
Vol.:(0123456789)

Automated Software Engineering (2024) 31:9
https://doi.org/10.1007/s10515-023-00405-w

1 3

Regression test selection in test‑driven development

Zohreh Mafi1 · Seyed‑Hassan Mirian‑Hosseinabadi2

Received: 18 March 2023 / Accepted: 12 November 2023 / Published online: 27 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
The large number of unit tests produced in the test-driven development (TDD)
method and the iterative execution of these tests extend the regression test execution
time in TDD. This study aims to reduce test execution time in TDD. We propose
a TDD-based approach that creates traceable code elements and connects them to
relevant test cases to support regression test selection during the TDD process. Our
proposed hybrid technique combines text and syntax program differences to select
related test cases using the nature of TDD. We use a change detection algorithm
to detect program changes. Our experience is reported with a tool called RichTest,
which implements this technique. In order to evaluate our work, seven TDD projects
have been developed. The implementation results indicate that the RichTest plugin
significantly decreases the number of test executions and also the time of regres-
sion testing despite considering the overhead time. The test suite effectively enables
fault detection because the selected test cases are related to the modified partitions.
Moreover, the test cases cover the entire modified partitions; accordingly, the selec-
tion algorithm is safe. The concept is particularly designed for the TDD method.
Although this idea is applicable in any programming language, it is already imple-
mented as a plugin in Java Eclipse.

Keywords  Software testing · Test-driven development (TDD) · Regression test ·
Program differencing · Segmentation · Change detection

 *	 Seyed‑Hassan Mirian‑Hosseinabadi
	 hmirian@sharif.edu

	 Zohreh Mafi
	 zohreh.mafi1@sharif.edu

1	 Engineering Faculty, Sharif University of Technology, Intl. Campus, Kish Island, Iran
2	 Faculty Member of Computer Engineering Department, Sharif University of Technology,

Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-023-00405-w&domain=pdf

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 2 of 50

1  Introduction

Test Driven Development (Beck 2002) is one of the agile defect-reduction practices
in which “unit test cases are incrementally written prior to code implementation. All
of the test cases that exist for the entire program must successfully pass before new
code is considered fully implemented” (George and Williams 2004). New tests are
written to add/revise the desired features in such a way that the current version of
the program fails. Refactoring (Fowler et al. 1999) is one of the key aspects of TDD
which improves the software design, code structure quality, and code performance
as well as enhances coding standards and principles (Dalton 2019).

Although TDD avoids writing extra code and delivers clean code, however, it
increases the number of test cases rapidly. The TDD method has drawn the interest
of software developers because of its advantages, including short and simple reada-
ble code, high-quality code, reliability, maintainability, and the capability of regres-
sion testing (as a result of creating a set of unit tests). Apart from its advantages,
TDD also has certain deficiencies (Karac and Turhan 2018) such as higher develop-
ment time (Khanam and Mohammed 2017). This study aims to resolve one of the
drawbacks that has been less considered previously—the large number of test cases
and the necessity of repeated executions.

The number of test cases generated in TDD is greater than that of other meth-
ods (Erdogmus et al. 2005). As a result, the time required for the regression test
increases significantly. On the other hand, it is necessary to re-execute all of the test
cases after each modification to ensure that the code remains accurate thereafter. A
substantial amount of time is subsequently required in order to execute the test cases
in the TDD method.

There are many cost reduction algorithms reducing the number of test cases,
which we will discuss in Sects. 2.2 and 2.3. Different techniques may have differ-
ent performances in different environments. The suitable technique is therefore
selected based on methodology, topic, and program conditions. However, none of
these methods are specifically designed for TDD. Therefore, this research proposed
a test selection algorithm for TDD implemented programs to reduce the regression
test execution time in TDD. Our experience is reported with a tool called RichTest,
which implements this technique. It is a Java plugin and is available as a GitHub
project.1

Textual differencing is not based on programming language, but we use a hybrid
technique that combines text and syntax program differences to detect code changes,
so it is necessary to choose the programming language. Since Java is one of the
three most popular languages in the last twenty years2 and has been widely used,
this language was considered as a reference language.

We use a hybrid differencing technique as well as using block concept to divide
the program into small trackable elements. Segmentation is defined on two levels.

1  https://​github.​com/​MafiZo/​RichT​est.​git.
2  https://​www.​tiobe.​com/​tiobe-​index/.

https://github.com/MafiZo/RichTest.git
https://www.tiobe.com/tiobe-index/

1 3

Automated Software Engineering (2024) 31:9	 Page 3 of 50  9

High-level blocking considers each method as a block, low-level blocking considers
each statement, such as an if statement, as a block.

After adding a new test case, we run that test case. If the test case passes, then the
next test case will be added, but if the test case does not pass, the source code must
be modified to pass the new test case.

•	 RichTest performs code segmentation to track code elements. It creates both
code and test blocks.

•	 RichTest identifies all modified code blocks.
•	 RichTest connects modified code blocks to the new test case that leads to these

changes.
•	 In the test selection phase, RichTest tracks and selects only those test cases that

are related to the modified parts of the code, so instead of running all the test
cases, only the selected test cases run.

We measured the number of selected test cases and RT time to compare our work
with two types of TDD, as well as another Java plugin. The results showed that our
work has an advantage in reducing the number of tests as well as the RT time.

Section 2 discusses the basics and the principles of TDD as well as the regression
test, which must be run repeatedly in the TDD cycle. Program differencing as one
of the regression test selection methods used in this article is presented in detail and
a comparison between different levels of its implementation will be provided. Sec-
tion 3 introduces related work.

In Sect. 4, our test case selection algorithm will be discussed in detail. Segmenta-
tion, segment comparison, and relationship creation algorithm are explained in this
section. The RichTest tool, which is developed to implement the foregoing is expli-
cated in Sect. 5. Automatic and manual block segmentation and regression test wiz-
ard are explained in this section.

Section 6 presents the evaluation of RichTest using another program that we
implemented to access the TDD projects on GitHub to compare the number of exe-
cuted test cases in TDD and RichTest. Section 7 concludes the paper. Several images
of the RichTest tool are illustrated in Appendix A.

2 � Background

The proposed technique allows for avoiding the execution of some test cases in
TDD. This section discusses the basics and principles of TDD as well as its advan-
tages and disadvantages. The regression test must be repeatedly run in the TDD
cycle. Previous work on the regression test and the principal approaches for its cost
reduction, particularly program differencing from the standpoint of regression test
and other software maintenance applications, is presented in detail.

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 4 of 50

2.1 � Test driven development (TDD)

In the traditional approach, software development proceeds by first creating the
working code and thereafter writing unit tests (Ammann and Offutt 2008). This
method is sometimes referred to as test-last development. In several traditional soft-
ware development models, such as the waterfall model, software testing is one of
the last tasks to be performed before the software maintenance phase. On the con-
trary, in modern and agile software development methods, testing is often adopted
as an integrated part of the entire development process. This technique aids devel-
opers in finding and fixing bugs starting from the early phases of development. In
test-driven development, however, software tests are written before the actual source
code (Beck 2002).

The concept of the TDD method was first studied by Beck (Beck 2002). As its
name suggests, TDD is a test-first software development approach for building soft-
ware incrementally allowing test cases to drive the production code development.
New test cases are written based on the software requirements and new features that
should be considered in the software. If there is any fault or defect in the current ver-
sion of the program, the test case will detect the problem. Then the developer would
write the proper code to fix the failure. As a result, the tests are always written first,
and thereafter only a sufficient amount of code is written to fix the failure (Beck
2002; Beningo 2022). Despite its name, TDD is not a test method; it is in fact a new
software design and implementation method in which the idea of writing test cases
before developing the code is combined with the concept of refactoring.

According to Astels, in the TDD method, the project is first broken into smaller
parts using the divide-and-conquer method. The program is developed incremen-
tally, starting from the development of each part by writing a test (Astels 2003). The
TDD process proceeds as follows (Beck 2002; Beningo 2022):

1.	 Add a small test;
2.	 Run all tests and see if the new one fails (The test might not even compile);
3.	 Write a minimum amount of code to pass the test;
4.	 Run all tests and see all of them succeed;
5.	 Refactor the code to clean them and remove possible duplications.

The development process is thereafter continued by repeating the steps men-
tioned above.

2.2 � Regression test (RT)

In the software development and maintenance process, product requirements are
modified or corrected because of the addition of new customer requirements. These
changes are implemented to match new technologies and environments, fix hidden
errors that occur in various stages of development, and fix deficiencies and bugs to
improve current features.

1 3

Automated Software Engineering (2024) 31:9	 Page 5 of 50  9

RT is an activity that is performed after a change is implemented in the system.
Its objective is to reveal the defects that may have been introduced by these changes
as a result of software evolution (Riebisch et al. 2012). In view of the large number
of test cases, RT is extremely time-consuming. It is therefore an expensive test to
validate the modified software. To reduce cost, several techniques may be employed.
The four principal cost reduction approaches are (1) RT minimization, (2) RT prior-
itization, (3) RT optimization, and (4) RT selection (Rosero et al. 2016). The cover-
age-based RT using program differencing used in this paper can be considered as an
RT selection method.

2.2.1 � Regression test minimization (RTM)

According to Yoo and Mark (2012), RTM refers to the removal of redundant test
cases from the test suite. Minimization is sometimes also called test suite reduction,
meaning that the elimination is permanent.

2.2.2 � Regression test prioritization (RTP)

Test case prioritization aims to reorder test cases to increase the rate of fault detec-
tion during RT. The RTP prioritizes tests based on error detection criteria or code
coverage using experimental methods. Thus far, various prioritization strategies
have been suggested (Zhang et al. 2013).

2.2.3 � Regression test optimization (RTO)

RT techniques are considered from the point of view of multi-objective optimiza-
tion and Artificial Intelligence (AI). Their main goal is to select test cases through
the use of optimization or AI approaches. Some of the RTO techniques are based on
fuzzy logic, and some of them are based on heuristics. This technique includes con-
tributions in the line of greedy algorithms, Pareto optimization, and integer linear
programming in combination with genetic algorithms (Rosero et al. 2016).

2.2.4 � Regression test selection (RTS)

The RTS method chooses some of the test cases and ignores the rest. In this cat-
egory, the reduction is also present but its strategy focuses on the detection of modi-
fied parts of a program that normally runs based on white box static analysis (Ros-
ero et al. 2016).

Safe RTS techniques prove that under certain well-defined conditions, test selec-
tion algorithms exclude no tests (from the original test suite) that if executed would
reveal faults in the modified software. Under these conditions, the algorithms are
safe, and the fault detection abilities are equivalent to those of the retest of all tests.
(Rothermel and Mary 1998).

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 6 of 50

2.3 � Program differencing

In regression tests, the knowledge of which parts of the program are unmodified can
aid in identifying the test cases that do not have to be executed (Apiwattanapong
et al. 2007). Considering the fact that the behaviors of preserved components in the
new and old versions of a program do not differ at runtime, it is guaranteed that no
retest of all cases is necessary, and testing the affected component only is sufficient
(Binkley 1992).

Program differencing is also a principal step to solve some of the crucial prob-
lems in software maintenance such as locating bugs, introducing changes, tracking
code pieces or drawbacks in versions, merging files, and analyzing software evolu-
tion (Asaduzzaman et al. 2013). DbRT, a delta-based RT in the context of MDD
proposed to propagate the changes from a software specification to testing artifacts
in order to preserve consistency after system evolution (Nooraei Abadeh and Mirian-
Hosseinabadi 2015). In general, software modification is classified into three levels:
textual modification, syntax modification, and semantic or behavioral modification.
The previous works are presented in these three categories.

2.3.1 � Textual differencing

In the textual approach, regardless of whether the code file is an executable program,
the common parts of the two versions are identified using algorithms, e.g., “longest
common sub-series algorithm.” For instance, diff (Myers 1986) is among the most
utilized tools in UNIX that presents the difference between two versions of a pro-
gram. It generates a report consisting of a series of added or deleted lines between
two files after identifying the common parts.

Vokolos and Frankl (1998) developed a tool for textual differencing, named
Pythia, which is capable of analyzing large software systems written in C. The
results indicate that this technique is considerably fast and can significantly reduce
the size of RT suite.

An enhanced language-independent tool, LDiff (Canfora et al. 2009), is devel-
oped based on Unix diff and resolves numerous problems encountered by the latter.
These include determining if a line has been modified or is a result of additions and
deletions, and tracking code blocks that have been moved up or down inside the file.

Another tool that tracks source code lines between two different versions of the
file is LHDiff (Asaduzzaman et al. 2013), which takes two different versions of the
program as input and uses the Unix diff technique to identify unmodified parts. In
order to track the remaining lines, a mixture of context and content similarities is
used.

2.3.2 � Syntactic differencing

Yang (1991) obtained the difference between the two programs based on grammar
and parse trees. This is known as the syntactic difference. Each program is displayed

1 3

Automated Software Engineering (2024) 31:9	 Page 7 of 50  9

using a parse tree built by the parser. The tree-matching algorithm takes two trees
as input and finds a set of pairs of nodes in which each node belongs to one tree and
appears maximum in one pair.

