
Vol.:(0123456789)

Automated Software Engineering (2024) 31:46
https://doi.org/10.1007/s10515-024-00445-w

1 3

Enhancing fault localization in microservices systems
through span‑level using graph convolutional networks

He Kong1,2 · Tong Li1 · Jingguo Ge1,2 · Lei Zhang1 · Liangxiong Li1

Received: 5 December 2023 / Accepted: 10 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
In the domain of cloud computing and distributed systems, microservices archi-
tecture has become preeminent due to its scalability and flexibility. However, the
distributed nature of microservices systems introduces significant challenges in
maintaining operational reliability, especially in fault localization. Traditional
methods for fault localization are insufficient due to time-intensive and prone to
error. Addressing this gap, we present SpanGraph, a novel framework employing
graph convolutional networks (GCN) to achieve efficient span-level fault localiza-
tion. SpanGraph constructs a directed graph from system traces to capture invoca-
tion relationships and execution times. It then utilizes GCN for edge representation
learning to detect anomalies. Experimental results demonstrate that SpanGraph out-
performs all baseline approaches on both the Sockshop and TrainTicket datasets. We
also conduct incremental experiments on SpanGraph using unseen traces to validate
its generalizability and scalability. Furthermore, we perform an ablation study, sen-
sitivity analysis, and complexity analysis for SpanGraph to further verify its robust-
ness, effectiveness, and flexibility. Finally, we validate SpanGraph’s effectiveness in
anomaly detection and fault location using real-world datasets.

Keywords Anomaly detection · Fault localization · GCN · Microservice

 * Tong Li
 litong@iie.ac.cn

 He Kong
 konghe@iie.ac.cn

 Jingguo Ge
 gejingguo@iie.ac.cn

 Lei Zhang
 zhanglei@iie.ac.cn

 Liangxiong Li
 liliangxiong@iie.ac.cn

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00445-w&domain=pdf

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 2 of 26

1 Introduction

Microservices are a type of software system based on a distributed architecture,
composed of multiple independent and autonomous services. Each service is
designed to perform a distinct function and is equipped for independent deploy-
ment, scaling, and upgrades. This architectural style enhances the efficiency
and flexibility of developing, deploying, and scaling applications (Shadija et al.
2017). Nonetheless, the proliferation of applications escalates the complexity of
fault localization and troubleshooting processes (Zhou et al. 2018a). Quick and
accurate fault localization is crucial to minimize downtime and maintain service
quality. The current widely used solution for fault localization involves develop-
ers manually detecting and fixing issues based on logs or code reviews. However,
existing research (Zhou et al. 2018b) indicates that manual fault diagnosis with
limitations, notably long turnaround times.

Therefore, researchers have proposed solutions based on machine learning and
deep learning to improve fault localization. Zhou et al. (2019) developed trace-
level and microservice-level models for fault localization by extracting a set of
features from system trace logs (Zhou et al. 2019). Additionally, the effective-
ness of using log events in microservice interactions for fault localization has
been demonstrated by Zhang et al. (2022a) leveraging the hierarchical structure
and contextual features of system logs (Zhang et al. 2022a). Recently, Lee et al.
(2023) proposed Eadro, a fault localization framework based on multiple data
sources. It has proven the effectiveness of integrating traces, system logs, and key
performance indicators Lee et al. (2023). However, despite the significant con-
tributions made by these prior efforts, little attention has been paid to span-level
fault localization in microservices systems.

In this paper, we propose an innovative framework that employs graph con-
volutional networks (GCN) for span-level fault localization within microservices
systems. We construct a directed graph based on the collected data and extract
node and edge features to define span-level anomalies in the microservice sys-
tem as a GCN-based edge representation learning and classification task. The
graph construction hinges on the detailed analysis of the invocation relationship
and execution time among microservice components. We implement four com-
ponents in Span-Graph: (1) Data Collection and Parsing. Collect system-gener-
ated monitoring metrics, trace logs, and configuration files for parsing. (2) Graph
Construction. Construct a directed graph and extract the corresponding node
and edge features. (3) Model Training. Utilize GCN to learn and understand the
edge representations within the graph. (4) Anomaly Detection and Fault Locali-
zation. Employ the trained GCN model to detect anomalies and localize faults
within the system. To evaluate the efficacy of SpanGraph, we construct two com-
prehensive datasets by capturing trace data, CPU and memory usage metrics, and
configuration files from the Sock-Shop and TrainTicket benchmark microservice
systems. The experimental outcomes reveal that SpanGraph surpasses all baseline
models in performance, exemplified by a 12.52% enhancement in the F1-score
on the SockShop dataset and an 8.13% improvement on the TrainTicket dataset.

1 3

Automated Software Engineering (2024) 31:46 Page 3 of 26 46

Furthermore, We conduct incremental experiments with unseen traces to evalu-
ate the generalizability and scalability of SpanGraph. In addition, we conduct an
ablation study, sensitivity analysis, and complexity analysis for SpanGraph to fur-
ther verify its robustness, effectiveness, and flexibility, as well as its ability in
anomaly detection and fault localization. We also use an existing real-world fault
dataset to verify the effectiveness of SpanGraph in a production environment. In
summary, the main contributions of this paper include:

• We introduce an innovative graph construction methodology that assimilates
monitoring metrics, trace logs, and configuration files to represent the execution
time sequence between microservices.

• We propose SpanGraph, which defines span-level anomaly detection as a task of
edge representation learning within a graph through GCN, and fault localization
as a task of anomalous edge starting nodes within a graph. Abandoning the pre-
vious related work that used two models for the tasks of anomaly detection and
fault localization respectively, it greatly improves the efficiency of microservice
fault localization.

• To evaluate the performance of SpanGraph, we construct datasets from the Sock-
Shop and TrainTicket microservice benchmarks and conduct comparative analy-
ses with baseline methods. The results show the effectiveness and generalization
ability of SpanGraph for anomaly detection and fault localization. We also veri-
fied the effectiveness of SpanGraph on real-world datasets.

The rest of the paper is organized as follows. We present a detailed literature review
in Section 2, outlining existing fault localization techniques and their limitations.
Section 3 introduces some background and notations we use. Section 4 describes our
proposed methodology, including data collection and parsing, graph builder, model
training, anomaly detection and fault localization. Section 5 provides a comparison
of our approach with existing methods, demonstrating its efficacy through various
experiments. Finally, we conclude this paper in Section 6.

2 Related work

In recent years, researchers have proposed various solutions for addressing the prob-
lem of fault localization in microservice systems (Li et al. 2021; Zhang et al. 2023;
Sun et al. 2023). These solutions can be categorized into four types, based on the
data sources utilized: log-based, trace-based, metric-based, and integrated multi-
source data approaches.

2.1 Log‑based

The log-based approach refers to constructing problem detection and identification
models by parsing logs. Du et al. (2017) used Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber 1997) to transform system logs into natural

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 4 of 26

language sequences, which allows it to automatically learn log patterns during nor-
mal execution. In addition, it supports online incremental updates to continuously
adapt to new log patterns (Du et al. 2017). Meng et al. (2019) proposed a unified
data-driven deep learning framework called LogAnomaly for anomaly detection
in unstructured log streams. Le and Zhang (2021) introduced a log-based anomaly
detection method that doesn’t require log parsing. It uses the BERT (Kenton and
Toutanova 2019) model to encode log messages and utilizes a Transformer model
for anomaly detection (Le and Zhang 2021). Liu et al. (2023) proposed the log-
based anomaly detection framework ScaleAD meets the practical requirements of
log-based anomaly detection in cloud systems. This framework consists of a light-
weight Triple-Based Detection Agent (TDA) and an expert module (Liu et al. 2023).
The expert module combines feedback from language models like ChatGPT (Ouy-
ang et al. 2022). Although log-based methods can uncover more informative causes,
they are challenging to work in real time and require hiding anomaly information
within the logs.

