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Abstract Algebraic/topological descriptions of living processes are indispens-

able to the understanding of both biological and cognitive functions. This paper

presents a fundamental algebraic description of living/cognitive processes and

exposes its inherent ambiguity. Since ambiguity is forbidden to computation, no

computational description can lend insight to inherently ambiguous processes. The

impredicativity of these models is not a flaw, but is, rather, their strength. It

enables us to reason with ambiguous mathematical representations of ambiguous

natural processes. The noncomputability of these structures means computerized

simulacra of them are uninformative of their key properties. This leads to the

question of how we should reason about them. That question is answered in this

paper by presenting an example of such reasoning, the demonstration of a topo-

logical strategy for understanding how the fundamental structure can form itself

from within itself.
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1 Prelude: Beyond Computation and Relational Biology

Can there be a logico-mathematical theory of the function of life and organism,1

whence by extension of mind and brain,2 that goes ‘‘beyond computing?’’ This new

question is being raised even in mainstream computer science (Brooks 2002).

Ontologically, are there aspects of life that are beyond the scope of computational

description? Epistemologically, is there a mode of logical description that is

provably ‘‘beyond computation?’’ What would be the character of such a bizarre

system of abstract representation? If such a system exists, is there any rational basis

for supposing that it could be profitably used to represent biological function? Since

no computational simulacrum would describe such an abstraction, how could

biologists and cognitive scientists use it to gain insights into the operation of the

processes of life and organism, and of mind and brain? Has such a theory already

been discovered and validated?

The first question could be settled decisively by one of two strategies. An answer

of ‘‘yes’’ could be established by producing an instance of a theory of organism/life

or brain/mind that is demonstrably ‘‘beyond computation’’ and accounts for

organismal or brain function—in this paper we offer Robert Rosen’s relational

biology as this example. An answer of ‘‘no’’ results if a beyond-computing logico-

mathematical theory is either not sufficient or not necessary. Insufficiency could be

established by a ‘‘proof by contradiction’’ that the structure of biological or

cognitive function and the structure of logical organization are mutually exclusive,

and so no theory suffices, but it does not appear that any such proof has ever been

produced. Unnecessity could be established by a rigorous proof that nothing goes

beyond computing, but this possibility has been shown to be absurd (Louie 2005).

The orthodox position in the artificial life community and in cognitive science is

that the first question raised in this paper is answered with an unequivocal ‘‘no due-

to-unnecessity:’’ that a universal algorithmic-logical theory exists, and is summa-

rized by the ‘‘strong’’ Church-Turing thesis. This is a claim that for every physically

realizable process in nature there exists a Turing machine that provides a complete

description of the process. In other words, if a sufficiently large Turing machine is a

description of how the whole world works, then biological function is fully captured

by some smaller Turing machine. The thesis is, therefore, there is never a necessity

to go ‘‘beyond computing’’, because nothing exists that goes beyond computing.

The fundamental principle of the orthodoxy is that the organism is a Turing

1 It may seem odd to say that life is a ‘‘function’’. But this is in fact a central theme of relational biology.

Life is a dynamic process rather than a static thing. In view of this, the Schrödinger question ‘‘What is

life?’’ is somewhat ill-posed, because of its implicit assumption of the latter. A more correctly posed

question is ‘‘What distinguishes a living system from a non-living one?’’ This is the question Rosen

discusses and answers in Rosen (1991, 2000). The three-word question ‘‘What is life?’’, because of its

terseness and immediacy, will continue to be used as an abbreviation.
2 The analogy here is ‘‘organism:life :: nervous system:mind’’, where the brain is a functional component

of the nervous system. The term ‘‘mind/brain problem’’ is, however, part of the established lexicon, so we

shall continue to use ‘‘mind and brain’’ when referring to the more proper ‘‘mind and nervous system’’.

The reason for making the analogy is that both relationships are the result of a hierarchical closed loop of

efficient causes. The relationship of ‘‘organism:life’’ in Rosen’s work has the same structure of causation

in cognition, as established in Kercel (2004a, b).
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machine, and that all of biology and cognitive science boils down to the

mathematical equivalent of making increasingly better estimates of the specific

details (i.e., the state set, the alphabet, and the partial function that describes the

state transitions).

At first glance, the case for the ‘‘strong’’ Church-Turing thesis seems compelling.

As von Neumann said, ‘‘You insist that there is something a machine cannot do. If

you will tell me precisely what it is that a machine cannot do, then I can always

make a machine which will do just that.’’ (as cited in Jaynes 1994, p. 104) Although

the foregoing quote seems to settle the issue, his requirement to ‘‘tell me precisely’’

reveals a critical flaw in his argument. After showing the equivalence of and-or-not

logic, the Turing machine and the McCulloch-Pitts network, he points to an

interesting consequence. ‘‘It proves that anything that can be exhaustively and

unambiguously described, anything that can be completely and unambiguously put

into words, is ipso facto realizable by a suitable finite neural network.’’ (von

Neumann 1963, p. 310) In his own words, when he says ‘‘tell me precisely’’ he is

specifying an unambiguous description.

As remains the popular wisdom to the present day, von Neumann recognized that

the problem of unambiguous description is thorny, but he supposed that it was

tractable. ‘‘This description may be lengthy, but it is always possible. To deny it

would amount to adhering to a form of logical mysticism which is surely far from

most of us. It is, however, an important limitation, that this applies only to every

element separately, and it is far from clear how it will apply to the entire syndrome

of behavior.’’ (von Neumann 1963, p. 310) In the foregoing he claims that although

it may be difficult, precise description is always possible. On the other hand, when

he tries to disambiguate the seemingly straightforward concept of triangularity, the

more disambiguating statements he makes, the more ambiguities flow from them.

‘‘We may have a vague and uncomfortable feeling that a complete catalogue along

such lines would not only be exceedingly long, but also unavoidably indefinite at its

boundaries. Nevertheless, this may be a possible operation.’’ (von Neumann 1963,

p. 310) However, when he attempts to establish the axioms from which to begin a

logical proof, he finds that the choice of axioms ‘‘is neither rigorously justifiable nor

humanly unambiguously justifiable.’’ (von Neumann 1966, p. 77)

To summarize, von Neumann begins with the claim that disambiguation is

‘‘always possible,’’ but undercuts the claim on the very same page by conceding that

the problem is potentially intractable, and he promises no more than the hope that it

‘‘may be a possible operation.’’ In other work he flatly contradicts the claim that an

unambiguous description is ‘‘always possible’’ by producing the counterexample of

axiomatization which is not ‘‘humanly unambiguously justifiable.’’