Maletic and Collard (2004) presented a syntactic differencing approach to analyze
source code differences. The meta-differencing approach attempts to automatically
produce some information related to the difference between the two programs. Com-
plex questions on the difference between two versions of a program can be solved
by this system. Meta-differencing uses an XML-based language called SrcML to
display the two programs and their differences.

Archambault (2009) took the graphs of two versions of a program and merged
them based on similar node names to obtain a new graph. In order to reduce the
graph size, the concept of MetaNode for collecting the nodes is employed. The
betweenness centrality measure is used to determine the difference between the
two input graphs. This value is determined for all graph nodes. The small and large
values indicate the stability and instability, respectively, as well as the difference
among the points.

Goto (2013) considered merging similar programs to increase program maintain-
ability and focus on structural differences. The AST trees for two similar methods
are first built using Eclipse JDT; the differences among the trees are then deter-
mined. Finally, coherent code pieces are identified as Extract Method (EM) candi-
dates. The FTMPATool is implemented to accomplish this task.

The ChangeScribe (Linares-Vásquez 2015) tool is an Eclipse plugin that consid-
ers the textual differences between the new and previous version of the program at
commit time and generates messages to automatically explain the modifications.
ChangeScribe is currently applicable for Java projects on GitHub. Shen et al. (2016)
continued this work by defining four types of changes to describe the code change
and include information that explains the reason for the code change.

The LSDiff3 (Kim and David 2009) tool attempts to answer some of the high-
level questions of programmers and present systematic structural differences as logi-
cal rules. LSDiff represents each version of the program using a set of predicates that
describe code components, their relationships, and their structural dependencies.

Falleri et al. (2014) employed the GumTree tool, which is comprised of two
sequential steps, to compute the mappings between two ASTs: (1) top-down greedy
algorithm for finding isomorphic subtrees, and (2) bottom–up algorithm to detect
corresponding nodes.

The SEGMENT tool (Wang et al. 2011) divides the different parts of the program
by adding blank lines to increase the readability of the program. SEGMENT uses
the program structure AST tree as well as the name information and identifies mean-
ingful primary blocks with a particular logical operation. In order to identify logical
blocks, three main types of blocks are considered: syntactically the same, data flow
chain, and extended SWIFT.4

3  Logical Structural Diff.
4  Statements such as synchronized, do, try, for, if, while, and switch.

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 8 of 50

2.3.3 � Semantic differencing

Horwitz (1990) used a program graph representation and a partition operator on
these graphs to semantically find differences. His partitioning algorithm is limited
to a language with scalar variables, conditional statements, assignment statements,
while loops, and output statements.

Binkley (1992) reduced the RT cost by using semantic differences between the
two programs. In his work, the limitations of program statements are reduced com-
pared to those in Horwitz (1990). He also included function definitions and function
calls. He used a system dependency graph instead of a flow control graph that avoids
unnecessary dependencies among the components on a path in a control flow graph.
Binkley reduced the complexity of test cases using the program slicing technique.

Neamtiu et al. (2005) proposed a tool to rapidly compare the source code of dif-
ferent versions of C programs and thereafter find semantic differences among pro-
gram versions based on partial AST matching. The tool can track simple code-level
modifications related to changes in global variable names, types, and functions. This
tool compares the body of functions with similar names considering that the name
of function is not changed throughout the software lifetime.

Apiwattanapong et al. (2007) presented a method to compare object-oriented
programs and used an extended control flow graph (ECFG). Görg and Zhao (2009)
extended the method proposed in Apiwattanapong et al. (2007) in such a way that it
also supports the new concepts introduced by aspect-oriented programs.

The patent in Hsu (1999) presents a technique for identifying the differences
between two graphic programs. BinHunt (Debin et al. 2008) is aimed at identifying
the semantic differences in the binary code between the two programs that can be
used in cases where the program code is not available. BinHunt uses the STP5 theo-
rem proving and symbolic execution to compare the primary blocks. It is applicable
only for minor differences.

Wang et al. (2014) used normalized6 control dependence trees to represent two
versions of the program and improved the traditional metrics-based and graph-based
approaches to propose a combinational approach.

Liu et al. (2006) produced a plagiarism detection tool called Gplag. Plagiarized
codes are often modified for deception, and identifying such codes is possible by
using a suitable and similar code identification tool. This approach represents the
program code as program dependence graphs (PDG) and identifies similar code
based on the sub-graph isomorphism test.

Nguyen (2011) proposed the iDiff tool as a plugin in Eclipse for identifying pro-
gram differences. The iDiff can identify changes in classes and methods, track re-
ordered, relocated, and renamed classes and methods, and detect internal changes in
methods. The iDiff uses JavaModel and ASTParse related to the JDT plugin in order
to parse the project for obtaining all information related to the types and limitations
of methods.

5  Simple Theorem Prover.
6  Code normalization is a semantic-preserving transformation.

1 3

Automated Software Engineering (2024) 31:9	 Page 9 of 50  9

2.3.4 � Summary of program differencing

Table 1 summarizes the above references related to program differencing according
to the type of difference identification (text/ syntax/ semantic) and tool produced.
Some of these tools are related to a particular language, developed for multiple lan-
guages, and not language-dependent. Some of them normalize the code before iden-
tifying the differences and use a limited set of statements for simplification. Most of
the tools use graph or tree structures.

Graph-based methodologies consider both syntax structure and data stream as
abstraction levels, making those suitable bases for identifying similar code on a
semantic level. Sometimes, however, problems, such as code diversity, hinder the
identification of similar codes. High computational complexity in graphs limits
graph size. Some studies have attempted to resolve this problem by forming meta-
nodes and reducing the number of graph nodes (Archambault 2009). A tree, as a
special form of graph, reduces computational complexity. In particular, the use of
AST trees neglects certain basic differences by considering the syntax structure
(Yang 1991; Goto et al. 2013; Falleri et al. 2014; Wang et al. 2011; Neamtiu et al.
2005; Nguyen et al. 2011; Wang et al. 2014). We also use the AST tree as the base
of our change detection algorithm.

Each article examined for this research has certain deficiencies. For example,
some do not thoroughly discuss language statements (Horwitz 1990), exhibit cer-
tain limitations (Linares-Vásquez et al. 2015), or encounter computational problems
as the program grows larger and the number of graph nodes increases (Debin et al.
2008). Some do not capable of tracking the relocated code or matching a single line
of code with multiple lines with the same meaning (Canfora et al. 2009). Others do
not detect the updated code and only detect lines that are either added or deleted
(Myers 1986; Vokolos and Frankl 1998). There are those that require a pre-process-
ing phase to normalize code (Asaduzzaman et al. 2013; Horwitz 1990; Wang et al.
2014). Additionally, most of the programs have high time complexities in the order
of O‌(n3) or O‌(n2). The idea presented in this paper overcomes some of these limita-
tions and its time complexity is O‌‌(n). Table 2 compares the three types of program
differencing (text/ syntax/ semantic).

Textual differencing can be applied to any text file. It indicates detailed changes
such as added or deleted or updated lines. Its line-based view does not respect syn-
tactic boundaries. Thus, the differences often do not sufficiently reflect on the real
meaning of the changes and often are not readable enough, also relocating the code
may be unsupported.

Syntactic differencing is based on grammar and parse trees, therefore it ignores
changes to whitespace, comments, and preprocessor statements. Tree-matching
algorithms are used to identify unchanged parts of the tree (code) and display the
remaining parts as syntactic differences. These algorithms are generally slow and
thus do not scale to large systems. Also, sometimes two completely identical struc-
tures may be in different situations that show different functionalities and are not
semantically the same.

Semantic differencing corresponds to changes in the program functionality and
is not related to programing structure or statements. Normalization methods are

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 10 of 50

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f p
ro

gr
am

 d
iff

er
en

ci
ng

 re
fe

re
nc

es

Re
fe

re
nc

es
Ty

pe
La

ng
ua

ge
Li

m
it

N
or

m
al

iz
e

Re
pr

es
en

ta
tio

n
D

es
cr

ip
tio

n

di
ff

(M
ye

rs
 1

98
6)

Te
xt

In
de

pe
nd

en
t

X
X

Te
xt

A
dd

 a
nd

 d
el

et
e

on
ly

Py
th

ia
 (V

ok
ol

os
 a

nd
 F

ra
nk

l 1
99

8)
Te

xt
C

X
X

Te
xt

A
dd

 a
nd

 d
el

et
e

on
ly

Ld
iff

 (C
an

fo
ra

 e
t a

l.
20

09
)

Te
xt

In
de

pe
nd

en
t

X
X

1:
1

Li
ne

A
dd

, d
el

et
e,

 u
pd

at
e,

 a
nd

 re
lo

ca
te

LH
D

iff
 (A

sa
du

zz
am

an
 e

t a
l.2

01
3)

Te
xt

In
de

pe
nd

en
t

X
√

N
ei

gh
bo

r L
in

es
A

dd
, d

el
et

e,
 u

pd
at

e,
 a

nd
 re

lo
ca

te
Ya

ng
 1

99
1)

Sy
nt

ax
C

X
X

A
ST

A
ST

 a
nd

 sy
nc

hr
on

ou
s p

re
tty

-p
rin

tin
g

M
al

et
ic

 a
nd

 C
ol

la
rd

 2
00

4)
Te

xt
 a

nd
 S

yn
ta

x
C

/C
+

+
 

X
X

Sr
cM

La
H

ig
h

Le
ve

l
A

rc
ha

m
ba

ul
t 2

00
9)

G
ra

ph
In

de
pe

nd
en

t
X

X
G

ra
ph

M
et

a
no

de
FT

M
PA

To
ol

 (
G

ot
o

et
 a

l.
 2

01
3)

Sy
nt

ax
Ja

va
X

X
A

ST
C

ha
ng

eS
cr

ib
e

 (L
in

ar
es

-V
ás

qu
ez

 e
t a

l.
20

15
)

Te
xt

 a
nd

 S
yn

ta
x

Ja
va

JG
it

X
C

od
e

C
ha

ng
e‌‌

N
LP

Im
pa

ct
 A

na
ly

si
s‌

A
dd

 c
om

m
en

ts
 a

dd
, d

el
et

e,
 a

nd
 u

pd
at

e

Sh
en

 e
t a

l.
20

16
)

Sy
nt

ax
Ja

va
X

X
JG

it
Sy

ste
m

 V
er

si
on

 C
on

tro
l

A
dd

 w
hy

 a
nd

 w
ha

t c
om

m
en

ts
LS

D
iff

 (K
im

 a
nd

 D
av

id
 2

00
9)

Sy
nt

ax
Ja

va
X

√
Pr

ed
ic

at
e

G
um

Tr
ee

 (F
al

le
ri

et
 a

l.
20

14
)

Sy
nt

ax
Ja

va
X

X
A

ST
Re

lo
ca

te
Se

gm
en

t
(W

an
g

et
 a

l.
20

11
)

Sy
nt

ax
Ja

va
X

X
A

ST
B

as
ic

 b
lo

ck
 d

et
ec

tio
n

H
or

w
itz

 1
99

0)
Se

m
an

tic
C

√
√

PR
G

b
Sa

fe
 se

t
B

in
kl

ey
 1

99
2)

Se
m

an
tic

In
de

pe
nd

en
t

√
X

PD
G

c
‌‌M

or
e

co
m

pl
et

e
th

an
 (H

or
w

itz
 1

99
0)

a
to

ol
 (N

ea
m

tiu
 e

t a
l.

20
05

)
Se

m
an

tic
C

X
X

A
ST

Se
m

an
tic

-p
re

se
rv

in
g

tra
ns

fo
rm

at
io

ns
JD

iff
 (A

pi
w

at
ta

na
po

ng
 e

t a
l.

20
07

)
Se

m
an

tic
Ja

va
X

X
EC

FG
d

D
iff

er
en

ce
 te

sti
ng

A
JD

iff
er

 (G
ör

g
an

d
Zh

ao
 2

00
9)

Se
m

an
tic

A
sp

ec
tJ

X
X

EC
FG

H
su

19

99
)

Se
m

an
tic

gr
ap

hi
ca

l
G

U
I

X
M

at
ch

in
g

M
at

rix
gr

ap
hi

ca
l p

ro
gr

am
s

B
in

hu
nt

 (D
eb

in
 e

t a
l.

20
08

)
Se

m
an

tic
B

in
ar

y
C

od
e

X
X

C
FG

e a
nd

 C
G

f
Sm

al
l d

iff
er

en
ce

, L
ow

 sp
ee

d
W

an
g

et
 a

l.
20

14
)

Se
m

an
tic

C
X

√
PD

G
 a

nd
 A

ST
A

ug
m

en
te

d
gr

ap
hs

G
Pl

ag
 (L

iu
 e

t a
l.

