
Vol.:(0123456789)

Automated Software Engineering (2024) 31:35
https://doi.org/10.1007/s10515-024-00432-1

1 3

Bug reports priority classification models. Replication study

Andreea Galbin‑Nasui1 · Andreea Vescan1

Received: 6 May 2023 / Accepted: 13 March 2024 / Published online: 10 April 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Bug tracking systems receive a large number of bugs on a daily basis. The process
of maintaining the integrity of the software and producing high-quality software
is challenging. The bug-sorting process is usually a manual task that can lead to
human errors and be time-consuming. The purpose of this research is twofold: first,
to conduct a literature review on the bug report priority classification approaches,
and second, to replicate existing approaches with various classifiers to extract new
insights about the priority classification approaches. We used a Systematic Litera-
ture Review methodology to identify the most relevant existing approaches related to
the bug report priority classification problem. Furthermore, we conducted a replica-
tion study on three classifiers: Naive Bayes (NB), Support Vector Machines (SVM),
and Convolutional Neural Network (CNN). Two sets of experiments are performed:
first, our own NLTK implementation based on NB and CNN, and second, based on
Weka implementation for NB, SVM, and CNN. The dataset used consists of several
Eclipse projects and one project related to database systems. The obtained results
are better for the bug priority P3 for the CNN classifier, and overall the quality rela-
tion between the three classifiers is preserved as in the original studies. The replica-
tion study confirmed the findings of the original studies, emphasizing the need to
further investigate the relationship between the characteristics of the projects used as
training and those used as testing.

Keywords  Bug priority prediction · Bug report · CNN · SVM · BN

 *	 Andreea Vescan
	 andreea.vescan@ubbcluj.ro

	 Andreea Galbin‑Nasui
	 andreeagalbin13@gmail.com

1	 Computer Science Department, Babes-Bolyai University, M. Kogalniceanu 1,
400084 Cluj‑Napoca, Cluj, Romania

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00432-1&domain=pdf

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 2 of 28

1  Introduction

As the software engineering process converges to large dimensions and develops
hundreds of new features, the product becomes more complex, and regardless of
the workload and quality of product creation, it may still have defects or improper
implementations that lead to production bugs. Here, software testing processes
play an important role in the process of implementing quality products.

A software system may receive a large number of bugs on a daily basis, and
to keep track of them, most software development teams adopt a bug tracking
system (Bugzilla 2023) (e.g., Bugzilla). When a bug is found, the end user or the
developer usually writes a bug report to keep track of the issue.

One of the questions when sorting bug reports is how to establish the order in
which to fix them. This is tracked in the field “Priority” of each bug report and
can have values from P1 to P5. Unfortunately, although there are some guidelines
on how to assign the correct priority of a bug report, the process is manual and
depends on the expertise of the bug report author.

This approach uses a method to combine text processing with a CNN-based
approach to assign the correct priority label to each bug report. The hypothesis
is that each description of the bug report has an important impact on the priority
classification.

The purpose of the current paper is two-fold: to provide a literature review
on the bug report priority classification approaches, and to conduct a replication
study using various classifiers for the prioritization of bug reports problem based
on processed text using natural language processing (NLTK 2023). Moreover,
there is a link between the two investigations: the outcome of the SLR is used to
select the state-of-the-art study and then, in the second stage, to conduct a repli-
cation study to confirm the results of the original study and to expand the knowl-
edge about the replicated method.

The contributions of this paper are the following.

•	 A systematic review of the existing approaches for automating the prediction
of priority of bug reports.

•	 Combining and selecting text processing using the NLTK and various classi-
fiers to assign the correct priority label to a bug.

•	 Apply the classifiers to a dataset using cross-project validation.

The results of our investigation regarding the SLR revealed that there are a vast
number of approaches for the automatic bug report priority assignment using
machine learning algorithms like CNN, NB, SVM, and others, with various
incorporated features, even an “emotion” perspective. Referring to the results
of the experiments performed, our findings confirmed the previous results, both
CNN and NB obtaining good results.

The paper is organized as follows: In Sect. 2, the background concepts related
to bug reporting and text processing are explained. Section 3 summarizes a review
of the systematic literature on related work, also discussing original studies to

1 3

Automated Software Engineering (2024) 31:35	 Page 3 of 28  35

replicate and the replication methodology in software engineering. In Sect. 5, we
elaborate on the research design, detailing the experimental design and objects,
along with used metics. The experiments and their results are described in Sect. 6.
We discuss the threads to validity in Sect. 7 and conclude the results in Sect. 8.

2 � Background on concepts

This section outlines several concepts with which we operate in the paper sections,
concepts such as error or bug, bug report, priority of a bug report, and Convolu-
tional Neural Networks.

2.1 � The notion of error or bug

A bug is an error or malfunction of a program that produces unwanted or incorrect
results. This prevents the application from working as it should (Myers 2005). These
are often discovered after a product is launched or during public testing. When this
happens, users need to find a way to avoid using the faulty code or get a patch from
the software developers, which is related to fixing the found bug.

2.2 � Bug report

The activity of a software tester is not simple; it must pay attention to several
aspects: “designing the testing process (preparing test cases and a test plan), testing
the application itself, and reporting any bugs” (Myers 2005).

The bug reporting process is complex, so a bug tracking system is the best tool in
this regard. There are five steps in tracking bugs:

1.	 Bug detection: The test team detects bugs. They can also be detected and reported
by end users.

2.	 Bug reporting: The tester identifies the existing bug and reports it using a bug
tracking system.

3.	 Bug fixes: The developers are trying to fix some bug fixes.
4.	 Retest: Software is repeatedly tested to make sure that a bug does not exist.
5.	 Data capture: all bug data are recorded in the bug report to avoid the same occur-

rence in the future (Patton 2000).

There are certain rules when writing a bug report. Most of them refer to the way we
formulate the reported problem, but also to how attentive we are to the small details
related to the product. The most important of these are the following.

•	 assign a unique number to each defect, which will later help us identify it. If we
use an automatic bug reporting system, it will automatically generate.

•	 Clear, chronological, and concise description of the reproduction steps.
•	 Be as specific as possible in the description.

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 4 of 28

•	 It is important to ensure that all the details about the failure are correct (Patton
2000).

It is of particular importance that a “bug report” be written, so that it has a high
probability of being resolved as efficiently as possible. These fields include:

1.	 Title—It is advisable to be concise and possibly to mention the component in
which we discovered the bug.

2.	 Severity/priority—These refer to how severely the defect found affects the proper
functioning of the program, and the more severe the failure, the faster the bug
needs to be fixed.

3.	 The description is an overview of the bug and how or when it happened. This part
should include more details than the title and be quite explicit.

4.	 Work environment—Applications may behave completely differently depending
on their environment. This part should include all the details about the environ-
ment configuration and the configuration on which the application is running.

5.	 Reproduction steps—This should include the minimum steps required to repro-
duce the bug. Ideally, the steps should be short and simple and can be followed
by anyone. The goal is to allow the developer to reproduce the bug so that they
can better see where the bug originated.

6.	 The result obtained.
7.	 The desired result (Myers 2005).

2.3 � Bug priority

The priority of the bug is key to deciding which bug should be resolved first (Patton
2000). When testers submit a bug report, they can select the priority level based on
their background knowledge. A P1 priority usually means that this bug is a blocker
and prevents the software from working properly. Meanwhile, priority P5 repre-
sents a minor issue; these types of issue can remain unresolved for months. In Bug-
zilla (2023), the meaning of priority is the importance of the bug, decided by the
developers.

