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Abstract
The large number of unit tests produced in the test-driven development (TDD) 
method and the iterative execution of these tests extend the regression test execution 
time in TDD. This study aims to reduce test execution time in TDD. We propose 
a TDD-based approach that creates traceable code elements and connects them to 
relevant test cases to support regression test selection during the TDD process. Our 
proposed hybrid technique combines text and syntax program differences to select 
related test cases using the nature of TDD. We use a change detection algorithm 
to detect program changes. Our experience is reported with a tool called RichTest, 
which implements this technique. In order to evaluate our work, seven TDD projects 
have been developed. The implementation results indicate that the RichTest plugin 
significantly decreases the number of test executions and also the time of regres-
sion testing despite considering the overhead time. The test suite effectively enables 
fault detection because the selected test cases are related to the modified partitions. 
Moreover, the test cases cover the entire modified partitions; accordingly, the selec-
tion algorithm is safe. The concept is particularly designed for the TDD method. 
Although this idea is applicable in any programming language, it is already imple-
mented as a plugin in Java Eclipse.
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1 Introduction

Test Driven Development (Beck 2002) is one of the agile defect-reduction practices 
in which “unit test cases are incrementally written prior to code implementation. All 
of the test cases that exist for the entire program must successfully pass before new 
code is considered fully implemented” (George and Williams 2004). New tests are 
written to add/revise the desired features in such a way that the current version of 
the program fails. Refactoring (Fowler et al. 1999) is one of the key aspects of TDD 
which improves the software design, code structure quality, and code performance 
as well as enhances coding standards and principles (Dalton 2019).

Although TDD avoids writing extra code and delivers clean code, however, it 
increases the number of test cases rapidly. The TDD method has drawn the interest 
of software developers because of its advantages, including short and simple reada-
ble code, high-quality code, reliability, maintainability, and the capability of regres-
sion testing (as a result of creating a set of unit tests). Apart from its advantages, 
TDD also has certain deficiencies (Karac and Turhan 2018) such as higher develop-
ment time (Khanam and Mohammed 2017). This study aims to resolve one of the 
drawbacks that has been less considered previously—the large number of test cases 
and the necessity of repeated executions.

The number of test cases generated in TDD is greater than that of other meth-
ods (Erdogmus et  al. 2005). As a result, the time required for the regression test 
increases significantly. On the other hand, it is necessary to re-execute all of the test 
cases after each modification to ensure that the code remains accurate thereafter. A 
substantial amount of time is subsequently required in order to execute the test cases 
in the TDD method.

There are many cost reduction algorithms reducing the number of test cases, 
which we will discuss in Sects. 2.2 and 2.3. Different techniques may have differ-
ent performances in different environments. The suitable technique is therefore 
selected based on methodology, topic, and program conditions. However, none of 
these methods are specifically designed for TDD. Therefore, this research proposed 
a test selection algorithm for TDD implemented programs to reduce the regression 
test execution time in TDD. Our experience is reported with a tool called RichTest, 
which implements this technique. It is a Java plugin and is available as a GitHub 
project.1

Textual differencing is not based on programming language, but we use a hybrid 
technique that combines text and syntax program differences to detect code changes, 
so it is necessary to choose the programming language. Since Java is one of the 
three most popular languages in the last twenty years2 and has been widely used, 
this language was considered as a reference language.

We use a hybrid differencing technique as well as using block concept to divide 
the program into small trackable elements. Segmentation is defined on two levels. 

1 https:// github. com/ MafiZo/ RichT est. git.
2 https:// www. tiobe. com/ tiobe- index/.

https://github.com/MafiZo/RichTest.git
https://www.tiobe.com/tiobe-index/
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High-level blocking considers each method as a block, low-level blocking considers 
each statement, such as an if statement, as a block.

After adding a new test case, we run that test case. If the test case passes, then the 
next test case will be added, but if the test case does not pass, the source code must 
be modified to pass the new test case.

• RichTest performs code segmentation to track code elements. It creates both 
code and test blocks.

• RichTest identifies all modified code blocks.
• RichTest connects modified code blocks to the new test case that leads to these 

changes.
• In the test selection phase, RichTest tracks and selects only those test cases that 

are related to the modified parts of the code, so instead of running all the test 
cases, only the selected test cases run.

We measured the number of selected test cases and RT time to compare our work 
with two types of TDD, as well as another Java plugin. The results showed that our 
work has an advantage in reducing the number of tests as well as the RT time.

Section 2 discusses the basics and the principles of TDD as well as the regression 
test, which must be run repeatedly in the TDD cycle. Program differencing as one 
of the regression test selection methods used in this article is presented in detail and 
a comparison between different levels of its implementation will be provided. Sec-
tion 3 introduces related work.

In Sect. 4, our test case selection algorithm will be discussed in detail. Segmenta-
tion, segment comparison, and relationship creation algorithm are explained in this 
section. The RichTest tool, which is developed to implement the foregoing is expli-
cated in Sect. 5. Automatic and manual block segmentation and regression test wiz-
ard are explained in this section.

Section  6 presents the evaluation of RichTest using another program that we 
implemented to access the TDD projects on GitHub to compare the number of exe-
cuted test cases in TDD and RichTest. Section 7 concludes the paper. Several images 
of the RichTest tool are illustrated in Appendix A.

2  Background

The proposed technique allows for avoiding the execution of some test cases in 
TDD. This section discusses the basics and principles of TDD as well as its advan-
tages and disadvantages. The regression test must be repeatedly run in the TDD 
cycle. Previous work on the regression test and the principal approaches for its cost 
reduction, particularly program differencing from the standpoint of regression test 
and other software maintenance applications, is presented in detail.
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2.1  Test driven development (TDD)

In the traditional approach, software development proceeds by first creating the 
working code and thereafter writing unit tests (Ammann and Offutt 2008). This 
method is sometimes referred to as test-last development. In several traditional soft-
ware development models, such as the waterfall model, software testing is one of 
the last tasks to be performed before the software maintenance phase. On the con-
trary, in modern and agile software development methods, testing is often adopted 
as an integrated part of the entire development process. This technique aids devel-
opers in finding and fixing bugs starting from the early phases of development. In 
test-driven development, however, software tests are written before the actual source 
code (Beck 2002).

The concept of the TDD method was first studied by Beck (Beck 2002). As its 
name suggests, TDD is a test-first software development approach for building soft-
ware incrementally allowing test cases to drive the production code development. 
New test cases are written based on the software requirements and new features that 
should be considered in the software. If there is any fault or defect in the current ver-
sion of the program, the test case will detect the problem. Then the developer would 
write the proper code to fix the failure. As a result, the tests are always written first, 
and thereafter only a sufficient amount of code is written to fix the failure (Beck 
2002; Beningo 2022). Despite its name, TDD is not a test method; it is in fact a new 
software design and implementation method in which the idea of writing test cases 
before developing the code is combined with the concept of refactoring.

According to Astels, in the TDD method, the project is first broken into smaller 
parts using the divide-and-conquer method. The program is developed incremen-
tally, starting from the development of each part by writing a test (Astels 2003). The 
TDD process proceeds as follows (Beck 2002; Beningo 2022):

1. Add a small test;
2. Run all tests and see if the new one fails (The test might not even compile);
3. Write a minimum amount of code to pass the test;
4. Run all tests and see all of them succeed;
5. Refactor the code to clean them and remove possible duplications.

The development process is thereafter continued by repeating the steps men-
tioned above.

2.2  Regression test (RT)

In the software development and maintenance process, product requirements are 
modified or corrected because of the addition of new customer requirements. These 
changes are implemented to match new technologies and environments, fix hidden 
errors that occur in various stages of development, and fix deficiencies and bugs to 
improve current features.
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RT is an activity that is performed after a change is implemented in the system. 
Its objective is to reveal the defects that may have been introduced by these changes 
as a result of software evolution (Riebisch et al. 2012). In view of the large number 
of test cases, RT is extremely time-consuming. It is therefore an expensive test to 
validate the modified software. To reduce cost, several techniques may be employed. 
The four principal cost reduction approaches are (1) RT minimization, (2) RT prior-
itization, (3) RT optimization, and (4) RT selection (Rosero et al. 2016). The cover-
age-based RT using program differencing used in this paper can be considered as an 
RT selection method.

2.2.1  Regression test minimization (RTM)

According to Yoo and Mark (2012), RTM refers to the removal of redundant test 
cases from the test suite. Minimization is sometimes also called test suite reduction, 
meaning that the elimination is permanent.

2.2.2  Regression test prioritization (RTP)

Test case prioritization aims to reorder test cases to increase the rate of fault detec-
tion during RT. The RTP prioritizes tests based on error detection criteria or code 
coverage using experimental methods. Thus far, various prioritization strategies 
have been suggested (Zhang et al. 2013).

2.2.3  Regression test optimization (RTO)

RT techniques are considered from the point of view of multi-objective optimiza-
tion and Artificial Intelligence (AI). Their main goal is to select test cases through 
the use of optimization or AI approaches. Some of the RTO techniques are based on 
fuzzy logic, and some of them are based on heuristics. This technique includes con-
tributions in the line of greedy algorithms, Pareto optimization, and integer linear 
programming in combination with genetic algorithms (Rosero et al. 2016).

2.2.4  Regression test selection (RTS)

The RTS method chooses some of the test cases and ignores the rest. In this cat-
egory, the reduction is also present but its strategy focuses on the detection of modi-
fied parts of a program that normally runs based on white box static analysis (Ros-
ero et al. 2016).

Safe RTS techniques prove that under certain well-defined conditions, test selec-
tion algorithms exclude no tests (from the original test suite) that if executed would 
reveal faults in the modified software. Under these conditions, the algorithms are 
safe, and the fault detection abilities are equivalent to those of the retest of all tests. 
(Rothermel and Mary 1998).



