
Vol.:(0123456789)

Automated Software Engineering (2023) 30:4
https://doi.org/10.1007/s10515-022-00370-w

1 3

Semi‑supervised and unsupervised anomaly detection
by mining numerical workflow relations from system logs

Bo Zhang1 · Hongyu Zhang1 · Van‑Hoang Le1 · Pablo Moscato1 ·
Aozhong Zhang2

Received: 28 July 2021 / Accepted: 1 November 2022 / Published online: 3 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Large-scale software-intensive systems often generate logs for troubleshooting pur-
pose. The system logs are semi-structured text messages that record the internal sta-
tus of a system at runtime. In this paper, we propose ADR (Anomaly Detection by
workflow Relations), which can mine numerical relations from logs and then utilize
the discovered relations to detect system anomalies. Firstly the raw log entries are
parsed into sequences of log events and transformed to an extended event-count-
matrix. The relations among the matrix columns represent the relations among
the system events in workflows. Next, ADR evaluates the matrix’s nullspace that
corresponds to the linearly dependent relations of the columns. Anomalies can
be detected by evaluating whether or not the logs violate the mined relations. We
design two types of ADR: sADR (for semi-supervised learning) and uADR (for
unsupervised learning). We have evaluated them on four public log datasets. The
experimental results show that ADR can extract the workflow relations from log
data, and is effective for log-based anomaly detection in both semi-supervised and
unsupervised manners.

Keywords Logs · Anomaly detection · Numerical relations · Log analysis

 * Hongyu Zhang
 hongyu.zhang@newcastle.edu.au

 Bo Zhang
 c3288930@uon.edu.au

 Van-Hoang Le
 vanhoang.le@uon.edu.au

 Pablo Moscato
 pablo.moscato@newcastle.edu.au

1 School of Information and Physical Sciences, The University of Newcastle, Newcastle, NSW,
Australia

2 School of Mathematics, Sun Yat-sen University, Zhuhai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00370-w&domain=pdf

 Automated Software Engineering (2023) 30:4

1 3

4 Page 2 of 29

1 Introduction

Many large-scale software systems generate console logs to facilitate fault identi-
fication and diagnosis. For example, it is challenging to ensure the reliability and
performance of supercomputers, and logs are the first place to go when the admin-
istrators are alerted to a problem (Oliner and Stearley 2007). These logs are usually
semi-structured texts, which record system events or states to help engineers moni-
tor system status. Engineers can identify the occurrences and locations of failures
by examining the logs. Hence, logging is widely used in practice. For instance, an
empirical study on two Microsoft systems and two open source projects shows that
in every 58 lines of source code there is one line of code for logging (Zhu et al.
2015).

However, with the increase of the scale and complexity of systems, it is extremely
time-consuming or even infeasible to manually check the logs for large-scale sys-
tems. In recent years, a number of approaches to automated log-based anomaly
detection have been proposed. Many of these approaches utilize supervised machine
learning methods, such as Logistic Regression (Bodik et al. 2010; He et al. 2016),
Decision Tree (Chen et al. 2004), and Support Vector Machine (Liang et al. 2007).
Some approaches, such as DeepLog (Du et al. 2017), utilize semi-supervised meth-
ods and require partial labels for training. The main limitation of the supervised and
semi-supervised methods is that they need labels for training the anomaly detection
models. However, labeling the logs is a manual and tedious work and often requires
domain-specific knowledge. For deep learning based methods (Du et al. 2017;
Zhang et al. 2019), a large number of labeled training data is required to ensure their
accuracy. Another drawback of these methods is that most of them are not explain-
able—the results of these approaches are difficult to explain so they cannot provide
insights into the anomalies.

There are also some unsupervised approaches to log-based anomaly detection,
such as Principal Component Analysis (Xu et al. 2009; Astekin et al. 2018), Log
Clustering (Lin et al. 2016), and Invariants Mining (Lou et al. 2010). For the unsu-
pervised approaches, although they have the advantage of not requiring labeled logs
for training, the drawback is obvious—their anomaly detection accuracy is not as
good as supervised methods (He et al. 2016; Zhang et al. 2020). Among the unsu-
pervised approaches, Invariant Mining (Lou et al. 2010) aims to analyze the logs
and identify invariants, which are numerical relations among the occurrences of log
events. The main drawback of Invariants Mining is that it only covers some linear
invariants and is very time-consuming (He et al. 2016).

In this paper, we propose a new approach, ADR (an acronym that stands for
Anomaly Detection by workflow Relations), which can mine numerical relations
from logs and use the mined relations to detect anomalies. Our approach firstly
parses the raw logs and transforms them into a sequence of events, which form
an extended event-count-matrix. Then, ADR evaluates the nullspace of the event-
count-matrix, which represents the relations in workflows (e.g. sequential and condi-
tional workflows). Anomalies can be detected by evaluating whether the logs violate
the mined relations or not. We design two types of ADR: sADR (semi-supervised

1 3

Automated Software Engineering (2023) 30:4 Page 3 of 29 4

model which only requires normal labels) and uADR (unsupervised model which
does not require labels). For sADR, we use labeled logs to train the model and mine
the relations. For uADR, we propose a sampling method to avoid the tedious and
time-consuming labeling work and use the samples to detect anomalies in an ensem-
ble manner.

We have evaluated the proposed sADR and uADR approaches on public log data-
sets collected from four software-intensive systems. sADR is able to mine numerical
relations from the logs and use the relations to detect anomalies with small-sized
training sets (F1 scores range from 0.924 to 0.975). Without labeled training sets,
uADR can also detect the anomalies and outperform other state-of-the-art unsuper-
vised approaches.

