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Abstract
Software defect prediction is one of the most popular research topics in software 
engineering. The objective of defect prediction is to identify defective instances 
prior to the occurrence of software defects, thus it aids in more effectively prioritiz‑
ing software quality assurance efforts. In this article, we delve into various prospec‑
tive research directions and potential challenges in the field of defect prediction. The 
aim of this article is to propose a range of defect prediction techniques and method‑
ologies for the future. These ideas are intended to enhance the practicality, explain‑
ability, and actionability of the predictions of defect models.

Keywords Software defect prediction · Empirical software engineering · Software 
analytics · Quality assurance

1 Introduction

Software defect prediction (SDP) is a vibrant research domain in software engineer‑
ing and plays an important role in ensuring quality assurance (Menzies et al. 2010; 
Kamei and Shihab 2016; Wan et al. 2020; Tantithamthavorn and Hassan 2018). It is 
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a very crucial and essential activity. By identifying defective instances (e.g., com‑
ponents, files, classes, methods, changes) before testing, SDP has the potential to 
reduce code inspection costs and improve software quality. This empowers software 
quality assurance teams to effectively allocate their limited resources for testing and 
maintenance, leading to enhanced efficiency (Li et al. 2018c).

In the past few decades, analytical modeling of defects has attracted a lot of atten‑
tion from both the academic and industrial communities (Hall et al. 2012; Hosseini 
et al. 2019; Chen et al. 2021). Various SDP methods have been introduced across 
different prediction settings, such as within‑project defect prediction (WPDP) (Men‑
zies et  al. 2007; Lessmann et  al. 2008; Ghotra et  al. 2015), cross‑project defect 
prediction (CPDP) (Zimmermann et al. 2009; Li et al. 2021, 2023), heterogeneous 
defect prediction (HDP) (Jing et al. 2015; Nam and Kim 2015; Li et al. 2018a, 2017, 
2018b), and just‑in‑time defect prediction  (Kamei et  al. 2013; Zhao et  al. 2023). 
These methods have yielded promising defect prediction results. Therefore, SDP 
plays a pivotal role in software development organizations worldwide nowadays. 
Given its significance, we believe that the timing is opportune to write a paper on the 
future of software engineering focusing on the subject of software defect prediction.

This paper is presented from the perspective of academic researchers and has 
two primary objectives. Firstly, it provides a brief overview of SDP and highlights 
several key steps within this domain. Secondly, it proposes a collection of research 
directions for future defect prediction.

2  Defect prediction process

The common software defect prediction process involves the utilization of various 
machine learning techniques and methodologies  (Shepperd et  al. 2014; Li et  al. 
2018c; Giray et al. 2023), ranging from classic classification algorithms to advanced 
deep learning architectures, to proactively identify and detect potential defects in 
software instances. This essential process is vital for enhancing software quality and 
reliability. It is comprised of several key steps, each playing an important role in 
predicting and mitigating defects before they manifest in the final software prod‑
ucts. Figure 1 illustrates these steps in the software defect prediction process, includ‑
ing data collection, preprocessing, model construction and prediction, and finally 
the evaluation and interpretation of the defect prediction results. This process is not 
only integral for ensuring software quality but also plays a crucial role in prioritizing 
resource allocation and minimizing the impact of defects on users and stakeholders. 
The following sections provide detailed descriptions for each step.

1  Data collection. In software defect prediction, data collection involves gath‑
ering information about projects, specifically related to code versions, historical 
changes, and associated attributes. This includes data on past defects, bug reports, 
source code metrics, process metrics, developer activities, and other relevant soft‑
ware project features  (Li et  al. 2018c). Alternatively, it might involve directly 
extracting abstract syntax trees and various types of graphs from source codes for 
deep learning‑based techniques (Giray et al. 2023; Zain et al. 2023). The aim is to 
create a comprehensive dataset that enables the training and evaluation of machine 
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learning models for predicting potential software defects. This data can be acquired 
from version control systems (e.g., Git, CVS, SVN), bug tracking tools (e.g, JIRA, 
Bugzilla, GitHub Issues), code repositories, project documentation, and other repos‑
itories where relevant information is stored. In short, efficient and accurate data col‑
lection is vital for building effective defect prediction models (Kim et al. 2011; Wu 
et al. 2011; Tantithamthavorn et al. 2015).