Priority is defined as the order in which a defect should be fixed. The higher the
priority, the sooner the defect should be resolved. This label determined the order in
which the developer should resolve a defect. There is often a confusion between Pri-
ority and Severity, the difference between them being that Severity is the degree of
impact that a defect has on the operation of the product. Based on its label from 1 to
5, we can prioritize the bug reports into five types: critical, major, moderate, minor,
and cosmetic.

Intuitively, a critical priority defect affects a large number of system features,
a high priority defect affects a smaller subset of functionality, a medium priority
defect affects an individual functionality, and a low priority defect is considered
minor irritating (Patton 2000), must constantly monitor the status of bugs, to ensure
that it agrees with any changes made to it and to provide additional test data (Myers
2005).

1 3

Automated Software Engineering (2024) 31:35	 Page 5 of 28  35

With the process mentioned above, the bugs go through 3 important states,
“open state, resolved state, and closed state” (Patton 2000). Fig. 1 contains the
states “open”, “fixed” and “closed”. The bug-sorting process begins with the user
or tester noticing a discrepancy between how the product should work and how it
actually works and the allocation of the bug to the programmer so that it can be
fixed. Here comes the accuracy with which the bug was reported and the impor-
tance of establishing the most relevant value of the fields in the report.

Figure 1 represents the stages that a bug goes through. Each step is described
in the following.

Each element in Fig. 1 plays an important role in the bug-sorting process.

•	 New: When the tester finds a bug or defect in the testing phase, it is reported
to the development team through the bug handling tools. Therefore, the tester
assigns the initial bug status as “NEW”.

•	 Assigned: Once the tester has reported a new defect, the technique leads to its
validation and assignment to a specific programmer to work on it. Then the
bug status is marked “ASSIGNED”. This step consists of designating a specific
individual or developer to take the responsibility for addressing and resolving a
reported software issue or defect. Once a bug is assigned, the designated person
is tasked with investigating, fixing, and testing the identified problem to ensure
its proper resolution within the software system. This assignment process helps
streamline bug resolution by assigning responsibilities and facilitating a struc-
tured approach to debugging and development tasks.

•	 Open: At this stage, once the tester assigns the bug to the developer, it investi-
gates and fixes it. The bug or fault status is displayed as “OPEN”. The repair of
bugs begins at this stage.

Fig. 1   Development stages of a bug (Patton 2000)

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 6 of 28

•	 Resolved: When the programmer takes the necessary actions regarding the
changes to fix the defect, it changes the status of a bug as “FIXED”.

•	 Verified: The developer fixes the bug and then the application is tested again. If
there is no bug, then change the status to “VERIFIED”.

•	 Reopened: The tester will re-examine the application after bug fixes by the devel-
oper, while there is an bug (either a new bug or an old bug is not fixed), then it
has assigned the status of “REOPENED” means that it will go through the bug
life cycle again.

•	 Closed: If there are no problems or issues in the application after testing, then the
tester will be assigned as “CLOSED” by the tester (Myers 2005).

In the process of creating a new bug report, the impact of the problem encoun-
tered and the concise identification of its severity will be taken into account. The
method by which this process is carried out is to assign a “bug report” priority.
This priority indicates the importance of the bug and some hierarchy to fix it. Fig-
ure 2 represents the stages by which a priority level can be marked as “blocker”
or “minor” Myers (2005). Each step is described in the following. There is a com-
mon list of priority classifications, including five categories.

•	 P1: Represents the highest risk threshold, meaning that the bug is causing sys-
tem problems and needs to be fixed as soon as we call this priority “critical”.

•	 P2: This is a bug that should be fixed before launching the product as soon as
critical bugs have been fixed.

•	 P3: This bug should only be fixed after serious bugs have been fixed. Represents
a medium priority fence.

•	 P4: This defect can be fixed in the future and does not need immediate attention,
and low-severity defects fall into this category. The bugs reported here do not
greatly affect the operation of the software.

•	 P5: This priority level indicates a bug of the lowest severity. Here, we can clas-
sify certain design, font, or even spelling mistakes (Myers 2005).

Fig. 2   The impact of a bug priority on the software (Myers 2005)

1 3

Automated Software Engineering (2024) 31:35	 Page 7 of 28  35

3 � Systematic literature review method: exploring relevant studies
on bug priority

A systematic search and analysis were performed according to the problem studied
using a general method of dividing the question into individual parts and compil-
ing a list of alternative synonyms and spellings, as in the Kitchenham and Charters
(2007) report.

Systematic literature review process. We performed a Systematic Literature
Review (SLR) using Kitchenham’s approach (Kitchenham and Charters 2007). In
this SLR we analyze using software references and studies conducted in the direc-
tion of improving the bug sorting process. We performed and documented this Sys-
tematic Literature Review in the thesis of the same name (Galbîn-Năsui 2022).

The stages of the conducted SLR are emphasized in Fig. 3. In the planning phase,
the motivation to carry out the investigation is provided along with the research
questions, and the rules for searching and selecting the studies are provided. In the
next phase, the studies are collected using the rules defined in the previous phase
and the data synthesis is performed. In the last phase, the reporting on findings, the
answering research questions, and final results discussions are performed.

3.1 � SLR planning

3.1.1 � Review need identification

The aim of our work is to explore how bug priority is approached in previous stud-
ies, and whether the emotion value of the bug report is considered. The objective of

Fig. 3   SLR process overview

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 8 of 28

the SLR is to identify existing research on bug priority classification and to summa-
rize the findings. The motivation that drives us to conduct this SLR is given by the
following reasons: (1) to characterize the state-of-the-art to identify and understand
the ongoing scientific research on bug reports priority classification, and (2) to posi-
tion our work in the current research.

3.1.2 � Research questions definition

To address the goal of the SLR, the following questions are defined:

1.	 RQ1. What are the most relevant research papers in this field?
2.	 RQ2. How should we approach this issue in software engineering and how has it

been addressed in the past?
3.	 RQ3. What are the most important methods studied in this context?

3.1.3 � Protocol definition

The steps and rules for conducting the SLR are defined in this section. The steps are:
(1) search terms and resources for the search of the primary studies, (2) the inclu-
sion/exclusion criteria for the selected studies, (3) the strategy for data extraction,
(4) the data synthesis, and (5) reporting the results of the investigation.

3.2 � Conducting SLR

3.2.1 � Search and selection process

A systematic search and analysis were performed according to the problem studied
using a general method of dividing the question into individual parts and generating
a list of alternative synonyms and spellings. These terms could be used by taking
into account the titles of the topics used in articles and publications.

Initially, six keywords were defined that were relevant to the problem studied:
bug, report, priority, severity, prediction, testing.

The criteria for the inclusion of articles are delineated as follows: to be consid-
ered, articles must feature identified keywords either in the title, the dedicated key-
words section, or in the abstract of the paper. Additionally, the articles must be pub-
lished in an international scientific database. In essence, these criteria serve as a
filtering mechanism to ensure that the selected articles are directly relevant to the
defined problem and are accessible through widely recognized scientific databases.

We include articles from the following databases:

•	 https://​ieeex​plore.​ieee.​org/​Xplore/​home.​jsp
•	 https://​dl.​acm.​org/
•	 https://​www.​sprin​ger.​com/​gp

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.springer.com/gp

1 3

Automated Software Engineering (2024) 31:35	 Page 9 of 28  35

3.2.2 � Collecting the studies

Numerous articles retrieved from previously specified databases, using the pro-
vided keywords, were selected and saved based on their titles and keywords. Sub-
sequently, from the pool of identified articles, 30 were chosen. Among these, we
meticulously selected 10 particularly relevant studies for incorporation into the
latest research. The selection process was primarily based on the information pre-
sented in the respective abstracts.