In summary, this paper’s main contributions are as follows:

• We propose sADR, which can mine more relations from the logs than Invari-
ants Mining (Lou et al. 2010) with less time. For anomaly detection, sADR can
achieve comparable results as what existing supervised and semi-supervised
approaches can achieve, even with a small training set.

• We propose uADR, an unsupervised ADR approach to log-based anomaly detec-
tion. uADR can detect anomalies without labeled training data and outperforms
other unsupervised approaches.

• We evaluate sADR and uADR on public log datasets and the results confirm
their effectiveness in log-based anomaly detection.

 This paper is a substantial extension of our conference paper originally pre-
sented in the SRDS 2020 conference (Zhang et al. 2020). The major extensions are
as follows:

• Previously ADR was a semi-supervised approach based on labeled training data.
However, in practice many logs lack manual labels (for example, in the popular
log collection Loghub (He et al. 2020), only 5 out of 16 datasets have labels). In
this paper, we design a sampling strategy to enable unsupervised ADR (uADR),
which does not require labeled training data.

• In this paper, we perform a larger experiment on four public log datasets to fur-
ther evaluate the effectiveness of the semi-supervised sADR and unsupervised
uADR. We have also added more discussions about the results.

 We organize the paper as follows: Sect. 2 introduces the background information
on log analysis and anomaly detection. Section 3 illustrates the relationship between
workflows and their numerical relations. The proposed approach is described in
detail in Sect. 4. Sections 5 and 6 present the experiment settings and the results,
respectively. In Sect. 7, we discuss the threats to validity. The related work to our
research is introduced in Sect. 8, and the paper is concluded in Sect. 9.

 Automated Software Engineering (2023) 30:4

1 3

4 Page 4 of 29

2 Background

Many software systems produce logs to record system events for troubleshooting
purposes. A snippet of raw HDFS logs is shown in Fig. 1(a). We can see that the raw
logs are semi-structured texts. To facilitate log analysis, the raw logs can be parsed
into structured log events by log parsers such as Drain (He et al. 2017), AEL (Jiang
et al. 2008), Spell (Du and Li 2016), IPLoM (Makanju et al. 2012). After parsing,
each raw log entry will be transformed to a log event with specific parameters. The
parsed results of the snippet are shown in Fig. 1(b), where each line of raw logs is
separated into several parts including the log’s date and time, the process the log
belongs to (PID), the predefined level of the log (Level), the system component
producing the log (Component), and the template of log’s content (i.e., log event).
It can be seen that the third and fourth log entries belong to the same log event
“Receiving * src: * dest: *”, whereas the first and fifth lines belong to two different
log events.

After the raw logs are parsed into log events, they can be further grouped to log
sequences in several ways. Three common types of grouping strategies are often
used, i.e., by sessions, by fixed windows, or by sliding windows. Grouping the log
events by sessions is to classify the events by certain session identifiers such as Pro-
cessID, TaskID, or BlockID (Zhang et al. 2019; Du et al. 2017; He et al. 2016). The
other two grouping methods, by fixed or sliding windows, split the events based
on their timestamps. With the log sequences, we can count the occurrences of the
events and obtain the event-count-matrix. An exemplar event-count-matrix of log
sequences grouped by sessions is shown below, where cmn denotes the number of
occurrences of Event n in session m:

Fig. 1 A snippet of HDFS (Hadoop Distributed File System) raw logs and events after parsing

1 3

Automated Software Engineering (2023) 30:4 Page 5 of 29 4

 In recent years, researchers have proposed approaches that utilize the event-
count-matrix for log-based anomaly detection (Zhang et al. 2019; Mariani and
Pastore 2008; Li et al. 2017; Kruegel et al. 2003; Farshchi et al. 2015; Breier and
Branišová 2017; He et al. 2018; Hamooni et al. 2016; Fu et al. 2009). Some of
the approaches utilize supervised machine learning techniques such as Decision
Tree (Chen et al. 2004), Support Vector Machine (Liang et al. 2007), and Logistic
Regression (Bodik et al. 2010; He et al. 2016). Some approaches are semi-super-
vised approaches which only require partial labels for training, such as DeepLog
(Du et al. 2017) and LogRobust (Zhang et al. 2019). There also exist some unsuper-
vised approaches such as Principal Component Analysis (Xu et al. 2009), Log Clus-
tering (Lin et al. 2016), and Invariants Mining (Lou et al. 2010). He et al. (2016)
conducted a comparative study and found that supervised approaches achieved bet-
ter accuracies than unsupervised approaches on anomaly detection. However, the
supervised and semi-supervised approaches have the limitation that they require
labeled logs for training and the labeling effort is very time-consuming and project-
specific. Besides, though they are able to detect anomalies, they are difficult to pro-
vide further explainable information for the anomalies because the original logs are
usually transformed into a feature space. Among the related approaches, the results
of Invariants Mining (Lou et al. 2010) are human-understandable invariants, which
could help engineers locate the causes of the anomalies. However, Invariants Mining
only considers linear invariants and suffers from performance issues when there are
multiple events in the target invariants (He et al. 2016).