Despite his inability to discover an unambiguous procedure for axiomatization,

he expected that the real world would be amenable to unambiguous description, but

could not quite escape the niggling suspicion that perhaps it is not. He realized that

this is important, because ambiguity is disallowed to computation by definition. The

one thing that von Neumann knew he could not compute was any task that turned

out to be inherently ambiguous. In other words, if there are any inherent ambiguities

in the world, then the claim that the whole world is a Turing machine is falsified.
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There are two recent philosophical developments that make this relevant. One is

the demonstration by Quine (1980) that there exist ambiguous descriptions that

cannot be disambiguated (Kercel 2007). As von Neumann discovered in his attempt

to disambiguate the concept of triangularity, the introduction of a disambiguating

context introduces new ambiguities more quickly than the old ones are resolved.

The other development is the demonstration by Aczel of the logical coherence of

impredicatives (processes not representable by finite syntactic algorithms) by

proving the existence and uniqueness of the solution to X ¼ fXg (Devlin 1991, pp.

155–159). What von Neumann dismissed as ‘‘logical mysticism’’ is now understood

to be higher-order logic that encompasses natural language descriptions that are

observed to go beyond the scope of ‘‘first-order’’ (traditional ‘‘if-then-else’’) logic.

Most critically, higher-order logic allows us to reason about ambiguous descriptions

(Barwise and Etchemendy 1992).

In real-world biological function, inherent ambiguities abound. This is seen

through relational biology, a term invented by Rashevsky in his now-classic paper

Topology and Life (Rashevsky 1954), hence the title of the present paper. His point

of departure was the observation that our classification of natural systems into the

categories of ‘‘living’’ and ‘‘nonliving,’’ which is the very basis of biology, is of a

relational character. Rosen’s approach to relational biology is very much in the

same spirit. The crux is to throw away the matter and keep the underlying
organization. The definitive exposition is Chapter 5 of Rosen (1991), entitled

Entailment without states: Relational biology.

The main conclusion of Robert Rosen’s relational biology is that a living system

is closed to efficient causation. He realized that the structure of that closure was

identical in character to the structure of impredicatives. One of the details that we

demonstrate in this paper is that Rosen’s impredicative algebraic description of a

process closed to efficient cause entails ambiguity. We can expect that the

corresponding process in reality has a corresponding causal ambiguity. This is

consistent with Rosen’s demonstration that Turing-equivalent computation and the

structure of closure to efficient cause are mutually exclusive (Rosen 1991, pp. 241–

243). Comparison of recent experimental results in neurophysiology shows that a

similar impredicatively organized structure of closure to efficient cause in the

structure of communications in the brain (Kercel 2004b).3

This answers two of the questions posed in the opening paragraph. There are
biological functions that are beyond the scope of computation. Significantly, Rosen

has produced a system of mathematical representation of biological processes which

is not only ‘‘beyond computation’’ but opens the way for reasoning about scientific

questions that are beyond the scope of computation. Rosen’s thesis is thus of

3 The essential point of Kercel’s endogenous brain paper (Kercel 2004b) was to show the circular

hierarchy of synaptic, diffusive, and glial communications circuits. A critical detail that was omitted from

that paper was the character of the hierarchy. It is a hierarchy of containment. In other words, B is lower

than A in the hierarchy if and only if B is contained in A. Thus, one of the three communications processes

is seen to be contained in the interaction of the other two. Similarly, in the circular hierarchy of the

(M,R)-system (which we shall discuss in Sect. 7), there is a hierarchy of containment and no privileged

position. Any of the three functions is contained within the other two. Thus we see that there is a direct

analogy between the metabolism-repair paradigm in cells and the ‘‘endogenous’’ character of information

transmission in the brain.
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fundamental importance. As with any iconoclastic theories, Rosen’s has engendered

opposition, although no attempted debunking of Rosen has been successful (Louie

2005).

Considering the controversy, a more detailed discussion on Rosen’s work is of

value. Thus we present this paper for this purpose, and in it we shall also further

explore some topological properties of the alternate (M,R)-systems introduced in a

previous paper (Louie 2006) published in this journal. In particular, the semantics of

his taxonomy are studied in graph-theoretic terms. The critical point about

reasoning about such processes is that the mathematics is demonstrated to be a

means to the end of reasoning and is not the reasoning process itself. Impredicative

representations eventually lead to seeming paradoxes. There is no algorithm to

implement the task of uncovering the ambiguities that lead to seeming paradox, or

finding a context in which their seeming incoherence is resolved. This is

accomplished as a feat of creative insight by the researcher. The abstraction, be it

impredicative abstract algebra, or hyperset representation, or graph theory, serves

three supporting functions in this strategy of reasoning. First, it provides a tool for

discovering seeming paradoxes. Second, it provides tools for uncovering the

previously unnoticed ambiguities that lead to the seeming paradox. Finally, it serves

as a means of validating or falsifying any proposed resolution of the paradox.

2 Complexity According to Rosen

In Rosen’s theory of relational biology, one of the biggest problems he managed to

resolve was the account for the emergence of complexity. A living system is a

dynamic process. To describe the rudiments of cell behavior, he postulated the

existence of the metabolic process. Since toxins as well as nutrients may be

metabolized, he postulated a repair process to keep the metabolic process intact in a

hostile setting. However, what repairs the repair process? Simply postulating a

hierarchy of repair process gives an infinite regress of repair processes, an absurdity

in a finite cell. Thus, he faced a paradox: biology operates on a principle of a

hierarchy of repair processes, but how could this be obtained without an infinite

regress?

Rosen’s alternative to the infinite regress was the emergence of a closed path of

efficient cause, the quintessential complex process. He had two ontological
processes, metabolism and repair of metabolism, and two representations, algebraic

maps that are their epistemological analogs. To break the incipient infinite regress of

repairs he asked if there were conditions that would make it possible that

‘‘replication’’ (i.e., repairing the repair process by replicating it) might already be

contained in the combination of the first two processes. To describe this

containment abstractly, he asked under what conditions the first two maps would

entail the third one. Essentially, once we have the first two processes, can we break

the infinite regress by getting the third from the other two ‘‘for free’’ (i.e., without

the necessity of external entailment)?

He demonstrated one way of doing so by appealing to an ‘‘inverse evaluation

map.’’ This is also known as the ‘‘one-gene one-enzyme’’ paradigm. In Rosen’s
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development he noted that there are many encodings from which to obtain the third

map ‘‘for free’’ given the other two. Louie (2006) presents two of the many

alternative possibilities. In the present paper we detail a graph-theoretic description

of those two new encodings, as well as of Rosen’s original encoding. Graph-

theoretic representation provides an easy demonstration that these encodings of the

metabolism-repair (or ‘‘(M,R)-’’) systems are complex, or noncomputable. We shall

revisit (M,R)-systems near the end of the paper.

To appreciate both the development and the significance of the various means by

which complexity emerges, we must briefly review three concepts that form the core

of Robert Rosen’s whole lifetime’s scientific work:

simple system complex system mechanism

A crucial fourth concept, organism, will be discussed in a later section. See Rosen

(1978, 1985a, b, 1991, 2000, 2003). A thorough exposition of the etymology of

Rosen’s lexicon may be found in Louie (2007).