2.2 Trace‑based

Trace-based methods collect information by comprehensively tracing execution
paths and identifying root causes by analyzing latency deviations along these paths.
Zhou et al. (2019) proposed MEPFL, which trains trace-level and microservice-level
prediction models. This approach is based on a set of features defined on system
trace logs and involves automatically executing system trace log collection on target
applications and their fault versions (Zhou et al. 2019). Liu et al. (2021) introduced
MicroHECL, which dynamically constructs service call graphs. It analyzes pos-
sible anomaly propagation chains on these graphs and designs customized models
using machine learning and statistical methods for detecting various types of service
anomalies, thereby improving efficiency (Liu et al. 2021). Zhang et al. (2022b) sug-
gested TraceCRL, which constructs operation call graphs and trains graph neural
network models using contrastive learning methods. This approach enhances the
representation of microservice traces, and it introduces a trace data augmentation
component to tackle category conflicts and representation consistency issues in con-
trastive representation learning (Zhang et al. 2022b). Chen et al. (2023) proposed
TraceGra, a graph-based deep-learning method for microservice anomaly detec-
tion. It integrates trace data with performance metrics, employs graph neural net-
works and Long Short-Term Memory networks to extract topological and temporal
features, and calculates anomaly scores using two distinct loss values (Chen et al.
2023).

2.3 Metric‑based

The metric-based approach involves collecting metrics from individual services
and utilizing them for neural network learning. Gan et al. (2019) employed Con-
volutional Neural Networks (CNN) (Kim 2014) to reduce dimensions and filter
out microservices that do not impact end-to-end performance. Subsequently, they

1 3

Automated Software Engineering (2024) 31:46 Page 5 of 26 46

used LSTM networks to learn spatial and temporal patterns for identifying failing
services and resources (e.g., CPU overhead) that lead to service performance deg-
radation (Gan et al. 2019). Mariani et al. (2018) combined machine learning with
graph-centric algorithms to detect anomalies in Key Performance Indicators (KPI)
and uncover their causal relationships. This approach is further enhanced with algo-
rithms based on centrality indices to pinpoint the erroneous resources causing and
propagating anomalies (Mariani et al. 2018). Chen et al. (2022) proposed an adap-
tive performance anomaly detection method based on pattern sketches, which rap-
idly detects anomalies and provides explanations by extracting normal and abnormal
patterns from metric time series. Audibert et al. (2020) introduced a fast and stable
unsupervised anomaly detection method using adversarial training of autoencoders.
Tested on multivariate time series data, this method has demonstrated robustness,
efficient training, and high anomaly detection accuracy.

2.4 Multi‑source data

Zhang et al. (2022a) combined the complex structure of call hierarchies and paral-
lel/asynchronous calls with log events, employing a unified graph representation to
capture the intricacies of traces. This approach trains a Deep Support Vector Data
Description (Deep SVDD) model (Ruff et al. 2018) based on Gated Graph Neural
Networks (GGNN) (Li et al. 2015) for anomaly detection (Zhang et al. 2022a). Lee
et al. (2023) introduced Eadro, an end-to-end troubleshooting framework designed
to diagnose faults in microservices using multiple data sources. Eadro seamlessly
combines anomaly detection and root cause localization in two stages, leveraging
multi-source data including traces, system logs, and key performance indicators
(Lee et al. 2023). Ren et al. (2023) utilized three data sources-metrics, traces, and
logs-to build a unified graph representation that elucidates complex dependencies
among these elements. Their model, based on Spatio-Temporal Graph Convolu-
tional Networks (STGCN) (Yu et al. 2017) and Deep SVDD, is trained for anom-
aly detection. Additionally, they developed an interpreter to translate binary results
into understandable outcomes, aiding engineers in diagnosing and resolving system
anomalies (Ren et al. 2023). Huang et al. (2023) introduced MSTGAD, a novel
semi-supervised, graph-based anomaly detection method. This method merges three
distinct data modalities-metrics, logs, and traces-into a twin graph of a microservice
system, utilizing graph neural network technology to model their interrelationships.
MSTGAD is designed for automatic and accurate real-time detection of anomalies
in microservice systems (Huang et al. 2023).

3 Preliminaries

3.1 Background

In a microservices architecture, the independence and dynamism of individual ser-
vices underscore the critical role of distributed tracing. Typically, user-initiated

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 6 of 26

requests involve multiple microservices for completion. Consequently, tracing the
service invocation chain for each request is pivotal in understanding the real-time
dependency relationships and execution processes of these services.

To meticulously monitor the application, distributed tracing technology is
employed to record the sequence of service invocations associated with a singular
user request. This technology systematically organizes these spans under a globally
unique trace ID, thereby constructing a comprehensive end-to-end invocation chain
across multiple microservices. Each span represents a process in which a micros-
ervice responds to a user request, characterized by a unique span ID and encom-
passing crucial details such as timestamps and duration. Through distributed tracing,
a comprehensive understanding of the entire lifecycle of a user request is attained,
encompassing its initiation in the system through to the final response. This includes
insights into the invocation relationships and durations of interactions among vari-
ous microservices. Such detailed visibility is indispensable for both troubleshoot-
ing and optimizing performance. In instances of system delays or errors, distributed
tracing enables the swift pinpointing of the affected chain via the Trace ID. Subse-
quently, the span data facilitates the identification of either performance bottlenecks
or malfunctioning microservices. Consequently, distributed tracing has emerged as
an essential component for observability and monitoring within the realm of micros-
ervices architecture.

3.2 Problem definition

The trace of microservices is represented as a directed graph. Each node in the graph
represents a separate microservice request, such as “user/address” or “payment/pay-
ment verification”. Each edge represents the order of invocation between microser-
vice requests. Blue nodes represent primary instances of each microservice, while
yellow nodes denote replicated instances

In this paper, our focus is on the automatic and precise detection and localization
of span-level request invocation faults within a microservices system. To achieve
this, we conceptualize a graph-based representation of invocation requests between
microservices. As illustrated in Fig. 1, each node in this graph symbolizes a micros-
ervice request, originating from a work node instance within a Kubernetes cluster
(2019). We define a trace as a sequence Trace = {spani, i ∈ ℕ

+} , where each span,
denoted as span = {vm- e(m,n,i)- vn,m, n, i ∈ ℕ

+} , represents an invocation process
from the initiation of a request to the receipt of a response. This process involves a
node v, uniquely identified by a four-tuple(NodeId, InstanceId, ServiceName, Api-
Name). Each edge in the graph delineates the invocation relationship between ser-
vice requests. We allow multiple edges from node m to node n, signifying diverse
service invocation requests among different traces within the microservices system.
The index i distinguishes between these multiple edges, indicating the ith of the edge.
In addition, our model permits edges from a node to itself, signifying scenarios
where a user request triggers a singular microservice API request. Such self-loops
correspond to individual traces.

1 3

Automated Software Engineering (2024) 31:46 Page 7 of 26 46

We define anomaly detection as an edge classification task on the graph
(detecting anomalous microservice invocation relationships). Furthermore, we
define fault localization as the start node of an anomaly edge on the graph (the
location where a microservice fails).