 Automated Software Engineering (2024) 31:9

1 3

9 Page 6 of 50

2.3  Program differencing

In regression tests, the knowledge of which parts of the program are unmodified can 
aid in identifying the test cases that do not have to be executed (Apiwattanapong 
et al. 2007). Considering the fact that the behaviors of preserved components in the 
new and old versions of a program do not differ at runtime, it is guaranteed that no 
retest of all cases is necessary, and testing the affected component only is sufficient 
(Binkley 1992).

Program differencing is also a principal step to solve some of the crucial prob-
lems in software maintenance such as locating bugs, introducing changes, tracking 
code pieces or drawbacks in versions, merging files, and analyzing software evolu-
tion (Asaduzzaman et  al. 2013). DbRT, a delta-based RT in the context of MDD 
proposed to propagate the changes from a software specification to testing artifacts 
in order to preserve consistency after system evolution (Nooraei Abadeh and Mirian-
Hosseinabadi 2015). In general, software modification is classified into three levels: 
textual modification, syntax modification, and semantic or behavioral modification. 
The previous works are presented in these three categories.

2.3.1  Textual differencing

In the textual approach, regardless of whether the code file is an executable program, 
the common parts of the two versions are identified using algorithms, e.g., “longest 
common sub-series algorithm.” For instance, diff (Myers 1986) is among the most 
utilized tools in UNIX that presents the difference between two versions of a pro-
gram. It generates a report consisting of a series of added or deleted lines between 
two files after identifying the common parts.

Vokolos and Frankl (1998) developed a tool for textual differencing, named 
Pythia, which is capable of analyzing large software systems written in C. The 
results indicate that this technique is considerably fast and can significantly reduce 
the size of RT suite.

An enhanced language-independent tool, LDiff (Canfora et  al. 2009), is devel-
oped based on Unix diff and resolves numerous problems encountered by the latter. 
These include determining if a line has been modified or is a result of additions and 
deletions, and tracking code blocks that have been moved up or down inside the file.

Another tool that tracks source code lines between two different versions of the 
file is LHDiff (Asaduzzaman et al. 2013), which takes two different versions of the 
program as input and uses the Unix diff technique to identify unmodified parts. In 
order to track the remaining lines, a mixture of context and content similarities is 
used.

2.3.2  Syntactic differencing

Yang (1991) obtained the difference between the two programs based on grammar 
and parse trees. This is known as the syntactic difference. Each program is displayed 
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using a parse tree built by the parser. The tree-matching algorithm takes two trees 
as input and finds a set of pairs of nodes in which each node belongs to one tree and 
appears maximum in one pair.

Maletic and Collard (2004) presented a syntactic differencing approach to analyze 
source code differences. The meta-differencing approach attempts to automatically 
produce some information related to the difference between the two programs. Com-
plex questions on the difference between two versions of a program can be solved 
by this system. Meta-differencing uses an XML-based language called SrcML to 
display the two programs and their differences.

Archambault (2009) took the graphs of two versions of a program and merged 
them based on similar node names to obtain a new graph. In order to reduce the 
graph size, the concept of MetaNode for collecting the nodes is employed. The 
betweenness centrality measure is used to determine the difference between the 
two input graphs. This value is determined for all graph nodes. The small and large 
values indicate the stability and instability, respectively, as well as the difference 
among the points.

Goto (2013) considered merging similar programs to increase program maintain-
ability and focus on structural differences. The AST trees for two similar methods 
are first built using Eclipse JDT; the differences among the trees are then deter-
mined. Finally, coherent code pieces are identified as Extract Method (EM) candi-
dates. The FTMPATool is implemented to accomplish this task.

The ChangeScribe (Linares-Vásquez 2015) tool is an Eclipse plugin that consid-
ers the textual differences between the new and previous version of the program at 
commit time and generates messages to automatically explain the modifications. 
ChangeScribe is currently applicable for Java projects on GitHub. Shen et al. (2016) 
continued this work by defining four types of changes to describe the code change 
and include information that explains the reason for the code change.

The LSDiff3 (Kim and David 2009) tool attempts to answer some of the high-
level questions of programmers and present systematic structural differences as logi-
cal rules. LSDiff represents each version of the program using a set of predicates that 
describe code components, their relationships, and their structural dependencies.

Falleri et  al. (2014) employed the GumTree tool, which is comprised of two 
sequential steps, to compute the mappings between two ASTs: (1) top-down greedy 
algorithm for finding isomorphic subtrees, and (2) bottom–up algorithm to detect 
corresponding nodes.

The SEGMENT tool (Wang et al. 2011) divides the different parts of the program 
by adding blank lines to increase the readability of the program. SEGMENT uses 
the program structure AST tree as well as the name information and identifies mean-
ingful primary blocks with a particular logical operation. In order to identify logical 
blocks, three main types of blocks are considered: syntactically the same, data flow 
chain, and extended SWIFT.4

3 Logical Structural Diff.
4 Statements such as synchronized, do, try, for, if, while, and switch.
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2.3.3  Semantic differencing

Horwitz (1990) used a program graph representation and a partition operator on 
these graphs to semantically find differences. His partitioning algorithm is limited 
to a language with scalar variables, conditional statements, assignment statements, 
while loops, and output statements.

Binkley (1992) reduced the RT cost by using semantic differences between the 
two programs. In his work, the limitations of program statements are reduced com-
pared to those in Horwitz (1990). He also included function definitions and function 
calls. He used a system dependency graph instead of a flow control graph that avoids 
unnecessary dependencies among the components on a path in a control flow graph. 
Binkley reduced the complexity of test cases using the program slicing technique.

Neamtiu et al. (2005) proposed a tool to rapidly compare the source code of dif-
ferent versions of C programs and thereafter find semantic differences among pro-
gram versions based on partial AST matching. The tool can track simple code-level 
modifications related to changes in global variable names, types, and functions. This 
tool compares the body of functions with similar names considering that the name 
of function is not changed throughout the software lifetime.

Apiwattanapong et  al. (2007) presented a method to compare object-oriented 
programs and used an extended control flow graph (ECFG). Görg and Zhao (2009) 
extended the method proposed in Apiwattanapong et al. (2007) in such a way that it 
also supports the new concepts introduced by aspect-oriented programs.

The patent in Hsu (1999) presents a technique for identifying the differences 
between two graphic programs. BinHunt (Debin et al. 2008) is aimed at identifying 
the semantic differences in the binary code between the two programs that can be 
used in cases where the program code is not available. BinHunt uses the STP5 theo-
rem proving and symbolic execution to compare the primary blocks. It is applicable 
only for minor differences.

Wang et al. (2014) used normalized6 control dependence trees to represent two 
versions of the program and improved the traditional metrics-based and graph-based 
approaches to propose a combinational approach.

Liu et al. (2006) produced a plagiarism detection tool called Gplag. Plagiarized 
codes are often modified for deception, and identifying such codes is possible by 
using a suitable and similar code identification tool. This approach represents the 
program code as program dependence graphs (PDG) and identifies similar code 
based on the sub-graph isomorphism test.

Nguyen (2011) proposed the iDiff tool as a plugin in Eclipse for identifying pro-
gram differences. The iDiff can identify changes in classes and methods, track re-
ordered, relocated, and renamed classes and methods, and detect internal changes in 
methods. The iDiff uses JavaModel and ASTParse related to the JDT plugin in order 
to parse the project for obtaining all information related to the types and limitations 
of methods.

5 Simple Theorem Prover.
6 Code normalization is a semantic-preserving transformation.
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2.3.4  Summary of program differencing

Table 1 summarizes the above references related to program differencing according 
to the type of difference identification (text/ syntax/ semantic) and tool produced. 
Some of these tools are related to a particular language, developed for multiple lan-
guages, and not language-dependent. Some of them normalize the code before iden-
tifying the differences and use a limited set of statements for simplification. Most of 
the tools use graph or tree structures.

Graph-based methodologies consider both syntax structure and data stream as 
abstraction levels, making those suitable bases for identifying similar code on a 
semantic level. Sometimes, however, problems, such as code diversity, hinder the 
identification of similar codes. High computational complexity in graphs limits 
graph size. Some studies have attempted to resolve this problem by forming meta-
nodes and reducing the number of graph nodes (Archambault 2009). A tree, as a 
special form of graph, reduces computational complexity. In particular, the use of 
AST trees neglects certain basic differences by considering the syntax structure 
(Yang 1991; Goto et al. 2013; Falleri et al. 2014; Wang et al. 2011; Neamtiu et al. 
2005; Nguyen et al. 2011; Wang et al. 2014). We also use the AST tree as the base 
of our change detection algorithm.

Each article examined for this research has certain deficiencies. For example, 
some do not thoroughly discuss language statements (Horwitz 1990), exhibit cer-
tain limitations (Linares-Vásquez et al. 2015), or encounter computational problems 
as the program grows larger and the number of graph nodes increases (Debin et al. 
2008). Some do not capable of tracking the relocated code or matching a single line 
of code with multiple lines with the same meaning (Canfora et al. 2009). Others do 
not detect the updated code and only detect lines that are either added or deleted 
(Myers 1986; Vokolos and Frankl 1998). There are those that require a pre-process-
ing phase to normalize code (Asaduzzaman et al. 2013; Horwitz 1990; Wang et al. 
2014). Additionally, most of the programs have high time complexities in the order 
of O (n3) or O (n2). The idea presented in this paper overcomes some of these limita-
tions and its time complexity is O  (n). Table 2 compares the three types of program 
differencing (text/ syntax/ semantic).

Textual differencing can be applied to any text file. It indicates detailed changes 
such as added or deleted or updated lines. Its line-based view does not respect syn-
tactic boundaries. Thus, the differences often do not sufficiently reflect on the real 
meaning of the changes and often are not readable enough, also relocating the code 
may be unsupported.

Syntactic differencing is based on grammar and parse trees, therefore it ignores 
changes to whitespace, comments, and preprocessor statements. Tree-matching 
algorithms are used to identify unchanged parts of the tree (code) and display the 
remaining parts as syntactic differences. These algorithms are generally slow and 
thus do not scale to large systems. Also, sometimes two completely identical struc-
tures may be in different situations that show different functionalities and are not 
semantically the same.