2  Data preprocessing. It is a crucial aspect in the context of defect predic‑
tion, involving preparation and manipulation of the raw data collected from soft‑
ware repositories to enhance the performance and accuracy of predictive models 
in identifying software defects. This process usually includes several key steps. 
(1) Data cleaning: Cleaning and preparing the collected data for defect analyt‑
ics. It consists of handling missing values, dealing with outliers, addressing data 
inconsistencies, handing noise, and removing duplicate instances (Shepperd et al. 
2013). This step ensures that the dataset used for defect prediction is consistent, 
accurate, and free from anomalies, setting a solid foundation for building robust 
and reliable predictive models. (2) Metric selection: Identifying and selecting the 
most relevant features or metrics that are likely to have a correlation with soft‑
ware defects. Meanwhile, eliminating correlated metrics that may not contribute 
significantly to the model’s performance (Jiarpakdee et al. 2021a). This aims to 
reduce dimensionality and improve the efficiency of the prediction models. (3) 
Normalization: Normalizing or scaling numerical features within a specific range 
or distribution. It aims to make all the software metrics in a dataset to a simi‑
lar scale without distorting differences in the ranges of values. The techniques 
commonly used for data normalization include log transformation (Menzies et al. 
2007) and z‑score standardization (Li et al. 2019a). These methods adjust the val‑
ues of metrics to a standardized scale, ensuring consistency across the dataset. (4) 
Handling class imbalance: The defect dataset might have an imbalance between 
defective and non‑defective instances. Employing class imbalance learning 
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Fig. 1  Overview of the common software defect prediction process
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techniques, such as the widely used undersampling, oversampling, or synthetic 
data sampling algorithms, to rebalance the distribution between defective and 
non‑defective instances in the dataset is a common strategy  (Tantithamthavorn 
et al. 2020).

3  Model construction. Building a defect prediction model using machine learn‑
ing techniques on the preprocessed dataset. This step includes selecting an appro‑
priate learning algorithm, training the model on the labeled dataset, and optimiz‑
ing its parameters to effectively predict the presence of defects in software projects 
based on various features or metrics. Common algorithms for defect prediction 
involve logistic regressions, decision trees, random forests, naive Bayes, support 
vector machines, and neural networks (Ghotra et al. 2015; Tantithamthavorn et al. 
2019). The goal is to build a model that generalizes well to new or unseen software 
instances and accurately predicts whether the given instances contain defects or not.

4  Model prediction. Applying the trained model that was constructed during 
the training phase, to predict the status of new or unseen software instances passed 
through the model. The model generates predictions or classifications based on the 
input data, aiming to determine whether these instances are likely to be defective 
or not. Additionally, it might rank instances based on their predicted density (prob‑
ability/LOC) to facilitate prioritized inspection in a more cost‑effective way (Kamei 
et al. 2010; Mende and Koschke 2010). This is a crucial step in defect prediction 
as it helps software developers and quality assurance teams to proactively identify 
potential defects in software before they cause issues or errors in production, ena‑
bling timely actions to improve software quality and reliability.

5  Model evaluation. Assessing the performance and effectiveness of the con‑
structed defect prediction model based on its outputs. Common non‑effort‑aware 
and effort‑aware performance measures  (Huang et  al. 2019; Li et  al. 2018c) used 
for model evaluation include AUC (area under the receiver operating characteris‑
tic curve), MCC (Matthew’s correlation coefficient), F1‑score, PoB@20% (propor‑
tion of the found bugs among all bugs in the dataset when inspecting 20% LOC), 
PMI@20% (proportion of modules inspected when test 20% LOC), and IFA (the 
number of initial false alarms encountered before software testers detect the first 
defect). This step is crucial for understanding how well the model performs on new 
or unseen data, and aids in understanding the model’s strengths, weaknesses, and 
areas for improvement. The goal of model evaluation is to measure the model’s 
effectiveness in making predictions.

