
Vol.:(0123456789)

Automated Software Engineering (2024) 31:19
https://doi.org/10.1007/s10515-024-00424-1

1 3

Software defect prediction: future directions
and challenges

Zhiqiang Li1 · Jingwen Niu2 · Xiao‑Yuan Jing3,4

Received: 8 September 2023 / Accepted: 5 February 2024 / Published online: 27 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Software defect prediction is one of the most popular research topics in software
engineering. The objective of defect prediction is to identify defective instances
prior to the occurrence of software defects, thus it aids in more effectively prioritiz‑
ing software quality assurance efforts. In this article, we delve into various prospec‑
tive research directions and potential challenges in the field of defect prediction. The
aim of this article is to propose a range of defect prediction techniques and method‑
ologies for the future. These ideas are intended to enhance the practicality, explain‑
ability, and actionability of the predictions of defect models.

Keywords Software defect prediction · Empirical software engineering · Software
analytics · Quality assurance

1 Introduction

Software defect prediction (SDP) is a vibrant research domain in software engineer‑
ing and plays an important role in ensuring quality assurance (Menzies et al. 2010;
Kamei and Shihab 2016; Wan et al. 2020; Tantithamthavorn and Hassan 2018). It is

 * Zhiqiang Li
 lizq@snnu.edu.cn

 Jingwen Niu
 niujw66@163.com

 Xiao‑Yuan Jing
 jingxy_2000@126.com

1 School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
2 School of Computer and Information Engineering, Xinxiang University, Xinxiang 453003,

China
3 School of Computer Science, Wuhan University, Wuhan 430072, China
4 School of Computer, Guangdong University of Petrochemical Technology, Maoming 525000,

China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00424-1&domain=pdf

 Automated Software Engineering (2024) 31:19

1 3

19 Page 2 of 14

a very crucial and essential activity. By identifying defective instances (e.g., com‑
ponents, files, classes, methods, changes) before testing, SDP has the potential to
reduce code inspection costs and improve software quality. This empowers software
quality assurance teams to effectively allocate their limited resources for testing and
maintenance, leading to enhanced efficiency (Li et al. 2018c).

In the past few decades, analytical modeling of defects has attracted a lot of atten‑
tion from both the academic and industrial communities (Hall et al. 2012; Hosseini
et al. 2019; Chen et al. 2021). Various SDP methods have been introduced across
different prediction settings, such as within‑project defect prediction (WPDP) (Men‑
zies et al. 2007; Lessmann et al. 2008; Ghotra et al. 2015), cross‑project defect
prediction (CPDP) (Zimmermann et al. 2009; Li et al. 2021, 2023), heterogeneous
defect prediction (HDP) (Jing et al. 2015; Nam and Kim 2015; Li et al. 2018a, 2017,
2018b), and just‑in‑time defect prediction (Kamei et al. 2013; Zhao et al. 2023).
These methods have yielded promising defect prediction results. Therefore, SDP
plays a pivotal role in software development organizations worldwide nowadays.
Given its significance, we believe that the timing is opportune to write a paper on the
future of software engineering focusing on the subject of software defect prediction.

This paper is presented from the perspective of academic researchers and has
two primary objectives. Firstly, it provides a brief overview of SDP and highlights
several key steps within this domain. Secondly, it proposes a collection of research
directions for future defect prediction.

2 Defect prediction process

The common software defect prediction process involves the utilization of various
machine learning techniques and methodologies (Shepperd et al. 2014; Li et al.
2018c; Giray et al. 2023), ranging from classic classification algorithms to advanced
deep learning architectures, to proactively identify and detect potential defects in
software instances. This essential process is vital for enhancing software quality and
reliability. It is comprised of several key steps, each playing an important role in
predicting and mitigating defects before they manifest in the final software prod‑
ucts. Figure 1 illustrates these steps in the software defect prediction process, includ‑
ing data collection, preprocessing, model construction and prediction, and finally
the evaluation and interpretation of the defect prediction results. This process is not
only integral for ensuring software quality but also plays a crucial role in prioritizing
resource allocation and minimizing the impact of defects on users and stakeholders.
The following sections provide detailed descriptions for each step.

1 Data collection. In software defect prediction, data collection involves gath‑
ering information about projects, specifically related to code versions, historical
changes, and associated attributes. This includes data on past defects, bug reports,
source code metrics, process metrics, developer activities, and other relevant soft‑
ware project features (Li et al. 2018c). Alternatively, it might involve directly
extracting abstract syntax trees and various types of graphs from source codes for
deep learning‑based techniques (Giray et al. 2023; Zain et al. 2023). The aim is to
create a comprehensive dataset that enables the training and evaluation of machine

1 3

Automated Software Engineering (2024) 31:19 Page 3 of 14 19

learning models for predicting potential software defects. This data can be acquired
from version control systems (e.g., Git, CVS, SVN), bug tracking tools (e.g, JIRA,
Bugzilla, GitHub Issues), code repositories, project documentation, and other repos‑
itories where relevant information is stored. In short, efficient and accurate data col‑
lection is vital for building effective defect prediction models (Kim et al. 2011; Wu
et al. 2011; Tantithamthavorn et al. 2015).