Semantic differencing corresponds to changes in the program functionality and 
is not related to programing structure or statements. Normalization methods are 
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objective of this study is to identify 20% of the tests that can detect 80% of errors 
instead of creating an infinite subset of tests that detect 100% of errors.

Different from other safe selective RT methods, this technique limits the number 
of selected test cases. Results show that the test suite is not safe Results show that 
the test suite is not safe because 20% of the errors were ignored. The restricting 
method reduces this problem to a prioritization problem, which chooses 20% of the 
higher-priority test cases.

Cibulski presented selection techniques based on natural language analysis and 
dynamic programming via the TestRank tool. TestRank takes a Java program with 
its test suite as input and requires a pre-processing step, which is considerably time-
consuming. As mentioned above, two fundamental problems arise: (1) the test suite 
is unsafe, and (2) the synchronization of the system with the latest version of the 
program is considerably time-consuming (up to one day, 24 h).

As another related work, we refer to ChangeScribe (Linares-Vásquez et al. 2015) 
and iDiff (Nguyen et al. 2011) tools, which are Eclipse plugins similar to our pro-
ject. These plugins generate comments to explain changes. ChangeScribe only con-
siders the textual differences of the new program from the previous version and gen-
erates comments that explain changes. ChangeScribe, however, cannot be used for 
RTs and is only applicable for Java projects existing on GitHub because it does not 
have a version manager. The iDiff tool receives two program versions at a time and 
determines the modified, deleted, or added classes and methods. It does not provide, 
however, a complete environment that contains all versions created throughout the 
software evolution process. Also, Eclipse has been considered in Santosh Singh and 
Kumar (2018) for learning techniques selection.

4  Methodology

In the TDD method, any minor changes result in RT. The problem, therefore, is the 
growing number of tests and the necessity of re-executing these tests. Finding a 
small subset of the test suite that can be utilized to scrutinize the software with high 
confidence is thus important.

4.1  Add a new phase to three phase TDD cycle to reduce the test re‑execution 
time

As pointed out in Biswas et al. (2011), reducing the time of test execution differs 
among various software development methodologies, so a TDD-specific approach 
should be determined to choose test cases that must be re-executed in each iteration 
of the TDD process.

In pure TDD, the part of the code that each unit test belongs to is precisely deter-
mined. The code is developed after writing the test; hence, there is a close relation-
ship between the unit test and the modified code. In every step of the software devel-
opment process, the modified parts of the code are determined, and only tests that 
lead to these parts are chosen for re-execution.
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usually used in order to remove code variations. Module signature modification is 
considered as a semantic difference.

3  Related work

First, previous works on the TDD are examined and different approaches are con-
sidered. The various methods that have been suggested are studied to reduce the 
RT execution time and to propose a suitable method to reduce this time in the TDD 
method.

As an instance, Continuous Test-Driven Development (CTDD) recommends 
background testing to reduce this time. CTDD is a recent enhancement of the TDD 
practice and combines the TDD with continuous testing practice. During the execu-
tion of test cases, the developers have to stop the system to execute the test physi-
cally, thus increasing the program development time. By using the continuous com-
pile feature in the new IDEs, e.g., Eclipse or Visual Studio that keep the source code 
in the compiled mode, this goal of reducing execution time will be realized (Madey-
ski and Marcin 2013).

Madeyski and Kawalerowicz (2018) evaluated the CTDD practice via an empiri-
cal study in a real industrial software development project that employs Microsoft.
NET. If the developers that use TDD adopt CTDD, it can run slightly faster, thereby 
leading to slight improvements in coding. Although the idea is to write a code and 
execute the test in parallel, it does not change the number of test cases and the num-
ber of times they run; hence, it does not reduce the amount of load and processing 
costs. In terms of reducing the number of test cases, our proposed method is thus 
preferred.

In another instance, Cibulski and Amiram (2011) performed the RT in TDD. A 
small subset of test suites for each small local change is automatically found. The 

Table 2  Comparison of the three types of program differencing

Type

Factor Textual Syntactic Semantic

Speed Fast Not Fast Not Fast
Accuracy High Medium Medium
Readability Low High High
Scalability High Low Medium
Flexibility High Language dependent Language dependent
Abstraction Level Line-based Statement-based Module-based (function-

based/class-based)
Regardless of worthless 

details
Low High High (ignore refinements)

Modification Level Add, delete, (update) Add, delete, update, 
relocate

Transformation

Representation Line, Text AST tree Graph, Tree
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Figure 1 illustrates the TDD tasks that are comprised of three steps, which cor-
respond to the three phases of the TDD cycle. In the first step, the new test is written 
and executed until an error occurs. In the second, the code is written to pass the test. 
In the third, the refactoring phase occurs.

Figure 2 illustrates the tasks in our improved TDD cycle that are comprised of 
four steps. The first and second steps are similar to the first two steps illustrated 
in Fig.  1. In these two steps, however, only “the new test” is executed instead of 
executing “all test cases”. The third step is a new phase added to this figure. In this 
step, tests that require re-execution are selected and executed using our selection 
algorithm. The last step in both figures is refactoring. In the refactoring phase of 
Fig. 2, only tests that are related to the modifications are selected and executed. In 
the improved TDD, test case execution is limited in all of the given steps, as illus-
trated in the flowchart in Fig. 2.

4.2  Segmentation

First of all, we divide the program into several code blocks based on the Java pro-
gramming language grammar. Program segmentation has three benefits:

1. The program is divided into small independent components called blocks.
2. Each block has a fixed unique name, so it can be traced. Line tracking is not 

applicable. Because the program changes and as a result the line number also 
changes.

Fig. 1  TDD activities (Madeyski and Marcin 2013)

Fig. 2  Our Improved TDD activities to reduce test cases
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3. It is possible to detect changes in the program by detecting changes inside the 
block. Also, the location of changes in the program is specified precisely.

We desire two levels of granularity for these code blocks: (a) coarse-grained level 
for whole classes and methods and (b) fine-grained level for language control flow 
statements. However, structured block information is stored in a database.

By segmenting the program code into blocks and assigning a name to each block, 
code tractability property is created, so any movement or update in the block content 
will therefore modify the program code in that block. This determines the location of 
changes and makes block relocation traceable.

4.3  Change detection algorithm

We initially decided to compare the block content textually. Textual-differencing 
approaches are limited to a line-level granularity. We omitted extra spaces between 
words and lines, as well as entire comments, then we compare this pre-processed text 
of each block with its previous version to detect if it has changed. Later, however, we 
also decide to use an abstract syntax tree to compare the contents of each block. By 
applying this structure, minor changes can be ignored too. So, we use the combination 
of text and syntax differencing method. The difference between the two versions of a 
program is determined by identifying the modified code blocks based on Java grammar 
as a combination of textual and syntactical difference methods.

Although semantic and behavioral modifications are at a higher level and indicate 
real changes, the focus of this study is on textual and syntactical modifications. The 
reason behind this choice is that we have to find all the tests that require re-execution 
after code modifications. In the case of omitting tests that check the changes in appear-
ance (e.g., change in the name of a variable or method), the set of test cases is not 
considered safe. Hence, although the modifications are of the refactoring type, the tests 
should be re-executed to ensure accuracy. Focusing on the textual and syntactical levels 
may ensure the safety and reliability of the RT.

4.4  Relationship between test case and code blocks

After adding any new test case that has encountered errors, new code blocks are cre-
ated, or existing code blocks are modified. These modifications are implemented to 
pass the last test; therefore, the last test is related to the modified code block(s). A con-
nection must therefore be automatically established between the modified code blocks 
and the last test case to be used by the selection algorithm.

Given project P, includes a set of code blocks C and a set of test cases T. To pass the 
new test case t, some of the code blocks M ⊂ C will be modified (to M′ ⊂ C′) and new 
code blocks N may be created. So the new version of project P′ consists of C′ and T′ 
such that:

(1)C
� = (C − M) ∪ (M� ∪ N)
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We define Link relation as follow:

4.5  Test case selection

In the TDD method, the code is written or modified only because of test failure. 
In our proposed concept, however, the failed test is connected with modified code 
blocks. This task is iteratively executed, and the connections between the code 
blocks and related unit tests are established and tracked. In order to run the RT, the 
test cases connected to modified or newly added code blocks are chosen as candidate 
unit tests for execution.

As a result, the iterative execution of test cases, which are not connected to the 
modified parts of the code, is avoided, and the number of selected test cases is 
reduced.

After specifying the ‘Start’ and ‘End’ versions of the program for RT, the latest 
commit7s and new test cases are identified in this interval. All code blocks related to 
the new tests are specified, and the tests relevant to these code blocks are introduced 
as candidate tests. Figure 3 illustrates our improved test selection algorithm. At the 
first, RichTest identifies the involved commits from the start version to the end ver-
sion. Then it extracts all the modified code blocks. In the next step, it extracts all the 
related test blocks. After all, it adds the recently add test block to the list and shows 
the final complete list of candidate test cases.

As shown in Fig. 3 the RichTest built-in version manager lets the custom start 
and end version, not necessarily consecutive version, although it is set to the last two 
versions by default.

Our test case selection algorithm is presented using the following example.

(2)T
� = T ∪ {t}

(3)Link ∶ C
� × T

�

(4)∀c ∈ (M� ∪ N), Link(c, t)

Fig. 3  improved test case selection process

7 Each copy of the program a developer saves. It is not necessarily a new issue/version of the program.
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4.5.1  Test case selection example

Suppose that test cases Ta001–Ta010 are written in sequence. In order to pass 
each test, code blocks Ca001–Ca007 are added or modified, as listed in Table 3.

Ta005 and Ta008 pass immediately without changing the code, but the rest of 
the test cases cause changes in some code blocks and a new commit is generated. 
Commits c1-c8 shows all the saved program copies.