20
06

)
Se

m
an

tic
C

/C
 +

  +
 , J

av
a

X
X

PD
G

Pl
ag

ia
ris

m
 d

et
ec

tio
n

iD
iff

 (N
gu

ye
n

et
 a

l.
20

11
)

Se
m

an
tic

Ja
va

X
X

Ja
va

M
od

el
Ja

va
M

od
el

, A
ST

Pa
rs

er
 a

ttr
ib

ut
ed

 g
ra

ph
R

ic
hT

es
t (

O
ur

 W
or

k)
Te

xt
 &

 S
yn

ta
x

Ja
va

SW
IF

T
X

A
ST

, J
SO

N
ad

d,
 d

el
et

e,
up

da
te

, a
nd

 re
lo

ca
te

, R
ed

uc
e R

T

1 3

Automated Software Engineering (2024) 31:9	 Page 11 of 50  9

a  So
ur

ce
 C

od
e

M
ar

ku
p

La
ng

ua
ge

b  Pr
og

ra
m

 R
ep

re
se

nt
at

io
n

G
ra

ph
c  Pr

og
ra

m
 D

ep
en

de
nc

e
G

ra
ph

d  Ex
te

nd
ed

 C
on

tro
l F

lo
w

 G
ra

ph
e  C

on
tro

l fl
ow

 G
ra

ph
f  C

on
tro

l G
ra

ph

Ta
bl

e 
1  

(c
on

tin
ue

d)

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 12 of 50

objective of this study is to identify 20% of the tests that can detect 80% of errors
instead of creating an infinite subset of tests that detect 100% of errors.

Different from other safe selective RT methods, this technique limits the number
of selected test cases. Results show that the test suite is not safe Results show that
the test suite is not safe because 20% of the errors were ignored. The restricting
method reduces this problem to a prioritization problem, which chooses 20% of the
higher-priority test cases.

Cibulski presented selection techniques based on natural language analysis and
dynamic programming via the TestRank tool. TestRank takes a Java program with
its test suite as input and requires a pre-processing step, which is considerably time-
consuming. As mentioned above, two fundamental problems arise: (1) the test suite
is unsafe, and (2) the synchronization of the system with the latest version of the
program is considerably time-consuming (up to one day, 24 h).

As another related work, we refer to ChangeScribe (Linares-Vásquez et al. 2015)
and iDiff (Nguyen et al. 2011) tools, which are Eclipse plugins similar to our pro-
ject. These plugins generate comments to explain changes. ChangeScribe only con-
siders the textual differences of the new program from the previous version and gen-
erates comments that explain changes. ChangeScribe, however, cannot be used for
RTs and is only applicable for Java projects existing on GitHub because it does not
have a version manager. The iDiff tool receives two program versions at a time and
determines the modified, deleted, or added classes and methods. It does not provide,
however, a complete environment that contains all versions created throughout the
software evolution process. Also, Eclipse has been considered in Santosh Singh and
Kumar (2018) for learning techniques selection.

4 � Methodology

In the TDD method, any minor changes result in RT. The problem, therefore, is the
growing number of tests and the necessity of re-executing these tests. Finding a
small subset of the test suite that can be utilized to scrutinize the software with high
confidence is thus important.

4.1 � Add a new phase to three phase TDD cycle to reduce the test re‑execution
time

As pointed out in Biswas et al. (2011), reducing the time of test execution differs
among various software development methodologies, so a TDD-specific approach
should be determined to choose test cases that must be re-executed in each iteration
of the TDD process.

In pure TDD, the part of the code that each unit test belongs to is precisely deter-
mined. The code is developed after writing the test; hence, there is a close relation-
ship between the unit test and the modified code. In every step of the software devel-
opment process, the modified parts of the code are determined, and only tests that
lead to these parts are chosen for re-execution.

1 3

Automated Software Engineering (2024) 31:9	 Page 13 of 50  9

usually used in order to remove code variations. Module signature modification is
considered as a semantic difference.

3 � Related work

First, previous works on the TDD are examined and different approaches are con-
sidered. The various methods that have been suggested are studied to reduce the
RT execution time and to propose a suitable method to reduce this time in the TDD
method.

As an instance, Continuous Test-Driven Development (CTDD) recommends
background testing to reduce this time. CTDD is a recent enhancement of the TDD
practice and combines the TDD with continuous testing practice. During the execu-
tion of test cases, the developers have to stop the system to execute the test physi-
cally, thus increasing the program development time. By using the continuous com-
pile feature in the new IDEs, e.g., Eclipse or Visual Studio that keep the source code
in the compiled mode, this goal of reducing execution time will be realized (Madey-
ski and Marcin 2013).

Madeyski and Kawalerowicz (2018) evaluated the CTDD practice via an empiri-
cal study in a real industrial software development project that employs Microsoft.
NET. If the developers that use TDD adopt CTDD, it can run slightly faster, thereby
leading to slight improvements in coding. Although the idea is to write a code and
execute the test in parallel, it does not change the number of test cases and the num-
ber of times they run; hence, it does not reduce the amount of load and processing
costs. In terms of reducing the number of test cases, our proposed method is thus
preferred.

In another instance, Cibulski and Amiram (2011) performed the RT in TDD. A
small subset of test suites for each small local change is automatically found. The

Table 2   Comparison of the three types of program differencing

Type

Factor Textual Syntactic Semantic

Speed Fast Not Fast Not Fast
Accuracy High Medium Medium
Readability Low High High
Scalability High Low Medium
Flexibility High Language dependent Language dependent
Abstraction Level Line-based Statement-based Module-based (function-

based/class-based)
Regardless of worthless

details
Low High High (ignore refinements)

Modification Level Add, delete, (update) Add, delete, update,
relocate

Transformation

Representation Line, Text AST tree Graph, Tree

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 14 of 50

Figure 1 illustrates the TDD tasks that are comprised of three steps, which cor-
respond to the three phases of the TDD cycle. In the first step, the new test is written
and executed until an error occurs. In the second, the code is written to pass the test.
In the third, the refactoring phase occurs.

Figure 2 illustrates the tasks in our improved TDD cycle that are comprised of
four steps. The first and second steps are similar to the first two steps illustrated
in Fig. 1. In these two steps, however, only “the new test” is executed instead of
executing “all test cases”. The third step is a new phase added to this figure. In this
step, tests that require re-execution are selected and executed using our selection
algorithm. The last step in both figures is refactoring. In the refactoring phase of
Fig. 2, only tests that are related to the modifications are selected and executed. In
the improved TDD, test case execution is limited in all of the given steps, as illus-
trated in the flowchart in Fig. 2.

4.2 � Segmentation

First of all, we divide the program into several code blocks based on the Java pro-
gramming language grammar. Program segmentation has three benefits:

1.	 The program is divided into small independent components called blocks.
2.	 Each block has a fixed unique name, so it can be traced. Line tracking is not

applicable. Because the program changes and as a result the line number also
changes.

Fig. 1   TDD activities (Madeyski and Marcin 2013)

Fig. 2   Our Improved TDD activities to reduce test cases

1 3

Automated Software Engineering (2024) 31:9	 Page 15 of 50  9

3.	 It is possible to detect changes in the program by detecting changes inside the
block. Also, the location of changes in the program is specified precisely.

We desire two levels of granularity for these code blocks: (a) coarse-grained level
for whole classes and methods and (b) fine-grained level for language control flow
statements. However, structured block information is stored in a database.

By segmenting the program code into blocks and assigning a name to each block,
code tractability property is created, so any movement or update in the block content
will therefore modify the program code in that block. This determines the location of
changes and makes block relocation traceable.

4.3 � Change detection algorithm

We initially decided to compare the block content textually. Textual-differencing
approaches are limited to a line-level granularity. We omitted extra spaces between
words and lines, as well as entire comments, then we compare this pre-processed text
of each block with its previous version to detect if it has changed. Later, however, we
also decide to use an abstract syntax tree to compare the contents of each block. By
applying this structure, minor changes can be ignored too. So, we use the combination
of text and syntax differencing method. The difference between the two versions of a
program is determined by identifying the modified code blocks based on Java grammar
as a combination of textual and syntactical difference methods.

Although semantic and behavioral modifications are at a higher level and indicate
real changes, the focus of this study is on textual and syntactical modifications. The
reason behind this choice is that we have to find all the tests that require re-execution
after code modifications. In the case of omitting tests that check the changes in appear-
ance (e.g., change in the name of a variable or method), the set of test cases is not
considered safe. Hence, although the modifications are of the refactoring type, the tests
should be re-executed to ensure accuracy. Focusing on the textual and syntactical levels
may ensure the safety and reliability of the RT.

4.4 � Relationship between test case and code blocks

After adding any new test case that has encountered errors, new code blocks are cre-
ated, or existing code blocks are modified. These modifications are implemented to
pass the last test; therefore, the last test is related to the modified code block(s). A con-
nection must therefore be automatically established between the modified code blocks
and the last test case to be used by the selection algorithm.

Given project P, includes a set of code blocks C and a set of test cases T. To pass the
new test case t, some of the code blocks M ⊂ C will be modified (to M′ ⊂ C′) and new
code blocks N may be created. So the new version of project P′ consists of C′ and T′
such that:

(1)C
� = (C − M) ∪ (M� ∪ N)

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 16 of 50

We define Link relation as follow:

4.5 � Test case selection

In the TDD method, the code is written or modified only because of test failure.
In our proposed concept, however, the failed test is connected with modified code
blocks. This task is iteratively executed, and the connections between the code
blocks and related unit tests are established and tracked. In order to run the RT, the
test cases connected to modified or newly added code blocks are chosen as candidate
unit tests for execution.

As a result, the iterative execution of test cases, which are not connected to the
modified parts of the code, is avoided, and the number of selected test cases is
reduced.

After specifying the ‘Start’ and ‘End’ versions of the program for RT, the latest
commit7s and new test cases are identified in this interval. All code blocks related to
the new tests are specified, and the tests relevant to these code blocks are introduced
as candidate tests. Figure 3 illustrates our improved test selection algorithm. At the
first, RichTest identifies the involved commits from the start version to the end ver-
sion. Then it extracts all the modified code blocks. In the next step, it extracts all the
related test blocks. After all, it adds the recently add test block to the list and shows
the final complete list of candidate test cases.

As shown in Fig. 3 the RichTest built-in version manager lets the custom start
and end version, not necessarily consecutive version, although it is set to the last two
versions by default.

Our test case selection algorithm is presented using the following example.

(2)T
� = T ∪ {t}

(3)Link ∶ C
� × T

�

(4)∀c ∈ (M� ∪ N), Link(c, t)

Fig. 3   improved test case selection process

7  Each copy of the program a developer saves. It is not necessarily a new issue/version of the program.

1 3

Automated Software Engineering (2024) 31:9	 Page 17 of 50  9

4.5.1 � Test case selection example

Suppose that test cases Ta001–Ta010 are written in sequence. In order to pass
each test, code blocks Ca001–Ca007 are added or modified, as listed in Table 3.

Ta005 and Ta008 pass immediately without changing the code, but the rest of
the test cases cause changes in some code blocks and a new commit is generated.
Commits c1-c8 shows all the saved program copies.

A question then arises: from the commit related to Ta008, i.e., c6–c8, which
test cases are selected for the RT?

It can be observed that Ta008–Ta010 are new tests in this interval that are
related to Ca001, Ca006, and Ca007 code blocks, respectively. These code blocks
are connected to Ta001, Ta002, Ta003, Ta009, and Ta010 test blocks (as shown
in Table 4) that are candidates in the RT.

Although T8 is recently added, its re-execution is unnecessary because this test
previously passed without making any code modifications. To ensure safety, how-
ever, this test is still considered.

4.6 � RichTest

RichTest plugin (Rich Software Testing) is based on the Eclipse integrated devel-
opment environment and is written in Eclipse version 4.8, which is recommended

Table 3   Relationship of test and
code in Example 1

Commit Test block Code block(s)

c1 Ta001 Ca001
c2 Ta002 Ca001
c3 Ta003 Ca001, Ca002
c4 Ta004 Ca003
c4 Ta005 –
c5 Ta006 Ca004
c6 Ta007 Ca003, Ca005
c6 Ta008 –
c7 Ta009 Ca001, Ca006
c8 Ta010 Ca001, Ca007

Table 4   Modified code blocks
in Example 1

Code block Test block(s)

Ca001 [Ta001, Ta002, Ta003, Ta009, Ta010]
Ca006 [Ta009]
Ca007 [Ta010]

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 18 of 50

for running RichTest. This tool consists of five main components, which are (1)
Version Control Manager, (2) Code Segmentation, (3) Code Change Detection,
(4) Connection Creation between Code and Test Blocks, and finally, (5) Test Case
Selection as shown in Fig. 4.

4.7 � RichTest algorithm

The algorithms of each of the five modules shown in Fig. 4 are presented sepa-
rately in Algorithm 1 to Algorithm 5. Algorithms 1 to 4 are executed sequentially
after saving the program, while Algorithm 5 is activated by running the regres-
sion test wizard.
Algorithm 1   Version Manager (Trigger: Click the Save button in the Eclipse
IDE)

1- BBeeggiinn
2- SSttaattiicc VersionNumber= 1.0.0
3- Display the recommended VersionNumber for the program as a three-part number.
4- Allow the user to change the VersionNumber.
5- Store the program specifica�ons in the database.
6- Allow the user to select any VersionNumber of project to view its specifica�on.
7- EEnndd..