3.2.3 � Data synthesis

In a Systematic Literature Review (SLR), data synthesis refers to the process
of systematically analyzing and combining information from selected studies to
draw meaningful conclusions or identify patterns in the literature. The goal of
data synthesis is to provide a comprehensive and evidence-based understanding
of the research topic under investigation. The narrative synthesis technique is
used to explain and interpret the results found in the analysis. The results of this
activity are presented in the next section.

3.3 � SLR reporting

3.3.1 � Report of the systematic literature review

This section contains the analysis and findings of the SLR conducted. The ten
articles selected following the first selection procedure have in common the study
of the same issue but using different methods of prediction and data processing.
Although studies such as Umer et al. (2018), Umer et al. (2020), Yu et al. (2010)
proposed implementing a machine learning-oriented model, using the SVM Umer
et al. (2018), CNN Umer et al. (2020) and ANN Tian et al. (2013) methods. Some
of the authors proposed using probablistic classifiers such as Naive Bayes Alenezi
et al. (2013), and the nonparametric supervised learning method Nearest Neigh-
bor Ramay et al. (2019).

In Umer et al. (2018), the authors proposed a method using SVM (Support
Vector Machine) in a set of bug reports from the Eclipse project. The use of an
SVM has been shown to scale relatively well to large data set sizes, complex-
ity can also be explicitly controlled, and flexible threshold can be applied during
selection. This method shows an improvement over P3 (Drone) in the F1 score of
up to 6.10%.

The paper (Ramay et al. 2019) investigated the use of a Deep Neural Network
to determine the severity of a bug by analyzing its textual description and process-
ing it using NLTK (Natural Language Processing). This study motivates research-
ers to implement a more efficient automated process for identifying bugs. They also
investigated whether a longer text included in a bug report would result in a better
prediction.

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 10 of 28

One of the most relevant studies in this field is Tian et al. (2013), this one uses
linear regression and has similar results to those of the latest study on Galbîn-Năsui
(2020). In Ramay et al. (2019) there were significant improvements in the results,
using “Deep Neural Network-Based Severity Prediction of Bug Reports”.

To automatically predict the severity of bug reports, a new approach using Near-
est Neighbor Method information, especially the BM25-based document similarity
function, has been proposed in Tian et al. (2012). Their approach automatically ana-
lyzes past bug reports from Bugzilla for Eclipse, OpenOffice, and Mozilla. Com-
pared to the current state-of-the-art severity prediction study, the proposed approach
is significantly improved. Unlike SEVERIS, which has taken a similar approach, this
method shows an improvement in F1 for critical, minor, and trivial scores of 41%,
94%, and 178%, although for the major score it shows a higher result. small by 2%.

In the research outline in Umer et al. (2020), the authors suggest using a CNN
(convolutional neural network) with the help of NLTK to determine the priority of
a bug. Perform engineering-specific bug reporting on bug reports and calculate the
emotion value for each of them using specific software. Datasets from the most pop-
ular Bugzilla, Jira, and Github software systems have been selected as datasets. For
the classifier, the generated vector and the emotion from the report of each bug are
used. This approach shows a bug reduction of up to 2.5% compared to Drone Tian
et al. (2013).

The study determined by the authors in Alenezi et al. (2013) includes an approach
to predict the priority of a reported bug using 3 different machine learning algo-
rithms: Naive Bayes, Decision Trees, and Random Forest. The experiment is con-
ducted using bug reports for the Eclipse and Firefox projects in a number of more
than 65,000 reports. As a result of this study, the authors demonstrated that both
the Random Forest and Decision Tree outperformed the Naive Bayes. To confirm
the results of this study, only reports with the status of: RESOLVED, CLOSED, or
VERIFIED were selected.

The authors of the study (Sharma et al. 2015) evaluated the performance of vari-
ous machine learning techniques to predict the priority of a bug. They use the bug
reporting feature to predict the priority of new bugs. They also used a series of
Rapid Miner operators to preprocess reports, such as removing stop words (which
would be irrelevant to use in analysis) and tokenizing. The evaluation of the model
was performed by applying project validation for 76 cases from five Open Office and
Eclipse data sets in Bugzilla.

The technique of using an artificial neural network (ANN) was used by Yu et al.
(2010) to predict the priorities of the defects. They improved troubleshooting effi-
ciency by proposing a technique that uses neural networks to predict bug priorities
and then adopt evolutionary data set training. Experiments were conducted with five
different software products of an international healthcare company to demonstrate
feasibility and effectiveness. Compared to the Bayes algorithm, the ANN model
showed better qualification in terms of recall, accuracy, and the F1 measure. The
comparison was made with RIS2 software, and the project included more than 2000
sample bug reports.

The paper (Uddin et al. 2017) presents a theoretical study of bug reports and
the motivation for the need to work on prioritizing bugs. Existing work on bug

1 3

Automated Software Engineering (2024) 31:35	 Page 11 of 28  35

prioritization and some possible issues with working with automatic prediction of
bug priority are included here.

All these approaches in software engineering have in common a classification of
a software bug based on the textual analysis of the report, on the basis of which
certain characteristics will be extracted in order to determine the priority or sever-
ity of the respective bug. Many researchers have focused on automating the sorting
of bugs using machine learning methods. The main challenge with these traditional
supervised machine learning methods is that they require a large amount of tagged
data for classifier training.

A final classification of the selected papers based on the used approach, dataset
and tools is provided in Table 1.

In what follows, we outline several advantages and disadvantages of the above
investigated studies.

The systematic literature review unveils several key advantages regarding bug
report priority classification. Firstly, there is a large diversity in the used methodolo-
gies, from machine learning models such as SVM, CNN, DNN to the Nearest Neigh-
bor method. Specific studies, such as the one utilizing SVM, showcase improve-
ments in accuracy, demonstrating a 6.10% enhancement in the F1 score compared
to alternative methods. The integration of NLP tools like NLTK for efficient textual
analysis emerges as a promising trend, particularly evident in a Deep Neural Net-
work approach. Moreover, the practical application of these models to real-world
bug reports ensures relevance and diversity in testing contexts. Lastly, comparative
studies that investigated strengths and weaknesses of various bug reports priority
classifiers contribute to a better understanding of the methods.

Regarding disadvantages, some may be stated. First, a clear separation between
severity and priority, more specifically, particular cases where high priority may not
necessarily correspond to severe issues. The dependence on labeled data for traditional
supervised machine learning methods is another drawback. Additionally, there is a lim-
itation regarding generalization of findings since the model’s results may vary based on

Table 1   Related work on bug priority

Approach Studies Dataset Tool

SVM Umer et al. (2018) Eclipse project NLP, TextBlob, NLTK
CNN Umer et al. (2020)
ANN Tian et al. (2013), Yu

et al. (2010)
Naive Bayes, Decision Trees,

Random Forest
Alenezi et al. (2013) Eclipse project SentiWordNet, NLTK

Deep Neural Network, SVM Ramay et al. (2019) Eclipse project NLTK, LSTM
Nearest Neighbor Tian et al. (2012)
Deep Neural Network Sharma et al. (2015) Open Office,

Eclipse and
Mozilla

Senti4SD, NLTK

SVM, NB, KNN Uddin et al. (2017) Eclipse projects NLTK

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 12 of 28

the dataset characteristics. However, in this aspect, the text length in bug reports may
have an impact on the accuracy of the classification.