6  Model interpretation. Understanding and explaining how the defect model 
makes predictions or decisions. Model interpretation aims to provide insights into 
the model’s inner workings, making its output more understandable and transpar‑
ent to humans. Through thorough analysis and extraction of meaningful insights 
from predictions, it seeks to identify which software metrics are the most influen‑
tial in defect prediction. This can assist software practitioners in understanding why 
the defect prediction model made particular decisions and provides insights into 
the rationale behind predictions made by analytical models (Dam et al. 2018; Tan‑
tithamthavorn and Jiarpakdee (2021)). The interpretative process is indispensable 
for building trust in defect prediction models, emphasizing that the rationale behind 
a model’s decisions is just as significant as the decisions themselves.
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The overall goal of software defect prediction is to help quality assurance 
teams prioritize their efforts and resource allocation by identifying software 
instances that are more likely to contain defects. This proactive approach sig‑
nificantly contributes to enhancing software quality, reducing maintenance costs, 
and improving overall software development practices. Through the early iden‑
tification of potential defects, defect prediction enables quality assurance teams 
to allocate their resources more efficiently, paying attention to critical areas and 
streamlining the quality assurance process. Ultimately, the application of defect 
prediction techniques brings in a more robust and reliable software development 
lifecycle, fostering higher‑quality deliverables and minimizing the impact of 
defects on software products.

3  Future directions and challenges

The field of software defect prediction has witnessed numerous achievements 
over the past decades (Kamei and Shihab 2016; Wan et al. 2020). Nevertheless, 
it is important to note that many challenges remain and are likely to emerge in 
the future due to shifts in data, technology, and the ever‑growing significance 
of software systems. To enhance readability, we organize this section into four 
dimensions, including data, metrics, model construction, and model evaluation 
and interpretation, which is roughly similar to the defect prediction process intro‑
duced in Sect. 2. Fig. 2 illustrates an overview of the future directions and chal‑
lenges in software defect prediction, with detailed descriptions for each perspec‑
tive provided below.
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Fig. 2  Overview of future directions and challenges in software defect prediction
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3.1  Data

Future direction and challenge 1: Data labeling quality. Context: Histori‑
cal defect information plays a pivotal role in software maintenance such as qual‑
ity measurement and defect prediction. The SZZ algorithm (Śliwerski et al. 2005) 
stands as a primary method for identifying bug‑inducing commits in software pro‑
jects, which is widely used in the field of defect prediction. Issue: However, current 
defect collection practices are based on optional bug fix keywords or bug report links 
in change logs, which can lead to the inclusion of noise into the collected data (Kim 
et al. 2011; Wu et al. 2011; Tantithamthavorn et al. 2015). Such biased data can sig‑
nificantly impact the performance of defect prediction models. The SZZ algorithm 
faces issues in achieving high precision due to the presence of noise within bug‑
fixing commits. For instance, not all addition or deletion lines within a bug‑fixing 
commit are directly linked to bug fixes (Tang et al. 2023). Direction and challenge: 
A potential direction is that substantial efforts are directed towards improving the 
precision of the SZZ algorithm in the future. Despite the advancements made by the 
existing studies (Kim et al. 2006; Da Costa et al. 2016; Neto et al. 2018; Tsantalis 
et al. 2018), it is challenging to incorporate all refactoring and non‑essential change 
patterns into a tool, as this could result in the potential exclusion of relevant lines 
and the inclusion of irrelevant lines (Tang et al. 2023). In recent years, deep learn‑
ing techniques have garnered extensive application across various software engi‑
neering tasks  (Yang et  al. 2022; Samoaa et  al. 2022), consistently outperforming 
other state‑of‑the‑art methods. The notable strength of deep learning lies in its abil‑
ity to autonomously learn highly intricate and expressive features, a capability that 
traditional methods cannot be done. This advantage allows deep learning models 
to capture complex patterns and relationships within data more effectively. There‑
fore, one promising avenue is the utilization of deep learning techniques for the 
identification of bug‑inducing commits. By leveraging the power of deep learning, 
it becomes possible to automatically capture semantic relationships within commit 
data that contribute to more effective models, which conventional SZZ algorithms 
find challenging.