The log-based anomaly detection methods can help developers improve the reli-
ability of the system. Firstly, they can help developers identify system anomalies
by automatically analyzing the logs. For example, some failures may involve sev-
eral log events where each event appears to be normal, which makes it difficult for
developers to diagnose the system. However, such failures may break certain quan-
titative relations among the log events, therefore they can be detected by the log-
based anomaly detection methods and should be further analyzed by the developers.
Secondly, some log-based methods can provide information to help developers gain
more understanding of the system. As an example, Lou et al. (Lou et al. 2010) find
from Hadoop logs that, an anomaly of “a task JVM hang” breaks the invariant that
“the count of event ’JVM spawned’ is equal to the count of event ’JVM exited’ ”, but
it does not break the invariant that “ the count of event ’JVM spawned’ is equal to
the count of event ’JVM with ID: * given task: *’ ”. Then they can infer that (1) the
anomaly “a task JVM hang” happens because a JVM is spawned but does not exit,
and (2) the time when the anomaly happens is after a JVM is spawned and a task is
assigned to it.

Event 1 Event 2 ... Event n

session 1 c11 c12 .. c1n
session 2 c21 c22 .. c2n

...
session m cm1 cm2 .. cmn

(1)

 Automated Software Engineering (2023) 30:4

1 3

4 Page 6 of 29

3 Numerical relations in logs

Different workflows of the system inherently produce different sequences of log
events. Table 1 shows three basic workflows: sequence, condition, and loop. The
number of occurrences of an Event is denoted as count(Event). If we execute
workflow 1 shown in the table several times, it can be seen that the occurrences of the
events must comply with the numerical relation count(A) = count(B) . For the second
workflow, it can be inferred that count(C) = count(D) + count(E) because an event
C must be followed by either an event D or an event E in every normal execution
of this workflow. Similarly, for workflow 3 that contains a loop, we can infer that
count(G) = k × count(F) in which k is an integer that is determined by the loop’s
terminating condition. Furthermore, we can also deal with some complex workflows
which consist of the basic flows. For instance, a combination of workflows 2 and
3 could result in the relation count(C) = count(D) + k × count(F) . Figure 2 shows
another complex combination with the relation count(G) = count(H) × count(F) ,
where the number of loops is determined by the occurrence of another event. It is
worth noting that even if we lack the logs for some intermediate statements, other
events will still comply with certain relations. Figure 3 shows a workflow which
is combined by workflow 1 and 2 and some statements in-between are not logged,
but the events still comply with the relation count(A) = count(D) + count(E) if the
system is running normally.

When the system exhibits anomalous behaviour during the software’s runtime,
the system workflow is often changed. For example, some events will occur more

Table 1 Basic workflows

Fig. 2 A workflow that contains a variable-length loop

1 3

Automated Software Engineering (2023) 30:4 Page 7 of 29 4

frequently due to system retry; some events will disappear due to system exceptions,
etc. This means that the software is running into unexpected, erroneous states, which
can lead to system downtime or abnormal operations.

4 Proposed approach

4.1 Overview

The proposed anomaly detection approach ADR is based on mining numerical rela-
tions from logs. Figure 4 shows an overview of ADR. Firstly, it parses the raw logs
to structured log events. Several tools including Drain (He et al. 2017), Spell (Du
and Li 2016) and IPLoM (Makanju et al. 2012) can be used for log parsing. In step
2, the log events are grouped into sequences of sessions by session identifiers. In
step 3, normal sessions are used to train the semi-supervised approach sADR. The
occurrences of the events in each session are counted and we obtain the original
event-count-matrix. For the unsupervised approach uADR, a sampling method
based on probability is employed and each sample consists of a number of selected
sessions. We obtain a number of samples and evaluate their original event-count-
matrices. In step 4, the original event-count-matrices are extended to cover more
types of relations. Next, the available numerical relations are extracted from the
event-count-matrix by evaluating the nullspace. Finally, we use the extracted rela-
tions for anomaly detection. For sADR, a sequence is detected as an anomaly if its
events’ occurrences violate one or more of the extracted relations. For uADR, a vot-
ing mechanism is used to determine whether a sequence is abnormal by checking
its events’ occurrences against the extracted relations of each sample. We describe
the details of the semi-supervised sADR in Sect. 4.2 and unsupervised uADR in
Sect. 4.3.

4.2 Semi‑supervised anomaly detection (sADR)

For the semi-supervised sADR, we need a number of normal sessions to train
the model. The occurrences of the events in the sessions are counted and

Fig. 3 A relation holds though some intermediate statements are not logged

 Automated Software Engineering (2023) 30:4

1 3

4 Page 8 of 29

Fig. 4 An overview of sADR/uADR

1 3

Automated Software Engineering (2023) 30:4 Page 9 of 29 4

event-count-matrix are obtained. Equation 1 shows an example of event-count-
matrix, which consists of m sessions and n events.

ADR uses a novel method to extend the original event-count-matrix by construct-
ing extra elements to cover more types of relations. For example, the event-count-
matrix P shown in Eq. 1 can be extended to construct a matrix P′ as below:

 Generally, the extended event-count-matrix P′ includes three additional types of
terms compared with the original P:

1. The constant terms (the first column in P′), which will cover the relation when
an event occurs a constant number of times. For example, if in normal ses-
sions event A always occurs 3 times, a relation will be captured by the equation
count(eventA) − 3 × 1 = 0 , in which 1 is the added constant term.

2. The �(cmn) terms, which will be 0 if the event count cmn is zero (never occurs),
otherwise �(cmn) will be 1, indicating that the event occurs at least once. The �
terms can help ADR discover more types of workflow relations. For instance, if
a workflow contains two modules, A and B, but in different sessions module A
calls module B different times, the occurrences of event module A is loaded and
event module B is called will not comply with a linear relation. But with the added
� terms, the relation �(module A is loaded) = �(module B is called) will be able
to capture the above workflow.