2 Data preprocessing. It is a crucial aspect in the context of defect predic‑
tion, involving preparation and manipulation of the raw data collected from soft‑
ware repositories to enhance the performance and accuracy of predictive models
in identifying software defects. This process usually includes several key steps.
(1) Data cleaning: Cleaning and preparing the collected data for defect analyt‑
ics. It consists of handling missing values, dealing with outliers, addressing data
inconsistencies, handing noise, and removing duplicate instances (Shepperd et al.
2013). This step ensures that the dataset used for defect prediction is consistent,
accurate, and free from anomalies, setting a solid foundation for building robust
and reliable predictive models. (2) Metric selection: Identifying and selecting the
most relevant features or metrics that are likely to have a correlation with soft‑
ware defects. Meanwhile, eliminating correlated metrics that may not contribute
significantly to the model’s performance (Jiarpakdee et al. 2021a). This aims to
reduce dimensionality and improve the efficiency of the prediction models. (3)
Normalization: Normalizing or scaling numerical features within a specific range
or distribution. It aims to make all the software metrics in a dataset to a simi‑
lar scale without distorting differences in the ranges of values. The techniques
commonly used for data normalization include log transformation (Menzies et al.
2007) and z‑score standardization (Li et al. 2019a). These methods adjust the val‑
ues of metrics to a standardized scale, ensuring consistency across the dataset. (4)
Handling class imbalance: The defect dataset might have an imbalance between
defective and non‑defective instances. Employing class imbalance learning

Data collection Data preprocssing Model construction

Model prediction

 Model

evaluation

Model

interpretation

Data
cleaning

Metric
selection

Normalization Imbalance

LR RF

SVM NNDatasetDocument Model
Processed

dataset

New datasetProcessed dataset

Performance measuresAnalyses

Insights Feature importance

Fig. 1 Overview of the common software defect prediction process

 Automated Software Engineering (2024) 31:19

1 3

19 Page 4 of 14

techniques, such as the widely used undersampling, oversampling, or synthetic
data sampling algorithms, to rebalance the distribution between defective and
non‑defective instances in the dataset is a common strategy (Tantithamthavorn
et al. 2020).

3 Model construction. Building a defect prediction model using machine learn‑
ing techniques on the preprocessed dataset. This step includes selecting an appro‑
priate learning algorithm, training the model on the labeled dataset, and optimiz‑
ing its parameters to effectively predict the presence of defects in software projects
based on various features or metrics. Common algorithms for defect prediction
involve logistic regressions, decision trees, random forests, naive Bayes, support
vector machines, and neural networks (Ghotra et al. 2015; Tantithamthavorn et al.
2019). The goal is to build a model that generalizes well to new or unseen software
instances and accurately predicts whether the given instances contain defects or not.

4 Model prediction. Applying the trained model that was constructed during
the training phase, to predict the status of new or unseen software instances passed
through the model. The model generates predictions or classifications based on the
input data, aiming to determine whether these instances are likely to be defective
or not. Additionally, it might rank instances based on their predicted density (prob‑
ability/LOC) to facilitate prioritized inspection in a more cost‑effective way (Kamei
et al. 2010; Mende and Koschke 2010). This is a crucial step in defect prediction
as it helps software developers and quality assurance teams to proactively identify
potential defects in software before they cause issues or errors in production, ena‑
bling timely actions to improve software quality and reliability.

5 Model evaluation. Assessing the performance and effectiveness of the con‑
structed defect prediction model based on its outputs. Common non‑effort‑aware
and effort‑aware performance measures (Huang et al. 2019; Li et al. 2018c) used
for model evaluation include AUC (area under the receiver operating characteris‑
tic curve), MCC (Matthew’s correlation coefficient), F1‑score, PoB@20% (propor‑
tion of the found bugs among all bugs in the dataset when inspecting 20% LOC),
PMI@20% (proportion of modules inspected when test 20% LOC), and IFA (the
number of initial false alarms encountered before software testers detect the first
defect). This step is crucial for understanding how well the model performs on new
or unseen data, and aids in understanding the model’s strengths, weaknesses, and
areas for improvement. The goal of model evaluation is to measure the model’s
effectiveness in making predictions.

6 Model interpretation. Understanding and explaining how the defect model
makes predictions or decisions. Model interpretation aims to provide insights into
the model’s inner workings, making its output more understandable and transpar‑
ent to humans. Through thorough analysis and extraction of meaningful insights
from predictions, it seeks to identify which software metrics are the most influen‑
tial in defect prediction. This can assist software practitioners in understanding why
the defect prediction model made particular decisions and provides insights into
the rationale behind predictions made by analytical models (Dam et al. 2018; Tan‑
tithamthavorn and Jiarpakdee (2021)). The interpretative process is indispensable
for building trust in defect prediction models, emphasizing that the rationale behind
a model’s decisions is just as significant as the decisions themselves.

1 3

Automated Software Engineering (2024) 31:19 Page 5 of 14 19

The overall goal of software defect prediction is to help quality assurance
teams prioritize their efforts and resource allocation by identifying software
instances that are more likely to contain defects. This proactive approach sig‑
nificantly contributes to enhancing software quality, reducing maintenance costs,
and improving overall software development practices. Through the early iden‑
tification of potential defects, defect prediction enables quality assurance teams
to allocate their resources more efficiently, paying attention to critical areas and
streamlining the quality assurance process. Ultimately, the application of defect
prediction techniques brings in a more robust and reliable software development
lifecycle, fostering higher‑quality deliverables and minimizing the impact of
defects on software products.