3.3 Notations

In this paper, we represent the graph as G = (V ,E,Xv,Xe) , where V denotes the
vertex set comprising nodes {v1, ..., vn} . Each node is associated with a feature
vector Xv ∈ ℝ

V×d . Similarly, E represents the edge set, encompassing {e1, ..., en} ,
with each edge possessing a feature vector Xe ∈ ℝ

E×d . The symbol d is employed
to denote the dimensionality of the embedding. The primary objective of our
research is to develop a model, denoted as f, which is capable of learning these
feature vectors for both nodes and edges. This model aims to effectively perform
anomaly detection and fault localization within the system.

4 Method

In this section, we provide the overall workflow and details of the SpanGraph.
Figure 2 displays the overview of the SpanGraph, which consists of four phases:
Data Collection and Parsing, Graph Builder, Model Training, and Anomaly
Detection and Fault Localization.

Fig. 1 The trace of microservices is represented as a directed graph. Each node in the graph represents a
separate microservice request, such as ”user/address” or ”payment/payment verification”.Each edge rep-
resents the order of invocation between microservice requests. Blue nodes represent primary instances of
each microservice, while yellow nodes denote replicated instances

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 8 of 26

4.1 Data collection and parsing

We combine diverse data sources including monitoring metrics, trace logs, and
configuration files. This integration enables the acquisition of comprehensive
insights into various aspects such as the execution process of requests, the con-
sumption of CPU and memory consumption, execution times, and request sta-
tuses. Subsequently, the trace incorporates metric data and information from
configuration files into the graph construction, thereby facilitating the genera-
tion of a unified graph representation. We utilize third-party tools (Apache 2023;
Prometheus 2023) to collect trace data and other relevant information for graph
builder. Subsequently, the collected data undergoes preprocessing. We fill miss-
ing values in the dataset with zeros and normalize the feature values to the range
[0,1].

4.2 Graph builder

Figure 1 illustrates an example of our graph builder, which is composed of four-
tuples and span events. The construction process involves several key steps:

1. Creating four-tuple Nodes. The first step in our graph builder is to create four-
tuple nodes. Each four-tuple node is unique and represents a specific request or
event within the system. These nodes are identified and created based on the
collected trace data, which captures the various transactions and operations per-
formed by the system.

2. Analyzing Time Relationships between Nodes. In the second step, we analyze
the time relationships between the four-tuple nodes. This involves examining
the timestamps associated with each four-tuple to understand the temporal order
and dependencies between different interactions or events. This analysis helps to
establish the sequence and flow of operations within the system.

3. Connecting Nodes to Form a Graph. The third step involves connecting the
four-tuple nodes based on their time relationships. We create edges between nodes
that are causally related or follow a temporal sequence, forming a directed graph.
This graph structure captures the dependencies and flow of operations within the

Fig. 2 Overview of SpanGraph Architecture

1 3

Automated Software Engineering (2024) 31:46 Page 9 of 26 46

system, allowing us to model the system’s behavior and interactions in a more
detailed and accurate manner.

By following these steps, we can construct a graph that represents the system’s
behavior and interactions in a comprehensive and structured manner. The resulting
graph serves as a valuable tool for analyzing the system’s performance, identifying
anomalies, and understanding the underlying patterns and relationships within the
system.

The Graph Builder is meticulously crafted to construct a graph from data derived
through trace parsing, enabling the extraction of node and edge features. Consider
a trace encompassing the request and response processes of four distinct micros-
ervices (A, B, C, D). This trace can be depicted as a directed graph, where each
node corresponds to a four-tuple, and each edge delineates the request and response
processes. By arranging these four-tuples in the order of their execution times, a
directed graph is formed. The structure of this directed graph is defined as follows:

Node execution time order(denoting the total duration of service invoca-
tion, calculated as response completion time cr minus service start time cs) set:
{A1,A3,A2,C1,B1,D1}

Edge set:{A1 → A3,A3 → A2,A2 → C1,C1 → B1,B1 → D1,D1 → A1}

Here, the subscript i denotes distinct requests from the same service. Con-
sequently, an edge, such as from A1 to A3 , represents the information generated
throughout the request and response process of A1.

4.2.1 Node feature

For nodes, we extract four distinct types of features. The first feature type is the node
identifier, in which the four-tuple (NodeId, InstanceId, ServiceName, ApiName) is
encoded into a 32-dimensional vector, uniquely distinguishing each node. We use
the Word2Vec embedding model (Mikolov et al. 2013) to train and encode the four-
tuple strings in the dataset. The embedding size of each word is 8. The second fea-
ture type encompasses the execution characteristics of each four-tuple, including
execution count, average execution time, average memory usage, and CPU usage.
These metrics collectively reflect the node’s performance in handling microservice
requests. To calculate the average execution time, memory, and CPU usage for each
node, the cumulative values of these metrics for identical nodes are aggregated and
then divided by the number of executions. The third feature type pertains to trace-
related attributes, such as average trace duration and the proportion of the node of
the trace, which illuminate the node’s function within the trace. The average trace
duration is derived by summing the durations of all requests within a trace path and
dividing this total by the number of node executions. Similarly, the proportion of
the node of the trace is computed by dividing the total number of requests observed
during the trace process by the number of node executions. The fourth feature type
involves encoding the trace invocation path, where nodes in a trace are represented
as a 40-dimensional vector. This encoding captures the positional context of the
nodes within the trace path.

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 10 of 26

4.2.2 Edge feature

For edges, we extract six distinct types of features that are crucial for representing
the interaction relationships between microservices. These features include inter-
action features, temporal features, status features, deployment features, resource
features, and trace features. They encompass interaction time, status, deployment
status, resource usage, and trace context, which are all key aspects of microservice
anomaly detection. By providing the model with a comprehensive representation of
microservice interactions, these features contribute to effective anomaly detection
and fault localization.

The first feature type pertains to the inter-microservice request invocation, includ-
ing metrics such as the execution time and status code of the inter-microservice
invocation. The second feature type encompasses time-related attributes, derived by
subtracting the execution times of each node (four-tuple) in the path from the total
trace duration. This process yields a sequence that reflects the relative execution
time associated with each edge. The third feature type consists of status features,
represented as sequences of status codes for each node along the trace path. These
sequences effectively capture the execution status of the edges within the path. The
fourth feature type is deployment-oriented, incorporating various parameters such as
instance startup time, the count of node instances and replicas, the thread count of
the current service instance, the number of instances specified in the configuration
file, and the count of ready instances. These features collectively depict the deploy-
ment status of the instances by the edge. The fifth feature type relates to resource
utilization, including memory and CPU usage of instances and nodes, alongside
their resource constraints. This set of features illuminates the resource status of the
instances by the edge. The sixth and final feature type is trace-focused, where the
four-tuple of the start request, the current request, and the end request within a trace
path are encoded into a 96-dimensional vector.

By integrating these node and edge features, we construct a graph, which serves
as an information backbone for effective anomaly detection and fault localization.