Just as life itself, the Rosen terminology evolves. The definitions of the terms

simple system and complex system went through a few refinements, and finally

settled on what appeared in Chapter 19 of Rosen (2000):

Definition 1 A natural system is simple if all of its models are simulable. A system

that is not simple, and that accordingly must have a nonsimulable model, is

complex.

A model is a commutative encoding and decoding between two systems in what

Rosen called a modeling relation (see Chapters 2 and 3 of Rosen 1985a). A model is

simulable if it is ‘‘definable by an algorithm’’. It is variously called computable,

effective, and ‘‘evaluable by a mathematical (Turing) machine’’ (although there are

fine nuances that distinguish these near-synonymous terms; see Chapter 7 of Rosen

1991). This is in keeping with the definition given by Church (1937) that the term

effective in the context of computation means fully described by a Turing machine.

Note the dichotomy in Definition 1: a complex system is defined as a natural

system that is not simple. In set-theoretic terms, the two categories of simple

systems and complex systems are complements of each other. This dichotomy,

indeed, is essentially what distinguishes the ‘‘absolute’’ complexity of Rosen from

the ‘‘relative’’ complexity of ‘‘other authors’’ (notably von Neumann). We find in

Chapter 2 of Rosen (2000):

‘‘A system is complex if it has noncomputable models. This characterization

has nothing to do with more complication, or with counting of parts or

interactions; such notions, being themselves predicative, are beside the point.

It should be noted that there are many deep parallels between the dichotomy

we have drawn between simple (predicative) and complex (impredicative),

and the dichotomy between the finite and the infinite. Just as ‘infinite’ is not

just ‘big finite,’ impredicatives are not just big (complicated) predicatives. In

both cases, there is no threshold to cross, in terms of how many repetitions of a
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rote operation such as ‘add one’ are required to carry one from one realm to

the other, nor yet back again.’’

The formal definition of mechanism appeared in Section 8B of Rosen (1991):

Definition 2 A natural system N is a mechanism if and only if all of its models are

simulable.

This definition of mechanism is identical to Definition 1 of simple system above.

Chapters 8 and 9 of Rosen (1991) culminate in the conclusion

Theorem 1 A material system is a mechanism if and only if it has no hierarchical
cycle of causal entailment.

Since mechanism = simple system, and complex system = not (simple system),

we also have

Theorem 2 A natural system is complex if and only if it has a hierarchical cycle of
causal entailment.

A formal system in Rosen’s lexicon simply means ‘‘an object in the universe of

mathematics’’. It includes, but is not limited and therefore not equivocated to,

Hilbert’s formalism. In the realm of formal systems, then, Theorem 2 becomes

Theorem 3 A formal system is complex if and only if it has a hierarchical cycle of
inferential entailment.

This structure of a hierarchic cycle of inferential entailment is known to mathematics,

and is characterized as impredicativity. We shall further discuss this below.

Instead of defining a process by the properties of its models, as in Definitions 1

and 2, and having the entailment consequences in Theorems 1, 2, and 3 follow as

theorems, we may equivalently reverse the logical arguments. We may therefore

alternately define ‘‘complex system’’ using the entailment-based statements of

Theorems 2 and 3 (respectively in the domains of ontology and epistemology). A

‘‘simple system’’ is then defined as one that is not complex. The model-based

statements of the original Definitions 1 and 2 then become themselves theorems as

consequences.

3 Arrow Diagrams of a Mapping

One of the most useful ways of reasoning about the properties of complexity is to

construct a complex structure of algebraic maps. Let A and B be sets and f be a

mapping (alias function) from A to B. The sets A and B are called respectively the

domain and codomain of f. The relations among a mapping and its domain and

codomain may be represented interchangeably in an arrow diagram of the form

A�!f B ð1Þ

or
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f : A! B ð2Þ

The image of the domain A under f, the subset f(A) of the codomain B, is called the

range of f. Note that the range is a subset of the codomain but they need not be

equal; when they are, we say that f maps from A onto B.

Rosen often used the metalanguage of category theory in his discussions. The

definitive reference on this branch of abstract algebra is Mac Lane (1978); for a

simple and concise introduction one may consult Louie (1985). A category consists

of a collection of objects, and for each pair of objects A and B a hom-set denoted by

H(A,B). A member of a hom-set is called a morphism. The general framework

assumes very little about the morphisms; they only need to be closed under

composition and include the identity morphisms. The category axioms are usually

interpreted within set theory, whence an object is a set with a prescribed structure

and a morphism is a mapping preserving this structure.

The category Set, in which the objects are sets (without any further requisite

structure) and the morphisms are mappings, is the simplest example of a category. A

mapping f from A to B may therefore also be represented as

f 2 H A;Bð Þ ð3Þ

Sometimes it is useful to trace the path of an element as it is mapped. If a 2 A and

b 2 B, we use the ‘‘maps to’’ arrow (note the short vertical line at the tail of the

arrow) and write

f : a 7!b ð4Þ

Rosen introduced relational diagrams in graph-theoretic form, in Chapter 9 of

Rosen (1991), to provide a succinct depiction of the entailment patterns in

machines. Then in Chapter 10, he used them to represent the entailment patterns in

organisms. By comparing the two classes of relational diagrams, the differences

between machines and organisms became almost immediately apparent.

A simple mapping f : A! B has the relational diagram

where a hollow-headed arrow denotes the flow from input in A to output in B, and a

solid-headed arrow denotes the induction of or constraint upon this flow by the

processor f. A degenerate interpretation of diagram (5) in completely mechanistic

terms characterizes the flow as the software, and the processor as the hardware. The
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solid/hollow-headed arrow symbolism was first introduced in Section 9B of Rosen

(1991). Its form evolved a few times, and settled on this depiction in arrow diagram (5)

(which is [9E.4] and [10C.1] in Rosen (1991)).

When the mapping is represented in the element-chasing version f : a 7!b, the

relational diagram may be drawn as

(where we have also eliminated the dots that represent the vertices of the graph).

The processor and output relationship may be characterized ‘‘f entails b’’ (Sections

5H and 9D in Rosen (1991)). We denote this entailment as

f ‘ b ð7Þ

Relational and entailment diagrams may be composed. For example, if there is a

morphism U : X ! HðA;BÞ such that U : x7!f (whence U ‘ f Þ, then we have

and

U ‘ f ‘ b ð9Þ

4 The Four Causes Represented by Components of a Mapping

A mapping f : a 7!b (alternatively f : A! B) provides an excellent illustration of

Aristotle’s four causes. Rosen’s version of this exercise is in Chapter 5 of Rosen

(1991); now we provide our own variation on the theme of ‘‘Why mapping?’’