3.3.2 � Answers to the SLR research questions

Following the SLR study, we can now state the answers to the research questions set at
the beginning of this article.

RQ1. What are the most relevant research papers in this field?
Comparing the results obtained from DRONE framework and the other relevant

studies in the field it may be seen that the Tian et al. (2013) approach outperforms the
baselines in terms of average F-measure by a relative improvement of 58.61% which
is one of the best results on this study. Another effective approach is the one studied in
the article (Umer et al. 2018) where Deep learning techniques are used to increase the
efficiency of the algorithm, unlike Drone, which so far uses classical classifiers such as
linear regression. Proper selection of features is the basis for the classification task, so
there are studies that included other elements of the report in the data set, such as the
“emotion” factor Umer et al. (2018), Tian et al. (2012), improvement of the F1 score
ranges from 2.04% to 11.59%.

RQ2. How should we approach this issue in software engineering and how has it
been addressed in the past?

First, the problem referring to automatically prioritize a bug report is approached
in software engineering by defining it as a classification problem: based on the textual
analysis of a report with various characteristics, the priority of the respective bug is
established. Second, this problem has been addressed by many researchers who focused
on automating the assignment of bug priority using machine learning methods Yu et al.
(2010), Ramay et al. (2019), Umer et al. (2020). Various features, incorporating even
sentiment analysis results, were used in previous approaches with different tools and
libraries. The main challenge with these traditional supervised machine learning meth-
ods is that they require a large amount of data tagged for classifier training.

RQ3. What are the main methods studied in this context?
The main methods that investigated this bug reports priority classification problem

are SVM, ANN, CNN, Naive Bayes, Random Forest, Deep Neural Networks as seen in
Table 1, most of them using the NLP technique with similar features. There are other
studies that also incorporated emotion-based features (computation of an emotion value
for each bug report) to classify bugs Umer et al. (2018), Umer et al. (2020) and also
used machine learning techniques to classify a “bug report” depending on the descrip-
tion of the bug and other features such as author, product, and time factors.

4 � Current explorations in bug report priority: investigating modern
classification models

4.1 � The original study

We conducted a replication study of the approaches in Umer et al. (2018) and Umer
et al. (2020) regarding bug reports priority classification.

1 3

Automated Software Engineering (2024) 31:35	 Page 13 of 28  35

Umer et al. (2018) proposed a SVM-based bug priority classification model.
They extracted and stored the Eclipse bug reports (Eclipse-bugs 2023) from Bug-
zilla (2023) and adopted (NLTK 2023) text preprocessing models to clean up the
data. Prioritization of bug reports was carried out by analyzing the summary and
calculation of emotion value using (SentiWordNet 2023).

Umer et al. (2020) proposed a CNN-based automatic prioritization of Bug
Reports. They also applied NLTK natural language processing methods (NLTK
2023) to preprocess the textual information from the bug reports. From the pre-pro-
cessed bug reports they performed an emotional analysis and constructed a vector
for each bug using the Word2Vec model (Word2Vec 2023).

4.2 � Replication in software engineering

Replication is an essential method that attempts to validate the findings of previous
experiments and research.

Several aspects that are relevant for a replication study have been outlined by
Shepperd et al. (2018). First, the authors must state the original experiment that is
being replicated and also include experiments that allow extension of external valid-
ity. Another important aspect is that both of the research have to contain common
research questions and enclose comparisons between the 2 sets of results. Confirm-
ing or, on the contrary, disconfirming the original experiment.

Carver (2010) and Carver et al. (2014), provided four elements to be comprised
in a replication report. These are (1) information about the original study has to
provide enough context for understanding the replication in question; (2) informa-
tion about the replication to help readers understand specific important details about
replication itself; (3) comparison of replication results with original study results in
commonalities and differences in the results obtained, and (4) conclusions across
studies to provide readers with important insights that can be drawn from the series
of studies that may not be obvious from a single study.

Other dimensions of replication were pronounced by Gómez et al. (2014)
expressing: operationalization, population, protocol, and experiments. On top of
that, Fagerholm et al. (2019) advises that replication designs should be meticulously
documented.

The Operationalization dimension describes the act of translating a construct into
its manifestation. the constructs are operationalized into treatments and indicate how
similar the replication is to the baseline experiment. The effect constructs are trans-
lated into metrics and measurement procedures.

The Population dimension is related to the experimental objects. This implies
exploring the boundaries of the properties of the experimental objects for which the
results hold.

The Protocol dimension is related to the factors used in the experimental analysis
that can differ in each replication. These differences could be experimental design,
experimental objects, guides, measuring instruments, and data analysis techniques.

The Experimenters dimension is describing the people involved in the experi-
ment. Gómez et al. (2014) has specified the fact that while doing a replication study,

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 14 of 28

the observed results should be independent of the experimenters, changing the peo-
ple who performed each role.

The dimensions mentioned will be contextualized in our replication study design.
The details are provided in the following sections.

In conclusion, replication in software engineering is one of the key ways to build
merit results and to check the consistency of the studies.

4.3 � Motivation for the replication

One of the main reasons for conducting a replication study is to confirm the results
of the original study but also to expand the knowledge about the replicated method
(Dyba et al. 2005).

Our replication further investigates the NB, SVM, and CNN approaches using the
Word2Vec model as by the Umer et al. (2020) approach, however, different from the
Umer et al. (2018) approach that used the SentiWordNet.

Thus, our replication strategy uses the same methodology for preprocessing the
bug report files with specific modifications related to how the feature vector is built.
Also, the same source of Eclipse bug reports (Eclipse-bugs 2023), but with some
modifications due to the changes in existing bugs and fixes.

5 � Research design and analysis

We conducted experiments on CNN based approach classification model and SVM
to perform a multiclass prioritization (p1-p5) of bug reports.

In this section, we provide the details of our replication approach, the experimen-
tal setup with the used dataset, focusing on employed models, and conducted experi-
ments (for both confirmation and acknowledging the current state of the art on this
subject.

5.1 � Overview

We replicated the original study from Umer et al. (2018) and Umer et al. (2020) as
an operational replication (Juristo and Vegas 2009) where we changed researchers
and preserved the replication objects (Gómez et al. 2014). We use the original study
protocol, following it as close as possible the initial protocol (based on our under-
standing of the steps). We tried contacting the authors regarding the scripts, how-
ever, we did not succeed. This replication design addresses the internal and external
validity threats of the original study and adds new information regarding the use of
an automated tool (Frank et al. 2023) to train the model used, but also to implement
a new model from scratch using (Python 2023) libraries Galbîn-Năsui (2020). The
dimensions stated by (Gómez et al. (2014)) in Sect. 4.2 are next discussed in coor-
dinating our replication design.

Regarding Operationalization dimension our experimental replications are simi-
lar to the baseline experiment in that they use a similar set of bug reports, and the

1 3

Automated Software Engineering (2024) 31:35	 Page 15 of 28  35

dataset was extracted from the same repository as this provides both consistency and
Methodological Transparency, although the distribution of the bug reports might
be slightly different due to the timestamp difference between the extraction of each
repository. Details are provided in Sect. 5.3. Using the same dataset allows for a
clear exposition of the steps taken to reproduce the study, fostering transparency and
facilitating a comprehensive understanding of the research process.

With respect to Population dimension, the properties of experimental objects (i.e.
bug reports in our context) are considered when designing the experiments. Each
experiment considered bug reports extracted from the exact source (Bugzilla 2023),
although some of the bugs may be missed from the current repository due to the
time difference of the extraction. Some of the bugs were added or removed from the
source.