3 Future directions and challenges

The field of software defect prediction has witnessed numerous achievements
over the past decades (Kamei and Shihab 2016; Wan et al. 2020). Nevertheless,
it is important to note that many challenges remain and are likely to emerge in
the future due to shifts in data, technology, and the ever‑growing significance
of software systems. To enhance readability, we organize this section into four
dimensions, including data, metrics, model construction, and model evaluation
and interpretation, which is roughly similar to the defect prediction process intro‑
duced in Sect. 2. Fig. 2 illustrates an overview of the future directions and chal‑
lenges in software defect prediction, with detailed descriptions for each perspec‑
tive provided below.

Future Directions

and Challenges for

SDP

Metrics

Model

construction

Model evaluation

and interpretation

Data

2: Privacy-Preserving Data Sharing

1: Data Labeling Quality

3: Multi-Feature Fusion

5: Robust and Stable Defect Prediction

6: Unsupervised Defect Prediction

4: Fine-Grained Line-Level Defect Prediction

8: Focusing on Explainability and Actionability

7: Focusing on Actual Effort

Fig. 2 Overview of future directions and challenges in software defect prediction

 Automated Software Engineering (2024) 31:19

1 3

19 Page 6 of 14

3.1 Data

Future direction and challenge 1: Data labeling quality. Context: Histori‑
cal defect information plays a pivotal role in software maintenance such as qual‑
ity measurement and defect prediction. The SZZ algorithm (Śliwerski et al. 2005)
stands as a primary method for identifying bug‑inducing commits in software pro‑
jects, which is widely used in the field of defect prediction. Issue: However, current
defect collection practices are based on optional bug fix keywords or bug report links
in change logs, which can lead to the inclusion of noise into the collected data (Kim
et al. 2011; Wu et al. 2011; Tantithamthavorn et al. 2015). Such biased data can sig‑
nificantly impact the performance of defect prediction models. The SZZ algorithm
faces issues in achieving high precision due to the presence of noise within bug‑
fixing commits. For instance, not all addition or deletion lines within a bug‑fixing
commit are directly linked to bug fixes (Tang et al. 2023). Direction and challenge:
A potential direction is that substantial efforts are directed towards improving the
precision of the SZZ algorithm in the future. Despite the advancements made by the
existing studies (Kim et al. 2006; Da Costa et al. 2016; Neto et al. 2018; Tsantalis
et al. 2018), it is challenging to incorporate all refactoring and non‑essential change
patterns into a tool, as this could result in the potential exclusion of relevant lines
and the inclusion of irrelevant lines (Tang et al. 2023). In recent years, deep learn‑
ing techniques have garnered extensive application across various software engi‑
neering tasks (Yang et al. 2022; Samoaa et al. 2022), consistently outperforming
other state‑of‑the‑art methods. The notable strength of deep learning lies in its abil‑
ity to autonomously learn highly intricate and expressive features, a capability that
traditional methods cannot be done. This advantage allows deep learning models
to capture complex patterns and relationships within data more effectively. There‑
fore, one promising avenue is the utilization of deep learning techniques for the
identification of bug‑inducing commits. By leveraging the power of deep learning,
it becomes possible to automatically capture semantic relationships within commit
data that contribute to more effective models, which conventional SZZ algorithms
find challenging.

Future direction and challenge 2: Privacy-preserving data sharing. Context:
In recent years, many researchers have utilized dataset collected from open‑source
software projects and have demonstrated a willingness to make their data availabil‑
ity and openness to facilitate reproducibility. Issue: Numerous commercial and pro‑
prietary software projects often lack data availability due to business sensitivity and
privacy concerns. This has raised doubts about the feasibility of data sharing for
research purposes. Recently, privacy preservation issue has gained attention in the
field of defect prediction (Peters et al. 2013, 2015; Li et al. 2019b). Direction and
challenge: The need for more privacy‑preserving data sharing initiatives becomes
crucial for further exploration. This can potentially facilitate the availability of more
commercial and proprietary data. Benefiting from this, existing methods such as
cross‑project defect prediction (Zhou et al. 2018) or heterogeneous defect predic‑
tion (Chen et al. 2021) could offer practical value, especially for new projects or
those lacking enough historical data. However, it is very challenging for many com‑
panies or organizations are not willing to share their data due to concerns related

1 3

Automated Software Engineering (2024) 31:19 Page 7 of 14 19

to business sensitivity and privacy. To address this challenge, researchers need to
establish strong partnerships with industrial collaborators and should actively seek
collaboration with them, gaining access to their rich and diverse data repositories.
Meanwhile, it is imperative to explore new methods for privacy‑preserving data
sharing. Lately, Yamamoto et al. (2023) presented a federated logistic regression
model for privacy‑preserving cross‑project defect prediction. Inspired by this, the
combination of federated deep learning and other privacy techniques emerges as
a promising avenue for preserving and maintaining the security of data in defect
prediction. Federated learning (Lo et al. 2021), a decentralized training approach,
allows machine learning models to be trained across multiple edge devices without
the need for exchanging raw training data. This not only enhances privacy protection
but also facilitates collaborative learning across diverse datasets.