3. The combinatorial terms (e.g. c11c12), which is composed of the products of the
event counts. This will enable ADR to capture the relations in some complex
workflows, such as the nested loop shown in Fig. 2.

 With the extended event-count-matrix, we find that the numerical relations of
the events are essentially the relationship among the linearly dependent columns of
the matrix. Furthermore, a matrix’s linearly dependent columns are related to its
nullspace (Strang 2006), which is composed of all the vectors where each vector �
satisfies:

Hence, each vector of the nullspace of P′ corresponds to one set of the linearly
dependent columns of the matrix.

According to the relationship between the linearly dependent columns of event-
count-matrix and relations of the events, each column of the nullspace of P′ (denoted
as ns(P�)) depicts a numerical workflow relation. For instance, assume that we have
an extended event-count-matrix as follows:

⎡
⎢⎢⎢⎣

1 c11 c12 .. �(c11) �(c12) .. c11c12 c11c13 ..

1 c21 c22 .. �(c21) �(c22) .. c21c22 c21c23 ..

..

1 cm1 cm2 .. �(cm1) �(cm2) .. cm1cm2 cm1cm3 ..

⎤
⎥⎥⎥⎦

(2)P�
⋅ � = �,

 Automated Software Engineering (2023) 30:4

1 3

4 Page 10 of 29

With Gaussian elimination, the above matrix can be transformed to its row ech-
elon form and its nullspace can be evaluated as below (presented in its transposed
form):

The first vector in the nullspace is
[
0 −1 1 1 0 0 0 0 0 0

]
 , which describes the

relation −count(A) + count(B) + count(C) = 0 . This equation shows a conditional
workflow which is similar to the workflow 2 in Table 1. The second vector repre-
sents the relation −1 + �(A) = 0 , which suggests that event A should occur once or
more times. The third vector shows relation −2 + count(A) − 3count(B) + �(B) = 0 ,
which indicates a more complex workflow containing event A and event B.

Because the above relations are extracted from the normal log sequences that are
generated when the system behaves normally, we deem that they should hold if the
system is in normal status. If the system encounters with something wrong, one or
several of the relations would be violated. So we can check whether an unknown
session is normal or not by verifying its log events against each vector of ns(P�) .
If the session’s log events fulfill the whole nullspace, we deem it normal. Other-
wise, we deem the session an anomaly. Besides, the violated relations could provide
insightful information for diagnosis.

4.3 Unsupervised anomaly detection (uADR)

Because labeling logs is a tedious and time-consuming task, automatic anomaly
detection will be of more practical use if data labeling is not required. Our unsuper-
vised approach uADR is inspired by the finding that workflow relations mined from
normal logs are usually violated by anomalies (Lou et al. 2010; Zhang et al. 2020).
Lou et al. (Lou et al. 2010) and Zhang et al. (Zhang et al. 2020). In this paper, we
further propose the assumption that when the system runs normally, it obeys more
workflow relations than when it runs abnormally. The reason for this finding is that
unexpected conditions are usually unpredictable (e.g. disk-full or network discon-
nection failure can happen anytime). The anomalies caused by the unexpected con-
ditions would break the relations in normal workflow and thus reduce the number of
relations. In the experiment section, we investigate public log datasets to examine
the numbers of workflow relations in normal and abnormal log sessions. The results
show that event-count-matrices of normal sessions have lower ranks than those of
abnormal sessions, which indicates that more column relations exist for normal ses-
sions (Eq. 3).

1 A B C χ(A) χ(B) χ(C) AB AC BC
][

session 1 1 1 1 0 1 1 0 1 0 0
session 2 1 2 0 2 1 0 1 0 4 0
session 3 1 4 2 2 1 1 1 8 8 4

1 A B C χ(A) χ(B) χ(C) AB AC BC

0 −1 1 1 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0
−2 1 −3 0 0 4 0 0 0 0
..

1 3

Automated Software Engineering (2023) 30:4 Page 11 of 29 4

Suppose an event-count-matrix P, which contains the counts of the events in all
sessions including both normal and abnormal ones. We denote the shape of P as
m × n (i.e. m sessions, n events).

For P, we assume there are a large number of log sessions so the number of rows,
m, is much larger than the number of columns (n). This assumption is based on the
observation that the number of sessions is usually much larger than the number of
events. It is reasonable because the events are prescribed by the programmers and
are limited, while the number of sessions can be unlimited as long as the system
keeps running. For example, the HDFS dataset collected in (Zhu et al. 2019) con-
tains more than 11 million log entries that can be grouped into more than 575 thou-
sand sessions, but all the log entries belong to only 29 events. Because the rank of P
must be no larger than the numbers of rows and columns, this assumption indicates
that most of the rows contain redundant information and it is favorable to just sam-
ple some of them.

The number of workflow relations can be indicated by the rank of the event-
count-matrix P. As described in Eq. 3, the existence of more workflow relations
indicates more linear column relations, which further indicates a lower rank of the
matrix. So, we propose that the rank of the matrix can be used as a gauge to evaluate
the samples.

 The event-count-matrix P contains the counts of events for both normal and
abnormal sessions. For a sample submatrix S that contains a number of rows from
P, we denote it as Stype1 if it only contains normal sessions, Stype2 if it contains both
normal and abnormal sessions, and Stype3 if it only contains abnormal sessions. The
sampling strategy to increase the possibility of obtaining a subset containing only
normal sessions (i.e. Stype1) is as follows:

1. Randomly sample a row from P. As the number of total sessions is very large,
we can regard sampling a normal or abnormal row from the total as a Bernoulli
experiment (Ross 2009). Assume that the proportion of normal sessions is pN ,
the probability of sampling a normal or abnormal session will be:

2. Repeat the first step a number of times (h times) and use the sampled rows to
construct a sample submatrix S. We can calculate the probability of obtaining a
certain type of sample according to probability and statistics knowledge, shown
in Eq. 5.