A question then arises: from the commit related to Ta008, i.e., c6–c8, which 
test cases are selected for the RT?

It can be observed that Ta008–Ta010 are new tests in this interval that are 
related to Ca001, Ca006, and Ca007 code blocks, respectively. These code blocks 
are connected to Ta001, Ta002, Ta003, Ta009, and Ta010 test blocks (as shown 
in Table 4) that are candidates in the RT.

Although T8 is recently added, its re-execution is unnecessary because this test 
previously passed without making any code modifications. To ensure safety, how-
ever, this test is still considered.

4.6  RichTest

RichTest plugin (Rich Software Testing) is based on the Eclipse integrated devel-
opment environment and is written in Eclipse version 4.8, which is recommended 

Table 3  Relationship of test and 
code in Example 1

Commit Test block Code block(s)

c1 Ta001 Ca001
c2 Ta002 Ca001
c3 Ta003 Ca001, Ca002
c4 Ta004 Ca003
c4 Ta005 –
c5 Ta006 Ca004
c6 Ta007 Ca003, Ca005
c6 Ta008 –
c7 Ta009 Ca001, Ca006
c8 Ta010 Ca001, Ca007

Table 4  Modified code blocks 
in Example 1

Code block Test block(s)

Ca001 [Ta001, Ta002, Ta003, Ta009, Ta010]
Ca006 [Ta009]
Ca007 [Ta010]
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for running RichTest. This tool consists of five main components, which are (1) 
Version Control Manager, (2) Code Segmentation, (3) Code Change Detection, 
(4) Connection Creation between Code and Test Blocks, and finally, (5) Test Case 
Selection as shown in Fig. 4.

4.7  RichTest algorithm

The algorithms of each of the five modules shown in Fig. 4 are presented sepa-
rately in Algorithm 1 to Algorithm 5. Algorithms 1 to 4 are executed sequentially 
after saving the program, while Algorithm 5 is activated by running the regres-
sion test wizard.
Algorithm  1  Version Manager (Trigger: Click the Save button in the Eclipse 
IDE)

1- BBeeggiinn
2- SSttaattiicc VersionNumber= 1.0.0
3- Display the recommended VersionNumber for the program as a three-part number.
4- Allow the user to change the VersionNumber.
5- Store the program specifica�ons in the database.
6- Allow the user to select any VersionNumber of project to view its specifica�on.
7- EEnndd..

Fig. 4  The main components of 
RichTest
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Algorithm 2  Code Segmentation (Trigger: Click the Save button in the Eclipse 
IDE/CTRL+1)

1- BBeeggiinn
2- SSttaattiicc TBlockname=Ta001
3- SSttaattiicc CBlockname=Ca001
4- ffoorreeaacchh file f in the project
5- Search the file f to find ““@@TTeesstt”” annota�on.
6- Consider each test case as a test block.
7- Assign a unique name to each test block according to the test naming guidelines.
8- Insert block informa�on into the database.
9- Insert “//Start Of Test Block: + TBlockName” comment at the beginning of each test block.
10- Insert “//End Of Test Block: + TBlockName” comment at the end of each test block.
11- IIff (BlockSelec�on==”Automa�c”)
12- ffoorreeaacchh file iinn the project
13- Create the AST tree according to Java programming language grammar (exclude test cases).
14- Convert each node to JSON format
15- IIff (CodeGranularity==” FineGrained”)
16- Select every new Statement as a block
17- IIff (CodeGranularity==”CoarseGrained”)
18- Select every new Class and Method as a block
19- Assign a unique name to each new block according to the code naming guidelines.
20- Insert block informa�on into the database.
21- Insert “//Start Of Code Block: + CBlockName” comment at the beginning of each code block.
22- Insert “//End Of Code Block: + CBlockName” comment at the end of each code block.
23- IIff (BlockSelec�on==”Manual”)
24- wwhhiillee CTRL+1 bu�ons clicked by user ddoo
25- Consider the sec�on selected by the user as a new code block.
26- Assign a unique name to the new code block according to the code naming guidelines.
27- Insert block informa�on into the datatbase
28- Insert “//Start Of Code Block: + CBlockName” comment at the beginning of the code block.
29- Insert “//End Of Code Block: + CBlockName” comment at the end of the code block.
30- Specify Child and Parent nodes according to the tree structure 
31- Store Parent informa�on in the database.
32- EEnndd..

Algorithm  3  Code Change Detection (Trigger: Click the Save button in the 
Eclipse IDE)

1- BBeeggiinn
2- C= Ǿ //All AST tree Nodes
3- N= Ǿ //New Nodes
4- M= Ǿ //Modified Nodes
5- T= List of the newly added test blocks.
6- ffoorreeaacchh file f ddoo
7- Construct AST tree of file f (considering CodeGranularity)
8- Compare the AST tree of this version of the program with the previous version syntac�cally (exclude test blocks) 
9- ffoorreeaacchh node n iinn AST
10- iiff n iiss new
11- N=N∪ {n}
12- eellssee
13- C= C∪ {n} 
14- ffoorreeaacchh node n iinn C ddoo
16- IIff (JSON(n) != JSON (n’)) // Compare the JSON content of two versions n, n’(previous) textually
17- M=M∪ {n}
18- A�er iden�fica�on of the new (N) and modified (M) blocks, store block specifica�ons in the database.
19- EEnndd..
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Algorithm  4  Connection Creation (between Test Case and Code Blocks) (Trig-
ger: Click the Save button in the Eclipse IDE)

1- BBeeggiinn
2- //use T, M , N List produced from Algorithm 3
3- ffoorreeaacchh newly added test case t∈T ddoo
4- ffoorreeaacchh changed code block c∈(N∪M) ddoo
5- Link code block c to test block t.
6- EEnndd..

Algorithm  5  Test Case Selection (Trigger: Regression Test Wizard available 
through RichTest Plugin)

1- BBeeggiinn
2- Input the two version numbers of the program as Start and End.
3- C= All the commit from Start to End version (Extract from the database.)
4- T= All the test case that has been inserted from the Start version to the End version
5- B= { } // affected code blocks
6- ffoorreeaacchh commit c∈ C ddoo
7- MC= List of all the modified code blocks.
8- Pc= List of all the Parent of each selected modified block exis�ng in M. //M is available from Algorithm 3 
9- Bc= Mc∪ Pc 
10- B = B ∪ Bc 
11- ffoorreeaacchh modified code block b∈ B ddoo 
12- Tb =List of all the test cases that are linked to code block b 
13- T= T ∪ Tb  
14- Output T as candidate test cases. 
15- EEnndd..

4.8  RichTest plugin overview

By installing8 RichTest on Eclipse, the developer will be able to develop TDD pro-
jects faster and easier as fewer test cases are selected and executed in the develop-
ment phase. It also offers several widgets,9 such as Block Information View, Commit 
View, Version Manager View, Regression Test View, and Compare View to facili-
tate the use of RichTest which is explained below.

BlockInfoView: It is possible to display the Block List and the relationship 
between code blocks and test blocks, as well as manage the relationship manually.

CommitView: It is possible to show all block creations and modifications and 
also filter all versions and commits of each block.

VerssionManagerView: It is possible to set a new version for the projects.
RegressinTestView: It is possible to automatically select candidate test cases, 

run them to show the time and results (Fail/Pass), and export them to an Excel file 
format.

8 Help → Install New Software, and also should set Window → Preferences as Dependency folder 
address.
9 Available from Window → Show View → Other → RichTest.
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CompareView: It is possible to compare two different commits of each block. 
The code block will be shown in two situations (before/ after) and the differences 
will be colored and presented on CompareResultsView.

Preferences10 such as Automatic/Manual Block Selection, Code Granularity 
(Coarse/Fine), and Enable/Disable TDD Mode. Related figures are attached.

Figure 5 is a snapshot of using this plugin as well as its widgets. More additional 
images are provided in Appendix A.

4.9  RichTest plugin working process

RichTest segments the source code and test code into code blocks and test blocks, 
respectively, during the project development process. It also identifies modified code 
blocks in each commit, detects the relationship between test blocks and code blocks, 
and stores them in a database. The main purpose of RichTest is to find candidate test 
cases for the RT process that are made possible by the connections already made 
between test blocks and code blocks.

4.9.1  Automatic block segmentation

The segmentation process can be implemented both manually and automatically. In 
the automatic mode, whenever a file is stored, the plugin segments the file contents 
into blocks, adds new blocks, and updates modified ones. There are two types of 
blocks: test block and code block.

1. Test block is in fact a complete test case. It is considered as a block only because 
of its similarity to the code block.

2. The code block is determined based on the structure of the programming language 
instructions. Each block represents a node in AST.11

Automatic test block segmentation detects the “@Test” annotation to identify 
each test block, and automatic code block segmentation is based on the AST. The 
code block granularity degree can be chosen from two levels: (a) coarse-grained 
level for classes and methods and (b) fine-grained level for language control flow 
statements (SWIFT instructions12). The first level produces larger and fewer blocks, 
and the second level produces smaller and more blocks, especially in large projects. 
The automatic code block segmentation activity diagram is shown in Fig. 6.

During segmentation, a unique name is automatically assigned to each new block. 
The block nomination method varies depending on whether the block is a code 
block or a test block. The names of code and test blocks follow the LNC and LNT 
regular expressions, respectively.

10 Available from Window → Preferences → RichTest.
11 Abstract Syntax Tree.
12 sw itch, while, if, for, foreach, and try.
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4.9.2  Manual block segmentation

Segmentation can be manually performed by the developer. Using RichTest, any 
valid arbitrary part of the code could be specified as a block by simultaneously 
selecting the desired part of the code and pressing CTRL + 1 Keys. The manual code 
segmentation activity diagram is shown in Fig. 7.