Aristotle’s original Greek term aition was translated into the Latin causa, a word

which might have been appropriate initially, but which had unfortunately diverged
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into our contemporary notion of ‘‘cause’’. The possible semantic equivocation may

be avoided if one understands that the original idea had more to do with ‘‘grounds or

forms of explanation’’, so a more appropriate Latin rendering (in hindsight) would

probably have been explanatio. It is with this ‘‘grounds or forms of explanation’’

sense of ‘‘cause’’ that we identify the four Aristotelian causes with components of

mappings that represent both the causal entailment in natural systems and the

inferential entailment in formal systems.

The material cause, that out of which the mapping comes to be, is its input a 2 A.

We may choose to identify the material cause as either the input element a or the

input set, the domain A.

The formal cause, the mapping’s form or its statement of essence, is the structure
of the mapping itself as a morphism. Note that the Greek term for ‘‘form’’ is

morphé, the etymological root of ‘‘morphism’’. The fact f 2 H A;Bð Þ implies the

relational diagrams (5) and (6); the formal cause of the mapping is the ordered pair

of arrows

The arrows implicitly define the processor and the flow from input to output. The

compositions of these arrows also need to follow the category rules. Alternatively,

when the material cause (the exact nature of the input) is immaterial, the formal

cause may just be identified with the entailment symbol

‘ ð11Þ

which implicitly defines the processor and the output. The identification of a

morphism with its formal essence (10) or (11) is an interpretation of the category

axioms in ‘‘arrows-only’’, i.e., graph-theoretic, terms.

The efficient cause, that which brings the mapping into being, the source of

change, the ‘‘production rule’’, is the function of the mapping as a processor. The

difference between the formal cause and the efficient cause of a mapping is that the

former is what f is (i.e., f 2 H A;Bð ÞÞ, and the latter is what f does (i.e., f : a 7!bÞ.
We may simply identify the efficient cause as the processor itself, whence also the

solid-headed arrow that originates from the processor

This isomorphism between an efficient cause and a solid-headed arrow provides

an important link between a formal system and its relation diagram in graph-

theoretic form:

Theorem 4 A network G of inferential entailment in a formal system contains a
particular efficient cause f if and only if the path of G in the relational diagram
contains the solid-headed arrow that corresponds to f.

The final cause, the purpose of the mapping, why it does what it does, is its

output b 2 B. We may choose to identify the final cause as either the output element

b or the output set, the codomain B (in which case b may be considered as the
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entailed effect). The Greek term télos (translated into finis in Latin), meaning ‘‘end’’

or ‘‘purpose’’, covers two meanings: the end considered as the object entailed (i.e., b
itself), or the end considered as the entailment of the object (i.e., the production of

b).4 In both cases, the final cause may be identified as b, whence also the hollow-

headed arrow that terminates on the output

Here is a succinct summary of the four causes as components in the relational

diagram of a mapping:

Without the material cause, the three causes are in the entailment diagram:

5 Closure to Efficient Causation

After giving Definition 2 of mechanism in Section 8B of Rosen (1991), Rosen used

the rest of Chapter 8 to state and prove some inherent properties of a mechanism.

Then in Chapter 9, he presented a detailed argument proving the equivalence of

noncomputability and closure to efficient causation. Thus he proved that certain

modes of entailment are not available in a mechanism:

4 One might, indeed, consider final cause to be ambiguous. ‘‘The end’’, i.e., the telos, may be considered

either as the object entailed or as the entailment of the object, or both. In fact, an inherent ambiguity in

final cause may be the underlying reason that it is inadmissible as a property of mechanisms, but an

indispensable property of organisms. As a rational alternative to the claim that to speak of final cause is to

‘‘preach religion’’, this inherent ambiguity may serve as a means to readmitting teleology back into

science. We shall have more to say on the topics of ambiguity and impredicativity, and recast this in

algebraic-topological terms, in Sect. 8.
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Theorem 5 There can be no closed path of efficient causation in a mechanism.

In terms of relational diagrams, we have

Theorem 6 In (the relational diagram of) a mechanism there is no cycle that
contains solid-headed arrows.

The contrapositive statement to Theorem 5 is

Theorem 7 If a closed path of efficient causation exists in a natural system N, then
N cannot be a mechanism.

This, by Definition 2 of mechanism, is equivalent to

Theorem 8 If a closed path of efficient causation exists for a natural system N,
then it has a model that is not simulable.

An iteration of ‘‘efficient cause of efficient cause’’ is inherently hierarchical, in

the sense that if a map f representing an efficient cause is contained within the

codomain of a map g representing another efficient cause, then f is one step lower

than g in the hierarchy of morphisms. A closed path of efficient causation must form

a hierarchical cycle of containment. Both the hierarchy of containment and the cycle

are essential attributes of this closure. Note that causes need not be sequential and

the containment is not spatial. The hierarchy of containment is that of dynamic

organization. The idea that a hierarchical cycle is logically incoherent was widely—

and erroneously—believed until the appearance of Aczel’s proof of the existence

and uniqueness of the solution to the fundamental hyperset equation X ¼ Xf g
(Aczel 1988). For a detailed explication see Kercel (2002).

In formal systems, hierarchical cycles are manifested by impredicativities. The

nonsimulable model in Theorem 8 contains a hierarchical cycle that corresponds to

the closed path of efficient causation in the natural system being modelled. In other

words, it is a formal system with an impredicative cycle of inferential entailment: a

collection of mappings that are members of the codomains of one another. Thus, we

also have:

Theorem 9 If an impredicative cycle of inferential entailment exists for a formal
system, then it is not simulable.

For a comprehensive discussion of the Rosen theorems and the underlying

mathematical logic, see Louie (2005).

Since complex systems are complementary to simple systems = mechanisms, we

also have

Theorem 10 A natural system is complex if and only if it contains a closed path of
efficient causation.

See Chapter 18 of Rosen (2000) for a more detailed discussion of Theorem 10

and its consequences. In terms of relational diagrams, we have the complementary

theorem to Theorem 6:

Theorem 11 In (the relational diagram of) a complex system there is a cycle that
contains solid-headed arrows.
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A natural system is said to be closed to efficient causation if its every efficient

cause is entailed within the system. In other words, the definition of ‘‘closure to

efficient causation’’ for a natural system is that it has a corresponding formal system

model that has a closed path containing all of the representations of efficient causes

in its causal entailment structure. By Theorem 4, we have

Theorem 12 A natural system is closed to efficient causation if and only if its
relational diagram has a closed path that contains all the solid-headed arrows.

In Section 10A of Rosen (1991), he proposes ‘‘The Answer’’ to the ultimate

question of biology ‘‘What is life?’’ as ‘‘a material system is an organism if, and
only if, it is closed to efficient causation.’’ Note that the term ‘‘organism’’ is taken in

the sense of any general ‘‘living system’’. Theorem 12 therefore says

Theorem 13 In the relational diagram of a formal system model of a living
system, there is a cycle that contains all the solid-headed arrows.