(3)number of relations fromP = number of columns of P − rank(P)

(4)
P(sample a normal session) = pN

P(sample an abnormal session) = 1 − pN

(5)

P(Stype1) = (pN)
h

P(Stype2) = 1 − (pN)
h − (1 − pN)

h

P(Stype3) = (1 − pN)
h

 Automated Software Engineering (2023) 30:4

1 3

4 Page 12 of 29

3. Repeat the above sampling process j times to obtain S1, S2 ⋯ Sj . As shown in
Eq. 6, it can be proved that through the control of h and j, in the j samples it will
be of high probability that there exists at least one sample belonging to Stype1 .
The probability is also determined by the ratio of normal sessions, pN . If we
assume a reasonable value of pN , the probability of obtaining a Stype1 sample can
be guaranteed as high as we expect through adjusting h and j. For example, for
the HDFS dataset which contains 575,061 sessions, if we estimate the ratio of
normal sessions as 95%, we can assure that after 11 samplings (i.e. j = 11) with 10
sessions per sample (i.e. h = 10), the probability of obtaining at least one sample
that consists of only normal sessions is greater than 99.99%.

4. Now our concern is how to select the type-1 sample from the j samples. As nor-
mal sessions possess more workflow relations, we deem that the sample with the
lowest matrix rank has the highest probability to belong to type-1 according to
Eq. 3.

5. The above sampling process is repeated to obtain a number of candidates (100
candidates in our empirical study). The candidates are used as voters for anomaly
detection in an ensemble manner. The nullspace of each voter is evaluated and
used as a weak classifier. The events of the session to be tested will be examined
against the nullspace of every voter and we can calculate its pass rate according
to Eq. 7. If the pass rate of the session is greater than pN , the sequence is deemed
normal; otherwise it is abnormal.

5 Experimental design

The semi-supervised sADR and unsupervised uADR are implemented in Python
language with the help of NumPy (van der Walt et al. 2011), SciPy (Virtanen et al.
2020), scikit-learn (Pedregosa et al. 2011). For the compared approaches, we adopt
the implementation provided in the toolkit Loglizer (He et al. 2016) and the settings
described in previous studies (He et al. 2016; Du et al. 2017). The experiments are
conducted on a server with Windows Server 2012 R2, Intel Xeon E5-2609 CPU, and
128GB RAM.

5.1 Subject datasets

In our experiments, we use four log datasets that contain a large number of log
events to evaluate the proposed approach. All the four datasets are widely-used pub-
lic datasets that were generated by large systems (He et al. 2016; Du et al. 2017;

(6)
P(at least one sample belongs to Stype1)

= 1 − (1 − (pN)
h)j

(7)pass rate =
#candidates whose nullspaces are not violated

#total candidates

1 3

Automated Software Engineering (2023) 30:4 Page 13 of 29 4

Meng et al. 2021; Nedelkoski et al. 2020). More importantly, all of them are labeled
so that we can use them for a comparative study. The datasets include the HDFS
dataset (Xu et al. 2009), which was collected from a Hadoop Distributed File System
on the Amazon EC2 platform and contains 11,175,629 log entries; the BGL dataset
(Oliner and Stearley 2007) collected from the BlueGene/L supercomputer system
and contains 4,747,963 log entries; the Hadoop dataset (Lin et al. 2016) collected
from a Hadoop cluster with 46 cores across five machines and contains 394,308 log
entries; and part of the Spirit dataset (Oliner and Stearley 2007) collected from the
Spirit supercomputer system and contains 200,000 log entries. The information of
the subject datasets is summarized in Table 2.

5.2 Research questions

5.2.1 RQ1: Can the proposed approach mine numerical relations from logs?

Our approach performs anomaly detection by mining numerical relations from sys-
tem logs. This RQ is to investigate whether or not the proposed approach can mine
numerical relations from the logs. Existing approaches such as SVM (Liang et al.
2007) or DeepLog (Du et al. 2017) do not provide human-understandable infor-
mation for trouble shooting because the original logs are usually transformed into
another feature space, while the numerical relations are explainable. We also com-
pare the proposed approach with Invariant Mining (Lou et al. 2010), which can also
find meaningful invariants that are human-understandable.

To answer this RQ, firstly the raw logs are parsed into structured log events using
Drain (He et al. 2017), which has been proved capable of parsing raw logs accurately
(Zhu et al. 2019). Then we group the structured log events into sessions according to
certain identifiers, i.e. BlockID for HDFS logs, NodeID for BGL logs, ContainerID
for Hadoop logs and Node for Spirit logs. The occurrences of the events in each ses-
sion are counted, resulting in the event-count-matrix. Next, the original event-count-
matrix is extended to include the constant terms, � terms, and combinatorial terms
(quadratic combinations). After that, we extract numerical relations from the normal
sessions by evaluating their nullspace and compare the results with those of Invari-
ants Mining.