4.3 Model training

The model training module aims to learn representations of graph edges by capital-
izing on the features of neighboring nodes and latent structural characteristics of the
graph, thereby augmenting classification performance. Consider a graph
G = (V ,E,Xv,Xe) that includes a node feature matrix Xv and an edge feature matrix
Xe , along with learnable weight matrices Wv and We . The algorithm’s goal is to gen-
erate a d-dimensional edge representation Ze(m,n,i) for each edge. The model consists
of two graph convolutional layers, implemented using the DGL (2023) framework.
Through a layer of convolution operations, GCN (Bruna et al. 2013) is capable of
capturing information pertaining to first-order neighbors. Within a single GCN
layer, the updated node feature matrix H(1) derived from the initial input features
H(0) = xv(xv ∈ Xv) using the following steps:

1 3

Automated Software Engineering (2024) 31:46 Page 11 of 26 46

where Agg represents a mean aggregation function that computes the average of
node and edge representations, and N is a neighbor selection function that chooses
the complete neighbor set of nodes or edges. It’s worth noting that different aggrega-
tion and neighbor selection functions can be chosen based on specific requirements.
For nodes or edges without neighbors, their representations are learned from their
initial features. By stacking multiple convolutional layers, GCN can capture multi-
scale information in the graph. The output of each layer H(k−1) serves as the input for
the next layer:

Node representations are initially learned by aggregating neighboring node repre-
sentations and those from the previous layer. Then, the graph convolutional layer
aggregates neighboring edge representations and combines vectors of the two con-
necting nodes to compute an average. This average is subsequently passed through
an activation function to form edge representations:

During training, a cross-entropy loss function fine-tunes Wv and We to accurately
predict edge labels. The training employs the AdamW (Loshchilov and Hutter 2017)
optimizer via mini-batch stochastic gradient descent, with weight decay to mitigate
overfitting.

4.4 Anomaly detection and fault localization

We use the trained model for anomaly detection and fault localization through two
distinct methods. The first method involves constructing a graph using the entire
dataset, which we refer to as the pre-trained graph. This pre-trained graph is then
partitioned into training and test sets. The training set has labels, while the test set

(1)H(1) =ReLU(W (1)
v

⋅ (H(0) + H
(1)

N(v)
))

(2)H
(1)

N(v)
=Agg(H(0)

m
,∀m ∈ N(v))

(3)H(k) =ReLU(W (k)
v

⋅ (H(k−1) + H
(k)

N(v)
))

(4)H
(k)

N(v)
=Agg(H(k−1)

m
,∀m ∈ N(v))

(5)S(k) =ReLU(W (k)
e

⋅ Concat(S(k−1)
e(m,n,i)

+ S
(k)

N(e(m,n,i))
, T (k)))

(6)T (k) =Average(H(k)
m
,H(k)

n
)

(7)S
(k)

N(e(m,n,i))
=Agg(S

(k−1)

j
,∀j ∈ N(e(m,n,i)))

(8)Ze(m,n,i) =S
(k)

N(e(m,n,i))

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 12 of 26

is designated as an unlabeled edge. SpanGraph trains on the training set and then
performs subsequent anomaly detection on that test set. The second approach, which
is illustrated in Fig. 3, is particularly suited for scenarios where data is generated
incrementally. As new traces become available, we employ a graph builder process
to seamlessly integrate this new information into the existing pre-trained graph.
This incremental graph construction ensures that the model remains up-to-date with
the latest data trends and system behaviors. Once the new graph is merged with the
pre-trained graph, the trained model is utilized to detect anomalies on the result-
ing merge graph. This method is critical for real-time monitoring and adaptive fault
localization, as it allows the system to continuously learn and adapt to evolving data
streams without necessitating a complete retraining of the model.

The results of employing these methods are discussed in the subsequent sections,
where we analyze the performance of SpanGraph in detecting and localizing anoma-
lies, and we compare the efficacy of the two approaches in the context of the diverse
datasets and use cases studied. Notably, fault Localization refers to locating the
abnormal service (the starting node of the edge that is determined to be abnormal).

5 Experiments

In this section, we commence by delineating the experimental setup. Subsequent to
this, a series of experiments are conducted across various datasets and benchmarked
against multiple baselines, followed by a thorough analysis of the results. Addition-
ally, to provide a comprehensive evaluation of the model, we address the following
research questions (RQs):

RQ1: What is the impact of each component on the performance of SpanGraph?
(Sect. 5.3)?
RQ2: How does the complexity of SpanGraph influence its efficiency and scal-
ability? (Sect. 5.4)?

Fig. 3 The new trace is incrementally merged into the pre-trained graph after graph construction, fol-
lowed by anomaly detection

1 3

Automated Software Engineering (2024) 31:46 Page 13 of 26 46

RQ3: To what degree do variations in hyperparameters affect the effectiveness of
SpanGraph (Sect. 5.5)?
RQ4: To what extent does SpanGraph demonstrate effectiveness when applied to
real-world fault datasets (Sect. 5.6)?

5.1 Experiment setup

5.1.1 Dataset

Our experiment utilized two open-source microservices systems: Sockshop (2023)
and TrainTicket (2023). Sockshop is primarily developed in Java, Golang, and Node.
js and functions as a user-oriented online sock-selling e-commerce system, incorpo-
rating 8 distinct microservices. TrainTicket, a comprehensive train ticket reservation
system, integrates 45 microservices and is implemented in a variety of programming
languages, including Java, Golang, and Python. To facilitate these experiments, we
established a Kubernetes distributed testing cluster employing 15 virtual machines,
of which three served as master nodes. Drawing inspiration from the fault scenarios
provided by Trainticket, we systematically injected various faults into the system.
The categories of these faults include:

Asynchronous Interaction Fault: Asynchronous invocations between microser-
vices occasionally result in message loss or sequence generation of exceptions. To
simulate this, we employed a code modification method that introduced mechanisms
for missing messages or injected data dependencies. Expected faults in this scenario
include interruptions in business process flows.

Multi-Instance Fault: Data inconsistency issues often arise when multi-
instances of a microservice concurrently access a local cache. To replicate this con-
dition, our approach involved altering the shared configuration to one that is local to
each instance. The faults expected from this modification include a range of service
logic errors, such as calculation inaccuracies and null pointer exceptions.

Configuration Fault: Due to resource constraints in the environment, a micros-
ervice is unable to acquire sufficient computing resources to handle requests. To
simulate this, we integrated resource-intensive operations into the request process-
ing code. Expected faults include request timeouts and out-of-memory exceptions,
typically associated with computational resource limitations.

Fault injection produces a series of faulted versions of a target microservice appli-
cation by introducing different types of faults into different parts of the application.
We inject application faults in the same way as in previous work (Zhou et al. 2019;
Zhang et al. 2022a, 2022b; Li et al. 2021). For example, microservice request A2 is
injected with memory faults, then compiled and appropriate test cases are executed
to further validate the fault injection results. We construct the trace as a graph fol-
lowing Section 4.2, and the edge A2 → C1 at node A2 is labeled by us as an anomaly
edge, and the starting node A2 of this anomalous edge is the fault occurrence point.

We utilized automated test cases (Query 2023; Locust 2023) to simulate user
requests and generate corresponding data. To collect traces, we employed a distrib-
uted tracing framework Apache SkyWalking (Apache 2023). Additionally, we used

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 14 of 26

Prometheus (2023) to gather performance metrics relevant to both the traces and the
containers. Utilizing the collected traces and metrics, we constructed a span-level
graph structure. In the end, we obtained two datasets:

Sockshop Dataset: This dataset comprises 191,574 normal traces and 32,238
faulty traces, yielding a normal-to-faulty data ratio of approximately 17:1.

TrainTicket Dataset: This dataset comprises 256,341 normal traces and 47,679
faulty traces, yielding a normal-to-faulty data ratio of approximately 19:1.

