative, yet this feature

is unproblematic. ITT’s first formulation was also impredicative, but was soon

discovered to be inconsistent. Later developments (Martin-Löf 1975) avoided the

problems of this earlier version with a predicative formulation, a common feature in

other constructivist approaches to the foundations of mathematics. Categorically,
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predicative theories have a more general structure; whereas many impredicative

theories lie on topos theories, predicative ones rely on structures such as pretopos,

which are more broad categories but require more complex proofs, since

impredicative definitions are rejected.

The concept of universe in ITT, which is similar to Grothendieck’s universe, is

crucial in this theory, which is in consonance with the constructive theses of its author.

It can be considered as a closed type of types built according to certain conditions. An

earlier version of ITT had an impredicative universe, but it showed to be inconsistent.

Later versions (Cfr. Martin-Löf 1975) consider a hierarchy of predicative universes

ðUi; TypeiÞ or ðUi; TiÞ in which a given Typei has a type Typeiþ1.

Like CoC, ITT uses dependent types, and universes are closed under operations.

Intuitionistic type theory can be formalised stating its own typing context and its

typing rules and judgments, in the same way as other type theories. There are also

several predefined finite types, void type (0), unity or truth (1), and bool (2). Both

CoC and ITT are strongly normalising and therefore non Turing complete.

3.4 Curry–Howard Isomorphism

From the works of Curry and Howard on, it has been established the correspondence

between each type theory and a style of logical calculus, or more broadly between

type theory and proof theory (Cfr. Sørensen and Urzyczyn 2006). In simply typed

lambda calculus, types can be built in a way akin to predicate logic well-formed

formulae. This establishes a link between type theories and logical calculi, since the

types of different systems can be treated as well-formed formulae of the

corresponding logical systems. We will see this covering mainly the relationship

between STLC and intuitionistic predicate logic.

In intuitionistic logic, the semantics is given by the Brouwer–Heyting–

Kolmogorov interpretation: truth is identified with provability, so saying that A is

true means that there is a proof a for A. If we interpret types as predicates and terms

as proofs, we can see that these two judgments are equivalent:

• Proof a proves the predicate A.

• Type a can be built and this type is inhabited by a term a : a.

Let 0 be the void type (the type with no proofs/terms) and :a �def a! 0, that is, a
leads to contradiction; a� b means having a pair of terms, a : a and b : b, so it can

be identified with a ^ b; aþ b is having either a term a : a or a term b : b, that is,

a _ b. The rule of term application (e : r! s; f : r ‘ ef : s) equates to modus
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ponens. We can see that there is an isomorphism between STLC and predicate logic.

However, the constructed predicate logic is not classical predicate logic, but an

intuitionistic system, and some classical tautologies such as Peirce’s law cannot be

obtained unless extra axioms are added.

In generalised type systems, this bijective equivalence between types and proofs

is broadened. Predicate logic is related to dependent types systems, and higher order

logic to polymorphic types. Type constructors are identified with the usual operators

and quantifiers: P-constructor equates to generalisation and implication, R-

constructor to existential quantification; tautology equates to type 1, contradiction

to void type (Table 3).

In sum, there is a correspondence between type systems and logical calculus

systems, and between the elements and rules of these systems, and from an

intuitionistic interpretation this correspondence serves as a link between proof

theory and type theory. This isomorphism can be extended to the Curry–Howard–

Lambek correspondence if we include the isomorphism between type theories and

category theory that we have seen before, and the equivalence between CCC and

intuitionistic propositional calculus observed by Lambek (1972).

3.5 Girard’s Paradox

However, this correspondence cannot be fully maintained in certain type systems,

since Girard’s paradox (Cfr. Girard 1972; Coquand 1986) states that a type theory

cannot quantify over all propositions and identify types and propositions at the same

time. Therefore, one of these two points has to be left aside in order to maintain the

validity of the other one. This issue will serve as a major difference between

predicative ITT and impredicative CoC. The first one identifies types and

propositions and thus leaves aside universal quantification over propositions,

whereas the second one takes away the bijective identification between types and

propositions:

• In an earlier, impredicative version of ITT, types Prop and Type are each

identified with one another. The problem arises because the proposition Type :
Type is not normalizing, thus it is not a well-typed term and it leads to a

contradiction in the field of types analogous to Burali–Forti’s paradox (Cfr.

Reinhold 1989). As has been mentioned before, later versions of this theory

Table 3 Correspondence between type theory and logical calculus

Type theory Logic

Types and terms, a : A a is a proof of A

Unit type and void type Tautology and contradiction

Product type A� B A ^ B

Function type A! B A! B

R and P dependent types Quantifiers, 8 and 9
Application, ðkxA:t : BÞuA ‘ ðtuÞ : B Modus ponens, A! B;A ‘ B
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avoid this paradox by proposing a hierarchy of predicative universes in which

the bijective relationship between propositions as types is not problematic.

According to Curry–Howard correspondence, universes can be seen both as a

constructive hierarchy of types or as a hierarchy of predicates (Palmgren 1998).

• CoC prefers to maintain quantification over propositions, thus not identifying

isomorphically propositions and types. In this calculus, the identification of each

proposition with the type of its proof is maintained, but it does not allow to

identify every type with a proposition, because in CoC there are non-

propositional types. In this way, CoC can be understood as a variation of

Curry–Howard isomorphism, since strictly speaking it does not present a real

isomorphic relation between types and predicates (Coquand 1986), but a weaker

one.

Therefore, there cannot be a single unified, normalising type theory with the

aforementioned properties, universal quantification and identification of types and

propositions.

4 Conclusions

To sum up, the following remarks can be made:

• First of all, it is worthwhile mentioning the significance of classical paradoxes

and their roles in the foundations of mathematics. Russell’s paradox and

Church’s type theories are still the object of fruitful studies.

• Nowadays there are two basic aspects that make the study of pure type systems

appealing. The first one is related to mathematics and the second one, to theory

of computation: Firstly, in recent decades type theories are being studied in

connection to new areas of mathematics and more specifically to the foundations

of mathematics, such as category theory or homotopy theory. In a wider sense, it

is interesting to observe how some of the problems of generalised type theory

are similar to classical problems of Frege’s logic and naı̈ve set theory. Secondly,

type theories as computing languages are the object of intensive research these

days. Proof checkers, theorem provers and type checkers, tools within the field

of automated reasoning, are founded on the principles of type theories. Turing

incompleteness, that can sometimes be seen as a flaw, is revealed in other

contexts as an advantage, since a Turing-incomplete type system is decidable. In

this way, research on Coq or Agda relies on a heavy study on type theories, since

they are decidably verifiable.

A few closing remarks can be made in a more general style. It can be useful to see

how, instead of a single logical theory, a plurality of logical systems have emerged,

giving new stimulus to the renewal of logical studies. Type theories were initially

created as a response to the paradoxes of naı̈ve set theory. This connection has never

been lost, since several contemporary authors still study these theories as an

alternative basis for the foundations of mathematics. Although the desire of a lingua
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universalis, a logical language able to verily code the structure of reality, still

persists (Cfr. Granström 2011), the current direction points to a different goal.

Instead of a global logical system, we can conceive several frames with invariances

between them in which several logical theories can be developed (Cfr. Bell 1986).

The question is not which logic is the real one, but which one we desire to use for

the purposes of our research, because each type theory and more broadly each

logical system has its own advantages and weaknesses and there is no system that

can comprise all desired logical properties into a global, unified theory.
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