(5)LNC = ‘C’ lddd

(6)LNT = ‘T’ lddd

(7)l ∶∶= a|b|c|…|z|A|B|C|… |Z

(8)d ∶∶= 0|1|2|…|9

Fig. 5  Using the RichTest plugin in Eclipse for the sort program

Fig. 6  Automatic code block segmentation
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4.9.3  Difference detection algorithm

The RichTest tool transforms each code block into a JSON array. In order to iden-
tify the differences in each code block, the elements of the JSON array are com-
pared with those of the previous state. If there is a difference among the array ele-
ments, then this block is recognized as a modified block, and the block contents and 
properties are updated in the database. The JSON is a structured textual format for 
holding the information that ignores ineffective textual modifications (e.g., adding 
comments).

The primitive version of the plugin has no programming language limitation and 
is capable of supporting all languages supported by Eclipse because it uses a text-
based difference algorithm. The new version of the plugin, however, is only applica-
ble to the Java programming language because it detects differences using the AST 
based on Java grammar and stores the syntax information of blocks.

In the new version, the comparison method is a combination of both textual and 
syntactic differencing methods. Segmentation is performed based on Java syntax, 
and the block content is stored in the AST model. The data values   are compared 
based on their textual contents.

As emphasized in the literature review, the use of each of the existing methods to 
find textual and structural differences has advantages and limitations. In this study, 
these two methods are combined to exploit the following advantages: precision and 
speed in textual difference, code relocation, and ignoring insignificant modifications 
in a syntactical structure. The textual difference related to each small modification is 
considered in the AST to ensure that no related test is ignored in the test case selec-
tion process.

4.9.4  Connecting code blocks to test blocks

Each code block can be connected to one (or more) test block(s). In the manual 
mode, the block relationships can be manually managed using the “Block Informa-
tion View.” In automatic mode, the last test block added is automatically connected 
to all modified code blocks. In this mode, however, it remains possible to manually 
manage block connections.

Figure 8 shows an example of the relationship between test and code blocks. A code 
block may be associated with none, one, or several test blocks. As shown in Fig. 8 the 
Ta001 test block is first written, then the Ca001 code block is generated as a result of 

Fig. 7  Manual code block segmentation
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the Ta001 test failure. Next, the Ta002 test block is written; subsequently, there is a 
change in block code Ca001. To pass the Ta003 test, block code Ca001 is modified 
again The Ta004 test block generates the Ca002 code block. The Ca003 code block is 
created after the Ta005 test block failure.

Inside an existing function, a new loop statement may be added that can be defined 
as a new code block. In this case, the internal block is a part of the external block, and 
the test connection to the internal block also extends to the external block. The Ta006 
test block is, directly and indirectly, related to Ca004 code block and external Ca003 
code block, respectively.

After each newly added test fails, new code block(s) are created, or existing code 
block(s) are modified. These changes are necessary to pass the last test. Semantically, 
the given test is relevant to these modified code block(s). A link is therefore created 
from each of the modified code blocks to the last test; this connection is stored in the 
database. Figure 9 shows how the connection between code blocks and test blocks is 
established.

4.9.5  Regression test wizard

“Regression Test Wizard” produces a list of candidate test cases between the 
“Start Version” and “End Version” of the program. The wizard also assigns a 
name for the list. The last and previous versions are considered as default for 
the End and Start versions. After specifying the desired Start and End versions, 
recently added test cases are highlighted, and all test cases associated with the 
modified code blocks are also nominated. Only candidate test cases are shown. 
These can be saved and run, as shown in Fig. 10.

Fig. 8  Example of n:n relationship between test blocks and code blocks
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After the execution of test cases, successfully passed and failed test cases are 
determined. The passed tests are identified in green with a “success” result tag, 
whereas the failed tests are identified in red with a “fail” result tag. The runtime 
information of each test case is in milliseconds. Candidate test case information 
can also be viewed and executed through “Regression Test View.”

4.10  Empirical evaluation

For the preliminary evaluation, RichTest is employed in three simple examples: 
exponentiation (power), array selection sorting, and linked list that calculates an 
integer number raised to the power of a positive integer, sorts array elements in 
ascending order, and creates and modifies linked lists, respectively. These three 
programs were written step by step according to TDD kata (Wolfgang 2018) 
when the RichTest plugin had not yet been implemented by one of the authors. 
Exactly the same process was re-implemented with RichTest after implementa-
tion by another authors.

"Re-implementation" is the same process as implementation, except that it is done 
in the presence of the RichTest plugin to automatically perform some tasks such as 
code segmentation, difference detection, relation creation, and test case selection.

Since our goal is to measure the effectiveness of the tool, we kept all the condi-
tions constantly except the implementation environment. For this purpose, we added 
the same previous test cases one by one and wrote the same previous codes utilizing 
RichTest. This plugin reduces the number of execution of test cases by selecting 
some of the test cases. Four large projects are also implemented with and without 
RichTest tool. Full details are presented in subsequent sections.

4.11  Small program development using RichTest

The three small programs—Power, selectionSort, and linkedList—are implemented 
in the Java programming language using the TDD method twice, with and without 
utilizing RichTest. Power, selectionSort, and linkedList programs were implemented 
by five, ten, and nineteen test cases respectively. The two first implementations took 
five steps, so they have five versions. The last one was implemented in ten steps, so 
it has ten versions. The implementation results are summarized in Table 5.

It is predictable that the total number of tests performed in the TDD method is 
more than our method. Because we select some of the test cases, while traditional 

Fig. 9  Relationship between modified code blocks and new test block
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TDD, executes all of them. But the difference between these two methods is huge. 
It is trivial that as the program grows larger, the number of commits also increases; 
consequently, the advantages of RichTest become more evident. The RichTest 
plugin successfully reduces the selected test cases by reducing the number of test 
cases and the number of times each test is executed.

4.12  Large project development using RichTest

In order to evaluate RichTest with large and real programs and identify projects 
based on the TDD in GitHub, a survey is conducted using a new program. Similar 
to the work of Borle et al. (2018), this program searches GitHub for projects that 
contain created test files before project development or at least one week thereafter.

Fig. 10  RichTest test selection 
process sequence diagram

Table 5  Comparison of number of test executions in TDD and RichTest (three simple programs)

Program

Power selectionSort linkedListFactor

TDD RichTest TDD RichTest TDD RichTest

Total number of executions (sum) 61 6 68 9 387 25

Average= sum/v 12.2 1.25 13.6 1.8 38.7 2.5

Number of tests (n) 5 10 19

Number of versions(v) 5 5 10
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4.12.1  TDD projects on GitHub

To compare the plain TDD method with the suggested improved technique, some 
real TDD Java projects are selected from GitHub. Although GitHub provides a code 
repository for projects, it is not possible to determine the development process of 
projects. On the other hand, there is no precise definition for TDD projects. It is also 
not possible to determine with certainty whether the project follows the TDD pro-
cess using a project repository. Borle et al. (2018) formulated a method for detect-
ing TDD projects on GitHub; however, the names of discovered projects were not 
disclosed. The authors acknowledge the uncertainty of results with respect to the 
foregoing problems and attempt to construct a range of code repositories that shows 
the extent that the TDD process is employed in their projects.

We implemented a Java script program that includes ten asynchronous and nor-
mal functions to crawl GitHub repository. First, it creates an asynchronous iterator 
over all public repositories of GitHub that have Java listed as one of their languages. 
Then it filters the returned values, limiting them to repositories that have all the fol-
lowing specifications:

1. Primary Programming Language = ‘Java’
Size > minSize
No. of Commit > minNoCommit
No. of TestFile > 0
(TestCreateDate < CodeCreateDate) or ((TestCreateDate < 30th CommitDate) 

and (TestCreateDate < CodeCreateDate + 1 week))
This program is employed to find the TDD projects on GitHub. Within one hour, 

89 projects with the above-mentioned properties are identified. Six of these pro-
jects, which have a suitable number of lines and commits that could be executed in 
Eclipse, are chosen for evaluating the RichTest tool. These projects are ScribeJava, 
Jasmin-Maven Plugin, Metric-Core, Jedis, Commons-Math, and Junit-dataprovider. 
Table 6 summarizes the properties of these projects.

Scribejava is a simple OAuth library for Java. Jasmine-maven plugin is a Maven 
plugin for the JavaScript testing framework, Jasmine. The Metric-core is the central 
library for Metrics that provides basic functionality. Jedis is a client library in Java 
for Redis. It is driven by a Keystore-based data structure for persistent data and can 
be used as a database, cache, message broker, etc. Commons-Lang is a package of 
Java utility classes for the classes that are in java.lang’s hierarchy, or are considered 
to be so standard as to justify existence in java.lang. Commons-Math is a library 
of lightweight, self-contained mathematics and statistics components addressing the 
most common problems not available in the Java programming language or Com-
mons-Lang. Junit-dataprovider is a TestNG like dataprovider runner for JUnit with 
many additional features.

It should be mentioned that the programs selected as TDD projects are not neces-
sarily TDD. These open-source projects, however, have basic TDD specifications 
with test files besides the code files. Their evolution process can be accessed, and 
hence, they can be re-implemented as TDD projects.
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4.12.2  Re‑implementing GitHub projects 

After finding the appropriate repository, we re-implement each project, step by step. 
For each repository, we first create an empty project and transfer the first commit of 
the repository to this project. Then we select the "Save" button. The RichTest per-
forms segmentation and adds start and end comments and inserts block information 
in the related database. This is the first version of the project.

In the next steps, we have to complete the project incrementally according to the 
main branch and apply the changes in each commit. We apply test files changes and 
then we apply code files changes. Then we select the "Save" button again. From 
the second version onwards, not only automatic block segmentation but also block 
relationship creation is done and the related information is recorded in database. It 
is important that in each commit the changes related to the tests are applied first and 
then the changes related to the code are applied so that the connection between the 
test cases and the modified code blocks is correctly recognized and recorded. At last, 
we run the RichTest Regression Test Wizard to select related test cases. Then we 
store the number of RichTest selected test cases as well as the total number of test 
cases in two separate table to calculate the total number of the executed test case in 
each method.