3.2 Metrics

Future direction and challenge 3: Multi-feature fusion. Context: Defect data
typically consists of multiple types of software metrics, e.g., code metrics, pro‑
cess metrics, ownership metrics, etc (Menzies et al. 2007; Moser et al. 2008; Bird
et al. 2011). Each type of metric characterizes the relevant attributes of a software
product from a certain perspective, which has different physical meanings and dis‑
tributions. When considering semantic features, various types of source code repre‑
sentations have been proposed (Yang et al. 2022; Samoaa et al. 2022). These con‑
tain abstract syntax trees, control flow graphs, call flow graphs, data flow graphs,
program dependency graphs, token‑based embedding representations and so on.
Indeed, these representations have found wide application in various software engi‑
neering tasks. Issue: For the traditional hand‑crafted features, existing defect predic‑
tion studies identify software defects by concatenating and merging all the metrics
into a single feature vector. For the semantic features, most defect prediction studies
use each code representation individually for identifying software defects. However,
these methods ignore the diversity and complementary information among differ‑
ent types of metrics or multiple code representations (Zhou et al. 2022; Ni et al.
2022a). Direction and challenge: Considering that metric data are extracted from
software projects from different perspectives, each type of metric can be recognized
as a single data view. So defect data consisting of multiple types of metrics can be
divided into multiple different data views. A promising avenue for future research
involves fusing multiple types of software metrics to build robust and reliable defect
prediction models. Such an approach would enable the collaborative learning of the
diversity and complementarity within defect data, which will improve the model
performance. However, the process of effectively fusing multiple types of software
metrics could indeed pose a significant challenge. Regarding the semantic features,
exploring the potential complementarity between tree‑based and graph‑based code
representations in defect prediction could be beneficial for future work, particularly
in the context of fusing multiple code representations. However, it also poses chal‑
lenges in accurately extracting various source code representations, encoding them
appropriately, and effectively combining them by using existing off‑the‑shelf deep

 Automated Software Engineering (2024) 31:19

1 3

19 Page 8 of 14

learning techniques. This fusion process demands innovative strategies to harness
the comprehensive potential of these diverse code representations.

Indeed, some studies (Xu et al. 2020; Wang et al. 2021; Zhou et al. 2022; Ni
et al. 2022a) have attempted to fuse traditional manually designed software metrics
with semantic features derived from code representations to enhance the accuracy
of defect prediction. The results of these studies have indicated that the combination
of traditional hand‑crafted metrics with semantic features contributes to improved
performance in software defect prediction. However, effectively combining diverse
software metrics and features presents its set of challenges. The process demands
innovative approaches that address issues of feature representation, integration
strategies, and the optimal balance between the information learned from various
sources. Finding an effective fusion technique that maximizes the strengths of each
type of feature while mitigating potential redundancies remains an ongoing chal‑
lenge in this domain.

3.3 Model construction

Future direction and challenge 4: Fine-grained line-level defect prediction. Con-
text: The current defect prediction models typically are at a relatively coarse granu‑
larity level, such as the file level. This often makes software practitioners needing to
spend significant effort in inspecting many clean lines that are actually non‑defec‑
tive. Issue: In practice, practitioners are interested in identifying the specific lines
of code that are defective (Wattanakriengkrai et al. 2022). Hence, there is a grow‑
ing need for defect prediction models to become more fine‑grained and capable of
pinpointing the truly lines of code that require attention. This finer granularity can
significantly enhance the practicality and usefulness of these models in real‑world
software development and maintenance. However, most of the defect prediction
studies did not pay attention to this domain. Direction and challenge: It holds prom‑
ise towards code‑line‑level defect prediction, as it could help developers to more
effectively prioritize their quality assurance efforts. Indeed, there is an increasing
recognition of the potential advantages in fine‑grained, code‑line‑level defect pre‑
diction (Pornprasit and Tantithamthavorn 2021, 2023; Ni et al. 2022a; Guo et al.
2023). Meanwhile, it is important to note that substantial challenges exist in building
accurate code‑line‑level defect prediction models effectively. In the context of tra‑
ditional metrics, the primary challenge in constructing conventional defect models
at the code line level is the design of manually crafted software features. Extracting
such features at the code line level is a challenging endeavor, as it demands precise
historical data for each line within the source code files. In the context of semantic
features, the collected datasets often remain highly dimensional and sparse. Conse‑
quently, building code‑line‑level defect prediction models using semantic features
is likely unfeasible and impractical within a shorter period of time (Wattanakrieng‑
krai et al. 2022). Despite these challenges, the move towards a finer granularity in
defect prediction can offer a more targeted and actionable approach, enabling teams
to address potential issues at a more localized level within the source code, which

1 3

Automated Software Engineering (2024) 31:19 Page 9 of 14 19

aligns with the industry’s pursuit of higher precision and efficiency in software qual‑
ity assurance processes.

Future direction and challenge 5: Robust and stable defect prediction. Con-
text: Ensuring robust and stable defect prediction is imperative because software pro‑
jects are dynamic, and the data used to train models may change over time. Defect
models lacking in robustness and stability may yield unreliable predictions, leading
to decreased confidence in their effectiveness for identifying software defects. Issue:
Recent works (Fu et al. 2016; Tantithamthavorn et al. 2019) have highlighted a cru‑
cial point regarding defect prediction models in the literature. They argue that most
of these models tend to rely on the default parameter settings of classification tech‑
niques, which usually have a large impact on the performance of these models and
lead to suboptimal results. Thus, the hyperparameters of the defect prediction mod‑
els should be carefully tuned. However, a critical observation in existing work (Tan‑
tithamthavorn et al. 2019) is the limited quantity of hyperparameters explored for
the examined classifiers. Most of these classifiers focus on tuning a single param‑
eter, and the parameter space considered is relatively small in scale. Direction and
challenge: There exists an opportunity for future research to delve into exploring
multiple hyperparameters and broader parameter spaces, particularly in the context
of deep learning‑based defect prediction models. Exploring the interactions among
various parameters could provide valuable insights and potentially lead to significant
improvements in the performance and effectiveness of defect prediction models.
Undoubtedly, it is important to acknowledge that dealing with multiple hyperparam‑
eters and expansive search spaces can pose challenges. Striking a balance between
comprehensiveness and practicality will be crucial in designing experiments that
are both informative and feasible. Nonetheless, the exploration of more extensive
and intricate parameter configurations holds promise in achieving robust and stable
defect prediction performance.