Table 2 Subject datasets

Dataset Size #Log entries #Log events #Total sessions #Anomalies

HDFS 1.5 G 11,175,629 48 575,061 16,838
BGL 743 M 4,747,963 384 69,252 31,375
Hadoop 49 M 394,308 347 55 44
Spirit 630 M 1,000,000 988 517 115

 Automated Software Engineering (2023) 30:4

1 3

4 Page 14 of 29

5.2.2 RQ2: How effective is sADR, the proposed semi‑supervised approach
to anomaly detection?

Supervised approaches require a large amount of labelled data to train a classifica-
tion model. The log labelling task requires knowledge of subject system and is often
tedious and time-consuming. Existing semi-supervised model, although only require
normal labelled data, still suffer from inaccurate detection results (Le and Zhang
2022; He et al. 2016). Therefore, in this RQ, we investigate whether or not our pro-
posed sADR, a semi-supervised approach, can detect anomalies using the extracted
relations.

In order to train and test sADR, we split the log sessions into two parts, i.e. train-
ing set and testing set. We also use different split ratios to investigate the impact of
training size on the results. The detection accuracy of sADR is compared with exist-
ing approaches including Logistic Regression (Bodik et al. 2010), Support Vector
Machine (SVM) (Chen et al. 2004), Decision Tree (Chen et al. 2004), and DeepLog
(Du et al. 2017). For the compared approaches, we adopt the implementation pro-
vided in the toolkit Loglizer (He et al. 2016) and the settings described in previous
studies (He et al. 2016; Du et al. 2017).

The detection performance is measured by three scores: Precision, Recall, and
F1. Precision is a measure for the ratio of true positives among the returned results,
Recall measures how many true positives are retrieved, and F1 is the harmonic mean
of Precision and Recall.

where TP (True Positive) is the number of abnormal log sessions the are correctly
detected by the model. FP (False Positive) is the number of normal log sessions that
are wrongly identified as anomalies. FN (False Negative) is the number of abnormal
log sessions that are not detected by the model.

5.2.3 RQ3: How effective is uADR, the proposed unsupervised approach to anomaly
detection?

Existing supervised or semi-supervised approaches require labelled data, how-
ever labelled data is not always available. The proposed uADR, an unsupervised
approach, can work with unlabelled data to select possible normal candidates,
which can then be used to identify the anomalies through an ensemble voting algo-
rithm. Therefore, in this RQ, we evaluate whether or not the proposed unsupervised
approach can detect anomalies without using any labelled data.

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

(10)F1 =
2 × Precision × Recall

Precision + Recall
,

1 3

Automated Software Engineering (2023) 30:4 Page 15 of 29 4

To answer this research question, we split the datasets into training set and test-
ing set, but ignore the labels when using the training set to train uADR. The trained
uADR model is used to detect the anomalies in the testing set and the resulting
precision, recall, and F1 values are calculated. The results of uADR are compared
with state-of-the-art unsupervised approaches such as Invariants Mining (Lou et al.
2010), Log Clustering (Lin et al. 2016), and Isolation Forest (Liu et al. 2008).

6 Experimental results

6.1 Results of RQ1

We employed sADR and Invariants Mining to mine the relations from the datasets
and compared the number of discovered relations and the time spent. The number
of mined relations from the original event-count-matrix and the extended event-
count-matrices, as well as the time spent, are shown in Table 3. It can be seen that
sADR is able to mine relations from the logs and more relations can be discovered
as the event-count-matrix is extended. For example, sADR found 38 relations from
the original event-count-matrix of HDFS and the number increased to 87 when the
constant terms (a column of 1), the � (1 if an event occurs otherwise 0) terms, and
the combinatorial terms were added. However, the time spent after adding combi-
natorial terms also increased to 1.8 s whereas the time for the original event-count-
matrix was only 0.0001 s. Compared with sADR, Invariants Mining found fewer
relations but spent more time. For example, Invariants Mining mined 316 relations
in about 30 min for BGL logs while sADR found 669 relations in less than one
second.

Table 4 shows two examples of the relations found by sADR. The relation is
count(E1) = �(E7) + 3 , which involves two events (E1 and E7). E1 belongs to the
event that a destination receives a block from a source, and E7 records that a block
is transmitted. The numerical relation suggests that if E7 occurs E1 will occur 4
times (1+3), otherwise E1 will occur 3 times (0+3). Example 2 in Table 4 shows a
discovered relation from the BGL logs. It is a conditional workflow involving three

Table 3 Number of mined workflow relations and the time spent

*ECM: event-count-matrix
*Timeout: running time exceeds 24 h

Dataset sADR Invariants mining

Original ECM* Extended ECM

Relations time spent (s) # Relations time spent (s) # Relations time spent (s)

HDFS 38 0.0001 87 1.8000 43 2834
BGL 326 0.0160 669 0.0508 316 1783
Hadoop 320 0.0030 668 0.0125 Timeout*
Spirit 480 0.0798 978 0.0504 484 521

 Automated Software Engineering (2023) 30:4

1 3

4 Page 16 of 29

events. From the relation, we know that a likely workflow may be that E115 and
E171 are two statements in two branches of a conditional statement and are executed
before E113 (e.g. {if...: E115; else: E171}; E113). As the mined relation only shows
the quantitative relationship among the events, it is also possible that E113 occurs
before E115 and E117, if there is no timestamp information in log data. Even though
we cannot determine the ground truth workflows from the numerical relations, the
relations are still useful to detect the anomalies and the events involved can provide
hints for developers to diagnosis the problem.

The reasons why sADR could discover more relations than Invariants Mining are
as follows: First, sADR extends the event-count-matrix by including the constant
terms, the � terms, and the combinatorial terms. Therefore, more types of relations
are taken into consideration. Second, Invariants Mining employs a brute force algo-
rithm combined with a greedy search to find the invariants. When a large number
of events (e.g. 384 events in BGL) are involved, the search space will significantly
expand so that Invariants Mining needs ignore some complex invariants to speed up
the process (He et al. 2016). As a comparison, sADR mines the relations by taking
advantage of evaluating the matrix’s nullspace, which is a fast operation supported
by common mathematical tools such as SciPy. Moreover, the nullspace is a com-
plete set of the available relations for the matrix so it will ensure the absence of
duplicates.