Future direction and challenge 2: Privacy-preserving data sharing. Context: 
In recent years, many researchers have utilized dataset collected from open‑source 
software projects and have demonstrated a willingness to make their data availabil‑
ity and openness to facilitate reproducibility. Issue: Numerous commercial and pro‑
prietary software projects often lack data availability due to business sensitivity and 
privacy concerns. This has raised doubts about the feasibility of data sharing for 
research purposes. Recently, privacy preservation issue has gained attention in the 
field of defect prediction (Peters et al. 2013, 2015; Li et al. 2019b). Direction and 
challenge: The need for more privacy‑preserving data sharing initiatives becomes 
crucial for further exploration. This can potentially facilitate the availability of more 
commercial and proprietary data. Benefiting from this, existing methods such as 
cross‑project defect prediction  (Zhou et  al. 2018) or heterogeneous defect predic‑
tion  (Chen et  al. 2021) could offer practical value, especially for new projects or 
those lacking enough historical data. However, it is very challenging for many com‑
panies or organizations are not willing to share their data due to concerns related 
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to business sensitivity and privacy. To address this challenge, researchers need to 
establish strong partnerships with industrial collaborators and should actively seek 
collaboration with them, gaining access to their rich and diverse data repositories. 
Meanwhile, it is imperative to explore new methods for privacy‑preserving data 
sharing. Lately, Yamamoto et  al. (2023) presented a federated logistic regression 
model for privacy‑preserving cross‑project defect prediction. Inspired by this, the 
combination of federated deep learning and other privacy techniques emerges as 
a promising avenue for preserving and maintaining the security of data in defect 
prediction. Federated learning  (Lo et  al. 2021), a decentralized training approach, 
allows machine learning models to be trained across multiple edge devices without 
the need for exchanging raw training data. This not only enhances privacy protection 
but also facilitates collaborative learning across diverse datasets.

3.2  Metrics

Future direction and challenge 3: Multi-feature fusion. Context: Defect data 
typically consists of multiple types of software metrics, e.g., code metrics, pro‑
cess metrics, ownership metrics, etc (Menzies et al. 2007; Moser et al. 2008; Bird 
et al. 2011). Each type of metric characterizes the relevant attributes of a software 
product from a certain perspective, which has different physical meanings and dis‑
tributions. When considering semantic features, various types of source code repre‑
sentations have been proposed (Yang et al. 2022; Samoaa et al. 2022). These con‑
tain abstract syntax trees, control flow graphs, call flow graphs, data flow graphs, 
program dependency graphs, token‑based embedding representations and so on. 
Indeed, these representations have found wide application in various software engi‑
neering tasks. Issue: For the traditional hand‑crafted features, existing defect predic‑
tion studies identify software defects by concatenating and merging all the metrics 
into a single feature vector. For the semantic features, most defect prediction studies 
use each code representation individually for identifying software defects. However, 
these methods ignore the diversity and complementary information among differ‑
ent types of metrics or multiple code representations  (Zhou et  al. 2022; Ni et  al. 
2022a). Direction and challenge: Considering that metric data are extracted from 
software projects from different perspectives, each type of metric can be recognized 
as a single data view. So defect data consisting of multiple types of metrics can be 
divided into multiple different data views. A promising avenue for future research 
involves fusing multiple types of software metrics to build robust and reliable defect 
prediction models. Such an approach would enable the collaborative learning of the 
diversity and complementarity within defect data, which will improve the model 
performance. However, the process of effectively fusing multiple types of software 
metrics could indeed pose a significant challenge. Regarding the semantic features, 
exploring the potential complementarity between tree‑based and graph‑based code 
representations in defect prediction could be beneficial for future work, particularly 
in the context of fusing multiple code representations. However, it also poses chal‑
lenges in accurately extracting various source code representations, encoding them 
appropriately, and effectively combining them by using existing off‑the‑shelf deep 
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learning techniques. This fusion process demands innovative strategies to harness 
the comprehensive potential of these diverse code representations.

Indeed, some studies  (Xu et  al. 2020; Wang et  al. 2021; Zhou et  al. 2022; Ni 
et al. 2022a) have attempted to fuse traditional manually designed software metrics 
with semantic features derived from code representations to enhance the accuracy 
of defect prediction. The results of these studies have indicated that the combination 
of traditional hand‑crafted metrics with semantic features contributes to improved 
performance in software defect prediction. However, effectively combining diverse 
software metrics and features presents its set of challenges. The process demands 
innovative approaches that address issues of feature representation, integration 
strategies, and the optimal balance between the information learned from various 
sources. Finding an effective fusion technique that maximizes the strengths of each 
type of feature while mitigating potential redundancies remains an ongoing chal‑
lenge in this domain.