Comparing Theorem 13 to Theorem 11 (or equivalently, comparing the definition

of organism to Theorem 10), it is evident that living systems form a proper subset of

complex systems. We shall explore this topic below.

Because of the pairwise construction of the solid-headed and hollow-headed

arrows in the formal cause diagram (10), a cycle that contains all the solid-headed

arrows necessarily contains all the hollow-headed arrows as well. (This necessity

follows when we only consider multigraphs. We shall discuss exceptions for which

this does not follow when we consider pseudographs later on in this paper. The two

graph-theoretic terms will be defined presently.) Indeed, the cycle must contain all

the solid-headed arrows and hollow-headed arrows in an alternating sequence. A

cycle containing all the arrows corresponds to the graph-theoretic concept of

Eulerian circuit, with the topological property called traversability.

6 Interlude: Traversability

Although Rosen gained his insights into the character of complexity by using

abstract algebraic representations, it is not the only tool for reasoning about

inherently noncomputable processes. A powerful alternative is topology, a

nonmetric and nonquantitative discipline sometimes called ‘‘rubber-sheet geome-

try’’. Its propositions hold as well for objects made of rubber, under deformations, as

for the rigid figures from common metric geometry. It deals with fundamental

geometric properties that are unaffected when one stretches, shrinks, twists, bends,

or otherwise distorts an object’s size and shape (but without gluing or tearing).

Another name for topology is analysis situs: analysis of position.

Topology deals with different problems and ideas in several different branches,

including general (point-set) topology, differential topology, and algebraic topol-

ogy. Note that algebraic topology is the inspiration of category theory, which is the

mathematical language of Robert Rosen’s modeling relation. See, in particular,

Chapter 3 of Rosen (1985a). Topology began with a paper on the puzzle of the

Königsberg bridges by Leonhard Euler (1707–1783), entitled Solutio problematis
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ad geometriam situs pertinentis, which translates into English as ‘‘The solution of a

problem relating to the geometry of position’’. The title indicates that Euler was

aware that he was dealing with a different type of geometry where distance was not

relevant. The paper was presented to the Academy of Sciences at St. Petersburg in

1735. It appeared in the 1736 edition of Commentant Academiae Scientiarum
Imperialis Petropolitanae, although the volume was not actually published until

1741. An English translation of the paper is reprinted in Euler (1736).

Euler described the problem thus:

‘‘The problem, which I understand is quite well known, is stated as follows: In

the town of Königsberg in Prussia there is an island A, called ‘‘Kneiphof’’, with

the two branches of the river (Pregel) flowing around it, as shown in Fig. 1.

Fig. 1 The seven Königsberg bridges

There are seven bridges, a, b, c, d, e, f and g, crossing the two branches. The

question is whether a person can plan a walk in such a way that he will cross

each of these bridges once but not more than once. I was told that while some

denied the possibility of doing this and others were in doubt, there were none

who maintained that it was actually possible. On the basis of the above I

formulated the following very general problem for myself: Given any

configuration of the river and the branches into which it may divide, as well as

any number of bridges, to determine whether or not it is possible to cross each

bridge exactly once.’’

The puzzle of the Königsberg bridges is a classic exercise in topology, a ‘‘network

problem’’. Network topology is more commonly known as graph theory. (The

definitions and theorems in this section may be found in most introductory texts on

graph theory. Note, however, that some terminology has not been standardized. Two

good references are Trudeau (1993) and Gross and Yellen (1999).) Euler’s method of

solution (recast in modern terminology here) was to replace the land areas by

vertices, and the bridges by edges connecting these vertices (Fig. 2).

The resulting topological object is called a graph, in which only the configuration

of the vertices and edges in terms of their relative ordering and connections is

important, but not the distances. The problem of crossing the bridges then reduced

to that of traversing the graph with a pencil without lifting it from the paper, in one
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continuous trace of the edges, passing along each edge exactly once. A graph for

which this is possible is called traversable, and the continuous trace is now known

as an Eulerian path. Stated otherwise, the geometric problem of crossing the

Königsberg bridges now becomes a graph-theoretic one: to determine whether the

graph in Fig. 2 is traversable. (What we have in Fig. 2 is more properly called a

connected graph, in which there is a path, i.e., a continuous sequence of edges, from

any vertex to any other vertex. But since we are only concerned with the topic of

traversability here, we need only deal with connected graphs: a disconnected graph

is clearly not traversable.)

A (graph) edge may be considered as an unordered pair of vertices that are its

end points. For example, in Fig. 2 the edge f is the unordered pair of vertices {B,D}.

When the two end points are identical, i.e., when an edge joins a vertex to itself, the

edge is called a (self-)loop. Figure 2 has no self-loops. Note that the presence of

self-loops does not affect the continuity of a trace of the edges—a graph with self-

loops is traversable if and only if the graph reduced from eliminating all the self-

loops is traversable. Multiple edges are two or more edges joining the same two

vertices in a graph. In Fig. 2, a and b are multiple edges, since they are both {A,B}.

A simple graph is a graph that contains no self-loops and no multiple edges. A

multigraph is a graph in which multiple edges, but no self-loops, are permitted.

Euler’s graph of the Königsberg bridges in Fig. 2 is a multigraph. A pseudograph is

a graph in which both self-loops and multiple edges are permitted.

The number of edges meeting at a vertex is called its degree. Note that a self-loop

contributes 2 to the degree of its (only) vertex. A vertex is called odd or even
according to its degree. Since an edge connects two vertices, it follows that the sum

of the degrees over all vertices in a graph is even, whence a graph must have an

even number of odd vertices. Euler discovered that if a graph has only even vertices,

then it is traversable; also, the journey may begin at any vertex, and after the trace

the journey ends at the same initial vertex. A closed (when final vertex = initial

vertex) Eulerian path is called an Eulerian circuit. If the graph has exactly two odd

vertices, then it is still traversable, but it is not possible to return to the starting

point: the journey must begin at one odd vertex and end at the other. If the graph has

more than two odd vertices, then it is not traversable. The general principle is that,

Fig. 2 A graph of the
Königsberg bridges
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for a positive integer n, if the graph contains 2n odd vertices, then it will require

exactly n distinct journeys to traverse it.

In the graph of the Königsberg bridges (Fig. 2), all four vertices are odd; the

graph is therefore not traversable. In other words, Euler provided a mathematical

proof, as some of the Königsbergers had empirically verified, that a walk crossing

each of the seven bridges exactly once was impossible.

In sum, Euler proved the following

Theorem 14

(a) A graph possesses an Eulerian circuit if and only if its vertices are all of even
degree.

(b) A graph possesses an Eulerian path if and only if it has either zero or two
vertices of odd degree.