Fig. 4   The main components of
RichTest

1 3

Automated Software Engineering (2024) 31:9	 Page 19 of 50  9

Algorithm 2   Code Segmentation (Trigger: Click the Save button in the Eclipse
IDE/CTRL+1)

1- BBeeggiinn
2- SSttaattiicc TBlockname=Ta001
3- SSttaattiicc CBlockname=Ca001
4- ffoorreeaacchh file f in the project
5- Search the file f to find ““@@TTeesstt”” annota�on.
6- Consider each test case as a test block.
7- Assign a unique name to each test block according to the test naming guidelines.
8- Insert block informa�on into the database.
9- Insert “//Start Of Test Block: + TBlockName” comment at the beginning of each test block.
10- Insert “//End Of Test Block: + TBlockName” comment at the end of each test block.
11- IIff (BlockSelec�on==”Automa�c”)
12- ffoorreeaacchh file iinn the project
13- Create the AST tree according to Java programming language grammar (exclude test cases).
14- Convert each node to JSON format
15- IIff (CodeGranularity==” FineGrained”)
16- Select every new Statement as a block
17- IIff (CodeGranularity==”CoarseGrained”)
18- Select every new Class and Method as a block
19- Assign a unique name to each new block according to the code naming guidelines.
20- Insert block informa�on into the database.
21- Insert “//Start Of Code Block: + CBlockName” comment at the beginning of each code block.
22- Insert “//End Of Code Block: + CBlockName” comment at the end of each code block.
23- IIff (BlockSelec�on==”Manual”)
24- wwhhiillee CTRL+1 bu�ons clicked by user ddoo
25- Consider the sec�on selected by the user as a new code block.
26- Assign a unique name to the new code block according to the code naming guidelines.
27- Insert block informa�on into the datatbase
28- Insert “//Start Of Code Block: + CBlockName” comment at the beginning of the code block.
29- Insert “//End Of Code Block: + CBlockName” comment at the end of the code block.
30- Specify Child and Parent nodes according to the tree structure
31- Store Parent informa�on in the database.
32- EEnndd..

Algorithm 3   Code Change Detection (Trigger: Click the Save button in the
Eclipse IDE)

1- BBeeggiinn
2- C= Ǿ //All AST tree Nodes
3- N= Ǿ //New Nodes
4- M= Ǿ //Modified Nodes
5- T= List of the newly added test blocks.
6- ffoorreeaacchh file f ddoo
7- Construct AST tree of file f (considering CodeGranularity)
8- Compare the AST tree of this version of the program with the previous version syntac�cally (exclude test blocks)
9- ffoorreeaacchh node n iinn AST
10- iiff n iiss new
11- N=N∪ {n}
12- eellssee
13- C= C∪ {n}
14- ffoorreeaacchh node n iinn C ddoo
16- IIff (JSON(n) != JSON (n’)) // Compare the JSON content of two versions n, n’(previous) textually
17- M=M∪ {n}
18- A�er iden�fica�on of the new (N) and modified (M) blocks, store block specifica�ons in the database.
19- EEnndd..

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 20 of 50

Algorithm 4   Connection Creation (between Test Case and Code Blocks) (Trig-
ger: Click the Save button in the Eclipse IDE)

1- BBeeggiinn
2- //use T, M , N List produced from Algorithm 3
3- ffoorreeaacchh newly added test case t∈T ddoo
4- ffoorreeaacchh changed code block c∈(N∪M) ddoo
5- Link code block c to test block t.
6- EEnndd..

Algorithm 5   Test Case Selection (Trigger: Regression Test Wizard available
through RichTest Plugin)

1- BBeeggiinn
2- Input the two version numbers of the program as Start and End.
3- C= All the commit from Start to End version (Extract from the database.)
4- T= All the test case that has been inserted from the Start version to the End version
5- B= { } // affected code blocks
6- ffoorreeaacchh commit c∈ C ddoo
7- MC= List of all the modified code blocks.
8- Pc= List of all the Parent of each selected modified block exis�ng in M. //M is available from Algorithm 3
9- Bc= Mc∪ Pc
10- B = B ∪ Bc
11- ffoorreeaacchh modified code block b∈ B ddoo
12- Tb =List of all the test cases that are linked to code block b
13- T= T ∪ Tb
14- Output T as candidate test cases.
15- EEnndd..

4.8 � RichTest plugin overview

By installing8 RichTest on Eclipse, the developer will be able to develop TDD pro-
jects faster and easier as fewer test cases are selected and executed in the develop-
ment phase. It also offers several widgets,9 such as Block Information View, Commit
View, Version Manager View, Regression Test View, and Compare View to facili-
tate the use of RichTest which is explained below.

BlockInfoView: It is possible to display the Block List and the relationship
between code blocks and test blocks, as well as manage the relationship manually.

CommitView: It is possible to show all block creations and modifications and
also filter all versions and commits of each block.

VerssionManagerView: It is possible to set a new version for the projects.
RegressinTestView: It is possible to automatically select candidate test cases,

run them to show the time and results (Fail/Pass), and export them to an Excel file
format.

8  Help → Install New Software, and also should set Window → Preferences as Dependency folder
address.
9  Available from Window → Show View → Other → RichTest.

1 3

Automated Software Engineering (2024) 31:9	 Page 21 of 50  9

CompareView: It is possible to compare two different commits of each block.
The code block will be shown in two situations (before/ after) and the differences
will be colored and presented on CompareResultsView.

Preferences10 such as Automatic/Manual Block Selection, Code Granularity
(Coarse/Fine), and Enable/Disable TDD Mode. Related figures are attached.

Figure 5 is a snapshot of using this plugin as well as its widgets. More additional
images are provided in Appendix A.

4.9 � RichTest plugin working process

RichTest segments the source code and test code into code blocks and test blocks,
respectively, during the project development process. It also identifies modified code
blocks in each commit, detects the relationship between test blocks and code blocks,
and stores them in a database. The main purpose of RichTest is to find candidate test
cases for the RT process that are made possible by the connections already made
between test blocks and code blocks.

4.9.1 � Automatic block segmentation

The segmentation process can be implemented both manually and automatically. In
the automatic mode, whenever a file is stored, the plugin segments the file contents
into blocks, adds new blocks, and updates modified ones. There are two types of
blocks: test block and code block.

1.	 Test block is in fact a complete test case. It is considered as a block only because
of its similarity to the code block.

2.	 The code block is determined based on the structure of the programming language
instructions. Each block represents a node in AST.11

Automatic test block segmentation detects the “@Test” annotation to identify
each test block, and automatic code block segmentation is based on the AST. The
code block granularity degree can be chosen from two levels: (a) coarse-grained
level for classes and methods and (b) fine-grained level for language control flow
statements (SWIFT instructions12). The first level produces larger and fewer blocks,
and the second level produces smaller and more blocks, especially in large projects.
The automatic code block segmentation activity diagram is shown in Fig. 6.

During segmentation, a unique name is automatically assigned to each new block.
The block nomination method varies depending on whether the block is a code
block or a test block. The names of code and test blocks follow the LNC and LNT
regular expressions, respectively.

10  Available from Window → Preferences → RichTest.
11  Abstract Syntax Tree.
12  sw itch, while, if, for, foreach, and try.

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 22 of 50

4.9.2 � Manual block segmentation

Segmentation can be manually performed by the developer. Using RichTest, any
valid arbitrary part of the code could be specified as a block by simultaneously
selecting the desired part of the code and pressing CTRL + 1 Keys. The manual code
segmentation activity diagram is shown in Fig. 7.

(5)LNC = ‘C’ lddd

(6)LNT = ‘T’ lddd

(7)l ∶∶= a|b|c|…|z|A|B|C|… |Z

(8)d ∶∶= 0|1|2|…|9

Fig. 5   Using the RichTest plugin in Eclipse for the sort program

Fig. 6   Automatic code block segmentation

1 3

Automated Software Engineering (2024) 31:9	 Page 23 of 50  9

4.9.3 � Difference detection algorithm

The RichTest tool transforms each code block into a JSON array. In order to iden-
tify the differences in each code block, the elements of the JSON array are com-
pared with those of the previous state. If there is a difference among the array ele-
ments, then this block is recognized as a modified block, and the block contents and
properties are updated in the database. The JSON is a structured textual format for
holding the information that ignores ineffective textual modifications (e.g., adding
comments).

The primitive version of the plugin has no programming language limitation and
is capable of supporting all languages supported by Eclipse because it uses a text-
based difference algorithm. The new version of the plugin, however, is only applica-
ble to the Java programming language because it detects differences using the AST
based on Java grammar and stores the syntax information of blocks.

In the new version, the comparison method is a combination of both textual and
syntactic differencing methods. Segmentation is performed based on Java syntax,
and the block content is stored in the AST model. The data values ​​are compared
based on their textual contents.

As emphasized in the literature review, the use of each of the existing methods to
find textual and structural differences has advantages and limitations. In this study,
these two methods are combined to exploit the following advantages: precision and
speed in textual difference, code relocation, and ignoring insignificant modifications
in a syntactical structure. The textual difference related to each small modification is
considered in the AST to ensure that no related test is ignored in the test case selec-
tion process.

4.9.4 � Connecting code blocks to test blocks

Each code block can be connected to one (or more) test block(s). In the manual
mode, the block relationships can be manually managed using the “Block Informa-
tion View.” In automatic mode, the last test block added is automatically connected
to all modified code blocks. In this mode, however, it remains possible to manually
manage block connections.

Figure 8 shows an example of the relationship between test and code blocks. A code
block may be associated with none, one, or several test blocks. As shown in Fig. 8 the
Ta001 test block is first written, then the Ca001 code block is generated as a result of

Fig. 7   Manual code block segmentation

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 24 of 50

the Ta001 test failure. Next, the Ta002 test block is written; subsequently, there is a
change in block code Ca001. To pass the Ta003 test, block code Ca001 is modified
again The Ta004 test block generates the Ca002 code block. The Ca003 code block is
created after the Ta005 test block failure.

Inside an existing function, a new loop statement may be added that can be defined
as a new code block. In this case, the internal block is a part of the external block, and
the test connection to the internal block also extends to the external block. The Ta006
test block is, directly and indirectly, related to Ca004 code block and external Ca003
code block, respectively.

After each newly added test fails, new code block(s) are created, or existing code
block(s) are modified. These changes are necessary to pass the last test. Semantically,
the given test is relevant to these modified code block(s). A link is therefore created
from each of the modified code blocks to the last test; this connection is stored in the
database. Figure 9 shows how the connection between code blocks and test blocks is
established.

4.9.5 � Regression test wizard

“Regression Test Wizard” produces a list of candidate test cases between the
“Start Version” and “End Version” of the program. The wizard also assigns a
name for the list. The last and previous versions are considered as default for
the End and Start versions. After specifying the desired Start and End versions,
recently added test cases are highlighted, and all test cases associated with the
modified code blocks are also nominated. Only candidate test cases are shown.
These can be saved and run, as shown in Fig. 10.

Fig. 8   Example of n:n relationship between test blocks and code blocks

1 3

Automated Software Engineering (2024) 31:9	 Page 25 of 50  9

After the execution of test cases, successfully passed and failed test cases are
determined. The passed tests are identified in green with a “success” result tag,
whereas the failed tests are identified in red with a “fail” result tag. The runtime
information of each test case is in milliseconds. Candidate test case information
can also be viewed and executed through “Regression Test View.”

4.10 � Empirical evaluation

For the preliminary evaluation, RichTest is employed in three simple examples:
exponentiation (power), array selection sorting, and linked list that calculates an
integer number raised to the power of a positive integer, sorts array elements in
ascending order, and creates and modifies linked lists, respectively. These three
programs were written step by step according to TDD kata (Wolfgang 2018)
when the RichTest plugin had not yet been implemented by one of the authors.
Exactly the same process was re-implemented with RichTest after implementa-
tion by another authors.

"Re-implementation" is the same process as implementation, except that it is done
in the presence of the RichTest plugin to automatically perform some tasks such as
code segmentation, difference detection, relation creation, and test case selection.

Since our goal is to measure the effectiveness of the tool, we kept all the condi-
tions constantly except the implementation environment. For this purpose, we added
the same previous test cases one by one and wrote the same previous codes utilizing
RichTest. This plugin reduces the number of execution of test cases by selecting
some of the test cases. Four large projects are also implemented with and without
RichTest tool. Full details are presented in subsequent sections.

4.11 � Small program development using RichTest

The three small programs—Power, selectionSort, and linkedList—are implemented
in the Java programming language using the TDD method twice, with and without
utilizing RichTest. Power, selectionSort, and linkedList programs were implemented
by five, ten, and nineteen test cases respectively. The two first implementations took
five steps, so they have five versions. The last one was implemented in ten steps, so
it has ten versions. The implementation results are summarized in Table 5.

It is predictable that the total number of tests performed in the TDD method is
more than our method. Because we select some of the test cases, while traditional

Fig. 9   Relationship between modified code blocks and new test block

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 26 of 50

TDD, executes all of them. But the difference between these two methods is huge.
It is trivial that as the program grows larger, the number of commits also increases;
consequently, the advantages of RichTest become more evident. The RichTest
plugin successfully reduces the selected test cases by reducing the number of test
cases and the number of times each test is executed.

4.12 � Large project development using RichTest

In order to evaluate RichTest with large and real programs and identify projects
based on the TDD in GitHub, a survey is conducted using a new program. Similar
to the work of Borle et al. (2018), this program searches GitHub for projects that
contain created test files before project development or at least one week thereafter.