5.1.2 Baselines

In evaluating our model, we conducted comparisons with previous methods. We
selected baseline methods that are closely related to the problem domain and share
similar objectives or underlying principles with our proposed method. Consider-
ing the fine-grained of our task, which focuses on span-level anomaly detection as
opposed to the more general trace-based anomaly detection, a direct comparison
with prior methods may not be entirely equitable. To mitigate this, we selected base-
lines that are also adept at span-level anomaly detection and all baselines are optimal
hyperparameters:

• MEPFL-RF (Zhou et al. 2019) is a random forest algorithm based on system
tracing logs to predict latent errors and faults in microservice applications and
accurately locate latent errors caused by faults.

• MEPFL-KNN (Zhou et al. 2019) is a K-nearest neighbor algorithm based on
system tracing logs to predict latent errors and faults in microservice applica-
tions and accurately locate latent errors caused by faults.

• MEPFL-MLP (Zhou et al. 2019) is a multi-layer perceptron neural network
approach based on system tracing logs to predict latent errors and faults in
microservice applications and accurately locate latent errors caused by faults.

• TLCluster (Sun et al. 2023) is a microservice system fault localization method
based on trace log clustering that calculates the similarity of normal and abnor-
mal trace logs.

• Span-RF is a variant of Span-Graph, which replaces GCN with RF in model
training.

• Span-KNN is a variant of Span-Graph, which replaces GCN with KNN in model
training.

• Span-MLP is a variant of Span-Graph, which replaces GCN with MLP in model
training.

5.1.3 Implementation details

The evaluation metrics are predicated on four fundamental classifications: true posi-
tives (TP), which represent the correctly predicted positive samples; true negatives
(TN), denoting the accurately predicted negative samples; false positives (FP), indi-
cating the erroneously predicted positive samples; and false negatives (FN), reflect-
ing the incorrectly predicted negative samples. To rigorously assess and quantify the

1 3

Automated Software Engineering (2024) 31:46 Page 15 of 26 46

effectiveness of SpanGraph, we employ four conventional metrics: accuracy, preci-
sion, recall, and F1-score. These metrics are defined as follows:

In our experiments, we use an AdamW optimizer with an initial learning rate of
0.01 and use ReLU (Agarap 2018) as the non-linear activation function. We set the
weight for L2 loss as 5e-4, the total steps are 500 and the dropout rate is 0. Span-
Graph included two graph convolutional layers, where the dimension of the hidden
layer is 16. For each dataset, data partitioning into training, and testing sets was exe-
cuted in an 8:2 ratio, respectively. We evaluated baseline models and SpanGraph on
three datasets via 5-fold cross-validation. This involved dividing each dataset into
five equal-sized subsets, or folds. In each iteration of the cross-validation process,
four of these folds were used for training the models, while the remaining fold was
reserved for testing. This procedure was repeated five times, with each fold serv-
ing as the test set exactly once. We implemented the approach in baseline using the
scikit-learn (2023) machine learning library. Our model was implemented using
Pytorch. The operating environment is roughly as follows: Ubuntu 20.04 with the
kernel 5.4.0-126-generic, 64GB memory, and an NVIDIA Tesla V100S GPU.

5.2 Comparison experiments

5.2.1 Overall performance

The comparison results on the Sockshop and Trainticket datasets are shown in
Table 1. According to Table 1, we can draw the following conclusions: SpanGraph
achieves the best performance compared to several baselines in the SockShop and
TrainTicket datasets. Traditional methods such as Random Forest (RF), K-Nearest
Neighbors (KNN), and Multi-Layer Perceptron (MLP) show strong performance,
yet they fall short of the results achieved by SpanGraph. This indicates that while
traditional methods are still competitive, SpanGraph offers significant improve-
ments, particularly in complex environments like microservices.

The performance of TLCluster on the two datasets is less than satisfactory.
TLCluster relies on log data, but microservice systems are typically developed
by different teams, resulting in uneven log quality, lack of a unified format, and

(9)accuracy =
TP + TN

TP + TN + FP + FN

(10)precision =
TP

TP + FP

(11)recall =
TP

TP + FN

(12)F1 − score =
2 ∗ precision ∗ recall

precision + recall

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 16 of 26

absence of contextual information, which hinders the analysis of dependencies
between microservices. The Levenshtein distance similarity formula utilized
by TLCluster takes into account the invocation order between microservice
instances, yet it overlooks the instance count. Conversely, the cosine similarity
formula focuses solely on the instance count, disregarding the invocation order,
leading to varying effects on different fault types.

Notably, SpanGraph exhibits substantial improvement over the MEPLF-RF,
MEPLF-KNN, and MEPLF-MLP methods. The F1-scores show an increase of
12.52%, 28.23%, 33.65% on the SockShop dataset, and 8.13%, 11.83%, 10% on
the TrainTicket dataset, respectively. This emphasizes the robustness of Span-
Graph in understanding and diagnosing diverse system behaviors. When compar-
ing MEPLF with our method variants (Span-RF, Span-KNN, and Span-MLP), a
distinct advantage is observed. Our feature extraction methods prove to be more
efficacious in microservice fault localization, as evidenced by the substantial
improvement in recall: 8.49%, 23.30%, and 33.96% improvements for Span-RF,
Span-KNN, and Span-MLP, respectively, compared to MEPFL-RF, MEPFL-
KNN, and MEPFL-MLP.

Our method consistently achieves higher F1-scores in anomaly detection across
both datasets, compared to traditional approaches. This success is attributed to
our graph-based anomaly detection algorithm’s ability to effectively aggregate
relevant features among neighboring nodes and comprehend the intricacies of
microservice invocation relationships. SpanGraph not only enhances anomaly
detection accuracy but also improves fault localization efficiency. The precision
of SpanGraph is particularly noteworthy, with scores of 99.24% and 95.61% in
the SockShop and TrainTicket datasets, respectively. Such high precision is criti-
cal for reducing false positives, which can lead to wasted resources and time in
investigating non-problems. Our approach provides more reliable fault localiza-
tion, which is essential to maintain high system reliability and reduce unneces-
sary debugging efforts.

Table 1 The Experimental Results in SockShop, TrainTicket Datasets

Bold values represent the most significant and noteworthy results of our study, thereby highlighting the
effectiveness of our experimental model

Dataset SockShop TrainTicket

Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

MEPFL-RF 0.9750 0.8729 0.8318 0.8510 0.9658 0.9068 0.8404 0.8700
MEPFL-KNN 0.9495 0.7096 0.6807 0.6939 0.9533 0.8407 0.8257 0.8330
MEPFL-MLP 0.9554 0.7574 0.6000 0.6397 0.9629 0.9144 0.8072 0.8513
TLCluster 0.7476 0.8454 0.7476 0.7923 0.5017 0.8368 0.5017 0.6128
Span-RF 0.9896 0.9443 0.9167 0.9300 0.9761 0.9121 0.8825 0.8967
Span-KNN 0.9887 0.9337 0.9137 0.9234 0.9703 0.8714 0.8848 0.8780
Span-MLP 0.9866 0.9514 0.9396 0.9454 0.9823 0.9259 0.9269 0.9264
SpanGraph 0.9978 0.9924 0.9605 0.9762 0.9926 0.9561 0.9465 0.9513

1 3

Automated Software Engineering (2024) 31:46 Page 17 of 26 46

The clear advantage of SpanGraph in both datasets suggests that incorporating
the structural and temporal information of microservices interactions into the
model results in superior fault localization capabilities. This integration is par-
ticularly relevant in microservice architectures, where comprehending service
interaction patterns is essential for accurately identifying the source of failures.