Future direction and challenge 6: Unsupervised defect prediction. Context:
Supervised defect prediction trains models on labeled data to predict the occurrence
of defects or bugs in software. Instead, unsupervised defect prediction (Li et al.
2020; Xu et al. 2021) builds models on unlabeled data through the application of
unsupervised learning techniques for identifying software defects. Issue: Although
supervised defect prediction methods have the potential to achieve better results in
certain performance measures, they do have limitations. The main issue with super‑
vised methods is that they require labeled training data to build models. The process
of obtaining labeled data can be time‑consuming, labor‑intensive, and costly, which
makes supervised methods inefficient and resource‑intensive, especially in scenarios
with limited historical defect data. Direction and challenge: Unsupervised defect
prediction methods aim to identify more likely defect‑prone software instances on
unlabeled datasets by exploiting the intrinsic patterns and structures present in the
data without the need for any labeled training data. They hold the advantage of
not requiring prior knowledge of defect data to label modules. This characteristic
makes unsupervised methods particularly beneficial in practice, especially for new
software projects or projects with insufficient historical data. For example, Zhang
et al. (2016) introduced a spectral clustering method that utilizes connectivity‑based
unsupervised classifiers for predicting software defects. Their findings demonstrated

 Automated Software Engineering (2024) 31:19

1 3

19 Page 10 of 14

the superiority of the proposed spectral clustering approach over some supervised
classifiers in both within‑project and cross‑project settings. Hence, unsupervised
prediction techniques exhibit considerable potential in field of software defect pre‑
diction and represent a promising avenue for future research. However, the challenge
remains in devising methods that effectively uncover the intrinsic structures and pat‑
terns within the data to achieve more accurate unsupervised defect prediction.

3.4 Model evaluation and interpretation

Future direction and challenge 7: Focusing on actual effort. Context: It is of
utmost importance to evaluate defect prediction models in a realistic context, e.g.
how much effort can reduce for testing and code inspection using these models. By
taking into account the resources and efforts required for code inspection or test‑
ing, effort‑aware defect prediction (Kamei et al. 2010; Mende and Koschke 2010)
provides a more accurate assessment of prediction model effectiveness and aligns
the evaluations with real‑world scenarios. Issue: In recent years, there are many
effort‑aware defect prediction studies (Kamei et al. 2013; Yang et al. 2016; Huang
et al. 2019; Ni et al. 2022b) to account for the effort. Typically, these models utilize
LOC (lines of code) or churn as a proxy for effort. As pointed out by Shihab et al.
(2013), their results show that LOC is not the best measure of effort in effort‑aware
defect prediction. Direction and challenge: To progress in the field, it is crucial for
researchers to shift their focus towards the utilization of actual effort data in future
effort‑aware defect prediction research. Adopting this approach is expected to yield
more reliable insights and enhance practical guidelines for software practitioners.
One potential strategy involves leveraging effort estimation techniques (Menzies
et al. 2013) to calculate actual effort. Effort estimation is the process of predicting
the amount of effort required to develop or maintain a software application. Integrat‑
ing this technique into defect prediction holds significant promise. However, identi‑
fying the most effective approach for accurately quantifying real effort and thereby
provide robust practical guidelines remains a complex and ongoing challenge.
Undoubtedly, such research endeavors can have a substantial impact on enhancing
the future applicability of defect prediction techniques in real‑world software devel‑
opment practices.

Future direction and challenge 8: Focusing on explainability and actionabil-
ity. Context: In the field of defect prediction, a significant proportion of research
efforts have concentrated primarily on improving the predictive accuracy and per‑
formance of defect models to more accurately identify potential defects in software
systems. The aim is to enhance software quality and minimize the occurrence of
defects. Issue: The above research efforts have largely neglected or underemphasized
comprehensive explanations and justifications (Dam et al. 2018; Tantithamthavorn
and Jiarpakdee (2021)). Particularly, current defect prediction fails to explain why
models make such a prediction and fails to comply with the privacy laws in terms
of the requirement to explain any decision made by a method. A lack of explain‑
ability of the defect prediction models leads to a lack of trust in the predictions or
recommendations produced by such methods, hindering their widespread adoption

1 3

Automated Software Engineering (2024) 31:19 Page 11 of 14 19

in software development practices (Jiarpakdee et al. 2021b). Direction and chal-
lenge: The future landscape of defect prediction research should strongly emphasize
explainability and actionability, particularly when focusing on deep learning‑based
models. A recent empirical study by Jiarpakdee et al. (2022) delved into evaluating
model‑agnostic techniques for explaining the predictions generated by defect mod‑
els. Their findings revealed the utility of generating explanations through model‑
agnostic techniques for each prediction. Such explanations play a crucial role in aid‑
ing developers to comprehend why a file or commit is identified as defective, while
simultaneously providing actionable guidance to assist project managers in devising
suitable quality improvement plans. In short, the overarching goal is to make defect
prediction models more practical, explainable, and actionable in software engineer‑
ing practices. Nevertheless, it is essential to acknowledge that ensuring the reliabil‑
ity and trustworthiness of these predictions of defect models from the perspective of
software practitioners remains an ongoing and challenging endeavor.