With reference to Protocol dimension, some of the elements of the experimental
protocol varied in replication. For instance, the study for the JDT dataset using CNN
and NB was performed by implementing the code to work on the priority prediction,
whereas we have also used some (Python 2023) libraries such as scikitleran. Also,
on top of that, we performed a cross-validation study between the four datasets of
Eclipse projects (Eclipse-bugs 2023).

With regard to the Experimenters dimension, thus referring to the people involved
in the experiment, we use different researchers.

In the next sections, we will provide the key elements on top of our experiments
and the objects that were used in this approach followed by evaluation metrics that
were used to analyze these results.

5.2 � Experimental design

We conducted a replication study on the papers (Umer et al. 2018) and (Umer et al.
2020) using two sets of experiments.

We have employed two ways to replicate the approaches by Ramay et al.
(2019) and by Umer et al. (2020). We applied the same pre-processing tasks as
described below and then we used two different implementations for the used
classifiers, i.e., one based on (NLTK (2023)) and one based on WEKA (Frank
et al. (2023)). The experiments of the design of the study can be observed in

Fig. 4   Replication study - design of experiments

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 16 of 28

Fig. 4. The methods were chosen based on the results in the two original studies,
the newly proposed method in each paper with another one for comparison.

5.2.1 � Bug reports transformed to vector of words

We apply Natural Language (NLTK 2023) to process the dataset that consists of
bug description. Based on the pre-processed bug report, we construct a vector
for each bug using the word2vector model. With the predefined word embedding
layer from “Google News Word2Vec”, we construct our CNN layers. We pass
these values to a chosen classifier and evaluate the approach by comparing the
evaluation metrics F1, Recall and Precision.

A graphical representation of the approach is shown in Fig. 5. Starting from
a simple bug report and taking its description and then using text preprocessing
methods so that it is eligible to apply the model, we come to a data set readable
for the proposed method. The data set is also divided into training and testing
values. The last step is to apply the chosen classifier and get the results to be the
priority of the bug.

Text processing. The selected bug reports may contain irrelevant details.
In order to get the “clean data” for this study we have applied text processing
methods. The aim is to increase the performance of the proposed approach. We
include: removal punctuation, stop word removal, lemmatization and tokenization
that are described in what follows:

•	 Remove punctuation: Descriptions usually contain punctuation, we remove that
as it has no value on the process.

•	 Stop word removal: Bug description may include some unwanted words that
have to meaning in the model applyed. We remove such words from the extracted
tokens.

•	 Lemmatization: In this process, the endings of the words are removed to return
the base word, which is also known as Lemma.

•	 Tokenization: Tokenizers divide strings into lists of substrings. For example,
tokenizers can be used to find the words and punctuation in a string.

To perform the above, we used Python (2023) libraries such as NLTK (2023).
After this process, the bug report will be detailed as a vector of words. We apply
a word2vector model to this grammar, using a predefined embedding layer (Word-
2Vec 2023).

Fig. 5   Overview of bug priority
classification process

1 3

Automated Software Engineering (2024) 31:35	 Page 17 of 28  35

5.2.2 � Employed classification models

As mentioned above, we have employed two ways to conduct the experiments:
one using our own implementation using NLTK and the other using the WEKA
implementation. We describe in what follows each of them.

Our NLTK - based NB and CNN classification models.
We operated a Naive Bayes classifier approach in order to automatically pri-

oritize bug reports using the report information retrieved from the summary. The
factors extracted from the bug reports were further tokenized using Natural Lan-
guage Processing (NLTK 2023) and served as training and testing data to a Naive
Bayes classifier. The first step was extracting the Bugzilla (2023) dataset that
includes JDT project bug reports, followed by cleaning this data using NLTK.
Furthermore we applied the mentioned model in order to predict the priority class
p1-p5.

We also use a CNN classification method in order to predict the priority of
each bug report based on its description.. CNN (Convolutional Neural Network)
uses the vector concatenation method to concatenate incoming inputs into one
long input vector (Weber 2020). Consequently, CNN can handle long-term
dependencies better than a recurrent neural network.

The first step is to create the embedded layer to which we will apply the other
3 layers using different activation functions. Next, we forward the output of the
filter to create a one-dimensional vector.

Regarding the vocabulary formed from this predefined model and the dimen-
sions of the “embedded” matrix, the results can be seen in Fig. 6.

Following this step, the text sequence is transmitted to a CNN and the model
is processed (see Listing 1). Finally, we apply a softmax layer that contains the
probability distribution of the priority levels.

WEKA - based NB, SVM and CNN classification models.
WEKA Frank et al. (2023) is a collection of machine learning algorithms for

data mining tasks. This is an open-source project that provides tools helpful in
implementing several Machine Learning algorithms and visualization tools in
order to develop machine learning techniques and apply them to real-world data.

Naive Bayes classifiers are a collection of algorithms that implement the prob-
abilistic Bayes Theorem. The main principle while applying NB is that each pair
of features is classified independently of the other and contributes to the outcome.
The functioning of the NB modeling is determined by formula 1 where A and B
are 2 events.

Fig. 6   Embedding model values

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 18 of 28

Listing 1   CNN Layers

Support Vector Machine (SVM) is a supervised learning model that uses classifica-
tion algorithms for the two-group classification problem. It works by mapping data
to a high-dimensional feature space so that data points can be categorized, even
when the data are not otherwise linearly separable.

CNN Convolutional Neural Network is a artificial neural network. It uses the vec-
tor concatenation method to concatenate incoming inputs into one long input vector.
Consequently, CNN can handle long-term dependencies better than a recurrent neu-
ral network. This is widely used for image/object recognition but has great impact
on text classification models.

In the extended study, we applied the SVM, CNN and Naive Bayes classifica-
tion models from Frank et al. (2023). LibSVM is a wrapper class from Frank et al.
(2023) that implements the SVM machine learning model. In order to use Naive
Bayes from weka we operate the following class weka.classifiers.bayes installed by
default on Frank et al. (2023) which uses estimator classes. Furthermore, for CNN,
we installed the following WEKA library: l4jMlpClassifier. This library allows
users to train Neural Networks and conduct experiments using various architectures
for the layers.

5.3 � Experimental objects

We used two datasets for this implementation, both extracted from the Bugzilla
(2023) Eclipse-bugs (2023) project for each study: the dataset for our NLTK-based
classification models and the one used in WEKA.

Dataset for our NLTK-based NB and CNN classification models. In this study,
we evaluated the performance of the proposed approach on two different datasets,
one containing 17700 bug reports of the Bugzilla JDT project (Bugzilla 2023) and
one from the same bug tracking system, but containing 1000 bug reports of issues
of the database management system reported in Bugzilla. These results were then

(1)P(A|B) =
P(B|A)P(A)

P(B)
,

1 3

Automated Software Engineering (2024) 31:35	 Page 19 of 28  35

compared with the approach of using Naive Bayes and Linear Regression from the
previous study (Galbîn-Năsui 2020) on the same JDT bug report dataset.

To show the effectiveness of our model, we performed experiments on two data
sets; one contains bugs from the JDT project (Eclipse-bugs 2023). The second is
part of the same product range (Eclipse-bugs 2023), but explicitly refers to data in
the field of databases. Both the reported datasets were downloaded from Bugzil-
la’s repository (Bugzilla 2023). For the dataset related to bug reports from database
management field we apply filters by words database, sql on the same bug tracking
system.

Dataset for our WEKA -based NB, SVM and CNN classification models. In this
study, we evaluated the performance of the proposed approach on 4 different data-
sets performing cross-validation between 4 different projects from Eclipse-bugs
(2023) available for JDT, CDT, PDE and Platform.