Fig. 10   RichTest test selection
process sequence diagram

Table 5   Comparison of number of test executions in TDD and RichTest (three simple programs)

Program

Power selectionSort linkedListFactor

TDD RichTest TDD RichTest TDD RichTest

Total number of executions (sum) 61 6 68 9 387 25

Average= sum/v 12.2 1.25 13.6 1.8 38.7 2.5

Number of tests (n) 5 10 19

Number of versions(v) 5 5 10

1 3

Automated Software Engineering (2024) 31:9	 Page 27 of 50  9

4.12.1 � TDD projects on GitHub

To compare the plain TDD method with the suggested improved technique, some
real TDD Java projects are selected from GitHub. Although GitHub provides a code
repository for projects, it is not possible to determine the development process of
projects. On the other hand, there is no precise definition for TDD projects. It is also
not possible to determine with certainty whether the project follows the TDD pro-
cess using a project repository. Borle et al. (2018) formulated a method for detect-
ing TDD projects on GitHub; however, the names of discovered projects were not
disclosed. The authors acknowledge the uncertainty of results with respect to the
foregoing problems and attempt to construct a range of code repositories that shows
the extent that the TDD process is employed in their projects.

We implemented a Java script program that includes ten asynchronous and nor-
mal functions to crawl GitHub repository. First, it creates an asynchronous iterator
over all public repositories of GitHub that have Java listed as one of their languages.
Then it filters the returned values, limiting them to repositories that have all the fol-
lowing specifications:

1. Primary Programming Language = ‘Java’
Size > minSize
No. of Commit > minNoCommit
No. of TestFile > 0
(TestCreateDate < CodeCreateDate) or ((TestCreateDate < 30th CommitDate)

and (TestCreateDate < CodeCreateDate + 1 week))
This program is employed to find the TDD projects on GitHub. Within one hour,

89 projects with the above-mentioned properties are identified. Six of these pro-
jects, which have a suitable number of lines and commits that could be executed in
Eclipse, are chosen for evaluating the RichTest tool. These projects are ScribeJava,
Jasmin-Maven Plugin, Metric-Core, Jedis, Commons-Math, and Junit-dataprovider.
Table 6 summarizes the properties of these projects.

Scribejava is a simple OAuth library for Java. Jasmine-maven plugin is a Maven
plugin for the JavaScript testing framework, Jasmine. The Metric-core is the central
library for Metrics that provides basic functionality. Jedis is a client library in Java
for Redis. It is driven by a Keystore-based data structure for persistent data and can
be used as a database, cache, message broker, etc. Commons-Lang is a package of
Java utility classes for the classes that are in java.lang’s hierarchy, or are considered
to be so standard as to justify existence in java.lang. Commons-Math is a library
of lightweight, self-contained mathematics and statistics components addressing the
most common problems not available in the Java programming language or Com-
mons-Lang. Junit-dataprovider is a TestNG like dataprovider runner for JUnit with
many additional features.

It should be mentioned that the programs selected as TDD projects are not neces-
sarily TDD. These open-source projects, however, have basic TDD specifications
with test files besides the code files. Their evolution process can be accessed, and
hence, they can be re-implemented as TDD projects.

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 28 of 50

4.12.2 � Re‑implementing GitHub projects

After finding the appropriate repository, we re-implement each project, step by step.
For each repository, we first create an empty project and transfer the first commit of
the repository to this project. Then we select the "Save" button. The RichTest per-
forms segmentation and adds start and end comments and inserts block information
in the related database. This is the first version of the project.

In the next steps, we have to complete the project incrementally according to the
main branch and apply the changes in each commit. We apply test files changes and
then we apply code files changes. Then we select the "Save" button again. From
the second version onwards, not only automatic block segmentation but also block
relationship creation is done and the related information is recorded in database. It
is important that in each commit the changes related to the tests are applied first and
then the changes related to the code are applied so that the connection between the
test cases and the modified code blocks is correctly recognized and recorded. At last,
we run the RichTest Regression Test Wizard to select related test cases. Then we
store the number of RichTest selected test cases as well as the total number of test
cases in two separate table to calculate the total number of the executed test case in
each method.

We perform this process for all versions of all projects. The number of versions in
each project is extremely high. As a result, it is relatively time-consuming to repeat
the process for all versions. Only 100 versions are therefore considered in the first
project, and overall, fewer versions are considered in other projects (29, 28, and 15
versions were re-implemented for projects Jasmin-Maven Plugin, Metric-Core, and
Jedis, respectively).

Selected projects are not originally written with our plugin; hence, the first
version of some projects that have more than one test case, was re-implemented

Table 6   Properties of selected
GitHub Projects

a https://​github.​com/​scrib​ejava/​scrib​ejava
b https://​github.​com/​searls/​jasmi​ne-​maven-​plugin
c https://​github.​com/​avaje-​metri​cs/​metri​cs
d https://​github.​com/​xetor​thio/​jedis
e https://​github.​com/​apache/​commo​ns-​lang
f https://​github.​com/​apache/​commo​ns-​math
g https://​github.​com/​TNG/​junit-​datap​rovid​er

Project name LOC Number of
versions (v)

Number of
tests (n)

ScribeJavaa 10,668 1134 135
Jasmin-Maven Pluginb 3815 635 103
Metric-Corec 6734 240 54
Jedisd 30,786 1586 592
Commons-Lange 88,775 6954 3949
Commons-Mathf 260,760 7010 3073
Junit-dataproviderg 22,544 586 762

https://github.com/scribejava/scribejava
https://github.com/searls/jasmine-maven-plugin
https://github.com/avaje-metrics/metrics
https://github.com/xetorthio/jedis
https://github.com/apache/commons-lang
https://github.com/apache/commons-math
https://github.com/TNG/junit-dataprovider

1 3

Automated Software Engineering (2024) 31:9	 Page 29 of 50  9

manually to establish the connection between code blocks and test blocks. Block
segmentation, however, is generally automatically implemented.

Table 7 summarizes the number of versions considered in each project and the
number of lines of code (LOC) in the first and last considered versions, as well as
the number of test cases in the first and last desired version.

After each modification, the new version is stored, and the Regression Test Wiz-
ard is executed. Candidate test cases that are relevant to the modified code blocks
are provided by the plugin. The number of candidate test cases is thereafter consid-
ered to calculate the number of times the test cases are executed.

Table 8 lists and compares the number of candidate test cases executed in TDD
and RichTest plugin for these four selected open-source projects on GitHub. The
result indicates that the use of RichTest plugin significantly reduces the number of
test case executions by minimizing the number of selected test cases at runtime.

As can be seen in Table 8, the two columns TDD and RichTest have significant
differences in all projects. This difference is greater for the first project (ScribeJava).
We re-implemented the first project up to the 100th version. As to the other projects,
a smaller number of versions were re-implemented. So, the difference between the
number of times of test executions of TDD and RichTest in ScribeJava is consider-
ably larger compared to the other projects. This difference is due to the fact that the
number of versions in this project is much higher than the others and RichTest abil-
ity is more evident in the high number of versions.

To evaluate the improved method, three small programs and four large open-
source projects on GitHub are implemented in RichTest. The number of test case
executions in the main TDD method and improved method are thereafter calcu-
lated and compared. As illustrated in Fig. 11 (obtained from Table 5 (page 16)
and Table 8), the RichTest plugin (box crosshatched with orange and diagonal
lines) significantly reduces the number of test case executions by reducing the
number of selected test cases at runtime. This reduction would be more signifi-
cant in large projects with a larger number of test cases (ScribeJava is an evident
example).

Table 7   Number of considered
versions for four open-source
projects on GitHub

a Number of test cases in first version
b Number of test cases in our last desired version

Project ScribeJava Jasmin-
Maven
Plugin

Metric-Core Jedis

First LOC 1464 111 3027 220
Last LOC 2266 545 4067 830
Number of

desired ver-
sions (v)

100 29 28 15

t1a 51 4 4 10
t2b 81 13 4 93

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 30 of 50

In Fig. 12, the total number of test cases is divided by the number of versions
to determine the average number of test cases per iteration. As shown in this fig-
ure, in RichTest, the average number is small in all cases but varies according to
the number of test cases in the TDD. This figure confirms that the average num-
ber of candidate test cases in the improved method is small and is not related to
the number of test cases.

The desired versions of ScribeJava are larger compared to the other projects. As
illustrated in Fig. 13, the difference in the number of test execution times between
the two methods (TDD and RichTest) in this project is more significant. This indi-
cates that the advantages of this approach are more evident in large projects that
have a longer production process and when the number of test cases is higher.

Figure 13 illustrates that the number of times that the test runs in RichTest
(orange dashed line) completely overlaps with the number of test cases (black dotted
line labeled as “n”). The number of times the test runs in the TDD (blue line), how-
ever, significantly differs from the number of test cases.

Table 8   Comparison of number of executed test cases in TDD and RichTest for four projects on GitHub

Project
Factor

ScribeJava Jasmin-Maven Plugin Metric-Core Jedis

TDD RichTest TDD RichTest TDD RichTest TDD RichTest

Total number of executions (sum) 6056 173 296 54 112 20 730 116

Average= sum/v 60.56 1.73 10.21 1.86 4 0.71 48.97 7.73

Number of test cases (n) (51–81)† (4–13) (4–4) (10–93)

Number of versions (v) 100 29 28 15

a Format (m−n) indicates that the start version of project has m test cases and the end version has n ones.

Fig. 11   Total number of test case executions in TDD vs RichTest

1 3

Automated Software Engineering (2024) 31:9	 Page 31 of 50  9

4.13 � Evaluation results

Since some TDD developers’ only re-run test cases related to the new class or the
new unit, maybe this question arises why we didn’t compare our work with it. So
we decided to resume our work and compare our approach with such a simpler TDD
we called STDD. Therefore considering that there is no standard dataset or projects
to compare our method with others’ methods, for the baseline we desired two meth-
ods, pure TDD and STDD. We did these reviews for five TDD projects on GitHub.
The results were recorded in separate tables. The summation of run test cases was
calculated. The number of run test cases in TDD, STDD, and RichTest for five pro-
jects on GitHub are represented in Table 9. Although the STDD works much better
than TDD, our method still performs better than the STDD. Selected [%] columns
(5th columns) showing the percentage of selected test case (RichTest) in the ratio

Fig. 12   Average of test case execution for each iteration in TDD vs RichTest

Fig. 13   Comparison between TDD and RichTest with n 

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 32 of 50

of retest all (TDD). As can be seen it is on average 5.4%, minimum 3.5% and maxi-
mum 7% of retest all.

Figure 14 compares the total number of run test cases in three methods, TDD
(blue box), STDD (green box), and RichTest (orange dashed box). As shown, Rich-
Test conquers STDD as well as TDD. The logarithmic vertical axis represents that
the number of run test cases has improved more than tenfold.

Due to the reduction in the number of run test cases in RichTest, the test execu-
tion time will also be reduced in this tool. But in order to accurately calculate the RT
time for each project, it is necessary to calculate the overhead time due to the use of
this tool and consider it in the calculation of the RT time.

Therefore, we made changes in the RichTest so that all the times related to doing
the general tasks, segmentation, and creating connections between code and test
blocks are calculated and stored in the project database. For four projects, we calcu-
lated and recorded the overhead time in RichTest, then we added these time to the
RT time and compared the result with the RT time in the TDD and STDD methods.
The final results are presented in Table 10.

The spent time in TDD, STDD, and RichTest for five Projects on GitHub are
represented in Table 10. Time [%] columns (8th columns) is showing the percentage
of RichTest time in the ratio of retest all (TDD). As can be seen, the average time of
RichTest compared to retest all is on average 6.8%, minimum 3.9% and maximum
7.8%. The logarithmic vertical axis in Fig. 15 represents that the time has improved
tenfold.

We also compared RichTest RT time (including overhead time) with STDD. It
was found that they have slight differences with each other. If there are a few test
cases written for each class, the number of selected test cases in both methods is

Table 9   Comparison of the number of Run Test Cases in TDD, STDD, and RichTest for Five Projects on
GitHub

Project TDD STDD RichTest Selected (%) Number of test cases Number of versions

ScribeJava 4485 257 157 3.5 (51–66) 69
Jedis 5432 1106 382 7.0 (10–136) 53
Commons-Lang 2766 418 186 6.7 (3–141) 23
Commons-Math 10106 2061 501 5.0 (9–226) 70
Junit-dataprovider 12312 4437 750 6.1 (1–240) 69
Average 7020 2069 395 5.6 (15–162) 57

Fig. 14   Comparison between run test cases in TDD, STDD, and RichTest for five GitHub projects repre-
sented in Table 9

1 3

Automated Software Engineering (2024) 31:9	 Page 33 of 50  9

almost the same and as a result, STDD is slightly faster than RichTest. But if there
are a lot of test cases, our tool selects only the related test cases and will perform
better despite the overhead time. Also, results show that RichTest is suitable for
large projects. Because in the early versions, the number of selected test cases and
RT time does not differ much.