We also validate the correctness of the mined relations to check the validity of
the proposed method and rule out the possibility of buggy tool implementation.
Specifically, we manually count log events occurring in a log sequence and check

Table 4 Examples of discovered relations by ADR

1 3

Automated Software Engineering (2023) 30:4 Page 17 of 29 4

whether they satisfy the mined relations or not. There is no human subjectivity
involved in the experiment. Therefore, the validation was conducted by one author
of our paper. In total, we verified the mined relations against 100 randomly sampled
log sequences. The examination results confirm that the extracted relations are cor-
rect. The correctness of the mined relations is also reflected by the accuracy of the
follow-up anomaly detection task.

Take-away: There do exist numerical relations among log events and they can

Take-away:be extracted by sADR.

6.2 Results of RQ2

In this RQ, we investigate whether the relations found by sADR can be used for
anomaly detection. For supervised and semi-supervised approaches, a smaller
training set is preferred as it requires less labeling work. So we investigate how
the anomaly detection accuracies of sADR and other approaches are affected by
the training set size. Figure 5 shows the F1 scores on the testing sets when using
different numbers of sessions to train the approaches. Note that Hadoop dataset is
not investigated here because its total number of sessions is as small as 55. It can be
seen from the figure that for HDFS dataset, sADR achieves much better F1 scores,
even when the training sizes are small. For example, when using 100 sessions for
training, the F1 score of sADR is as high as 0.975 while DeepLog achieves 0.892
and others are lower than 0.5. When the training size increases to 500, the F1 scores
of Decision Tree, Logistic Regression and SVM are close to the F1 score of sADR.
For BGL logs, the F1 scores of sADR are slightly lower than those of Decision Tree,
Logistic Regression and SVM, but the scores are comparable and sADR’s F1 score
becomes higher than 0.9 when the training size is 150. For Spirit logs, the F1 scores
of Decision and SVM are the highest but the results of sADR are also comparable.
For example, when the training size of Spirit is 500, the highest F1 score is 0.995
obtained by SVM, and sADR’s F1 score also reaches 0.951.

Table 5 shows a snapshot of Fig. 5, which details the precision, recall and F1
scores achieved by the supervised and semi-supervised approaches on testing
sets. For each dataset, the best result is highlighted in boldface. For HDFS, BGL,
and Spirit logs, this table shows the results when the training sizes are 250 sessions
and the remaining are used as testing sets. For Hadoop logs, we randomly choose
30 sessions as the training set and the remaining 25 sessions are used as the testing
set. For HDFS logs, sADR has the best recall and F1 scores, which are 1.000 and
0.975 respectively. The precision of sADR on HDFS is 0.950, which is just slightly
lower than the highest precision obtained by Decision Tree (0.982). However, the
recall of Decision Tree is only 0.747, which indicates that though its predictions
are precise, a large number of anomalies cannot be identified. For BGL logs, the F1
score of sADR is 0.930 which is very close to the highest score (0.978 by SVM).
For Hadoop logs, sADR also achieves the highest recall score (1.000) and F1 score
(0.937), which are significantly higher than the results of other approaches. For
Spirit logs, the F1 score achieved by sADR is 0.913, which is close to the highest

 Automated Software Engineering (2023) 30:4

1 3

4 Page 18 of 29

achieved by SVM (0.990). It is also worth noting that for all datasets sADR has the
recall scores as high as 1.000, which means that it can identify all the anomalies.

Fig. 5 F1 scores of sADR under different training sizes

1 3

Automated Software Engineering (2023) 30:4 Page 19 of 29 4

Ta
bl

e
5

 A
cc

ur
ac

y
of

 sA
D

R
 (w

he
n

tra
in

in
g

si
ze

s f
or

 H
D

FS
, B

G
L

an
d

Sp
iri

t a
re

 2
50

 se
ss

io
ns

 a
nd

 fo
r H

ad
oo

p
is

 3
0

se
ss

io
ns

)

A
pp

ro
ac

h
H

D
FS

B
G

L
H

ad
oo

p
Sp

iri
t

Pr
ec

is
io

n
Re

ca
ll

Fl
Pr

ec
is

io
n

Re
ca

ll
Fl

Pr
ec

is
io

n
Re

ca
ll

Fl
Pr

ec
is

io
n

Re
ca

ll
Fl

 sA
D

R
0.

95
0

1.
00
0

0.
97
5

0.
86

9
1.
00
0

0.
93

0
0.

88
1

1.
00
0

0.
93
7

0.
84

0
1.
00
0

0.
91

3
 L

og
ist

ic
 R

eg
re

ss
io

n
0.

95
3

0.
74

0
0.

83
3

0.
99

9
0.

94
7

0.
97

2
0.

87
5

0.
75

7
0.

81
2

0.
88

4
0.

58
1

0.
70

1
 S

V
M

0.
95

9
0.

38
0

0.
54

4
1.
00
0

0.
95

8
0.
97
8

0.
90
3

0.
75

7
0.

82
4

1.
00
0

0.
98

1
0.
99
0

 D
ec

is
io

n
Tr

ee
0.
98
2

0.
74

7
0.

84
8

1.
00
0

0.
94

5
0.

97
2

0.
88

9
0.

86
5

0.
87

7
0.

96
3

0.
98

1
0.

97
2

 D
ee

pL
og

0.
79

9
0.