4 Conclusion

In this article, we present a several of future directions and potential challenges in
software defect prediction. It is important to note that our work does not aim to
be exhaustive; rather, it simply serves as a documentation of future directions and
potential challenges. Most importantly, we would like to emphasize that we do not
seek to claim the generality of our ideas. Instead, the goal of this article is that under
specific circumstances, these research directions have the potential to help develop‑
ers to effectively find software defects and enable managers to better develop soft‑
ware quality improvement plans to prevent defects in the future.

Author contributions Zhiqiang Li: methodology, writing Jingwen Niu: investigation, resources Xiao‑
Yuan Jing: review, editing. All authors reviewed the manuscript.

Funding National Natural Science Foundation of China (Grant Nos.: 61902228 and 62176069), Natural
Science Basic Research Program of Shaanxi Province (Grant No.: 2024JC‑YBMS‑497), and funded by
the China Scholarship Council.

Declarations

Competing interests The authors declare no competing interests.

References

Bird, C., Nagappan, N., Murphy, B., et al.: Don’t touch my code!: Examining the effects of ownership on
software quality. In: ESEC/FSE’11. ACM, pp. 4–14 (2011)

Chen, H., Jing, X.Y., Li, Z., et al.: An empirical study on heterogeneous defect prediction approaches.
IEEE Trans. Softw. Eng. 47(12), 2803–2822 (2021)

Da Costa, D.A., McIntosh, S., Shang, W., et al.: A framework for evaluating the results of the SZZ
approach for identifying bug‑introducing changes. IEEE Trans. Softw. Eng. 43(7), 641–657 (2016)

 Automated Software Engineering (2024) 31:19

1 3

19 Page 12 of 14

Dam, H.K., Tran, T., Ghose, A.: Explainable software analytics. In: Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE‑NIER), pp. 53–56
(2018)

Fu, W., Menzies, T., Shen, X.: Tuning for software analytics: Is it really necessary? Inf. Softw. Technol.
76, 135–146 (2016)

Ghotra, B., McIntosh, S., Hassan, A.E.: Revisiting the impact of classification techniques on the perfor‑
mance of defect prediction models. In: ICSE’15. IEEE, pp. 789–800 (2015)

Giray, G., Bennin, K.E., Köksal, Ö., et al.: On the use of deep learning in software defect prediction. J.
Syst. Softw. 195, 111537 (2023)

Guo, Z., Liu, S., Liu, X., et al.: Code‑line‑level bugginess identification: How far have we come, and how
far have we yet to go? ACM Trans. Softw. Eng. Methodol. 32(4), 1–55 (2023)

Hall, T., Beecham, S., Bowes, D., et al.: A systematic literature review on fault prediction performance in
software engineering. IEEE Trans. Softw. Eng. 38(6), 1276–1304 (2012)

Hosseini, S., Turhan, B., Gunarathna, D.: A systematic literature review and meta‑analysis on cross pro‑
ject defect prediction. IEEE Trans. Softw. Eng. 45(2), 111–147 (2019)

Huang, Q., Xia, X., Lo, D.: Revisiting supervised and unsupervised models for effort‑aware just‑in‑time
defect prediction. Empir. Softw. Eng. 24, 2823–2862 (2019)

Jiarpakdee, J., Tantithamthavorn, C., Hassan, A.: The impact of correlated metrics on the interpretation
of defect models. IEEE Trans. Softw. Eng. 47(2), 320–331 (2021)

Jiarpakdee, J., Tantithamthavorn, C.K., Grundy, J.: Practitioners’ perceptions of the goals and visual
explanations of defect prediction models. In: 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). IEEE, pp. 432–443 (2021b)

Jiarpakdee, J., Tantithamthavorn, C., Dam, H.K., et al.: An empirical study of model‑agnostic techniques
for defect prediction models. IEEE Trans. Softw. Eng. 48(1), 166–185 (2022)

Jing, X., Wu, F., Dong, X., et al.: Heterogeneous cross‑company defect prediction by unified metric rep‑
resentation and CCA‑based transfer learning. In: FSE’15. ACM, pp. 496–507 (2015)

Kamei, Y., Shihab, E.: Defect prediction: Accomplishments and future challenges. In: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER), IEEE, pp.
33–45 (2016)

Kamei, Y., Matsumoto, S., Monden, A., et al.: Revisiting common bug prediction findings using effort‑
aware models. In: 2010 IEEE International Conference on Software Maintenance. IEEE, pp. 1–10
(2010)

Kamei, Y., Shihab, E., Adams, B., et al.: A large‑scale empirical study of just‑in‑time quality assurance.
IEEE Trans. Softw. Eng. 39(6), 757–773 (2013)

Kim, S., Zimmermann, T., Pan, K., et al.: Automatic identification of bug‑introducing changes. In: 21st
IEEE/ACM International Conference on Automated Software Engineering (ASE’06), IEEE, pp.
81–90 (2006)