5.2.2 Few‑shot performance

Additionally, to validate the effectiveness and robustness of SpanGraph in few-shot
settings, we conducted comparative experiments using varying data proportions in
the SockShop and Trainticket datasets. We use data from the full dataset for graph
construction as in Section 4.2, then randomly select 10%, 5%, and 1% of the edges
to feed them into our model for training, and randomly use 20% of the full dataset
as a test set. In Table 2, the comparison results illustrate that SpanGraph maintains
a remarkably high level of performance even with limited data. Notably, even with
only 1% of the train set, SpanGraph achieves F1-scores of 93% and 88.95% on the
SockShop and Trainticket datasets, respectively. This demonstrates SpanGraph’s
ability to effectively learn and generalize from few-shot samples.

As the proportion of data increases to 5% and 10%, we observe uniform enhance-
ments across all key metrics, such as precision, recall, and F1-score. These enhance-
ments solidify the model’s stability and reliability in few-shot learning scenarios.
The robust performance in few-shot settings positions SpanGraph as a highly com-
petitive model compared to traditional methods that often require large amounts of
data to achieve similar levels of accuracy and precision. The efficiency of Span-
Graph in learning from limited data can significantly reduce the need for extensive
data collection and labeling efforts, which are often costly and time-consuming.

The results underscore the potential for implementing SpanGraph in real-world
scenarios where data may be scarce or difficult to obtain, such as in the early stages
of system deployment or in highly dynamic environments. In conclusion, the out-
comes represented in Table 2 explicitly demonstrate the efficacy of SpanGraph in
few-shot learning environments. Its ability to maintain high precision and recall with
limited data exemplifies the adaptability and learning efficiency of SpanGraph, mak-
ing it an ideal solution for practical fault localization in microservices systems with
limited datasets.

Table 2 Comparison Results on Few-shot Training Dataset

Dataset SockShop TrainTicket

Coverage Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

1% 0.9935 0.9953 0.8728 0.93 0.9829 0.887 0.892 0.8895
5% 0.9966 0.9844 0.9389 0.9611 0.9861 0.9274 0.8925 0.9096
10% 0.9966 0.9792 0.9482 0.9635 0.989 0.9621 0.9029 0.9315
100% 0.9978 0.9924 0.9605 0.9762 0.9926 0.9561 0.9465 0.9513

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 18 of 26

5.2.3 Unseen trace performance

Finally, we evaluated the effects of incremental data on the SpanGraph. Our pre-
trained graph model consists of 9,474 nodes and 334,529 edges. For testing, we ran-
domly selected 1k, 2k, 3k, and 5k unseen traces as test graphs, which were then
integrated into the pre-trained graph to examine the generalization performance of
SpanGraph. As shown in Figure 4, the results indicate that with the introduction of
unseen incremental data, our failure to learn the newly added trace led to a slight
decline in accuracy or recall. However, as we progressively increased the number of
unseen traces from 1k to 5k, SpanGraph consistently maintained a precision above
75%. This outcome suggests that SpanGraph possesses a notable degree of generali-
zation ability.

Furthermore, the SpanGraph demonstrates appreciable scalability and gener-
alization performance when handling incremental, previously unseen traces. This
attribute is especially beneficial in dynamic systems, characterized by continual data
generation. It implies that SpanGraph can adeptly adapt to new data without necessi-
tating frequent retraining, a crucial advantage for effective and efficient fault locali-
zation in evolving microservices environments.

5.3 Ablation study (RQ1)

In this section, we conducted an ablation study on the TrainTicket dataset to
analyze the performance of the SpanGraph. Specifically, we evaluated the

Fig. 4 The generalization performance of SpanGraph model pre-trained graph (incremental testing
unseen trace datasets on Random-1K, Random-2K, Random-3K, and Random-5K graphs)

1 3

Automated Software Engineering (2024) 31:46 Page 19 of 26 46

effectiveness of encoding features of nodes and edges and the sequences of dura-
tion time and response state, as well as CPU and memory features in our model.
According to the ablation experimental results shown in Fig. 5, the following
conclusions can be drawn about the impact of various features in the TrainTicket
dataset on model performance:

Embedding Feature: The omission of embedding features resulted in a mar-
ginal reduction in recall and F1-score, by 1.96% and 0.94% respectively, com-
pared to the full SpanGraph model. Accuracy and precision levels, however,
remained largely unaffected. This outcome suggests that embedding features play
a pivotal role in enhancing SpanGraph’s ability to correctly identify positive sam-
ples, thereby improving both recall and F1-score. Sequence Feature: Features
capturing the sequential information of traces, like duration time and response
state, proved vital for the temporal analysis conducted by the model. The removal
of these features led to decreased recall and F1-score, which are 3.48% and 2.35%
lower than the original SpanGraph, underscoring their significance in anomaly
detection. Metric Feature: The ablation of CPU and memory features notably
impacted SpanGraph’s performance, particularly in terms of recall. This implies
that these system metrics are critical in signaling the health of microservices and
ensuring precise anomaly detection. The decline in recall and F1-score was the
most pronounced here, with decreases of 3.88% and 2.41%, respectively, high-
lighting the role of these features in detecting more abundant anomalies.

Answer to RQ1: The ablation study demonstrates that each feature con-
tributes uniquely to the overall performance of SpanGraph. Their collec-

Fig. 5 Ablation study of key features in SpanGraph on the TrainTicket dataset

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 20 of 26

tive integration results in a synergistic effect, culminating in enhanced fault
localization capabilities.

5.4 Model complexity analysis (RQ2)

To thoroughly evaluate the balance between model performance and complexity,
we trained each model using the TrainTicket dataset, comprising 55,992 traces.
This allowed for a comparative analysis of model complexity versus efficiency.
Figure 6 presents the training durations for all methods, including the time taken
to train our model on datasets of varying sizes.

From this analysis, it emerges that our model, while necessitating a relatively
longer inference time and more computational resources, offers a justifiable
trade-off when compared to the inefficiencies presented by the KNN and MLP
methods. Notably, the RF method, despite its shorter training duration, delivers
subpar performance, rendering it unsuitable for our objectives. Our model metic-
ulously accounts for the interdependencies among service invocations, resulting
in an extended training period.

Answer to RQ2: It is observed that the training duration for our model
exhibits a gradual increase in correlation with the dataset’s size expansion.
This increment is indicative of our model’s scalability and its ability to
manage larger datasets without disproportionate increases in training time.