We perform this process for all versions of all projects. The number of versions in 
each project is extremely high. As a result, it is relatively time-consuming to repeat 
the process for all versions. Only 100 versions are therefore considered in the first 
project, and overall, fewer versions are considered in other projects (29, 28, and 15 
versions were re-implemented for projects Jasmin-Maven Plugin, Metric-Core, and 
Jedis, respectively).

Selected projects are not originally written with our plugin; hence, the first 
version of some projects that have more than one test case, was re-implemented 

Table 6  Properties of selected 
GitHub Projects

a https:// github. com/ scrib ejava/ scrib ejava
b https:// github. com/ searls/ jasmi ne- maven- plugin
c https:// github. com/ avaje- metri cs/ metri cs
d https:// github. com/ xetor thio/ jedis
e https:// github. com/ apache/ commo ns- lang
f https:// github. com/ apache/ commo ns- math
g https:// github. com/ TNG/ junit- datap rovid er

Project name LOC Number of 
versions (v)

Number of 
tests (n)

ScribeJavaa 10,668 1134 135
Jasmin-Maven  Pluginb 3815 635 103
Metric-Corec 6734 240 54
Jedisd 30,786 1586 592
Commons-Lange 88,775 6954 3949
Commons-Mathf 260,760 7010 3073
Junit-dataproviderg 22,544 586 762

https://github.com/scribejava/scribejava
https://github.com/searls/jasmine-maven-plugin
https://github.com/avaje-metrics/metrics
https://github.com/xetorthio/jedis
https://github.com/apache/commons-lang
https://github.com/apache/commons-math
https://github.com/TNG/junit-dataprovider
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manually to establish the connection between code blocks and test blocks. Block 
segmentation, however, is generally automatically implemented.

Table 7 summarizes the number of versions considered in each project and the 
number of lines of code (LOC) in the first and last considered versions, as well as 
the number of test cases in the first and last desired version.

After each modification, the new version is stored, and the Regression Test Wiz-
ard is executed. Candidate test cases that are relevant to the modified code blocks 
are provided by the plugin. The number of candidate test cases is thereafter consid-
ered to calculate the number of times the test cases are executed.

Table 8 lists and compares the number of candidate test cases executed in TDD 
and RichTest plugin for these four selected open-source projects on GitHub. The 
result indicates that the use of RichTest plugin significantly reduces the number of 
test case executions by minimizing the number of selected test cases at runtime.

As can be seen in Table 8, the two columns TDD and RichTest have significant 
differences in all projects. This difference is greater for the first project (ScribeJava). 
We re-implemented the first project up to the 100th version. As to the other projects, 
a smaller number of versions were re-implemented. So, the difference between the 
number of times of test executions of TDD and RichTest in ScribeJava is consider-
ably larger compared to the other projects. This difference is due to the fact that the 
number of versions in this project is much higher than the others and RichTest abil-
ity is more evident in the high number of versions.

To evaluate the improved method, three small programs and four large open-
source projects on GitHub are implemented in RichTest. The number of test case 
executions in the main TDD method and improved method are thereafter calcu-
lated and compared. As illustrated in Fig.  11 (obtained from Table 5 (page 16) 
and Table  8), the RichTest plugin (box crosshatched with orange and diagonal 
lines) significantly reduces the number of test case executions by reducing the 
number of selected test cases at runtime. This reduction would be more signifi-
cant in large projects with a larger number of test cases (ScribeJava is an evident 
example).

Table 7  Number of considered 
versions for four open-source 
projects on GitHub

a Number of test cases in first version
b Number of test cases in our last desired version

Project ScribeJava Jasmin-
Maven 
Plugin

Metric-Core Jedis

First LOC 1464 111 3027 220
Last LOC 2266 545 4067 830
Number of 

desired ver-
sions (v)

100 29 28 15

t1a 51 4 4 10
t2b 81 13 4 93
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In Fig. 12, the total number of test cases is divided by the number of versions 
to determine the average number of test cases per iteration. As shown in this fig-
ure, in RichTest, the average number is small in all cases but varies according to 
the number of test cases in the TDD. This figure confirms that the average num-
ber of candidate test cases in the improved method is small and is not related to 
the number of test cases.

The desired versions of ScribeJava are larger compared to the other projects. As 
illustrated in Fig. 13, the difference in the number of test execution times between 
the two methods (TDD and RichTest) in this project is more significant. This indi-
cates that the advantages of this approach are more evident in large projects that 
have a longer production process and when the number of test cases is higher.

Figure  13 illustrates that the number of times that the test runs in RichTest 
(orange dashed line) completely overlaps with the number of test cases (black dotted 
line labeled as “n”). The number of times the test runs in the TDD (blue line), how-
ever, significantly differs from the number of test cases.

Table 8  Comparison of number of executed test cases in TDD and RichTest for four projects on GitHub

Project
Factor

ScribeJava Jasmin-Maven Plugin Metric-Core Jedis

TDD RichTest TDD RichTest TDD RichTest TDD RichTest

Total number of executions (sum) 6056 173 296 54 112 20 730 116

Average= sum/v 60.56 1.73 10.21 1.86 4 0.71 48.97 7.73

Number of test cases (n) (51–81)† (4–13) (4–4) (10–93)

Number of versions (v) 100 29 28 15

a Format (m−n) indicates that the start version of project has m test cases and the end version has n ones.

Fig. 11  Total number of test case executions in TDD vs RichTest
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4.13  Evaluation results

Since some TDD developers’ only re-run test cases related to the new class or the 
new unit, maybe this question arises why we didn’t compare our work with it. So 
we decided to resume our work and compare our approach with such a simpler TDD 
we called STDD. Therefore considering that there is no standard dataset or projects 
to compare our method with others’ methods, for the baseline we desired two meth-
ods, pure TDD and STDD. We did these reviews for five TDD projects on GitHub. 
The results were recorded in separate tables. The summation of run test cases was 
calculated. The number of run test cases in TDD, STDD, and RichTest for five pro-
jects on GitHub are represented in Table 9. Although the STDD works much better 
than TDD, our method still performs better than the STDD. Selected [%] columns 
(5th columns) showing the percentage of selected test case (RichTest) in the ratio 

Fig. 12  Average of test case execution for each iteration in TDD vs RichTest

Fig. 13  Comparison between TDD and RichTest with n 
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of retest all (TDD). As can be seen it is on average 5.4%, minimum 3.5% and maxi-
mum 7% of retest all.

Figure  14 compares the total number of run test cases in three methods, TDD 
(blue box), STDD (green box), and RichTest (orange dashed box). As shown, Rich-
Test conquers STDD as well as TDD. The logarithmic vertical axis represents that 
the number of run test cases has improved more than tenfold.

Due to the reduction in the number of run test cases in RichTest, the test execu-
tion time will also be reduced in this tool. But in order to accurately calculate the RT 
time for each project, it is necessary to calculate the overhead time due to the use of 
this tool and consider it in the calculation of the RT time.

Therefore, we made changes in the RichTest so that all the times related to doing 
the general tasks, segmentation, and creating connections between code and test 
blocks are calculated and stored in the project database. For four projects, we calcu-
lated and recorded the overhead time in RichTest, then we added these time to the 
RT time and compared the result with the RT time in the TDD and STDD methods. 
The final results are presented in Table 10.

The spent time in TDD, STDD, and RichTest for five Projects on GitHub are 
represented in Table 10. Time [%] columns (8th columns) is showing the percentage 
of RichTest time in the ratio of retest all (TDD). As can be seen, the average time of 
RichTest compared to retest all is on average 6.8%, minimum 3.9% and maximum 
7.8%. The logarithmic vertical axis in Fig. 15 represents that the time has improved 
tenfold.

We also compared RichTest RT time (including overhead time) with STDD. It 
was found that they have slight differences with each other. If there are a few test 
cases written for each class, the number of selected test cases in both methods is 

Table 9  Comparison of the number of Run Test Cases in TDD, STDD, and RichTest for Five Projects on 
GitHub

Project TDD STDD RichTest Selected (%) Number of test cases Number of versions

ScribeJava 4485 257 157 3.5 (51–66) 69
Jedis 5432 1106 382 7.0 (10–136) 53
Commons-Lang 2766 418 186 6.7 (3–141) 23
Commons-Math 10106 2061 501 5.0 (9–226) 70
Junit-dataprovider 12312 4437 750 6.1 (1–240) 69
Average 7020 2069 395 5.6 (15–162) 57

Fig. 14  Comparison between run test cases in TDD, STDD, and RichTest for five GitHub projects repre-
sented in Table 9
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almost the same and as a result, STDD is slightly faster than RichTest. But if there 
are a lot of test cases, our tool selects only the related test cases and will perform 
better despite the overhead time. Also, results show that RichTest is suitable for 
large projects. Because in the early versions, the number of selected test cases and 
RT time does not differ much.

Coverage information is shown in Table 11, Figs. 16, and 17. We assumed TDD 
code block coverage to be 100% and compared it to STDD and RichTest. Also, we 
defined the modified code block coverage percentage criterion as the percentage of 
the selected test cases related to the modified code blocks. RichTest reached 100% 
coverage of the modified code block and STDD selected on average 61.67% of 
related test cases. Indirect test cases were not selected in STDD and STDD coverage 
is lower than RichTest; So RichTest is safer than STDD. TDD exceeded the over-test 
and we considered it 100% in Fig. 17.