Kim, S., Zhang, H., Wu, R., et al.: Dealing with noise in defect prediction. In: ICSE’11, pp. 481–490
(2011)

Lessmann, S., Baesens, B., Mues, C., et al.: Benchmarking classification models for software defect pre‑
diction: a proposed framework and novel findings. IEEE Trans. Softw. Eng. 34(4), 485–496 (2008)

Li, N., Shepperd, M.J., Yuchen, G.: A systematic review of unsupervised learning techniques for software
defect prediction. Inf. Softw. Technol. 122, 106287 (2020)

Li, Z., Jing, X.Y., Zhu, X., et al.: Heterogeneous defect prediction through multiple kernel learning and
ensemble learning. In: ICSME’17. IEEE, pp. 91–102 (2017)

Li, Z., Jing, X.Y., Wu, F., et al.: Cost‑sensitive transfer kernel canonical correlation analysis for heteroge‑
neous defect prediction. Autom. Softw. Eng. 25(2), 201–245 (2018)

Li, Z., Jing, X.Y., Zhu, X.: Heterogeneous fault prediction with cost sensitive domain adaptation. Softw.
Test. Verif. Reliab. 28(2), 1–22 (2018)

Li, Z., Jing, X.Y., Zhu, X.: Progress on approaches to software defect prediction. IET Softw. 12(3), 161–
175 (2018)

Li, Z., Jing, X.Y., Zhu, X., et al.: Heterogeneous defect prediction with two‑stage ensemble learning.
Autom. Softw. Eng. 26(3), 599–651 (2019)

Li, Z., Jing, X.Y., Zhu, X., et al.: On the multiple sources and privacy preservation issues for heterogene‑
ous defect prediction. IEEE Trans. Softw. Eng. 45(4), 391–411 (2019)

Li, Z., Niu, J., Jing, X.Y., et al.: Cross‑project defect prediction via landmark selection‑based kernelized
discriminant subspace alignment. IEEE Trans. Reliab. 70(3), 996–1013 (2021)

1 3

Automated Software Engineering (2024) 31:19 Page 13 of 14 19

Li, Z., Zhang, H., Jing, X.Y., et al.: Dssdpp: data selection and sampling based domain programming pre‑
dictor for cross‑project defect prediction. IEEE Trans. Softw. Eng. 49(4), 1941–1963 (2023)

Lo, S.K., Lu, Q., Wang, C., et al.: A systematic literature review on federated machine learning: from a
software engineering perspective. ACM Comput. Surv. 54(5), 1–39 (2021)

Mende, T., Koschke, R.: Effort‑aware defect prediction models. In: 2010 14th European Conference on
Software Maintenance and Reengineering, IEEE, pp. 107–116 (2010)

Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect predictors. IEEE
Trans. Softw. Eng. 33(1), 2–13 (2007)

Menzies, T., Milton, Z., Turhan, B., et al.: Defect prediction from static code features: current results,
limitations, new approaches. Autom. Softw. Eng. 17(4), 375–407 (2010)

Menzies, T., Butcher, A., Cok, D., et al.: Local versus global lessons for defect prediction and effort esti‑
mation. IEEE Trans. Softw. Eng. 39(6), 822–834 (2013)

Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of change metrics and static
code attributes for defect prediction. In: ICSE’08. IEEE, pp. 181–190 (2008)

Nam, J., Kim, S.: Heterogeneous defect prediction. In: FSE’15. ACM, pp. 508–519 (2015)
Neto, E.C., Da Costa, D.A., Kulesza, U.: The impact of refactoring changes on the SZZ algorithm: an

empirical study. In: 2018 IEEE 25th International Conference on Software Analysis, pp. 380–390.
Evolution and Reengineering (SANER), IEEE (2018)

Ni, C., Wang, W., Yang, K., et al.: The best of both worlds: integrating semantic features with expert
features for defect prediction and localization. In: Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, pp. 672–683 (2022a)

Ni, C., Xia, X., Lo, D., et al.: Revisiting supervised and unsupervised methods for effort‑aware cross‑
project defect prediction. IEEE Trans. Softw. Eng. 48(3), 786–802 (2022)

Peters, F., Menzies, T., Gong, L., et al.: Balancing privacy and utility in cross‑company defect prediction.
IEEE Trans. Softw. Eng. 39(8), 1054–1068 (2013)

Peters, F., Menzies, T., Layman, L.: Lace2: Better privacy‑preserving data sharing for cross project defect
prediction. In: ICSE’15, pp. 801–811 (2015)

Pornprasit, C., Tantithamthavorn, C.K.: Jitline: a simpler, better, faster, finer‑grained just‑in‑time defect
prediction. In: 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR), IEEE, pp 369–379 (2021)

Pornprasit, C., Tantithamthavorn, C.K.: Deeplinedp: towards a deep learning approach for line‑level
defect prediction. IEEE Trans. Softw. Eng. 49(1), 84–98 (2023)

Samoaa, H.P., Bayram, F., Salza, P., et al.: A systematic mapping study of source code representation for
deep learning in software engineering. IET Softw. 16(4), 351–385 (2022)

Shepperd, M., Song, Q., Sun, Z., et al.: Data quality: some comments on the NASA software defect data‑
sets. IEEE Trans. Softw. Eng. 39(9), 1208–1215 (2013)