Fig. 6 The training time of different methods (such as RF, KNN, MLP, and SpangGraph with different
dataset sizes) on the TrainTicket dataset

1 3

Automated Software Engineering (2024) 31:46 Page 21 of 26 46

5.5 Model sensitivity analysis (RQ3)

In order to study the impact of hyperparameters on the model, we conducted
sensitivity experiments, and the results are shown in Fig. 7. These experiments
investigated the influence of varying the number of hidden layers, GCN layers,
the learning rate, as well as the dropout rate on the F1-score of the model. From
the results, we can draw the following insights:

Fig. 7 The F1-score results (Y-axis) of models with different hidden layers (X-axis) of the learning rates
(e.g., 0.01, 0.005, 0.001) and the dropout rate (e.g., 0,0.1,0.2) on different GCN layer SpanGraph

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 22 of 26

Optimal Number of GCN Layers: The F1-score is notably influenced by the
number of GCN layers, peaking at two layers. Additional layers tend to aggregate
more noise, potentially impacting efficiency. Moreover, deeper GCN networks may
lead to over-smoothing of features. Impact of Hidden Layers: An increase in hid-
den layers from 4 to 16 correlates with an enhanced F1-score. However, beyond 16
layers, this improvement plateaus or becomes less pronounced. At higher dropout
rates (0.1 and 0.2), the benefit of more hidden layers persists. Learning Rate Sensi-
tivity: The learning rate is a critical hyperparameter, influencing the rate of conver-
gence. A learning rate of 0.01 consistently yields optimal performance across dif-
ferent configurations. At increased dropout rates(0.1 increased to 0.2), this learning
rate remains preferable, though the model becomes more sensitive to learning rate
variations, evidenced by sharper declines in F1-score at lower rates. Slower learning
rates, like 0.001, may lead to lower performance due to slower convergence and the
model’s inability to adapt quickly to the complexities of the data within the given
training epochs. Dropout Rate Impact: The dropout rate also plays a role in model
performance. At a 0.01 learning rate, higher dropout rates negatively impact perfor-
mance in models with fewer layers, indicating that excessive regularization could
hinder learning. Conversely, at lower learning rates(0.005 and 0.001), the dropout
rate’s impact diminishes, suggesting the need for a balanced approach to prevent
overfitting while enabling adequate learning.

It is noteworthy that there are points of instability, particularly observed in con-
figurations with three or four GCN layers at a 0.001 learning rate and dropout rates
of 0 and 0.2. This instability might indicate that this particular configuration is sen-
sitive to initialization or may require a more tuned learning rate or regularization
approach. Optimal performance is typically achieved with a balanced configuration:
a dropout rate of 0, a learning rate of 0.01, a GCN layer of 2, and 16 hidden layers.
While increased complexity (more hidden layers) can be beneficial, there is a thresh-
old beyond which additional complexity does not yield proportional performance
enhancements.

Answer to RQ3: Overall, SpanGraph exhibits robustness across various
hyperparameter settings, maintaining high F1-scores.

5.6 Effectiveness for real‑world fault (RQ4)

We conducted additional experiments based on the real-world datasets collected
in Zhou et al. (2019) to further verify SpanGraph’s effectiveness in the real-world.
The dataset was generated by five student volunteers who acted as users to manually
execute scenarios that might involve the target microservices. It contains 10 fault
cases derived from the fault scenarios outlined in the TrainTicket benchmark. We
extracted an average of 2,000 traces from each case to construct real-world fault
dataset for this paper. This dataset contains a total of 20,000 traces, including 3,000
faulty traces. We conducted 5-fold cross-validation, partitioning our data into 80%
training and 20% testing subsets at random for each fold. Table 3 lists the experi-
mental results of four methods: Span-RF, Span-KNN, Span-MLP, and SpanGraph
on the real-world fault dataset. According to Table 3, we can draw the following

1 3

Automated Software Engineering (2024) 31:46 Page 23 of 26 46

conclusions: SpanGraph achieves the best performance on the real-world fault data-
set, with accuracy, precision, recall, and F1-score of 98.88%, 88.62%, 93.01%, and
90.76% respectively. This indicates that SpanGraph possesses strong anomaly detec-
tion and fault localization capabilities in microservice systems. Traditional methods
such as Span-RF, Span-KNN, and Span-MLP also exhibit good performance, but in
comparison, SpanGraph still holds significant advantages. SpanGraph’s precision is
particularly notable, reaching 88.62% on the real-world fault dataset. High precision
is crucial for reducing false positives and avoiding unnecessary resource wastage.

Answer to RQ4: In short, the excellent performance of SpanGraph on the
real-world fault dataset further proves its effectiveness in microservice anom-
aly detection and fault localization.

6 Summary and conclusions

In conclusion, our research presents a substantial advancement in the field of fault
localization within microservices systems. Our proposed framework, SpanGraph,
effectively leverages graph convolutional networks to offer a robust and efficient
approach for span-level anomaly detection and fault localization. By integrating
trace logs with monitoring metrics and configuration files, the directed graph model
constructed by SpanGraph affords a comprehensive and intricate understanding of
microservice interactions. This approach not only enables precise anomaly detection
but also represents a considerable advancement over conventional manual diagnos-
tic techniques. Our extensive experimental analysis, which includes ablation study,
sensitivity analysis, and complexity analysis, confirms that SpanGraph not only sur-
passes existing baseline methods but also adapts well to unseen data, ensuring its
applicability in real-world scenarios.

SpanGraph has several limitations for future improvement. Firstly, there is uncer-
tainty about its real-world effectiveness as the model’s complexity escalates with
larger datasets. Secondly, the paper only explores a limited number of faults, raising
questions about the model’s capability to identify faults under real-world conditions.

In future work, we intend to deploy our proposed method in a real production
environment to assess its adaptability to dynamic changes in system environments.
Additionally, given the reliance on deep learning for anomaly detection, we will
focus on exploring methods to minimize the training overhead of the model.

Table 3 Effectiveness for Real-
World Fault Dataset

Method Accuracy Precision Recall F1-score

Span-RF 0.9907 0.7032 0.8769 0.7805
Span-KNN 0.9904 0.7166 0.8323 0.7701
Span-MLP 0.9790 0.7959 0.8728 0.8326
SpanGraph 0.9888 0.8862 0.9301 0.9076

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 24 of 26

Acknowledgements This work was supported in part by the National Key Research and Development
Program of China under Grant 2022YFB3103402.

Author contributions He Kong: Data analysis and Writing. Tong Li: Project administration. Jingguo Ge:
Supervision. Lei Zhang: Validation. Liangxiong Li: Visualization. All authors reviewed the manuscript.

Funding This research was funded by the National Key Research and Development Program of China
under Grant 2022YFB3103402.

Data and materials availability Not applicable.

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval Not applicable.

References

Agarap, A.F.: Deep learning using rectified linear units (RELU). arXiv: 1803. 08375 (2018)
Apache: Apache SkyWalking. http://skywalking.apache.org (2023)
Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: Unsupervised anomaly

detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 3395–3404 (2020)

Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on
graphs. arXiv: 1312. 6203 (2013)

Chen, Z., Liu, J., Su, Y., Zhang, H., Ling, X., Yang, Y., Lyu, M.R.: Adaptive performance anomaly
detection for online service systems via pattern sketching. In: Proceedings of the 44th interna-
tional conference on software engineering, pp. 61–72 (2022)

Chen, J., Liu, F., Jiang, J., Zhong, G., Xu, D., Tan, Z., Shi, S.: TraceGra: a trace-based anomaly detec-
tion for microservice using graph deep learning. Comput. Commun. 204, 109–117 (2023)

DGL: Deep Graph Library. https:// github. com/ dmlc/ dgl (2023)
Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis from system logs

through deep learning. In: Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp. 1285–1298 (2017)

Gan, Y., Zhang, Y., Hu, K., Cheng, D., He, Y., Pancholi, M., Delimitrou, C.: SEER: leveraging big
data to navigate the complexity of performance debugging in cloud microservices. In: Proceed-
ings of the twenty-fourth international conference on architectural support for programming lan-
guages and operating systems, pp. 19–33 (2019)