A graph in which every edge has an associated direction (i.e., each edge has an

initiating vertex and a terminating vertex) is called a directed graph, or digraph for

short. Rosen’s relational diagrams in graph-theoretical form (e.g., diagram (6)) are

digraphs. In a digraph, an edge may be considered as an ordered pair of vertices that

are its end points. For example, in diagram (6), the hollow-headed arrow is a directed

edge represented by the ordered pair of vertices (a,b). In a directed graph, the degree

of a vertex has to be split into two entities. The number of edges terminating at a

vertex (i.e., inwardly directed edges on a vertex) is the indegree of the vertex. The

number of edges initiating from a vertex (i.e., outwardly directed edges on a vertex) is

the outdegree of the vertex. Traversability for a digraph has an additional

requirement: the underlying (undirected) graph itself has to be traversable first, but

the Eulerian path also has to follow the directions of the edges. Explicitly, we have the

Theorem 15

(a) A directed graph possesses an Eulerian circuit if and only if the indegree of
every vertex is equal to its outdegree.

(b) A directed graph possesses an Eulerian path if and only if the indegree of
every vertex, with the possible exception of two vertices, is equal to its
outdegree. For these two possibly exceptional vertices, the indegree of one is
one larger than its outdegree, and the indegree of the other is one smaller than
its outdegree.

7 Organisms and (M,R)-Systems

In Chapter 1 of Rosen (2000), after explaining that a living system must have

nonsimulable models, hence must be complex, Rosen added:

‘‘To be sure, what I have been describing are necessary conditions, not

sufficient ones, for a material system to be an organism. That is, they really

pertain to what is not an organism, to what life is not. Sufficient conditions are

harder; indeed, perhaps there are none. If so, biology itself is more

comprehensive than we presently know.’’
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Stated otherwise, a necessary condition for a natural system to be an organism is

that it has an impredicative cycle of causal entailment. An organism must be

complex; a complex system may (or may not) be an organism. Rosen in the final,

concluding Section 11H of Life Itself (Rosen 1991) wrote:

‘‘But complexity, though I suggest it is the habitat of life, is not itself life.

Something else is needed to characterize what is alive from what is complex.’’

Rosen devised a class of relational models of organisms called (M,R)-systems. The

comprehensive reference is Rosen (1972). Rosen also discussed them in Section 3.5

of Rosen (1985a), Sections IV and V of Rosen (1985b), Section 10C of Rosen

(1991), and Chapter 17 of Rosen (2000). Two recent papers on their noncomput-

ability and realizations are Louie (2005) and Louie (2006). The reader may refer to

any or all of the above for their details, which need not be repeated here.

For our present purpose, we only need to know that an (M,R)-system is an

example of a formal model of a natural system that is closed to efficient causation.

In other words, all its efficient causes are contained in an impredicative cycle of

inferential entailment. We shall describe this impredicative cycle presently. By

Theorem 13, an (M,R)-system is therefore a model of an organism. By Theorem 9, it

is nonsimulable. This means that any natural system that realizes an (M,R)-system

must be complex. Note, however, the implication (hence inclusion) only goes one

way; the converse is not true. An (M,R)-system has a very special relational

organization: in particular it is closed to efficient causation, having all its efficient

causes in a cycle. A complex system is only required to contain a cycle containing

some of its efficient causes: there may be efficient causes that are not part of the

cycle. So not every nonsimulable formal system is an (M,R)-system, whence not

every complex system has an (M,R)-system model.

Rosen’s idea behind (M,R)-systems was, as he explained in Chapter 17 of Rosen

(2000), ‘‘to characterize the minimal organization a material system would have to

manifest or realize to justify calling it a cell’’. Whence Rosen defined a cell thus:

Definition 3 A cell is (at least) a material structure that realizes an (M,R)-system.

The word ‘‘cell’’ is used here in the sense of ‘‘autonomous life form’’, i.e.

‘‘organism’’. For example, in Section 10C of Rosen (1991) we find (The ‘‘graph’’ is the

arrow diagram [10C.6] of an (M,R)-system, reproduced in this paper below as (27).):

‘‘Any material system possessing such a graph as a relational model (i.e.,

which realizes that graph) is accordingly an organism. From our present

perspective, we can see that [10C.6] is not the only graph that satisfies our

conditions regarding entailments; there are many others. A material realization

of any of them would likewise, to that extent, constitute an organism.’’

Definition 3 thus says that ‘‘having an (M,R)-system as a model’’ is a necessary

condition for a natural system to be an autonomous life form. Rosen, for emphasis,

added the adjectival phrase ‘‘under the condition that at least one of the appropriate

inverse evaluation maps exists’’ to his description of an (M,R)-system in his original

definition in Chapter 17 of Rosen (2000). The requisite inverse evaluation map is
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what completes the impredicative cycle in Rosen’s standard construction of an

(M,R)-system. We shall have much more to say about this map and other means of

closure (cf. ‘‘there are many others’’ in the quote from Rosen (1991) above) in the

remainder of this paper.

Immediately after Definition 3, in the same paragraph in Chapter 17 of Rosen

(2000) in fact, Rosen added:

‘‘Making a cell means constructing such a realization. Conversely, I see no

grounds for refusing to call such a realization an autonomous life form,

whatever its material basis may be.’’

The converse statement provides the sufficiency. So we may define ‘‘organism’’,

meaning any ‘‘living system’’, as:

Definition 4 A natural system is an organism if and only if it realizes an (M,R)-system.

This definition is consistent with ‘‘The Answer’’ to ‘‘What is life?’’ discussed

above.

Note that Definition 4 is not a contradiction to the quote in the beginning of this

section that there may not be sufficient conditions that characterize life. Rosen has

established the necessity; he chose to state the sufficient condition in his definition of

life. ‘‘Having an (M,R)-system as a model’’ is the necessary and sufficient condition

for a natural system to be an autonomous life form, on a relational level, even if one

may not readily recognize the natural system as ‘‘alive’’ on the material level.

An (M,R)-system is the most rudimentary model of the cell, and thus serves as a

foundation for theoretical biology. The reason that this is relevant to readers of this

journal is that a similar structure (a closed path of efficient causation) is found in the

communications paths of the brain, and the algebraic-topological representation

discussed below may just as easily serve as a foundation for a theory of cognition

that goes ‘‘beyond computation’’. Detailed discussions of this analogy may be found

in Kercel (2004a, b).

The simplest (M,R)-system consists of three mappings, metabolism, repair, and

replication, in a hierarchical cycle. Metabolism is a morphism f 2 HðA;BÞ with

f : a 7!b ð16Þ

whence relational diagram

and entailment diagram
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f ‘ b ð18Þ

Repair is a morphism U 2 HðB;HðA;BÞÞ. Since its codomain is H(A,B), it may be

considered as a function that creates new copies of f, hence a genetic component that

‘‘repairs’’ the metabolism function. Its element-chasing, relational, and entailment

diagrams are, respectively,

U : b 7!f ð19Þ

U ‘ f ð21Þ

Replication is a morphism b 2 HðHðA;BÞ;HðB;HðA;BÞÞÞ with b : f 7!U. With

codomain HðB;HðA;BÞÞ, the replication map serves to repair the repair components

themselves. Note that ‘‘replication’’ in the metabolism-repair model is strictly

limited to the notion of a function in the model that makes copies of the repair

process. Replication is not a description of how the entire cell makes copies of itself.