We exploit this dataset and reuse it in a cross-validation project using (Frank et al.
2023). The total number of bugs available in the dataset at that time is 28855 bug
reports, where we have a number of 66,8% are for the JDT project, 23,2% are for the
PDE project, 3,2% on Platform project and 6,8% on the CDT project. The next step
was to perform 4 cross-validation experiments where each dataset represented the
test data and each of the other 3 datasets was joined as the training data.

5.4 � Metrics

Given the bug reports, the performance of the proposed approach is evaluated by
calculating the priority-specific precision P, the recall R, and the F1 score F1 (Tre-
vor Hastie and Tibshirani 2016).

Precision (Eq. 2), Recall (Eq. 3), and F-measure (Eq. 4) are some of the most
widely used metrics for evaluating classifications. Where for a set of bug reports D,
whose real priorities are P1 , P2..., Pi

,.. P
n
 (n-number of bugs). TP is the number of

bugs classified as P
i
 , FP is the number of bugs that are falsely classified as P

i
 , and

FN is the number of bugs that are not anticipated as P
i
 , but are actually P

i
.

6 � Replication results

The following section will describe the experimental results and itemize the answers
to the research questions raised for this study.

(2)P =
TP

TP + FP

(3)R =
TP

TP + FN

(4)F =
2 ∗ P ∗ R

P + R

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 20 of 28

6.1 � Our NLTK‑based NB and CNN replication experiments results

We first study the accuracy with which each data set is classified, as can be seen
in Table 2. Both datasets were used as input data in the CNN algorithm.

We have also investigated the impact of different distributions of training and
testing percentages. Table 2 summarizes the results, that is, better results with
25%.

As can be seen, both datasets produced an accuracy of more than 70 %, indi-
cating that most of the priority classes were correctly classified. The high accu-
racy is due to the frequency of P3 priority bugs, for which the prediction is the
most efficient, as can be seen in Tables 3 and 4.

Although the proposed approach has good evaluation metrics for the P3 pri-
ority class, as seen in Table 4 for the database dataset and Table 3 for the JDT
dataset, the average is less than 50% for the 3 evaluation metrics. We believe that
this is due to the dataset we applied, as most of the bug reports had priority P3.
This is natural, since usually, for a software product, most of the bugs raised are
of medium importance.

Table 2   CNN model. Various
testing % distributions

Model used Accuracy (%) Test data (%)

JDT dataset 88.1 25
86.23 15

Database dataset 75.2 25
72.42 15

Table 3   JDT bug reports dataset Priority Precision (%) Recall (%) F-measure (%)

P1 0.05 0.12 0.13
P2 0.3 0.24 0.28
P3 94.87 93.61 94.99
P4 0.45 0.22 0.41
P5 0.5 0.19 0.2
Average 19.22 19.98 19.02

Table 4   Management system
bug reports dataset

Priority Precision Recall F-measure

P1 1.25 1.05 0..98
P2 0.85 0.91 0.89
P3 89.97 90.61 90.08
P4 0.13 0.14 0.15
P5 0.1 0.12 0.14
Average 18.92 19.8 19.04

1 3

Automated Software Engineering (2024) 31:35	 Page 21 of 28  35

As seen in Table 3, this approach has shown effectiveness similar to other well-
known methods such as Tian et al. (2013), Umer et al. (2018), Yu et al. (2010),
Umer et al. (2020), Tian et al. (2012), Sharma et al. (2015).

An important question regarding the model used is the size of the training and
testing dataset. For the testing stage, we chose 25% from the bug reports. The results
compared are 25% of the total data set size and 15% of the dataset size. For the 15%
of the dataset we only managed to get an accuracy score of 72.42% and 83.23%.

We have also compared the CNN model with that implemented in Galbîn-Năsui
(2020), Naive Bayes. The results are provided in Table 5 for which we used 1000
bugs from the same JDT Eclipse-bugs (2023) dataset. For this applied method, we
have obtained results that are close to the results obtained in Galbîn-Năsui (2022),
that aim to predict a bug priority based on description.

As a future direction on this topic, we will employ more bugs to our database
dataset and run the experiments on the CNN model and both the Naive Bayes and
the Linear Regression model from Galbîn-Năsui (2020). We also consider that in
order to improve the results, we could add a few more fields included in the bug
report, like: author, product version, and the emotion score of each description of
the bug.

6.2 � Weka‑based NB and CNN replication experiments results

The results obtained usign Weka implementation are provided in the following
tables. Table 6 contains the results for the JDT-based testing project for cross-val-
idation, Table 7 for the CDT-based testing project for cross-validation, Table 8 for
PDE-based testing project for cross-validation, respectively, Table 9 for the Plat-
form-based testing project for cross-validation. It is important to mention that the
values in the specified tables are the average values for all P1 to P5 priorities.

We can notice from the above results that the NB classifier performs best when
the project used as testing is Platform (JDT + CDT + PDE as training), the SVM
classifiers performs best in the same conditions as NB, while the CNN classifiers
perform best when the JDT project is used as testing (CDT+PDE+Platform as

Table 5   Comparison of results
for the different models

Model Accuracy (%)

Naive Bayes + JDT dataset 89.1
CNN + JDT dataset 88.1
CNN + database bug reports 75.2

Table 6   WEKA based
evaluation JDT

Model Precision (%) Recall (%) F-measure (%)

NB 19.72 21.58 19.26
SVM 19.04 19.40 19.22
CNN 51.26 21.30 20.32

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 22 of 28

training). Therefore, more research needs to be done to identify if there is a relation
between the characteristics of the projects used for training and the characteristics
used for validation. Also, if some classifiers performed better for a specific type of
bug reports (thus, a specific fault that is associated with).

Comparing the results considering the bug reports priorities, we can notice that
weka obtained better results for the P3 bug priority, as seen in Fig. 7.

We have also investigated with the same classifiers if using as dataset the bug
reports for all four projects, thus splitting in 80% training and 20% testing. The
results are provided in Table 10. There is a slight improvement for the CNN results
compared with all the other cross-validation experiments, the same for SVM, how-
ever, not for the NB classifier.

6.3 � Results comparison between original and replicated studies

The results of this replication study are lower than the results obtained in the origi-
nal studies (Umer et al. 2018) and (Umer et al. 2020). In addition, we discuss vari-
ous perspectives on the results.

The results obtained by Umer et al. (2018) are provided in Table 11 and the
results obtained by Umer et al. (2020) are provided in Table 12.

Figure 8 graphically depicts the values for the average F-measures of the four
projects (JDT, CDT, PDE, Platform): approach by Umer et al. (2018), approach by
Umer et al. (2020), and Weka-based executions.

Table 7   WEKA based
evaluation CDT

Model Precision (%) Recall (%) F-measure (%)

NB 29.58 22.12 22.42
SVM 17.26 20.00 18.52
CNN 17.26 19.98 18.52

Table 8   WEKA based
evaluation PDE

Model Precision (%) Recall (%) F-measure (%)

NB 30.00 21.08 21048
SVM 16.54 20.00 18.10
CNN 19.16 20.76 19.66

Table 9   WEKA based
evaluation platform

Model Precision (%) Recall (%) F-measure (%)

NB 24.88 27.86 22.58
SVM 18.92 20.00 19.44
CNN 18.92 19.96 19.42

1 3

Automated Software Engineering (2024) 31:35	 Page 23 of 28  35

Our results obtained are different considering each individual project in the
cross-validation approach, obtaining lower results; however, when considering
the evaluation based on bug priorities, the weka implementation obtained better
results for the P3 bug priority case.