3.3  Model construction

Future direction and challenge 4: Fine-grained line-level defect prediction. Con-
text: The current defect prediction models typically are at a relatively coarse granu‑
larity level, such as the file level. This often makes software practitioners needing to 
spend significant effort in inspecting many clean lines that are actually non‑defec‑
tive. Issue: In practice, practitioners are interested in identifying the specific lines 
of code that are defective (Wattanakriengkrai et al. 2022). Hence, there is a grow‑
ing need for defect prediction models to become more fine‑grained and capable of 
pinpointing the truly lines of code that require attention. This finer granularity can 
significantly enhance the practicality and usefulness of these models in real‑world 
software development and maintenance. However, most of the defect prediction 
studies did not pay attention to this domain. Direction and challenge: It holds prom‑
ise towards code‑line‑level defect prediction, as it could help developers to more 
effectively prioritize their quality assurance efforts. Indeed, there is an increasing 
recognition of the potential advantages in fine‑grained, code‑line‑level defect pre‑
diction  (Pornprasit and Tantithamthavorn 2021, 2023; Ni et  al. 2022a; Guo et  al. 
2023). Meanwhile, it is important to note that substantial challenges exist in building 
accurate code‑line‑level defect prediction models effectively. In the context of tra‑
ditional metrics, the primary challenge in constructing conventional defect models 
at the code line level is the design of manually crafted software features. Extracting 
such features at the code line level is a challenging endeavor, as it demands precise 
historical data for each line within the source code files. In the context of semantic 
features, the collected datasets often remain highly dimensional and sparse. Conse‑
quently, building code‑line‑level defect prediction models using semantic features 
is likely unfeasible and impractical within a shorter period of time (Wattanakrieng‑
krai et al. 2022). Despite these challenges, the move towards a finer granularity in 
defect prediction can offer a more targeted and actionable approach, enabling teams 
to address potential issues at a more localized level within the source code, which 
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aligns with the industry’s pursuit of higher precision and efficiency in software qual‑
ity assurance processes.

Future direction and challenge 5: Robust and stable defect prediction. Con-
text: Ensuring robust and stable defect prediction is imperative because software pro‑
jects are dynamic, and the data used to train models may change over time. Defect 
models lacking in robustness and stability may yield unreliable predictions, leading 
to decreased confidence in their effectiveness for identifying software defects. Issue: 
Recent works (Fu et al. 2016; Tantithamthavorn et al. 2019) have highlighted a cru‑
cial point regarding defect prediction models in the literature. They argue that most 
of these models tend to rely on the default parameter settings of classification tech‑
niques, which usually have a large impact on the performance of these models and 
lead to suboptimal results. Thus, the hyperparameters of the defect prediction mod‑
els should be carefully tuned. However, a critical observation in existing work (Tan‑
tithamthavorn et  al. 2019) is the limited quantity of hyperparameters explored for 
the examined classifiers. Most of these classifiers focus on tuning a single param‑
eter, and the parameter space considered is relatively small in scale. Direction and 
challenge: There exists an opportunity for future research to delve into exploring 
multiple hyperparameters and broader parameter spaces, particularly in the context 
of deep learning‑based defect prediction models. Exploring the interactions among 
various parameters could provide valuable insights and potentially lead to significant 
improvements in the performance and effectiveness of defect prediction models. 
Undoubtedly, it is important to acknowledge that dealing with multiple hyperparam‑
eters and expansive search spaces can pose challenges. Striking a balance between 
comprehensiveness and practicality will be crucial in designing experiments that 
are both informative and feasible. Nonetheless, the exploration of more extensive 
and intricate parameter configurations holds promise in achieving robust and stable 
defect prediction performance.

Future direction and challenge 6: Unsupervised defect prediction. Context: 
Supervised defect prediction trains models on labeled data to predict the occurrence 
of defects or bugs in software. Instead, unsupervised defect prediction  (Li et  al. 
2020; Xu et  al. 2021) builds models on unlabeled data through the application of 
unsupervised learning techniques for identifying software defects. Issue: Although 
supervised defect prediction methods have the potential to achieve better results in 
certain performance measures, they do have limitations. The main issue with super‑
vised methods is that they require labeled training data to build models. The process 
of obtaining labeled data can be time‑consuming, labor‑intensive, and costly, which 
makes supervised methods inefficient and resource‑intensive, especially in scenarios 
with limited historical defect data. Direction and challenge: Unsupervised defect 
prediction methods aim to identify more likely defect‑prone software instances on 
unlabeled datasets by exploiting the intrinsic patterns and structures present in the 
data without the need for any labeled training data. They hold the advantage of 
not requiring prior knowledge of defect data to label modules. This characteristic 
makes unsupervised methods particularly beneficial in practice, especially for new 
software projects or projects with insufficient historical data. For example, Zhang 
et al. (2016) introduced a spectral clustering method that utilizes connectivity‑based 
unsupervised classifiers for predicting software defects. Their findings demonstrated 
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the superiority of the proposed spectral clustering approach over some supervised 
classifiers in both within‑project and cross‑project settings. Hence, unsupervised 
prediction techniques exhibit considerable potential in field of software defect pre‑
diction and represent a promising avenue for future research. However, the challenge 
remains in devising methods that effectively uncover the intrinsic structures and pat‑
terns within the data to achieve more accurate unsupervised defect prediction.