Shepperd, M., Bowes, D., Hall, T.: Researcher bias: the use of machine learning in software defect pre‑
diction. IEEE Trans. Softw. Eng. 40(6), 603–616 (2014)

Shihab, E., Kamei, Y., Adams, B., et al.: Is lines of code a good measure of effort in effort‑aware models?
Inf. Softw. Technol. 55(11), 1981–1993 (2013)

Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? ACM SIGSOFT Softw. Engi.
Notes 30(4), 1–5 (2005)

Tang, L., Bao, L., Xia, X., et al.: Neural SZZ algorithm. In: 2023 38th IEEE/ACM International Confer‑
ence on Automated Software Engineering (ASE). IEEE, pp. 1024–1035 (2023)

Tantithamthavorn, C., Hassan, A.E.: An experience report on defect modelling in practice: Pitfalls and
challenges. In: Proceedings of the 40th International conference on software engineering: software
engineering in practice, pp. 286–295 (2018)

Tantithamthavorn, C., McIntosh, S., Hassan, A.E., et al.: The impact of mislabelling on the performance
and interpretation of defect prediction models. In: ICSE’15. IEEE, pp. 812–823 (2015)

Tantithamthavorn, C., McIntosh, S., Hassan, A.E., et al.: The impact of automated parameter optimiza‑
tion on defect prediction models. IEEE Trans. Softw. Eng. 45(7), 683–711 (2019)

Tantithamthavorn, C., Hassan, A.E., Matsumoto, K.: The impact of class rebalancing techniques on the
performance and interpretation of defect prediction models. IEEE Trans. Softw. Eng. 46(11), 1200–
1219 (2020)

Tantithamthavorn, C.K., Jiarpakdee, J.: Explainable ai for software engineering. In: 2021 36th IEEE/
ACM International Conference on Automated Software Engineering (ASE), IEEE, pp. 1–2 (2021)

 Automated Software Engineering (2024) 31:19

1 3

19 Page 14 of 14

Tsantalis, N., Mansouri, M., Eshkevari, L.M., et al.: Accurate and efficient refactoring detection in com‑
mit history. In: Proceedings of the 40th International Conference on Software Engineering, pp. 483–
494 (2018)

Wan, Z., Xia, X., Hassan, A.E., et al.: Perceptions, expectations, and challenges in defect prediction.
IEEE Trans. Softw. Eng. 46(11), 1241–1266 (2020)

Wang, H., Zhuang, W., Zhang, X.: Software defect prediction based on gated hierarchical LSTMS. IEEE
Trans. Reliab. 70(2), 711–727 (2021)

Wattanakriengkrai, S., Thongtanunam, P., Tantithamthavorn, C., et al.: Predicting defective lines using a
model‑agnostic technique. IEEE Trans. Softw. Eng. 48(5), 1480–1496 (2022)

Wu, R., Zhang, H., Kim, S., et al.: Relink: recovering links between bugs and changes. In: FSE/ESEC’11,
pp 15–25 (2011)

Xu, J., Wang, F., Ai, J.: Defect prediction with semantics and context features of codes based on graph
representation learning. IEEE Trans. Reliab. 70(2), 613–625 (2020)

Xu, Z., Li, L., Yan, M., et al.: A comprehensive comparative study of clustering‑based unsupervised
defect prediction models. J. Syst. Softw. 172(3), 110862 (2021)

Yamamoto, H., Wang, D., Rajbahadur, G.K., et al.: Towards privacy preserving cross project defect pre‑
diction with federated learning. In: 2023 IEEE International Conference on Software Analysis, pp.
485–496. Evolution and Reengineering (SANER), IEEE (2023)

Yang, Y., Zhou, Y., Liu, J., et al.: Effort‑aware just‑in‑time defect prediction: simple unsupervised models
could be better than supervised models. In: FSE’16, pp 157—168 (2016)

Yang, Y., Xia, X., Lo, D., et al.: A survey on deep learning for software engineering. ACM Comput. Surv.
54(10s), 1–73 (2022)

Zain, Z.M., Sakri, S., Ismail, N.H.A.: Application of deep learning in software defect prediction: system‑
atic literature review and meta‑analysis. Inf. Softw. Technol. 158, 107175 (2023)

Zhang, F., Zheng, Q., Zou, Y., et al.: Cross‑project defect prediction using a connectivity‑based unsuper‑
vised classifier. In: ICSE’16, pp 309–320 (2016)

Zhao, Y., Damevski, K., Chen, H.: A systematic survey of just‑in‑time software defect prediction. ACM
Comput. Surv. 55(10), 1–35 (2023)

Zhou, C., He, P., Zeng, C., et al.: Software defect prediction with semantic and structural information of
codes based on graph neural networks. Inf. Softw. Technol. 152, 107057 (2022)

Zhou, Y., Yang, Y., Lu, H., et al.: How far we have progressed in the journey? An examination of cross‑
project defect prediction. ACM Trans. Softw. Eng. Methodol. 27(1), 1–51 (2018)

Zimmermann, T., Nagappan, N., Gall, H., et al.: Cross‑project defect prediction: a large scale experiment
on data vs. domain vs. process. In: FSE/ESEC’09. ACM, pp 91–100 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self‑archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Software defect prediction: future directions and challenges
	Abstract
	1 Introduction
	2 Defect prediction process
	3 Future directions and challenges
	3.1 Data
	3.2 Metrics
	3.3 Model construction
	3.4 Model evaluation and interpretation

	4 Conclusion
	References