Coverage information is shown in Table 11, Figs. 16, and 17. We assumed TDD
code block coverage to be 100% and compared it to STDD and RichTest. Also, we
defined the modified code block coverage percentage criterion as the percentage of
the selected test cases related to the modified code blocks. RichTest reached 100%
coverage of the modified code block and STDD selected on average 61.67% of
related test cases. Indirect test cases were not selected in STDD and STDD coverage
is lower than RichTest; So RichTest is safer than STDD. TDD exceeded the over-test
and we considered it 100% in Fig. 17.

4.14 � Discussion

To compare our work with other similar plugins, we first decided to compare our
work with the plugins listed in Table 1. So, we filtered Java plugins, which were
eight, but we found that only JDiff (Apiwattanapong et al. 2007) used the program
differencing for the regression testing, which lacked criteria comparable to the crite-
ria of our work and the focus of the article is on finding the optimal modified blocks
and has studied four basic issues (Apiwattanapong et al. 2007):

Table 10   Comparison of the number of Run Test Cases and RT Time in TDD,STDD, and RichTest (con-
sidering RichTest overhead time) for Five GitHub Projects

Project Number of run test cases RT �me Number of

test cases

Number of

versionsTDD STDD RichTest TDD STDD RichTest Time (%)

ScribeJava 4485 257 157 12479 537 484 3.9 (51–66) 69

Jedis 5432 1106 382 13706 1031 1073 7.8 (10–136) 53

Commons-Lang 2766 418 186 485 64 78 16.2 (3–141) 23

Commons-Math 10106 2061 501 2517 132 222 8.8 (9–226) 70

Junit-dataprovider 12312 4437 750 42379 12821 2756 6.5 (1–240) 69

Average 7020 2069 395 14313 2917 923 8.6 (15–162) 57

Fig. 15   Comparison of the RT Time in TDD, STDD, and RichTest for Five GitHub Projects represented
in Table 10

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 34 of 50

1.	 Object-oriented changes: JDiff (Apiwattanapong et al. 2007) has shown that a
large number of changes are object-oriented changes, which were not considered
in traditional tools. Like JDiff, RichTest detects all changes, including object-
oriented changes, and also identifies indirect changes by specifying parent and
child blocks.

2.	 Optimization similarity threshold: In our article, considering that the name, the
beginning and the end of each block are known, the matching block is simply
tracked and does not have these parameters. RichTest also uses comparison of
AST tree and JSON code to discover differences in similar blocks.

3.	 The number of matched nodes: The number of matched nodes in our tool is
maximum (Same reasons as above).

4.	 Coverage estimation: In our article, Eclipse environment facilities are used for
this purpose. We reached 100% modified block coverage.

Table 11   Comparison of the block coverage and modified block coverage in TDD, STDD, and RichTest
for Five GitHub Projects

Project Block coverage (%) Modified block coverage (%) Number of test

cases

Number of

versionsTDD STDD RichTest TDD STDD RichTest

ScribeJava 100 1.11 2.01 1296.68 92.83 100 (51–66) 69

Jedis 100 13.33 30.86 749.94 59.93 100 (10–136) 53

Commons-Lang 100 16.71 34.77 1321.09 66.28 100 (3–141) 23

Commons-Math 100 9.69 26.38 875.62 42.71 100 (9–226) 70

Junit-dataprovider 100 14.38 39.48 579.36 46.63 100 (1–240) 69

Average 100 11.04 18.12 964.53 61.67 100 (15–162) 57

Fig. 16   Comparison of the block coverage in TDD, STDD, and RichTest for Five GitHub Projects repre-
sented in Table 11

Fig. 17   Comparison of the modified code block coverage in TDD, STDD, and RichTest for Five GitHub
Projects represented in Table 11

1 3

Automated Software Engineering (2024) 31:9	 Page 35 of 50  9

Therefore, we compared our work with the STARTS (Legunsen et al. 2017)
which is also reviewed in framework checker (Zhu et al. 2019). STARTS is a Java
plugin for RT, selecting the impacted test cases. Legunsen et al. (2017) examined
several Java projects with the STARTS and provided three criteria (1) number of
selected test cases, (2) the offline time, and (3) the online time (includes time for
the a, e, and g phases) similar to our work. Their results show that the number of
selected test cases is on average 35.2% of all test cases, the offline time is on average
81% of retest all, and also, the online time is on average 87.6%.

As shown in Table 9, the RichTest selects an average of 5.6% of the tests, while
the STARTS selects an average of 35.2% of the tests. Also, as shown in Table 10
the RichTest whole time is on average 8.6% of retest all test cases while STARTS
takes 81% time. Table 12 compares RichTest and STARTS tools for the two projects
Commons-Math and Commons-Lang as well as for the average of all reviewed pro-
jects. The result shows that RichTest has made a great improvement both for the two
projects under common comparison and on average in all projects. It seems that the
reason for this improvement is the use of the nature of TDD in the test case selec-
tion. Therefore, it can be concluded that it is necessary to create special tools for
testing TDD programs.

At last, by using Python’s AutoRank13 function (Herbold 2020), we compare the
number of test cases and RT time between RichTest with TDD and STDD for four
projects (other projects were not completely applicable). Final results are shown in
Table 13, 14, 15 and 16.

Table 13 represents the comparison of the number of run test cases and Table 15
represents the RT time for two populations: TDD and Richtest. Table 14 represents
the number of run test cases and Table 16 represents the RT time for two popula-
tions: RichTest and STDD. The result of AuroRank is provided for all the projects
comparing two populations RichTest and TDD and also RichTest and STDD. Below
are the results of comparing RichTest and STDD populations for Junit-dataProvider
with 68 versions:

The statistical analysis was conducted for 2 populations with 68 paired samples.
The family-wise significance level of the tests is alpha = 0.050.

Table 12   Comparison of RichTest and STARTS for two common projects and average of all reviewed
projects

Metric
Tool
Selected (%) Time (%) (include overhead)Project
STARTS
(Legunsen et
al. 2017) (%)

RichTest (%) STARTS
(Legunsen et
al. 2017) (%)

RichTest (%)

Commons-Lang 32 6.7 73.3 16.23
Commons-Math 28.9 5.0 30.3 8.8
Average of all Reviewed Projects 35.2 5.6 81 8.6

13  result = autorank(data, alpha = 0.05, verbose = False).

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 36 of 50

We rejected the null hypothesis that the population is normal for the populations
STDD time (p = 0.000) and RichTest time (p = 0.000). Therefore, we assume that
not all populations are normal.

No check for homogeneity was required because we only have two populations.
Because we have only two populations and both of them are not normal, we use

Wilcoxon’s signed rank test to determine the differences in the central tendency
and report the median (MD) and the median absolute deviation (MAD) for each
population.

We reject the null hypothesis (p = 0.000) of Wilcoxon’s signed rank test that pop-
ulation STDD time (MD = 15.095 ± 6.889, MAD = 7.954) is not greater than popu-
lation RichTest time (MD = 15.329  ± 8.124, MAD = 8.590). Therefore, we assume
that the median of STDD time is significantly larger than the median value of Rich-
Test time with a negligible effect size (gamma = −0.019).

Considering that the initial versions of the projects are also taken into account,
RichTest RT time is worse than STDD method, but the number of run test cases
in all projects shows the superiority of RichTest. Also, RichTest RT time is better
than TDD in every four projects. Magnitude fields shows that RichTest is negligible
while TDD and STDD are large.

4.15 � Research questions

This study focuses on the following five main questions:
RQ1: How many (complexity) test cases would be executed in the traditional and

improved TDD process? The question is, if n test cases are written during the TDD
process, what is the complexity of the number of test cases that will be executed?

4.15.1 � Calculation of minimum number of test case execution

In test-driven development, all previous tests should be re-executed in each iteration
to ensure that they will perform correctly under new conditions. Among the princi-
pal disadvantages of TDD is the necessity of having a large number of test cases that
must be repeatedly executed.

For clarity, consider the following example. Suppose that n is the number of test
cases, which have been written and passed one by one, during the program develop-
ment. This means that every time a new test is added, all previous tests, including
the first test, are run again. Therefore, the first test will be performed at least n times.
The second, third, and nth tests are executed at least (n − 1) times, at least (n − 2)
times, and at least once, respectively.

So we add these items to get the minimum number of times that the test cases
will have to be executed. As can be seen, the sum is equivalent to the sum of an
arithmetic sequence that we have calculated by the formula (9).

(9)SUM (1 ∶ n) = n + (n − 1) + (n − 2) +⋯ + 3 + 2 + 1 = 1∕2 n (n + 1)

1 3

Automated Software Engineering (2024) 31:9	 Page 37 of 50  9

Ta
bl

e 
13

  
Su

m
m

ar
y

of
 c

om
pa

ris
on

 o
f n

um
be

r o
f r

un
 te

st
ca

se
s i

n
R

ic
hT

es
t a

nd
 T

D
D

 (p
ro

du
ce

d
by

 A
ut

oR
an

k)

a  M
ed

ia
n

ab
so

lu
te

 d
ev

ia
tio

n

Pr
oj

ec
t

Sa
m

pl
e

M
ea

nr
an

k
M

ed
ia

n
M

ad
a

ci
_l

ow
er

ci
_u

pp
er

eff
ec

t_
si

ze
M

ag
ni

tu
de

R
ic

hT
es

t
TD

D
R

ic
hT

es
t

TD
D

R
ic

hT
es

t
TD

D
R

ic
hT

es
t

TD
D

R
ic

hT
es

t
TD

D
R

ic
hT

es
t

TD
D

R
ic

hT
es

t
TD

D
Ju

ni
t-d

at
aP

ro
vi

de
r

68
1/

99
1/

01
4

20
1/

5
3

72
/5

3
10

5
8

25
5/

00
0

-2
/6

0
ne

gl
ig

ib
le

la
rg

e
C

om
m

on
s-

M
at

h
69

1/
99

1/
01

6
12

8
3

89
4

83
9

24
8

0
-1

/3
1

ne
gl

ig
ib

le
la

rg
e

Je
di

s
52

1/
99

1/
01

3
11

1
1

15
/5

2
10

0
8

12
7

0
-6

/6
3

ne
gl

ig
ib

le
la

rg
e

C
om

m
on

s-
La

ng
23

1/
98

1/
02

2
13

8
1

3
1

11
7

20
14

0/
00

0
-4

1/
02

ne
gl

ig
ib

le
la

rg
e

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 38 of 50

Ta
bl

e 
14

  
Su

m
m

ar
y

of
 c

om
pa

ris
on

 o
f n

um
be

r o
f r

un
 te

st
ca

se
s i

n
R

ic
hT

es
t a

nd
 S

TD
D

 (p
ro

du
ce

d
by

 A
ut

oR
an

k)

Pr
oj

ec
t

sa
m

pl
e

m
ea

nr
an

k
m

ed
ia

n
m

ad
ci

_l
ow

er
ci

_u
pp

er
eff

ec
t_

si
ze

m
ag

ni
tu

de

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

Ju
ni

t-d
at

aP
ro

vi
de

r
68

1/
96

1/
04

4/
00

55
/5

0
3/

00
26

/5
0

3/
00

39
/0

0
8/

00
89

/0
0

0
-1

/8
4

ne
gl

ig
ib

le
la

rg
e

C
om

m
on

s-
M

at
h

69
1/

96
1/

04
6/

00
24

/0
0

3/
00

12
/0

0
4/

00
15

/0
0

9/
00

37
/0

0
0

-1
/3

9
ne

gl
ig

ib
le

la
rg

e
Je

di
s

52
1/

98
1/

02
3/

00
15

/5
0

1/
00

9/
50

2/
00

8/
00

8/
00

26
/0

0
0

-1
/2

5
ne

gl
ig

ib
le

la
rg

e
C

om
m

on
s-

La
ng

23
1/

93
1/

07
2/

00
14

/0
0

1/
00

12
/0

0
1/

00
2/

00
20

/0
0

38
/0

0
0

-0
/9

5
ne

gl
ig

ib
le

la
rg

e

1 3

Automated Software Engineering (2024) 31:9	 Page 39 of 50  9

Ta
bl

e 
15

  
Su

m
m

ar
y

of
 c

om
pa

ris
on

 o
f R

T
Ti

m
e

in
 R

ic
hT

es
t a

nd
 T

D
D

 (p
ro

du
ce

d
by

 A
ut

oR
an

k)

Pr
oj

ec
t

Sa
m

pl
e

M
ea

nr
an

k
M

ed
ia

n
M

ad
ci

_l
ow

er
ci

_u
pp

er
eff

ec
t_

si
ze

M
ag

ni
tu

de

R
ic

hT
es

t
TD

D
R

ic
hT

es
t

TD
D

R
ic

hT
es

t
TD

D
R

ic
hT

es
t

TD
D

R
ic

hT
es

t
TD

D
R

ic
hT

es
t

TD
D

R
ic

hT
es

t
TD

D
Ju

ni
t-d

at
aP

ro
vi

de
r

68
1/

98
1/

02
16

/1
7

71
3/

51
9/

08
24

9/
26

10
/4

4
35

2/
17

29
/9

0
87

7/
13

0
-2

/6
7

ne
gl

ig
ib

le
La

rg
e

C
om

m
on

s-
M

at
h

69
1/

99
1/

01
2/

37
27

/5
0

1/
25

21
/0

1
1/

60
19

/6
2

3/
93

63
/3

5
0

-1
/1

4
ne

gl
ig

ib
le

La
rg

e
Je

di
s

52
1/

98
1/

02
10

/5
1

28
7/

92
4/

35
45

/2
9

7/
26

24
5/

18
20

/7
4

32
9/

84
0

-5
/8

2
ne

gl
ig

ib
le

La
rg

e
C

om
m

on
s-

La
ng

23
1/

91
1/

09
0/

94
24

/0
5

0/
48

0/
56

0/
53

20
/7

8
11

/9
0

24
/4

7
0

-2
9/

82
ne

gl
ig

ib
le

La
rg

e

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 40 of 50

Ta
bl

e 
16

  
Su

m
m

ar
y

of
 c

om
pa

ris
on

 o
f R

T
Ti

m
e

in
 R

ic
hT

es
t a

nd
 S

TD
D

 (p
ro

du
ce

d
by

 A
ut

oR
an

k)