3.4  Model evaluation and interpretation

Future direction and challenge 7: Focusing on actual effort. Context: It is of 
utmost importance to evaluate defect prediction models in a realistic context, e.g. 
how much effort can reduce for testing and code inspection using these models. By 
taking into account the resources and efforts required for code inspection or test‑
ing, effort‑aware defect prediction  (Kamei et al. 2010; Mende and Koschke 2010) 
provides a more accurate assessment of prediction model effectiveness and aligns 
the evaluations with real‑world scenarios. Issue: In recent years, there are many 
effort‑aware defect prediction studies (Kamei et al. 2013; Yang et al. 2016; Huang 
et al. 2019; Ni et al. 2022b) to account for the effort. Typically, these models utilize 
LOC (lines of code) or churn as a proxy for effort. As pointed out by Shihab et al. 
(2013), their results show that LOC is not the best measure of effort in effort‑aware 
defect prediction. Direction and challenge: To progress in the field, it is crucial for 
researchers to shift their focus towards the utilization of actual effort data in future 
effort‑aware defect prediction research. Adopting this approach is expected to yield 
more reliable insights and enhance practical guidelines for software practitioners. 
One potential strategy involves leveraging effort estimation techniques  (Menzies 
et al. 2013) to calculate actual effort. Effort estimation is the process of predicting 
the amount of effort required to develop or maintain a software application. Integrat‑
ing this technique into defect prediction holds significant promise. However, identi‑
fying the most effective approach for accurately quantifying real effort and thereby 
provide robust practical guidelines remains a complex and ongoing challenge. 
Undoubtedly, such research endeavors can have a substantial impact on enhancing 
the future applicability of defect prediction techniques in real‑world software devel‑
opment practices.

Future direction and challenge 8: Focusing on explainability and actionabil-
ity. Context: In the field of defect prediction, a significant proportion of research 
efforts have concentrated primarily on improving the predictive accuracy and per‑
formance of defect models to more accurately identify potential defects in software 
systems. The aim is to enhance software quality and minimize the occurrence of 
defects. Issue: The above research efforts have largely neglected or underemphasized 
comprehensive explanations and justifications (Dam et al. 2018; Tantithamthavorn 
and Jiarpakdee (2021)). Particularly, current defect prediction fails to explain why 
models make such a prediction and fails to comply with the privacy laws in terms 
of the requirement to explain any decision made by a method. A lack of explain‑
ability of the defect prediction models leads to a lack of trust in the predictions or 
recommendations produced by such methods, hindering their widespread adoption 
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in software development practices  (Jiarpakdee et  al. 2021b). Direction and chal-
lenge: The future landscape of defect prediction research should strongly emphasize 
explainability and actionability, particularly when focusing on deep learning‑based 
models. A recent empirical study by Jiarpakdee et al. (2022) delved into evaluating 
model‑agnostic techniques for explaining the predictions generated by defect mod‑
els. Their findings revealed the utility of generating explanations through model‑
agnostic techniques for each prediction. Such explanations play a crucial role in aid‑
ing developers to comprehend why a file or commit is identified as defective, while 
simultaneously providing actionable guidance to assist project managers in devising 
suitable quality improvement plans. In short, the overarching goal is to make defect 
prediction models more practical, explainable, and actionable in software engineer‑
ing practices. Nevertheless, it is essential to acknowledge that ensuring the reliabil‑
ity and trustworthiness of these predictions of defect models from the perspective of 
software practitioners remains an ongoing and challenging endeavor.

4  Conclusion

In this article, we present a several of future directions and potential challenges in 
software defect prediction. It is important to note that our work does not aim to 
be exhaustive; rather, it simply serves as a documentation of future directions and 
potential challenges. Most importantly, we would like to emphasize that we do not 
seek to claim the generality of our ideas. Instead, the goal of this article is that under 
specific circumstances, these research directions have the potential to help develop‑
ers to effectively find software defects and enable managers to better develop soft‑
ware quality improvement plans to prevent defects in the future.
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