Fig. 7   F-measure results (average from all four projects)

Table 10   WEKA based
evaluation All projects

Model Precision (%) Recall (%) F-measure (%)

NB 29.10 19.80 18.24
SVM 31.26 20.86 19.44
CNN 51.26 21.30 20.32

Table 11   Results from Umer
et al. (2018) - F-measure

Model JDT (%) CDT (%) PDE (%) Platform (%)

NB 43.46 43.43 41.47 38.01
SVM 48.84 48.81 45.13 41.98

Table 12   Results from Umer
et al. (2020) - F-measure

Model JDT (%) CDT (%) PDE (%) Platform (%)

SVM (eApp) 48.84 48.81 45.13 41.99
CNN (cPur) 62.07 63.64 73.47 57.67

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 24 of 28

When comparing based on accuracy, the “order” of best classifiers is con-
firmed as in the previous studies, Umer et al. (2020) to be NB, followed by SVM
and CNN. The accuracy for all three classifiers and for each cross-project valida-
tion are provided in Table 13.

The differences in the obtained results may be due to how the feature vector
was constructed, and also due to the used dataset (which may have different bug
reports due to time differences when the data was extracted.

6.4 � Discussions

Several contributions have been made in this study. We next summarize them
along with possible future improvements from the two perspectives: (1) SLR
investigation, and (2) replication study investigation.

Fig. 8   F-measure results (average from all four projects)

Table 13   Accuracy Results for
all projects

Model JDT (%) CDT (%) PDE (%) Platform (%)

NB 90.46 84.32 79.28 90.92
SVM 92.47 86.27 82.68 94.63
CNN 93.61 86.22 80.30 94.41

1 3

Automated Software Engineering (2024) 31:35	 Page 25 of 28  35

6.4.1 � Discussions on SLR investigation and findings

A notable initial contribution is derived from the systematic literature review (SLR)
carried out as the basis for this study. Keywords were extracted using our technical
expertise, and certain articles that we identified were included based on several cri-
teria in our investigation. The initial database, which consists of 30 articles selected
based on an initial assessment of their abstracts, has been reduced to 10 articles
that are particularly relevant for this replication. Future research may include other
approaches and articles that were published after our SLR.

6.4.2 � Discussions on replication study investigation and findings

Furthermore, we combined text processing tools, incorporating NLTK to streamline
the text cleaning process, especially in the context of an open-source bug database.
This integration played a crucial role in boosting the integrity of our research results
by eradicating duplicate entries in the articles. In addition to NLTK text preprocess-
ing tools, we employ three different classifiers: SVM, NB, and CNN to determine
priority levels. Future investigations may be done considering other classifiers.

An integral aspect of this study is the use of three different classifiers in the
same dataset. Significantly, these three classifiers are integrated into two different
approaches: first, a manual implementation approach involving a script developed by
the authors using open-source libraries, and second, the Weka approach.

Following the completion of this study, various areas of potential improvement
in future work were identified. A key conclusion drawn is that a cleaner dataset has
the potential to enhance the accuracy of the proposed method. The authors intend to
expand the dataset in future research efforts and implement a more robust cleanup
process to mitigate redundancy. Additionally, addressing the issue of equal distribu-
tion of priority classes is crucial. Furthermore, a facet included in future work is the
expansion of the classifier base and the incorporation of new features into the input
data.

7 � Threads to validity

Every experimental analysis may suffer from some threats to validity and biases that
can affect the results of the study, and thus our proposed approach in bug reports
priority classification is no exception. Several issues which may have influenced the
obtained results and their analysis are pointed out in the following.

Threats to internal validity refer to the subjectivity introduced in the selection
of the datasets, i.e., the bug reports. To minimize threats to internal validity, we
selected two different datasets (JDT and database datasets) with different character-
istics (JDT is a plug-in tool support and Eclipse Database tool-related bugs.

Threats to external validity are related to the generalization of the results
obtained. Only two datasets were used in our experiments. Another threat to external

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 26 of 28

validity refers to the fact that the datasets used had most of the bug reports with pri-
ority P3. We plan to extend the experimental evaluation to other bug reports with all
priority levels.

Construct validity refers to checking if the proposed construct is real and if the
proposed indicators reflect its target construct. Regarding intentional validity (the
constructs adequately represent what we intend to study), we studied the classifi-
cation of bug report priority using information from bug reports recovered from a
bug tracking system (Bugzilla 2023). Regarding the validity of the representation
(how well do the constructs or abstractions translate into observable measures), we
used bug reports with various priority levels. Thus, the sub-constructs define the
construct. Regarding observation validity (how good are the measures themselves),
the values in our feature vector come from real bug reports.

Threats to conclusion validity are associated with the relationship between treat-
ment and outcome. These threats are mitigated by ensuring that the experimental
assumptions are valid. In this investigation, the threat to the conclusion is mitigated
by classifying the bug reports using the same categories/priorities that are used in
other investigations.

8 � Conclusions

A bug is often transmitted with either an incorrect priority level or without defining
the priority level. The people who sort the bugs entered in the system go through the
reports manually and have a number of responsibilities, among which they assign
priority to each bug report. Manually prioritizing bugs requires both expertise and
human and time resources. Priority is particularly important in influencing the lifes-
pan of a bug, and, therefore, setting this value properly increases efficiency in prod-
uct development.

In this paper, we reviewed the literature regarding bug report priority classifica-
tion approaches and then conducted a replication study on three classifiers, that is,
Naive Bayes, Support Vector Machines and Convolutional Neural Networks, using
the Eclipse dataset with four projects. Cross-project validation was performed and
the results confirmed the initial studies regarding the three classifiers, i.e., obtain-
ing the best results for the SVM and CNN classifiers. Ultimately, we conducted a
comparison of the three different classifiers using both the implemented methods
and Weka. The results analysis indicates that the Naive Bayes Classifier outperforms
CNN on the JDT dataset when utilizing the implemented classifier. However, when
employing Weka, CNN yields superior results.

Further investigation is needed to establish the relationship between the charac-
teristics of the projects being used for training (and therefore also the type of bug
report). Exploring various combinations of project type (thus bug reports) for the
cross-validation process may bring new insights on the best classifier in a specific
context.

Acknowledgements  This work was funded by the Ministry of Research, Innovation, and Digitization,
CNCS/CCCDI - UEFISCDI, Project number PN-III-P1-1.1-TE2021-0892 within PNCDI III. We also

1 3

Automated Software Engineering (2024) 31:35	 Page 27 of 28  35

would like to thank professor Alexander Serebrenik, our research collaborator, from the Eindhoven Uni-
versity of Technology for providing us with improvement suggestions for the study and useful insights
on how to improve the paper.

Data availability and materials  Data will be made available on request.

Declarations 

 Conflict of interest  Author Andreea Vescan and Andreea Nasui-Galbin declares that they have no conflict
of interest.

Ethical approval  This article does not contain any studies with human participants or animals performed
by any of the authors.

References

Alenezi, M., Banitaan, S.: Bug reports prioritization Which features and classifier to use? 2013 12th
International conference on machine learning and applications 2, 112–116 (2013)

Bugzilla. Bugzilla: Bug tracking systems. https://​www.​bugzi​lla.​org/. (Accessed March 2023)
Carver, J.C.: Towards reporting guidelines for experimental replications: a proposal. The international

workshop on replication in empirical software engineering (pp. 2–5) (2010)
Carver, J.C., Juristo, N., Baldassarre, M.T., Vegas, S.: Replications of software engineering experiments.