The apparent infinite sequence of maps that may arise with the iteration of ‘‘repair

the repair’’ is truncated by a mathematical argument that turns it into a hierarchical

cycle of maps instead. Using an ‘‘inverse evaluation map’’, a correspondence is

established between HðHðA;BÞ;HðB;HðA;BÞÞÞ and B, whence b : f 7!U may be

replaced by the isomorphic

b : f 7!U ð22Þ

with relational diagram

and entailment diagram

b ‘ U ð24Þ

The cyclic entailment pattern when we combine lines (24), (21), and (18) is the

impredicative, hierarchical cycle of the (M,R)-system. The three maps b;U; ff g of

replication, repair, and metabolism entail one another in a cyclic permutation. See
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Louie (2005) for a more detailed exposition of this cyclic entailment. The three

maps form the trivial traversable simple diagraph

The Eulerian circuit may begin at any of the three vertices: (�, `, ´), or (`, ´, �),

or (´, �, `)

In terms of relational diagrams, the combination of (23), (20), and (17) results in

which is the element-chasing version of Rosen’s diagram [10C.6] in Rosen (1991):

Louie (2006) suggested an alternate depiction of the digraph (26) of the simplest

(M,R)-system. The geometry was changed to enclose the repair map U within. This

gave a graphic representation of the metabolism component as the abstract

equivalent of ‘‘cytoplasm’’ and the genetic component as the abstract counterpart of

‘‘nucleus’’. After we additionally label the arrows, digraph (26) becomes the

equivalent digraph
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Both vertices a and U have indegree 1 and outdegree 1, while vertices b and f have

indegree 2 and outdegree 2. Thus by Theorem 15(a), the digraph has an Eulerian

circuit, which in our context is precisely the hierarchical cycle containing all the

solid-headed arrows, whence rendering the (M,R)-system complex. The closed path

may begin at any vertex; the Eulerian circuits are (1,2,3,4,5,6), (3,4,5,6,1,2) and

(5,6,1,2,3,4), corresponding respectively to the Eulerian circuits (�, `, ´), (`, ´,

�), and (´, �, `) in diagraph (25).

Note that these three Eulerian circuits of diagraph (28) respect the solid-headed-

arrow–hollow-headed-arrow ordered-pairing of each morphism: the solid-headed

arrows and hollow-headed arrows are in an alternating sequence. In strictly graph-

theoretic terms, circuits such as (3,1,5,6,4,2) are Eulerian as well; such ‘‘out-of-

phase’’ circuits, however, have no corresponding Eulerian circuits in the entailment

digraph (25), and hence do not represent the hierarchical cycle. In particular, the fact

that the Eulerian circuit (3,1,5,6,4,2) happens to ‘‘segregate’’ the solid-headed

arrows and the hollow-headed arrows is a graphic-theoretic coincidence that has no

entailment implications.

8 Impredicativity

The simple digraph (25) has as a ‘‘dual’’ representation in its element-chasing

version

which is essentially a combination of the lines (16), (19), and (22). From this

diagram, we see that
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U f bðf Þð Þð Þ ¼ f ; ð30Þ

which says that

U � f � b ¼ 1HðA;BÞ; ð31Þ

the identity morphism in H HðA;BÞ;HðA;BÞð Þ. Similarly, we have

b � U � f ¼ 1H B;HðA;BÞð Þ ð32Þ

and

f � b � U ¼ 1B: ð33Þ

Hidden in these innocent-looking identity morphisms is the impredicative structure

of the maps in an (M,R)-system. For example, equation (33) is the statement

f b UðbÞð Þð Þ ¼ b 2 B; ð34Þ

as well as the statement

f b UðbÞð Þð Þ ¼ b 2 H HðA;BÞ;H B;HðA;BÞð Þð Þ: ð35Þ

Thus there is an entailed ambiguity between b and b: two nonidentical yet

noncontradictory outcomes that are not algorithmically derivable from each other.

Since algorithms are, by definition, forbidden to include ambiguous steps or data,

this ambiguous entailment demonstrates the inherent noncomputability of (M,R)-

systems. The resolution ‘‘b = b’’, the correspondence between B and

HðHðA;BÞ;HðB;HðA;BÞÞÞ, is something that cannot be derived from syntax alone.

One needs to know something about the maps involved, i.e., the semantics, to reach

this identification. (The semantics here is the requirement that certain maps be

monomorphic. See the aforementioned references on (M,R)-systems for details. We

shall also discuss this semantics below in a more general setting in the language of

algebraic topology.)

The impredicative entailment structure of an (M,R)-system is summarized

succinctly in the following graph of helical hierarchy:
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The helix has three hierarchical levels per turn in an apparent ever-increasing infinite

sequence. But there are in fact only three distinct maps: the three maps b;U; ff g of

replication, repair, and metabolism with their entailment pattern in cyclic permu-

tation, shown in diagram (36) as the bottom circle that is the vertical projection of the

helix. The bottom circle is, of course, simply the element-chasing digraph (29).

The infinity-to-three hierarchical projection may be described in terms of a

sequence of algebraic-topological hom-sets Hnf g. Define

H0 ¼ B; ð37Þ

H1 ¼ HðA;BÞ; ð38Þ

and

Hn ¼ H Hn�2;Hn�1ð Þ for n� 2: ð39Þ

The infinite sequence Hnf g reduces to three members H0;H1;H2f g if we have

Hn ¼ Hn�3 for n� 3: ð40Þ

This semantic correspondence closes the hierarchical cycle, hence rendering it

noncomputable.

The requisite (40) may be established analogously to the standard b ¼ b̂�1

identification. An x 2 Hn�3 defines an evaluation map x̂ 2 H Hn�1;Hn�2ð Þ by

x̂ðzÞ ¼ zðxÞ 2 Hn�2 for z 2 Hn�1: ð41Þ

If we impose the semantic requirement that x̂ be monomorphic, then the existence of

the inverse map x̂�1 2 H Hn�2;Hn�1ð Þ ¼ Hn is entailed, whence

x 7!x̂�1 ð42Þ

is the embedding that allows x 2 Hn�3 to be interpreted as a map x ¼ x̂�1 2 Hn.

Again, the identification x ¼ x̂�1 is something that can only be reached through

semantics and not syntax alone.