Hochreiter, S., Schmidhuber, J.: Long short-term memory 9(8), 1735–1780 (1997)
Huang, J., Yang, Y., Yu, H., Li, J., Zheng, X.: Twin graph-based anomaly detection via attentive

multi-modal learning for microservice system. arXiv: 2310. 04701 (2023)
Kenton, J.D.M.-W.C., Toutanova, L.K.: BERT: pre-training of deep bidirectional transformers for lan-

guage understanding. In: Proceedings of NAACL-HLT, 1, p. 2 (2019)
Kim, Y.: Convolutional neural networks for sentence classification. arXiv: 1408. 5882 (2014)
Kubernetes: Kubernetes. https:// kuber netes. io (2019)
Le, V.-H., Zhang, H.: Log-based anomaly detection without log parsing. In: 2021 36th IEEE/ACM

international conference on automated software engineering (ASE), IEEE. pp. 492–504 (2021)
Lee, C., Yang, T., Chen, Z., Su, Y., Lyu, M.R.: Eadro: An end-to-end troubleshooting framework for

microservices on multi-source data. In: 45th IEEE/ACM international conference on software
engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pp. 1750–1762 (2023)

Li, Z., Chen, J., Jiao, R., Zhao, N., Wang, Z., Zhang, S., Wu, Y., Jiang, L., Yan, L., Wang, Z., et al.:
Practical root cause localization for microservice systems via trace analysis. In: 2021 IEEE/ACM
29th international symposium on quality of service (IWQOS), IEEE. pp. 1–10 (2021)

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1312.6203
https://github.com/dmlc/dgl
http://arxiv.org/abs/2310.04701
http://arxiv.org/abs/1408.5882
https://kubernetes.io

1 3

Automated Software Engineering (2024) 31:46 Page 25 of 26 46

Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv: 1511.
05493 (2015)

Liu, D., He, C., Peng, X., Lin, F., Zhang, C., Gong, S., Li, Z., Ou, J., Wu, Z.: MicroHECL: high-
efficient root cause localization in large-scale microservice systems. In: 2021 IEEE/ACM 43rd
international conference on software engineering: software engineering in practice (ICSE-SEIP),
IEEE. pp. 338–347 (2021)

Liu, J., Huang, J., Huo, Y., Jiang, Z., Gu, J., Chen, Z., Feng, C., Yan, M., Lyu, M.R.: Log-based
anomaly detection based on EVT theory with feedback (2023)

Locust: Locust. https:// locust. io/ (2023)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv: 1711. 05101 (2017)
Mariani, L., Monni, C., Pezzé, M., Riganelli, O., Xin, R.: Localizing faults in cloud systems. In:

2018 IEEE 11th international conference on software testing, verification and validation (ICST),
IEEE. pp. 262–273 (2018)

Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen, Y., Zhang, R., Tao, S., Sun, P., et al.:
LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured
logs. In: IJCAI, vol. 19, pp. 4739–4745 (2019)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector
space. arXiv: 1301. 3781 (2013)

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al.: Training language models to follow instructions with human feedback.
Adv. Neural. Inf. Process. Syst. 35, 27730–27744 (2022)

Prometheus: Prometheus. https://prometheus.io (2023)
Query, T.A.: TrainTicket Auto Query. https://github.com/FudanSELab/train-ticket-auto-query (2023)
Ren, R., Wang, Y., Liu, F., Li, Z., Xie, G.: Triple: the interpretable deep learning anomaly detection

framework based on trace-metric-log of microservice. In: 2023 IEEE/ACM 31st international
symposium on quality of service (IWQoS), IEEE. pp. 1–10 (2023)

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft,
M.: Deep one-class classification. In: International conference on machine learning, PMLR. pp.
4393–4402 (2018)

ScikitLearn: ScikitLearn. https:// scikit- learn. org (2023)
Shadija, D., Rezai, M., Hill, R.: Towards an understanding of microservices. In: 2017 23rd interna-

tional conference on automation and computing (ICAC), IEEE. pp. 1–6 (2017)
SockShop: SockShop. https:// github. com/ micro servi ces- demo/ micro servi ces- demo (2023)
Sun, C.-A., Zeng, T., Zuo, W., Liu, H.: A trace-log-clusterings-based fault localization approach to

microservice systems. In: 2023 IEEE international conference on web services (ICWS), IEEE.
pp. 7–13 (2023)

TrainTicket: TrainTicket. https:// github. com/ Fudan SELab/ train- ticket (2023)
Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework

for traffic forecasting. arXiv: 1709. 04875 (2017)
Zhang, S., Jin, P., Lin, Z., Sun, Y., Zhang, B., Xia, S., Li, Z., Zhong, Z., Ma, M., Jin, W., et al.: Robust

failure diagnosis of microservice system through multimodal data. arXiv: 2302. 10512 (2023)
Zhang, C., Peng, X., Sha, C., Zhang, K., Fu, Z., Wu, X., Lin, Q., Zhang, D.: DeepTraLog: Trace-log

combined microservice anomaly detection through graph-based deep learning. In: Proceedings
of the 44th international conference on software engineering, pp. 623–634 (2022a)

Zhang, C., Peng, X., Zhou, T., Sha, C., Yan, Z., Chen, Y., Yang, H.: TraceCRL: contrastive represen-
tation learning for microservice trace analysis. In: Proceedings of the 30th ACM joint European
software engineering conference and symposium on the foundations of software engineering, pp.
1221–1232 (2022b)

Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Liu, D., Xiang, Q., He, C.: Latent error prediction and fault
localization for microservice applications by learning from system trace logs. In: Proceedings of
the 2019 27th ACM joint meeting on European software engineering conference and symposium
on the foundations of software engineering, pp. 683–694 (2019)

Zhou, X., Peng, X., Xie, T., Sun, J., Li, W., Ji, C., Ding, D.: Delta debugging microservice systems.
In: Proceedings of the 33rd ACM/IEEE international conference on automated software engi-
neering, pp. 802–807 (2018a)

Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W., Ding, D.: Fault analysis and debugging of micros-
ervice systems: industrial survey, benchmark system, and empirical study. IEEE Trans. Software
Eng. 47(2), 243–260 (2018b)

http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://locust.io/
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1301.3781
https://scikit-learn.org
https://github.com/microservices-demo/microservices-demo
https://github.com/FudanSELab/train-ticket
http://arxiv.org/abs/1709.04875
http://arxiv.org/abs/2302.10512

 Automated Software Engineering (2024) 31:46

1 3

 46 Page 26 of 26

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Enhancing fault localization in microservices systems through span-level using graph convolutional networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Log-based
	2.2 Trace-based
	2.3 Metric-based
	2.4 Multi-source data

	3 Preliminaries
	3.1 Background
	3.2 Problem definition
	3.3 Notations

	4 Method
	4.1 Data collection and parsing
	4.2 Graph builder
	4.2.1 Node feature
	4.2.2 Edge feature

	4.3 Model training
	4.4 Anomaly detection and fault localization

	5 Experiments
	5.1 Experiment setup
	5.1.1 Dataset
	5.1.2 Baselines
	5.1.3 Implementation details

	5.2 Comparison experiments
	5.2.1 Overall performance
	5.2.2 Few-shot performance
	5.2.3 Unseen trace performance

	5.3 Ablation study (RQ1)
	5.4 Model complexity analysis (RQ2)
	5.5 Model sensitivity analysis (RQ3)
	5.6 Effectiveness for real-world fault (RQ4)

	6 Summary and conclusions
	Acknowledgements
	References