4.14  Discussion

To compare our work with other similar plugins, we first decided to compare our 
work with the plugins listed in Table  1. So, we filtered Java plugins, which were 
eight, but we found that only JDiff (Apiwattanapong et al. 2007) used the program 
differencing for the regression testing, which lacked criteria comparable to the crite-
ria of our work and the focus of the article is on finding the optimal modified blocks 
and has studied four basic issues (Apiwattanapong et al. 2007):

Table 10  Comparison of the number of Run Test Cases and RT Time in TDD,STDD, and RichTest (con-
sidering RichTest overhead time) for Five GitHub Projects

Project Number of run test cases RT �me Number of

test cases

Number of 

versionsTDD STDD RichTest TDD STDD RichTest Time (%)

ScribeJava 4485 257 157 12479 537 484 3.9 (51–66) 69

Jedis 5432 1106 382 13706 1031 1073 7.8 (10–136) 53

Commons-Lang 2766 418 186 485 64 78 16.2 (3–141) 23

Commons-Math 10106 2061 501 2517 132 222 8.8 (9–226) 70

Junit-dataprovider 12312 4437 750 42379 12821 2756 6.5 (1–240) 69

Average 7020 2069 395 14313 2917 923 8.6 (15–162) 57

Fig. 15  Comparison of the RT Time in TDD, STDD, and RichTest for Five GitHub Projects represented 
in Table 10
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1. Object-oriented changes: JDiff (Apiwattanapong et al. 2007) has shown that a 
large number of changes are object-oriented changes, which were not considered 
in traditional tools. Like JDiff, RichTest detects all changes, including object-
oriented changes, and also identifies indirect changes by specifying parent and 
child blocks.

2. Optimization similarity threshold: In our article, considering that the name, the 
beginning and the end of each block are known, the matching block is simply 
tracked and does not have these parameters. RichTest also uses comparison of 
AST tree and JSON code to discover differences in similar blocks.

3. The number of matched nodes: The number of matched nodes in our tool is 
maximum (Same reasons as above).

4. Coverage estimation: In our article, Eclipse environment facilities are used for 
this purpose. We reached 100% modified block coverage.

Table 11  Comparison of the block coverage and modified block coverage in TDD, STDD, and RichTest 
for Five GitHub Projects

Project Block coverage (%) Modified block coverage (%) Number of test 

cases

Number of 

versionsTDD STDD RichTest TDD STDD RichTest

ScribeJava 100 1.11 2.01 1296.68 92.83 100 (51–66) 69

Jedis 100 13.33 30.86 749.94 59.93 100 (10–136) 53

Commons-Lang 100 16.71 34.77 1321.09 66.28 100 (3–141) 23

Commons-Math 100 9.69 26.38 875.62 42.71 100 (9–226) 70

Junit-dataprovider 100 14.38 39.48 579.36 46.63 100 (1–240) 69

Average 100 11.04 18.12 964.53 61.67 100 (15–162) 57

Fig. 16  Comparison of the block coverage in TDD, STDD, and RichTest for Five GitHub Projects repre-
sented in Table 11

Fig. 17  Comparison of the modified code block coverage in TDD, STDD, and RichTest for Five GitHub 
Projects represented in Table 11
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Therefore, we compared our work with the STARTS (Legunsen et  al. 2017) 
which is also reviewed in framework checker (Zhu et al. 2019). STARTS is a Java 
plugin for RT, selecting the impacted test cases. Legunsen et al. (2017) examined 
several Java projects with the STARTS and provided three criteria (1) number of 
selected test cases, (2) the offline time, and (3) the online time (includes time for 
the a, e, and g phases) similar to our work. Their results show that the number of 
selected test cases is on average 35.2% of all test cases, the offline time is on average 
81% of retest all, and also, the online time is on average 87.6%.

As shown in Table 9, the RichTest selects an average of 5.6% of the tests, while 
the STARTS selects an average of 35.2% of the tests. Also, as shown in Table 10 
the RichTest whole time is on average 8.6% of retest all test cases while STARTS 
takes 81% time. Table 12 compares RichTest and STARTS tools for the two projects 
Commons-Math and Commons-Lang as well as for the average of all reviewed pro-
jects. The result shows that RichTest has made a great improvement both for the two 
projects under common comparison and on average in all projects. It seems that the 
reason for this improvement is the use of the nature of TDD in the test case selec-
tion. Therefore, it can be concluded that it is necessary to create special tools for 
testing TDD programs.

At last, by using Python’s AutoRank13 function (Herbold 2020), we compare the 
number of test cases and RT time between RichTest with TDD and STDD for four 
projects (other projects were not completely applicable). Final results are shown in 
Table 13, 14, 15 and 16.

Table 13 represents the comparison of the number of run test cases and Table 15 
represents the RT time for two populations: TDD and Richtest. Table 14 represents 
the number of run test cases and Table 16 represents the RT time for two popula-
tions: RichTest and STDD. The result of AuroRank is provided for all the projects 
comparing two populations RichTest and TDD and also RichTest and STDD. Below 
are the results of comparing RichTest and STDD populations for Junit-dataProvider 
with 68 versions:

The statistical analysis was conducted for 2 populations with 68 paired samples.
The family-wise significance level of the tests is alpha = 0.050.

Table 12  Comparison of RichTest and STARTS for two common projects and average of all reviewed 
projects

Metric
Tool
Selected (%) Time (%) (include overhead)Project
STARTS
(Legunsen et 
al. 2017) (%)

RichTest (%) STARTS
(Legunsen et 
al. 2017) (%)

RichTest (%)

Commons-Lang 32 6.7 73.3 16.23
Commons-Math 28.9 5.0 30.3 8.8
Average of all Reviewed Projects 35.2 5.6 81 8.6

13 result = autorank(data, alpha = 0.05, verbose = False).
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We rejected the null hypothesis that the population is normal for the populations 
STDD time (p = 0.000) and RichTest time (p = 0.000). Therefore, we assume that 
not all populations are normal.

No check for homogeneity was required because we only have two populations.
Because we have only two populations and both of them are not normal, we use 

Wilcoxon’s signed rank test to determine the differences in the central tendency 
and report the median (MD) and the median absolute deviation (MAD) for each 
population.

We reject the null hypothesis (p = 0.000) of Wilcoxon’s signed rank test that pop-
ulation STDD time (MD = 15.095 ± 6.889, MAD = 7.954) is not greater than popu-
lation RichTest time (MD = 15.329  ± 8.124, MAD = 8.590). Therefore, we assume 
that the median of STDD time is significantly larger than the median value of Rich-
Test time with a negligible effect size (gamma = −0.019).

Considering that the initial versions of the projects are also taken into account, 
RichTest RT time is worse than STDD method, but the number of run test cases 
in all projects shows the superiority of RichTest. Also, RichTest RT time is better 
than TDD in every four projects. Magnitude fields shows that RichTest is negligible 
while TDD and STDD are large.

4.15  Research questions

This study focuses on the following five main questions:
RQ1: How many (complexity) test cases would be executed in the traditional and 

improved TDD process? The question is, if n test cases are written during the TDD 
process, what is the complexity of the number of test cases that will be executed?

4.15.1  Calculation of minimum number of test case execution

In test-driven development, all previous tests should be re-executed in each iteration 
to ensure that they will perform correctly under new conditions. Among the princi-
pal disadvantages of TDD is the necessity of having a large number of test cases that 
must be repeatedly executed.

For clarity, consider the following example. Suppose that n is the number of test 
cases, which have been written and passed one by one, during the program develop-
ment. This means that every time a new test is added, all previous tests, including 
the first test, are run again. Therefore, the first test will be performed at least n times. 
The second, third, and nth tests are executed at least (n − 1) times, at least (n − 2) 
times, and at least once, respectively.

So we add these items to get the minimum number of times that the test cases 
will have to be executed. As can be seen, the sum is equivalent to the sum of an 
arithmetic sequence that we have calculated by the formula (9).

(9)SUM (1 ∶ n) = n + (n − 1) + (n − 2) +⋯ + 3 + 2 + 1 = 1∕2 n (n + 1)
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In formula (9) we supposed that the TDD development process starts with only 
one test, but some of the GitHub projects used in this research have more than one 
test case in the first version. So, we suppose that the initial number of test cases is 
t1 (instead of one test), and the number of final tests is t2; hence, there are t1, t1 + 1, 
and t2 tests in the first, second, and last turns, respectively. The sum of the number 
of times the test cases are executed can be calculated by the formula (10).

As presented by formulae  (9) and  (10), the minimum number of times that the 
test cases are executed is calculated by the sum of an arithmetic sequence formula. 
So, the total number of test case executions is of O (n2) complexity, where n is the 
number of test cases. Actually, we have a quadratic complexity in traditional TDD, 
but in practice, we reach a linear complexity of executing test cases using RichTest, 
improved TDD (Fig. 13).

Considering that the number of test cases in the TDD is many times more than 
those in other methods, the relationship between the number of times that the tests 
will have to be executed and the second power of the number of test cases is one of 
the principal problems of TDD.

RQ2: How can we reduce the number of times that the test cases are executed 
without compromising the software reliability of TDD?

4.15.2  Safe test case selection

The main problem in test case reduction methods is the lack of confidence that the 
reduced test suite can detect errors. If we can ensure that the selected test cases can 
detect all errors, then the method is safe as well as software quality and reliability 
are maintained.

For this purpose, we intend to delete only the insignificant test cases. Thus some 
of the test cases that are less important could be ignored execution in any inter-
val. In this paper, we focus on the differences between the two versions of the pro-
gram instead of focusing solely on its latest version. As presented in Sect. 2.2.3, the 
behaviors of unchanged components in the new and old versions of a program do 
not differ at runtime so, it is guaranteed that no retest of all cases is necessary, and 
testing the affected component only is sufficient. RichTest skips all the test cases 
related to the unaffected parts of the program in RT. All test cases related to the 
modified parts are considered, so we have 100% modified code coverage.

The main problem in test case reduction methods is the lack of confidence that 
the reduced test suite can detect errors. If we can ensure that the selected test cases 
can detect all errors, then the method is safe as well as software quality and reliabil-
ity are maintained.

Rothermel believed that under controlled RT, the modification-traversing tests are 
a superset of the fault-revealing tests (Rothermel and Harrold 1997). Thus an algo-
rithm that selects every modification-traversing test is also safe.

It should be mentioned that test t ∈ T is modification-traversing for program P 
and modified program P’ if and only if ET (P(t)) and ET (P′(t)) are nonequivalent. 