Analogous to the identity morphisms in (31), (32), and (33), we now have, for

x 2 Hn�3, y 2 Hn�2, and z 2 Hn�1,

z � y � x ¼ 1Hn�2
; ð43Þ

x � z � y ¼ 1Hn�1
; ð44Þ

and

y � x � z ¼ 1Hn�3
: ð45Þ

9 Alternate Encodings of the Replication Component in (M,R)-Systems

Rosen’s theory of the metabolism-repair representation of living cells, i.e., (M,R)-

systems, rests on the capacity of the M and R to synthesize the replication function
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from what was already available within M and R. Rosen demonstrated this capacity

with his classic ‘‘inverse evaluation map’’ encoding. However, he noted that there

are many other encodings that lead to replication from the interaction of M and R.

Knowing what some of those other ways may be is useful, since it provides further

insight into what properties are allowed, required or forbidden in the metabolism-

repair paradigm.

Louie (2006) gave two additional encodings of (M,R)-systems with replication

represented by morphisms that are not the classic ‘‘inverse evaluation map’’. The

reader is referred there for the algebraic details and biological interpretations. Here

we shall study these alternate descriptions in graph-theoretic terms. A graph-

theoretic analysis of traversability illustrates succinctly the underlying topological

structure of impredicative hierarchical cycles.

When replication is a ‘‘conjugate isomorphism’’, its depiction is

b : b 7!U ð46Þ

with relational diagram

Comparing (46) with (22) and (47) with (23), we see that only the material cause of the

replication morphism is changed. Thus it has the same entailment diagram as (24)

b ‘ U ð48Þ

whence the same entailment digraph (25). The relational diagram for this alternate

(M,R)-system is

Note the distinction between digraphs (28) and (49): (28) is a multigraph, while (49)

has a self-loop 1=(b,b) and is therefore a pseudograph. In digraph (49), vertices a, f,
and U have indegree 1 and outdegree 1, while vertex b has indegree 3 and outdegree

3. Thus, again by Theorem 15(a), the digraph has an Eulerian circuit, which in our
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context is precisely the hierarchical cycle containing all the solid-headed arrows,

whence also rendering this (M,R)-system complex.

The closed path may begin at any vertex; the Eulerian circuits are (1,2,3,4,5,6),

(3,4,5,6,1,2) and (5,6,1,2,3,4), corresponding respectively to the Eulerian circuits

(�, `, ´), (`, ´, �), and (´, � `) in diagraph (25). These three Eulerian circuits

of diagraph (49) respect the solid-headed-arrow–hollow-headed-arrow ordered-

pairing of each morphism: the solid-headed arrows and hollow-headed arrows are in

an alternating sequence. All these conclusions on Eulerian circuits are identical

between diagraphs (28) and (49).

When replication is a ‘‘similarity class’’, its depiction is

a : a 7!U ð50Þ

with relational diagram

Comparing (50) with (22) and (51) with (23), we see that this time both the material

cause and the efficient cause of the replication morphism are changed. (The formal

cause, the categorical structure of a morphism, cannot change; neither can the final

cause: replication has to entail U.) The entailment diagram is

a ‘ U ð52Þ

and the corresponding relational diagram is

Because of the presence of the self-loop 1 = (a,a), digraph (53) is a pseudograph.

Vertices f and U have indegree 1 and outdegree 1, vertex b has indegree 2 and

outdegree 1, and vertex a has indegree 2 and outdegree 3. This time we have to

invoke Theorem 15(b) and conclude that the digraph has an Eulerian path that
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begins at vertex a and ends at vertex b, but no Eulerian circuit. The Eulerian path

{1,2,3,4,5,6}, however, still respects the ordering of the solid-headed arrows and

hollow-headed arrows in an alternating sequence.

The absence of an Eulerian circuit in this (M,R)-system does not, however, mean

it is non-complex. Note that the requirement in Theorem 12 (and Theorem 13) is

only that there is a cycle that contains all the solid-headed arrows, but not

necessarily all the arrows, solid-headed and hollow-headed. In our two previous

(M,R)-systems the cycles also happen to contain all the arrows. That it is the case

for digraph (28) is a consequence of its being a multigraph. When the relational

diagram is a pseudograph (i.e., has self-loops), the cycle that contains all the solid-

headed arrows may or may not be an Eulerian circuit. For digraph (49) it happens to

be. For digraph (53), its Eulerian path {1,2,3,4,5,6} is not a circuit, but it does

include the cycle (1,2,3,4,5) that contains all the solid-headed arrows. This is the

requisite hierarchical cycle that renders this third (M,R)-system complex.

10 Postlude: Intuition is not Computable

In this paper we have demonstrated several new instances of Rosen’s claim that

there are many encodings that give replication ‘‘for free’’ from metabolism and

repair. The capacity for discovering such encodings has implications beyond cell

biology because it provides a technique for showing how impredicatively structured

relationships (such as those observed in organism/life and brain/mind processes) can

arise. We have also shown an approach to facilitate the intuitive discovery of other

encodings, with the graph-theoretic representation serving as a way to test the

properties of whatever novel encodings might be discovered.

The reason we call the process ‘‘intuitive’’ is to emphasize that the strategy

reported in this paper is not reducible, even in principle, to computation. As Rosen

was at pains to point out, given a complex representation of a complex process in

the modeling relation, there is no algorithm for using the representation to gain

novel insight about the process being modeled. Every such insight is discovered by

a flight of creativity. This is the aspect of the process that is intuitive. It essentially

amounts to discovering a new hypothesis that resolves a seeming paradox, and

doing so by reasoning about the ambiguities that led to the seeming paradox. This

kind of reasoning goes beyond inductive logic (reasoning from propositions about

particulars to propositions about generalities); semiotic theorists call it abductive

reasoning. The abstract representations in the formal system in a modeling relation

facilitate abduction. They help us to see seeming paradoxes, and help us to test

whether or not new hypotheses resolve them. However, they do not provide a

technique for discovering the new hypotheses; that is the exclusive province of

cognition.

It is worth remembering why these encodings into algebraic-topological

metabolism-repair models are important. Each represents a set of constraints on

the relationship between metabolism and repair that would close the loop of

efficient causes ‘‘for free’’ (i.e., without the necessity of an external influence to

force the closure). It is likely that many such non-isomorphic constraints (i.e., many
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more than those already discovered by Rosen, Louie, and others) exist in different

organisms. It is easy to envision that one task of the theoretical biologist would be to

identify (perhaps by using the strategy described in this paper) the encodings that

describe the constraints in particular kinds of organism. Once having done so, one

can ask questions about the resulting impredicative structure to gain novel insights

about the organism.

The point is that hierarchic loops of containment of causation abound in

organism/life and brain/mind processes. The strategy of discovering new encodings

between the maps in the impredicative algebraic structures that represent those

loops, and studying their implications topologically, could facilitate the gaining of a

whole new class of insights into life and cognition. By familiarizing biologists and

cognitive scientists with Rosen’s work, we have provided them with a non-

computational mathematical strategy to study the wide range of biological and

cognitive processes that are not describable by computational simulations.
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