Pr
oj

ec
t

Sa
m

pl
e

M
ea

nr
an

k
M

ed
ia

n
M

ad
ci

_l
ow

er
ci

_u
pp

er
eff

ec
t_

si
ze

M
ag

ni
tu

de

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

R
ic

hT
es

t
ST

D
D

Ju
ni

t-d
at

aP
ro

-
vi

de
r

68
1/

11
1/

89
16

/1
7

14
/4

9
9/

08
8/

06
10

/4
4

10
/1

4
29

/9
0

25
/6

7
-0

/1
3

0
ne

gl
ig

ib
le

N
eg

lig
ib

le

C
om

m
on

s-
M

at
h

69
1/

12
1/

88
2/

37
1/

14
1/

25
0/

55
1/

60
0/

82
3/

93
1/

85
1/

85
0

la
rg

e
N

eg
lig

ib
le

Je
di

s
52

1/
10

1/
90

10
/5

1
9/

88
4/

35
3/

96
7/

26
7/

26
20

/7
4

20
/4

5
-0

/1
0

0
ne

gl
ig

ib
le

N
eg

lig
ib

le
C

om
m

on
s-

La
ng

23
1/

02
1/

98
0/

94
0/

37
0/

48
0/

18
0/

53
0/

19
11

/9
0

3/
28

-1
/0

6
0

la
rg

e
N

eg
lig

ib
le

1 3

Automated Software Engineering (2024) 31:9	 Page 41 of 50  9

In formula (9) we supposed that the TDD development process starts with only
one test, but some of the GitHub projects used in this research have more than one
test case in the first version. So, we suppose that the initial number of test cases is
t1 (instead of one test), and the number of final tests is t2; hence, there are t1, t1 + 1,
and t2 tests in the first, second, and last turns, respectively. The sum of the number
of times the test cases are executed can be calculated by the formula (10).

As presented by formulae (9) and (10), the minimum number of times that the
test cases are executed is calculated by the sum of an arithmetic sequence formula.
So, the total number of test case executions is of O‌(n2) complexity, where n is the
number of test cases. Actually, we have a quadratic complexity in traditional TDD,
but in practice, we reach a linear complexity of executing test cases using RichTest,
improved TDD (Fig. 13).

Considering that the number of test cases in the TDD is many times more than
those in other methods, the relationship between the number of times that the tests
will have to be executed and the second power of the number of test cases is one of
the principal problems of TDD.

RQ2: How can we reduce the number of times that the test cases are executed
without compromising the software reliability of TDD?

4.15.2 � Safe test case selection

The main problem in test case reduction methods is the lack of confidence that the
reduced test suite can detect errors. If we can ensure that the selected test cases can
detect all errors, then the method is safe as well as software quality and reliability
are maintained.

For this purpose, we intend to delete only the insignificant test cases. Thus some
of the test cases that are less important could be ignored execution in any inter-
val. In this paper, we focus on the differences between the two versions of the pro-
gram instead of focusing solely on its latest version. As presented in Sect. 2.2.3, the
behaviors of unchanged components in the new and old versions of a program do
not differ at runtime so, it is guaranteed that no retest of all cases is necessary, and
testing the affected component only is sufficient. RichTest skips all the test cases
related to the unaffected parts of the program in RT. All test cases related to the
modified parts are considered, so we have 100% modified code coverage.

The main problem in test case reduction methods is the lack of confidence that
the reduced test suite can detect errors. If we can ensure that the selected test cases
can detect all errors, then the method is safe as well as software quality and reliabil-
ity are maintained.

Rothermel believed that under controlled RT, the modification-traversing tests are
a superset of the fault-revealing tests (Rothermel and Harrold 1997). Thus an algo-
rithm that selects every modification-traversing test is also safe.

It should be mentioned that test t ∈ T is modification-traversing for program P
and modified program P’ if and only if ET (P(t)) and ET (P′(t)) are nonequivalent.

(10)SUM
(
t1 ∶ t2

)
= 1∕2

(
t2− t1 + 1

)
∗
(
t1 + t2

)

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 42 of 50

Execution trace ET (P(t)) for test t on program P, consisting of the sequence of state-
ments in P that are executed when P is executed with t.

It should be mentioned that ET (P(t)) is the execution trace for test t on program P,
consisting of the sequence of statements in P that are executed when P is executed with
test t. Also, Test t ∈ T is modification-traversing for program P and its modified pro-
gram P′ if and only if the execution traces of them are nonequivalent (ET (P(t)) ≠ ET (P′
(t))) (Rothermel and Harrold 1997).

What happens in our algorithm? Is it safe or not?
We "link" all the modified code blocks in each step to associated test cases. That is,

when program P becomes P′, ET (P(t)) is different from ET (P′ (t)). So we select all
modification-traversing test cases.

When a test failure causes code modification, all modified code blocks are then con-
nected to the test. Then all the tests related to these modified blocks are selected. Due
to the code change in the block, for all of these selected tests, the sequence of executed
instructions will be different at the time of running the test, i.e. ET (P(t)) ≠ ET (P′(t)):
These tests are all modification-traversing, and because they are a superset of the fault-
revealing test suite, the algorithm is safe.

RQ3: How can the TDD method aid in selecting test cases?

4.15.3 � TDD based test case selection

For the TDD method, the test case is written first, and thereafter the code is written to
pass the test; a close relationship between the test case and source code is established.
The question is whether the test cases can be selected based on the TDD nature.

We used the nature of TDD to model the relationship between test blocks and code
blocks as shown in Fig. 18. In the TDD method, each requirement leads to writing a set
of test cases. Each test case also leads to creation or modification of source code. So
there are some relations between the test cases and modified parts of the code. That’s
why we use the code segmentation algorithm and save the relationship between test and
code blocks.

It should be mentioned that our selection algorithm is based on TDD nature and
assumes that developers follow the TDD cycle. It may fail if the developer does not fol-
low the TDD cycle, so another question arises.

RQ4: What is the impact of human behavior on this approach?

4.15.4 � The impact of human behavior

Our proposed approach assumes that developers always follow the TDD cycle. How-
ever, in reality, the order of this cycle is not always observed (Beller et al. 2017).
What is the impact of such a human behavior?

We assumed that the developer would not write any code except for passing the
test or refactoring the code. Therefore, we connect all modified code blocks to the
last test case. If the developer writes the code before writing the test case, Rich-
Test assumes the changes are made to refactor the code. So RichTest connects these
changes to the last test case.

1 3

Automated Software Engineering (2024) 31:9	 Page 43 of 50  9

Although ignoring the refactoring phase is not a problem, late refactoring may
cause an unrealistic relationship between the previous code and the new test.

It is important to consider three questions. The first is whether the modified parts
of the code are covered 100% or not. Fortunately, the answer is yes, because the
modified parts will be connected to the last test case, and the coverage of the modi-
fied code is achieved.

The second question is whether the test cases will be selected correctly in the next
steps. Unfortunately, the answer is "no". The test case that is mistakenly assigned
to the code block may be selected and added to the test suite. The suggested solu-
tion is that the developer disconnects the wrong relations manually. This is possible
through the BlockInfoView to uncheck and remove the test case relation.

The third question is whether the test suite is complete. Unfortunately, the answer
is "no". Since the developer has not written any test case before modification, the
test suite is not complete. The only suggested solution is that the developer connects
the lost relations manually. This is possible through the BlockInfoView.

RQ5: To what extent it is possible to select test cases (semi-)automatically?

4.15.5 � Automatic test case selection

One of the main questions of the research is whether an effective model and tool can
be considered to select test cases. Can a set of rules and steps that can be automated
or semi-automated be defined to perform the task of the test case selection?

As explained in the previous question, RichTest is implemented based on the
nature of TDD. In this way, if the new test fails, the programmer will apply enough
changes to the code blocks, until passing the new test. Then, RichTest automatically
links all the modified code blocks to the new test. Therefore, all test cases involved
in creating or modifying any code block are linked to it.

During the development process, whenever each code block changes, RichTest
selects all the test cases associated with that code block as a candidate test case.
Therefore, any test case that was involved in creating or modifying the code will be
selected automatically. Also, the programmer could link/unlink a test block to a code
block manually.

Fig. 18   Relationship between requirement, test, and code

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 44 of 50

5 � Summary and conclusion

5.1 � Summary

In this research, the problem of excessive numbers of test cases developed in the
TDD and the repetitive execution of test cases are investigated. The results indicate
that the complexity of test case execution correlates with the second power of the
number of test cases.

The differences between the two program versions while ignoring test cases
related to unmodified parts are identified, and some insights to reduce test cases and
RT execution time in the TDD are suggested. A combinational difference identifica-
tion algorithm based on textual and syntactical differencing is thereafter presented
to accomplish these tasks. The proposed method to reduce test cases, particularly
for the TDD method is presented. Program differencing is not a new approach to
test selection, but the innovative aspect of our work is "how" to do it. We select
test cases using the nature of TDD. For this purpose, we developed the RichTest
tool. Whenever a copy of the program is saved, RichTest considers this version as a
commit of the program and automatically monitors new test cases and program dif-
ferences as new test blocks and modified/ new code blocks, then establishes the rela-
tionship between test cases and code blocks, automatically. TDD-based RT selection
performs using these connections.

The RichTest plugin is employed to improve and simplify the implementation of
TDD projects by reducing the number of run test cases and also reducing the RT
execution time. The RT is executed by selecting only the test cases related to modi-
fied code blocks.

To evaluate the improved method, three small programs and six large open-
source projects on GitHub are implemented in RichTest. The results show the Rich-
Test plugin significantly reduces the number of test case executions by reducing
the number of selected test cases at runtime (compared to both TDD and STDD).
This reduction would be more significant in large projects with a larger number of
test cases. Also, the number of times that the test cases runs in RichTest completely
overlaps with the number of test cases. Although we have a quadratic complexity in
traditional TDD, but in practice, we reach a linear complexity of executing test cases
using RichTest, improved TDD.

The results showed that in the first version of each project, the number of test
cases in pure TDD, STDD and RichTest is equal to the total number of test cases,
so in the first version the RichTest method has the longest execution time due to the
overhead time; but gradually by reducing the number of selected test cases in the
next versions, this overhead time will be compensated and the total execution time
will be reduced. RichTest RT time (including overhead time) is one tenth of TDD
RT time. It was found that RichTest and STDD RT time have slight differences with
each other. If there are a few test cases written for each class, the number of selected
test cases in both methods is almost the same and as a result, STDD is slightly faster
than RichTest. But if there are a lot of test cases, RichTest selects only the related
test cases and will perform better despite the overhead time.

1 3

Automated Software Engineering (2024) 31:9	 Page 45 of 50  9

5.2 � Restrictions

RichTest is not a commercial tool and is only the result of student research, so it is
not free of problems and limitations. Its limitations are presented below.

1.	 Our block segmentation algorithm is based on Java programming language gram-
mar, so RichTest limits projects to Java language. Also only some of control flow
instructions such as switch, while, if, for, foreach, and try are considered.

2.	 Our plugin is developed in Eclipse IDE Photon June 2018, so RichTest limits to
this development environment and Junit4 Tests.

3.	 Our method supports only TDD projects that follow the TDD cycle, otherwise,
the developer must manually (dis)connect the code blocks (from) to the related
tests. Human behavior is explained in Sect. 5.4.4 in more detail.

4.	 Our plugin doesn’t execute test cases properly on the maven projects and gradle
projects. Sometimes test case execution encountered a problem and we had to
write another program to run the test cases.

5.	 This plugin is not recommended for projects that have many interfaces, because
the number of selected test cases will not decrease significantly. Interface modi-
fication propagates to all of its implementations, so all tests related to all those
codes should be selected for re-execution.

6.	 The RichTest tool uses commenting to track each block. For example, the begin-
ning and the end of the first code block are defined by inserting two comments:
//Start Of Code-Block: ca001, and //End Of Code-Block: ca001, respectively.
RichTest needs these comments to trace code blocks, so in the refactoring phase,
it is necessary to keep the comments in place so that the connections between the
previous code blocks and related test cases are retained. Removing these com-
ments will disrupt the test case selection process.