(10)SUM
(
t1 ∶ t2

)
= 1∕2

(
t2− t1 + 1

)
∗
(
t1 + t2

)
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Execution trace ET (P(t)) for test t on program P, consisting of the sequence of state-
ments in P that are executed when P is executed with t.

It should be mentioned that ET (P(t)) is the execution trace for test t on program P, 
consisting of the sequence of statements in P that are executed when P is executed with 
test t. Also, Test t ∈ T is modification-traversing for program P and its modified pro-
gram P′ if and only if the execution traces of them are nonequivalent (ET (P(t)) ≠ ET (P′ 
(t))) (Rothermel and Harrold 1997).

What happens in our algorithm? Is it safe or not?
We "link" all the modified code blocks in each step to associated test cases. That is, 

when program P becomes P′, ET (P(t)) is different from ET (P′ (t)). So we select all 
modification-traversing test cases.

When a test failure causes code modification, all modified code blocks are then con-
nected to the test. Then all the tests related to these modified blocks are selected. Due 
to the code change in the block, for all of these selected tests, the sequence of executed 
instructions will be different at the time of running the test, i.e. ET (P(t)) ≠ ET (P′(t)): 
These tests are all modification-traversing, and because they are a superset of the fault-
revealing test suite, the algorithm is safe.

RQ3: How can the TDD method aid in selecting test cases?

4.15.3  TDD based test case selection

For the TDD method, the test case is written first, and thereafter the code is written to 
pass the test; a close relationship between the test case and source code is established. 
The question is whether the test cases can be selected based on the TDD nature.

We used the nature of TDD to model the relationship between test blocks and code 
blocks as shown in Fig. 18. In the TDD method, each requirement leads to writing a set 
of test cases. Each test case also leads to creation or modification of source code. So 
there are some relations between the test cases and modified parts of the code. That’s 
why we use the code segmentation algorithm and save the relationship between test and 
code blocks.

It should be mentioned that our selection algorithm is based on TDD nature and 
assumes that developers follow the TDD cycle. It may fail if the developer does not fol-
low the TDD cycle, so another question arises.

RQ4: What is the impact of human behavior on this approach?

4.15.4  The impact of human behavior

Our proposed approach assumes that developers always follow the TDD cycle. How-
ever, in reality, the order of this cycle is not always observed (Beller et al. 2017). 
What is the impact of such a human behavior?

We assumed that the developer would not write any code except for passing the 
test or refactoring the code. Therefore, we connect all modified code blocks to the 
last test case. If the developer writes the code before writing the test case, Rich-
Test assumes the changes are made to refactor the code. So RichTest connects these 
changes to the last test case.
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Although ignoring the refactoring phase is not a problem, late refactoring may 
cause an unrealistic relationship between the previous code and the new test.

It is important to consider three questions. The first is whether the modified parts 
of the code are covered 100% or not. Fortunately, the answer is yes, because the 
modified parts will be connected to the last test case, and the coverage of the modi-
fied code is achieved.

The second question is whether the test cases will be selected correctly in the next 
steps. Unfortunately, the answer is "no". The test case that is mistakenly assigned 
to the code block may be selected and added to the test suite. The suggested solu-
tion is that the developer disconnects the wrong relations manually. This is possible 
through the BlockInfoView to uncheck and remove the test case relation.

The third question is whether the test suite is complete. Unfortunately, the answer 
is "no". Since the developer has not written any test case before modification, the 
test suite is not complete. The only suggested solution is that the developer connects 
the lost relations manually. This is possible through the BlockInfoView.

RQ5: To what extent it is possible to select test cases (semi-)automatically?

4.15.5  Automatic test case selection

One of the main questions of the research is whether an effective model and tool can 
be considered to select test cases. Can a set of rules and steps that can be automated 
or semi-automated be defined to perform the task of the test case selection?

As explained in the previous question, RichTest is implemented based on the 
nature of TDD. In this way, if the new test fails, the programmer will apply enough 
changes to the code blocks, until passing the new test. Then, RichTest automatically 
links all the modified code blocks to the new test. Therefore, all test cases involved 
in creating or modifying any code block are linked to it.

During the development process, whenever each code block changes, RichTest 
selects all the test cases associated with that code block as a candidate test case. 
Therefore, any test case that was involved in creating or modifying the code will be 
selected automatically. Also, the programmer could link/unlink a test block to a code 
block manually.

Fig. 18  Relationship between requirement, test, and code
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5  Summary and conclusion

5.1  Summary

In this research, the problem of excessive numbers of test cases developed in the 
TDD and the repetitive execution of test cases are investigated. The results indicate 
that the complexity of test case execution correlates with the second power of the 
number of test cases.

The differences between the two program versions while ignoring test cases 
related to unmodified parts are identified, and some insights to reduce test cases and 
RT execution time in the TDD are suggested. A combinational difference identifica-
tion algorithm based on textual and syntactical differencing is thereafter presented 
to accomplish these tasks. The proposed method to reduce test cases, particularly 
for the TDD method is presented. Program differencing is not a new approach to 
test selection, but the innovative aspect of our work is "how" to do it. We select 
test cases using the nature of TDD. For this purpose, we developed the RichTest 
tool. Whenever a copy of the program is saved, RichTest considers this version as a 
commit of the program and automatically monitors new test cases and program dif-
ferences as new test blocks and modified/ new code blocks, then establishes the rela-
tionship between test cases and code blocks, automatically. TDD-based RT selection 
performs using these connections.

The RichTest plugin is employed to improve and simplify the implementation of 
TDD projects by reducing the number of run test cases and also reducing the RT 
execution time. The RT is executed by selecting only the test cases related to modi-
fied code blocks.

To evaluate the improved method, three small programs and six large open-
source projects on GitHub are implemented in RichTest. The results show the Rich-
Test plugin significantly reduces the number of test case executions by reducing 
the number of selected test cases at runtime (compared to both TDD and STDD). 
This reduction would be more significant in large projects with a larger number of 
test cases. Also, the number of times that the test cases runs in RichTest completely 
overlaps with the number of test cases. Although we have a quadratic complexity in 
traditional TDD, but in practice, we reach a linear complexity of executing test cases 
using RichTest, improved TDD.

The results showed that in the first version of each project, the number of test 
cases in pure TDD, STDD and RichTest is equal to the total number of test cases, 
so in the first version the RichTest method has the longest execution time due to the 
overhead time; but gradually by reducing the number of selected test cases in the 
next versions, this overhead time will be compensated and the total execution time 
will be reduced. RichTest RT time (including overhead time) is one tenth of TDD 
RT time. It was found that RichTest and STDD RT time have slight differences with 
each other. If there are a few test cases written for each class, the number of selected 
test cases in both methods is almost the same and as a result, STDD is slightly faster 
than RichTest. But if there are a lot of test cases, RichTest selects only the related 
test cases and will perform better despite the overhead time.
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5.2  Restrictions

RichTest is not a commercial tool and is only the result of student research, so it is 
not free of problems and limitations. Its limitations are presented below.

1. Our block segmentation algorithm is based on Java programming language gram-
mar, so RichTest limits projects to Java language. Also only some of control flow 
instructions such as switch, while, if, for, foreach, and try are considered.

2. Our plugin is developed in Eclipse IDE Photon June 2018, so RichTest limits to 
this development environment and Junit4 Tests.

3. Our method supports only TDD projects that follow the TDD cycle, otherwise, 
the developer must manually (dis)connect the code blocks (from) to the related 
tests. Human behavior is explained in Sect. 5.4.4 in more detail.

4. Our plugin doesn’t execute test cases properly on the maven projects and gradle 
projects. Sometimes test case execution encountered a problem and we had to 
write another program to run the test cases.

5. This plugin is not recommended for projects that have many interfaces, because 
the number of selected test cases will not decrease significantly. Interface modi-
fication propagates to all of its implementations, so all tests related to all those 
codes should be selected for re-execution.

6. The RichTest tool uses commenting to track each block. For example, the begin-
ning and the end of the first code block are defined by inserting two comments: 
//Start Of Code-Block: ca001, and //End Of Code-Block: ca001, respectively. 
RichTest needs these comments to trace code blocks, so in the refactoring phase, 
it is necessary to keep the comments in place so that the connections between the 
previous code blocks and related test cases are retained. Removing these com-
ments will disrupt the test case selection process.

5.3  Future work

We are going to upgrade the plugin to resolve some of the restrictions, provide exe-
cution time reports, and keep the test result history. We will use these reports to pri-
oritize tests. For example, the test face more failures will have a higher priority. We 
use this result to combine our test selection algorithm with regression rest prioritiza-
tion. Also, we should investigate another real project as well as start a real project 
implementation in a laboratory.

Appendix A

Figure 19 illustrates the Preferences window of RichTest. The developers could 
set block selection mode and the level of block granularity as well as enable TDD 
mode there.

Figure 20 until 26 represent RichTest views. These figures are related to selec-
tionSort project. Figure 20 is BlockInfo View and illustrates that test case “ta009” 
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is the only test block that is connected to the “Ca005” code block. The “Manage” 
key lets the developers manage the relation manually as seen in Fig. 21. As seen in 
this figure, the developer can link/unlink each test block to the “Ca005” code block 
manually.

Figure 22 illustrates the Commit View. The developers can see the type of modi-
fication and block content. Figure  23 illustrates the Version Manager View that 
shows all versions of the project as well as creates a new version. Figure 24 illus-
trates Regression Test View. Two test cases, ‘Ta011’ and ’Ta012’ have been selected 
and run successfully (green color, means pass and red color means fail), required 
time and test results have been shown.

Figure  25 shows Compare View. The developer selects the desired code block 
(Ca003) to see the history of its changes and then selects two commits for com-
parison (Commit #21 and Commit #42). Figure 26 shows the comparison result. The 
orang box shows the changed part from Commit #21 to Commit #42.

Fig. 19  Preferences window

Fig. 20  Block info view
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Fig. 21  Manual Management Window of BlockInfo View

Fig. 22  Commit view

Fig. 23   Version manager view

Fig. 24  Regression test view
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