Emp. Softw. Eng. 19(2), 267–276 (2014). https://​doi.​org/​10.​1007/​s10664-​013-​9290-8
Dyba, T., Kitchenham, B.A., Jorgensen, M.: Evidence-based software engineering for practitioners. IEEE

Softw. 22(1), 58–65 (2005)
Eclipse-bugs, E.: Eclipse. https://​bugs.​eclip​se.​org/​bugs/. (Accessed March 2023)
Fagerholm, F., Becker, C., Chatzigeorgiou, A., Betz, S., Duboc, L., Penzenstadler, B.,...Venters, C.C.:

Temporal discounting in software engineering: A replication study. 13th acm/ieee international
symposium on empirical software engineering and measurement (pp. 1-12). IEEE.(2019, 10 17)

Frank, E., Hall, M.A., Witten, I.H.: Weka - waikato environment for knowledge analysis. (Accessed
March 2023). https://​www.​cs.​waika​to.​ac.​nz/​ml/​weka/

Galbîn-Năsui, A.: Predictia automata a prioritatii unui bug (Unpublished master’s thesis). Bachelor’s the-
sis. Babes-Bolyai University Cluj-Napoca Faculty of Mathematics and Computer Science.(2020)

Galbîn-Năsui, A.: Bug reports priority classification model (Unpublished master’s thesis). Babes-Bolyai
University Cluj-Napoca Faculty of Mathematics and Computer Science. (2022)

Gómez, O.S., Juristo, N., Vegas, S.: Understanding replication of experiments in software engineering: a
classification. Inf. Softw. Technol. 56(8), 1033–1048 (2014). https://​doi.​org/​10.​1016/j.​infsof.​2014.​
04.​004

Juristo, N., Vegas, S.: Using differences among replications of software engineering experiments to gain
knowledge. In: 2009 3rd international symposium on empirical software engineering and measure-
ment (356–366) (2009)

Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engi-
neering. 2 (2007)

Myers, G.: The Art of Software Testing. Wiley, Hoboken (2005)
NLTK. Natural language toolkit. https://​www.​NLTK.​org/. (Accessed March 2023)
Patton, R.: Software testing. SAMS. (2000)
Python.: Python: Python-programming language. https://​www.​python.​org/ (Accessed March 2023).
Ramay, W.Y., Umer, Q., Yin, X.C., Zhu, C., Illahi, I.: Deep neural network based severity prediction of

bug reports. IEEE Access 7, 46846–46857 (2019). https://​doi.​org/​10.​1109/​ACCESS.​2019.​29097​46
SentiWordNet.: Sentiwordnet-lexical resource for opinion mining. https://​github.​com/​aesuli/​Senti​WordN​

et. (Accessed March 2023)
Sharma, G., Sharma, S., Gujral, S.: A novel way of assessing software bug severity using dictionary of

critical terms. Procedia Comput. Sci. 70, 632–639 (2015). https://​doi.​org/​10.​1016/j.​procs.​2015.​10.​
059

https://www.bugzilla.org/
https://doi.org/10.1007/s10664-013-9290-8
https://bugs.eclipse.org/bugs/
https://www.cs.waikato.ac.nz/ml/weka/
https://doi.org/10.1016/j.infsof.2014.04.004
https://doi.org/10.1016/j.infsof.2014.04.004
https://www.NLTK.org/
https://www.python.org/
https://doi.org/10.1109/ACCESS.2019.2909746
https://github.com/aesuli/SentiWordNet
https://github.com/aesuli/SentiWordNet
https://doi.org/10.1016/j.procs.2015.10.059
https://doi.org/10.1016/j.procs.2015.10.059

	 Automated Software Engineering (2024) 31:35

1 3

35  Page 28 of 28

Shepperd, M., Ajienka, N., Counsell, S.: The role and value of replication in empirical software engineer-
ing results. Inf. Softw. Technol. 99, 120–132 (2018). https://​doi.​org/​10.​1016/j.​infsof.​2018.​01.​006

Tian, Y., Lo, D., Sun, C.: Information retrieval based nearest neighbor classification for fine-grained bug
severity prediction. In: 2012 19th Working conference on reverse engineering (215–224). (2012)

Tian, Y., Lo, D., Sun, C.: Drone: predicting priority of reported bugs by multifactor analysis. In: 2013
IEEE international conference on software maintenance (200–209). (2013)

Trevor Hastie, J.F., Tibshirani, R.: The Elements of Statistical Learning. Springer, Cham (2016)
Uddin, J., Ghazali, R., Deris, M.M., Naseem, R., Shah, H.: A survey on bug prioritization. Artif. Intell.

Rev. 47, 145–180 (2017). https://​doi.​org/​10.​1007/​s10462-​016-​9478-6
Umer, Q., Liu, H., Illahi, I.: CNN-based automatic prioritization of bug reports. IEEE Trans. Reliab.

69(4), 1341–1354 (2020). https://​doi.​org/​10.​1109/​TR.​2019.​29596​24
Umer, Q., Liu, H., Sultan, Y.: Emotion based automated priority prediction for bug reports. IEEE Access

6, 35743–35752 (2018). https://​doi.​org/​10.​1109/​ACCESS.​2018.​28509​10
Weber, B.G.: Data science in production: Building scalable model pipelines with python. (2020). Inde-

pendently published (January 1, 2020)
Word2Vec . Word2vec- used to learn word embeddings. https://​www.​tenso​rflow.​org/​tutor​ials/​text/​word2​

vec/. (Accessed March 2023)
Yu, L., Tsai, W.-T., Zhao, W., Wu, F.: Predicting defect priority based on neural networks. In: Cao, L.,

Zhong, J., Feng, Y. (eds.) Advanced Data Mining and Applications, pp. 356–367. Springer, Berlin
Heidelberg (2010)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1016/j.infsof.2018.01.006
https://doi.org/10.1007/s10462-016-9478-6
https://doi.org/10.1109/TR.2019.2959624
https://doi.org/10.1109/ACCESS.2018.2850910
https://www.tensorflow.org/tutorials/text/word2vec/
https://www.tensorflow.org/tutorials/text/word2vec/

	Bug reports priority classification models. Replication study
	Abstract
	1 Introduction
	2 Background on concepts
	2.1 The notion of error or bug
	2.2 Bug report
	2.3 Bug priority

	3 Systematic literature review method: exploring relevant studies on bug priority
	3.1 SLR planning
	3.1.1 Review need identification
	3.1.2 Research questions definition
	3.1.3 Protocol definition

	3.2 Conducting SLR
	3.2.1 Search and selection process
	3.2.2 Collecting the studies
	3.2.3 Data synthesis

	3.3 SLR reporting
	3.3.1 Report of the systematic literature review
	3.3.2 Answers to the SLR research questions

	4 Current explorations in bug report priority: investigating modern classification models
	4.1 The original study
	4.2 Replication in software engineering
	4.3 Motivation for the replication

	5 Research design and analysis
	5.1 Overview
	5.2 Experimental design
	5.2.1 Bug reports transformed to vector of words
	5.2.2 Employed classification models

	5.3 Experimental objects
	5.4 Metrics

	6 Replication results
	6.1 Our NLTK-based NB and CNN replication experiments results
	6.2 Weka-based NB and CNN replication experiments results
	6.3 Results comparison between original and replicated studies
	6.4 Discussions
	6.4.1 Discussions on SLR investigation and findings
	6.4.2 Discussions on replication study investigation and findings

	7 Threads to validity
	8 Conclusions
	Acknowledgements
	References