5.3 � Future work

We are going to upgrade the plugin to resolve some of the restrictions, provide exe-
cution time reports, and keep the test result history. We will use these reports to pri-
oritize tests. For example, the test face more failures will have a higher priority. We
use this result to combine our test selection algorithm with regression rest prioritiza-
tion. Also, we should investigate another real project as well as start a real project
implementation in a laboratory.

Appendix A

Figure 19 illustrates the Preferences window of RichTest. The developers could
set block selection mode and the level of block granularity as well as enable TDD
mode there.

Figure 20 until 26 represent RichTest views. These figures are related to selec-
tionSort project. Figure 20 is BlockInfo View and illustrates that test case “ta009”

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 46 of 50

is the only test block that is connected to the “Ca005” code block. The “Manage”
key lets the developers manage the relation manually as seen in Fig. 21. As seen in
this figure, the developer can link/unlink each test block to the “Ca005” code block
manually.

Figure 22 illustrates the Commit View. The developers can see the type of modi-
fication and block content. Figure 23 illustrates the Version Manager View that
shows all versions of the project as well as creates a new version. Figure 24 illus-
trates Regression Test View. Two test cases, ‘Ta011’ and ’Ta012’ have been selected
and run successfully (green color, means pass and red color means fail), required
time and test results have been shown.

Figure 25 shows Compare View. The developer selects the desired code block
(Ca003) to see the history of its changes and then selects two commits for com-
parison (Commit #21 and Commit #42). Figure 26 shows the comparison result. The
orang box shows the changed part from Commit #21 to Commit #42.

Fig. 19   Preferences window

Fig. 20   Block info view

1 3

Automated Software Engineering (2024) 31:9	 Page 47 of 50  9

Fig. 21   Manual Management Window of BlockInfo View

Fig. 22   Commit view

Fig. 23   Version manager view

Fig. 24   Regression test view

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 48 of 50

Author contributions  Dear sir, Hi. We have previously submitted an article titled "RichTest: An Improved
Test-Driven Development Plugin" to your journal, which was rejected. I have made some corrections to
it now, which I hope will attract the opinion of the respected reviewers. Is it possible to resubmit to this
journal? Manuscript number: AUSE-D-20-00114 Initial Date Submitted: 14 Oct 2020 Zohreh Mafi and
Seyed-Hassan Mirian-HosseinAbadi, both developed programs. Mafi wrote the main manuscript text and
Mirian-HosseinAbadi Edited the text.

Declarations 

Conflict of interests  The authors declare no competing interests.

References

Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University Press, Cambridge (2008)
Apiwattanapong, T., Orso, A., Harrold, M.J.: JDiff: a differencing technique and tool for object-oriented

programs. Autom. Softw. Eng.. Softw. Eng. 14(1), 3–36 (2007)
Archambault, D.: Structural differences between two graphs through hierarchies. In: Proceedings of

Graphics Interface, Kelowna (2009)
Asaduzzaman, M., Roy, C., Schneider, K., Di Penta, M.: LHDiff: a language-independent hybrid

approach for tracking source code lines. In: IEEE International Conference on Software Mainte-
nance, Eindhoven (2013)

Astels, D.: Test Driven Development: A Practical Guide. Prentice-Hall/Pearson Education, New Jersey
(2003)

Beck, K.: Test Driven Development: By Example. Addison-Wesley, Boston (2002)
Beller, M., Georgios, G., Annibale, P.: Developer testing in the ide: patterns, beliefs, and behavior. IEEE

Trans. Softw. Eng.softw. Eng. 45(3), 261–284 (2017)

Fig. 25   Compare view

Fig. 26   Compare view result

1 3

Automated Software Engineering (2024) 31:9	 Page 49 of 50  9

Beningo, J.: Testing, verification, and test-driven development. In: Embedded Software Design: A Practi-
cal Approach to Architecture, Processes, and Coding Techniques, pp. 197–218. Apress, Berkeley,
CA (2022)

Binkley, D.: Using semantic differencing to reduce the cost of regression testing. In: IEEE Conference on
Software Maintenance, Orlando (1992)

Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: Regression test selection techniques: a survey. Infor-
matica 35(3), 289–321 (2011)

Borle, N.C., Feghhi, M., Stroulia, E., Greiner, R., Hindle, A.: Analyzing the effects of test driven devel-
opment in GitHub. Empir. Softw. Eng.. Softw. Eng. 23(4), 1931–1958 (2018)

Canfora, G., Cerulo, L., Penta, M.D.: LDiff: an enhanced line differencing tool. In: 31st International
Conference on Software Engineering. IEEE Computer Society, Washington (2009)

Cibulski, H., Amiram, Y.: Regression test selection techniques for test-driven development. In: IEEE
Fourth International Conference on Software Testing, Verification and Validation Workshops,
Washington (2011)

Dalton, J.: Test-driven development. In: Great Big Agile, pp. 263–264. Apress, Berkeley (2019)
Debin, G., Reiter, M.K., Song, D.: Binhunt: automatically finding semantic differences in binary pro-

grams. In: International Conference on Information and Communications Security. Springer, Berlin
(2008)

Erdogmus, H., Maurizio, M., Marco, T.: On the effectiveness of the test-first approach to programming.
IEEE Trans. Softw. Eng.softw. Eng. 31(3), 226–237 (2005)

Falleri, J., Floréal, M., Xavier, B., Matias, M., Martin, M.: Fine-grained and accurate source code dif-
ferencing. In: 29th ACM/IEEE International Conference on Automated Software Engineering.
Västerås (2014)

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: In: Gamma, E. (ed.) Refactoring: improving the
design of existing code. Pearson Education India, Karnataka (1999)

George, B., Williams, L.: A structured experiment of test-driven development. Inf. Softw. Technol.softw.
Technol. 46(5), 337–342 (2004)

Görg, M., Zhao, J.: Identifying semantic differences in AspectJ programs. In: 18th International Sympo-
sium on Software Testing and Analysis (ACM), Chicago (2009)

Goto, A., Yoshida, N., Ioka, M., Choi, E., Inoue, K.: How to extract differences from similar programs?
A cohesion metric approach. In: 7th International Workshop on Software Clones (IEEE Press), San
Francisco (2013)

Herbold, S.: Autorank: a python package for automated ranking of classifiers. J. Open Sour. Softw. 5(48),
2173 (2020)

Horwitz, S.: Identifying the semantic and textual differences between two versions of a program. ACM
Sigplan 25(6), 234–245 (1990)

Hsu, R.: Method for detecting differences between graphical programs‏. U.S. Patent 5,974,254, 26 Oct
1999

Karac, I., Turhan, B.: What do we (really) know about test-driven development? IEEE Softw.softw. 35(4),
81–85 (2018)

Khanam, Z., Mohammed, N.A.: Evaluating the effectiveness of test driven development: advantages and
pitfalls. Int. J. Appl. Eng. Res. 12(18), 7705–7716 (2017)

Kim, M., David, N.: Discovering and representing systematic code changes. In: IEEE 31st International
Conference on Software Engineering, Washington (2009)

Legunsen, O., August, S., Darko, M.: STARTS: STAtic regression test selection. In: 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE) (2017)

Linares-Vásquez, M., Cortés-Coy, L., Aponte, J., Poshyvanyk, D.: Changescribe: a tool for automatically
generating commit messages. In: 37th IEEE International Conference on Software Engineering,
Florence (2015)

Liu, C., Chen, C., Han, J., Yu, P.S.: GPLAG: detection of software plagiarism by program dependence
graph analysis. In: 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. New York (2006)

Madeyski, L., Marcin, K.: Continuous test-driven development—a novel agile software develop-
ment practice and supporting tool. In: Evaluation of Novel Approaches to Software Engineering
(ENASE), pp. 260–267

Madeyski, L., Kawalerowicz, M.: Continuous test-driven development: a preliminary empirical evalua-
tion using agile experimentation in industrial settings. Towards Synerg. Combin. Res. Pract. Softw.
Eng. 733, 105–118 (2018)

	 Automated Software Engineering (2024) 31:9

1 3

9  Page 50 of 50

Maletic, J.I., Collard, M.L.: Supporting source code difference analysis. In: 20th IEEE International Con-
ference on Software Maintenance, Chicago (2004)

Myers, E.W.: AnO (ND) difference algorithm and its variations. Algorithmica 1(1–4), 251–266 (1986)
Neamtiu, I., Foster, J.S., Hicks, M.: Understanding source code evolution using abstract Syntax Tree

Matching. Missouri (2005)
Nguyen, H.A., Nguyen, T.T., Nguyen, H.V., Nguyen, T.N.: iDIFF: interaction-based program differenc-

ing tool. In: 26th IEEE/ACM International Conference on Automated Software Engineering, Wash-
ington (2011)

Nooraei Abadeh, M., Mirian-Hosseinabadi, S.: Delta-based regression testing: a formal framework
towards model-driven regression testing. J. Softw. Evol. Process 27(12), 913–952 (2015)

Riebisch, M., Farooq, Q., Lehnert, S.: Model-based regression testing: process, challenges and
approaches. In: Emerging Technologies for the Evolution and Maintenance of Software Models,
Ilmenau, Germany, pp. 254–297. IGI Global (2012)

Rosero, R.H., Gómez, O.S., Rodríguez, G.: 15 Years of software regression testing techniques—a survey.
Int. J. Softw. Eng. Knowl. Eng.softw. Eng. Knowl. Eng. 26(05), 675–689 (2016)

Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 6(2), 173–210 (1997)

Rothermel, G., Mary, J.H.: Empirical studies of a safe regression test selection technique. IEEE Trans.
Softw. Eng.softw. Eng. 24(6), 401–419 (1998)

Santosh Singh, R., Kumar, S.: An approach for the prediction of number of software faults based on the
dynamic selection of learning techniques. IEEE Trans. Reliab.reliab. 68(1), 216–236 (2018)

Shen, J., Sun, X., Li, B., Yang, H., Hu, J.: On automatic summarization of what and why information in
source code changes. In: 40th Annual Computer Software and Applications Conference (COMP-
SAC), Atlanta (2016)

Vokolos, F.I., Frankl, P.: Empirical evaluation of the textual differencing regression testing technique. In:
IEEE International Conference on Software Maintenance (Cat. No. 98CB36272), Bethesda (1998)

Wang, T., Wang, K., Su, X., Ma, P.: Detection of semantically similar code. Front. Comput. Sci. 8(6),
996–1011 (2014)

Wang, X., Pollock, L., Vijay-Shanker, K.: Automatic segmentation of method code into meaningful
blocks to improve readability. In: 18th Working Conference on Reverse Engineering IEEE, Limer-
ick (2011)

Wolfgang, O: "TDD Kata," 9 12 2018. [Online]. Available: https://​www.​progr​ammin​gwith​wolfg​ang.​com/​
tdd-​kata/. Accessed 8 May 2021

Yang, W.: Identifying syntactic differences between two programs. Softw. Pract. Exp. 21(7), 739–755
(1991)

Yoo, S., Mark, H.: Regression testing minimization, selection and prioritization: a survey. Softw. Test.
Verific. Reliab. 22(2), 67–120 (2012)

Zhang, L., Hao, D., Zhang, L., Rothermel, G.: Bridging the gap between the total and additional test-case
prioritization strategies. In: Proceedings of the 2013 International Conference on Software Engi-
neering, San Francisco (2013)

Zhu, C., Legunsen, O., Shi, A., Gligoric, M.: A framework for checking regression test selection tools. In:
IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada
(2019)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://www.programmingwithwolfgang.com/tdd-kata/
https://www.programmingwithwolfgang.com/tdd-kata/

	Regression test selection in test-driven development
	Abstract
	1 Introduction
	2 Background
	2.1 Test driven development (TDD)
	2.2 Regression test (RT)
	2.2.1 Regression test minimization (RTM)
	2.2.2 Regression test prioritization (RTP)
	2.2.3 Regression test optimization (RTO)
	2.2.4 Regression test selection (RTS)

	2.3 Program differencing
	2.3.1 Textual differencing
	2.3.2 Syntactic differencing
	2.3.3 Semantic differencing
	2.3.4 Summary of program differencing

	3 Related work
	4 Methodology
	4.1 Add a new phase to three phase TDD cycle to reduce the test re-execution time
	4.2 Segmentation
	4.3 Change detection algorithm
	4.4 Relationship between test case and code blocks
	4.5 Test case selection
	4.5.1 Test case selection example

	4.6 RichTest
	4.7 RichTest algorithm
	4.8 RichTest plugin overview
	4.9 RichTest plugin working process
	4.9.1 Automatic block segmentation
	4.9.2 Manual block segmentation
	4.9.3 Difference detection algorithm
	4.9.4 Connecting code blocks to test blocks
	4.9.5 Regression test wizard

	4.10 Empirical evaluation
	4.11 Small program development using RichTest
	4.12 Large project development using RichTest
	4.12.1 TDD projects on GitHub
	4.12.2 Re-implementing GitHub projects

	4.13 Evaluation results
	4.14 Discussion
	4.15 Research questions
	4.15.1 Calculation of minimum number of test case execution
	4.15.2 Safe test case selection
	4.15.3 TDD based test case selection
	4.15.4 The impact of human behavior
	4.15.5 Automatic test case selection

	5 Summary and conclusion
	5.1 Summary
	5.2 Restrictions
	5.3 Future work

	Appendix A
	References