96
8

0.
87

5
0.

85
7

0.
73

8
0.

79
3

0.
79

5
1.
00
0

0.
88

6
0.

62
9

1.
00
0

0.
77

2

 Automated Software Engineering (2023) 30:4

1 3

4 Page 20 of 29

In summary, compared with existing supervised approaches, our experimental
results show that sADR, as a semi-supervised approach that requires only normal
logs for training, can achieve better or comparable results for anomaly detection.
sADR also outperforms the semi-supervised approach DeepLog. Moreover, sADR
can achieve high precision and recall scores in anomaly detection even when the
training set is small, which increases its applicability because labeling the logs is
tedious and time-consuming. Besides, sADR has the advantage of being explainable
as the mined relations can help engineers locate anomalous workflows. An example
of the violated relations for HDFS shown in Table 4 is that count(E1) = �(E7) + 3 ,
which suggests that in normal sessions the occurrences of E1 and E7 should exhibit
such a relation otherwise the system runs into abnormal status.

6.3 Results of RQ3

Firstly we investigate whether the event-count-matrix of normal logs has a lower
rank than that of abnormal sessions to validate the assumption in Sect. 4.3. We
randomly selected 10 sessions from normal logs and abnormal logs and evaluated
their ranks. The process was repeated 100 times and the results are shown in Fig. 6.
It can be seen that for all the four datasets, with the same shape, the event-count-
matrices of normal logs indeed have a lower rank than those of abnormal logs.
For example, the average ranks of the normal event-count-matrices for HDFS and
Spirit are 4 and 6, whereas the ranks of the abnormal event-count-matrices are 7 and
10, respectively. This finding suggests that it is feasible to pick up the most likely
normal samples through evaluating and comparing their ranks.

Take-away: The numerical relations extracted from logs can be
used to detect system anomalies and achieve high
accuracy with a small training set. The violated relations can
provide hints for diagnosing the anomalies.

Fig. 6 Average ranks of event-count-matrices by randomly selecting 10 sessions from normal and
abnormal logs

1 3

Automated Software Engineering (2023) 30:4 Page 21 of 29 4

Ta
bl

e
6

 A
cc

ur
ac

y
of

 u
ns

up
er

vi
se

d
ap

pr
oa

ch
es

A
pp

ro
ac

h
H

D
FS

B
G

L
H

ad
oo

p
Sp

iri
t

Pr
ec

is
io

n
Re

ca
ll

Fl
Pr

ec
is

io
n

Re
ca

ll
Fl

Pr
ec

is
io

n
Re

ca
ll

Fl
Pr

ec
is

io
n

Re
ca

ll
Fl

 u
A

D
R

0.
70

1
1.
00
0

0.
82

4
0.

66
6

0.
92
6

0.
77
5

1.
00
0

0.
75

0
0.
85
7

0.
55
3

0.
95
7

0.
70
1

 L
og

 C
lu

ste
rin

g
1.
00
0

0.
37

2
0.

54
2

0.
51

9
0.

02
2

0.
04

2
0.

72
7

1.
00
0

0.
84

2
0.

34
2

0.
92

6
0.

50
0

 IM
0.

89
4

1.
00
0

0.
94
4

0.
81

1
0.

23
2

0.
36

0
tim

eo
ut

0.
38

5
0.

25
4

0.
30

6
 Is

ol
at

io
n

Fo
re

st
0.

78
4

0.
76

1
0.

77
2

0.
95
5

0.
05

8
0.

11
0

1.
00
0

0.
05

6
0.

10
5

0.
38

5
0.

05
7

0.
09

9

 Automated Software Engineering (2023) 30:4

1 3

4 Page 22 of 29

For unsupervised anomaly detection, we use larger training sizes because we need
not take the labeling work into consideration. Table 6 shows the precision, recall and
F1 scores achieved by the unsupervised approaches on the datasets (size of training
set: size of testing set = 80%: 20%). The best result for each dataset is highlighted
in boldface. We can see that the F1 scores achieved by the unsupervised approaches
are lower than those achieved by the supervised and semi-supervised methods in
Sect. 6.2. For example, the highest F1 score for Spirit logs with supervised and semi-
supervised approaches is 0.990, while for unsupervised methods, the highest F1
score is only 0.701. Such a discrepancy is expected because the labels in the training
sets provide supervised and semi-supervised approaches with more information for
distinguishing anomalies from normal logs. It is worth noting that uADR achieves
the highest or second highest F1 scores on the four subject datasets. For instance,
uADR has the F1 score as high as 0.824 for HDFS logs, which is the second highest.
For Hadoop logs, uADR achieves the highest F1 score of 0.857. Our approach also
produces the highest F1 score on the BGL and Spirit datasets and significantly
outperform the others. It is also worth noting that on three datasets HDFS, BGL and
Spirit, uADR has the highest recall scores (greater than 0.9), which mean that it can
detect most of the anomalies.

Overall, our proposed approach, uADR, can work when the labels of logs are
not available although its performance is not as good as the supervised and semi-
supervised methods’. In practice, uADR could be applied to a new project, where
existing labelled data is unavailable. When the project accumulates enough labelled
data, sADR could be applied.

Take-away:When labelled data is not available, uADR can be used to detect

anomalies but its accuracy is not as good as the supervised and semi-supervised methods’.

Fig. 7 Distribution of violated relations in HDFS

1 3

Automated Software Engineering (2023) 30:4 Page 23 of 29 4

7 Discussion

7.1 Distribution of the violated relations

The distribution of the violated relations can provide some insightful information
about the anomalies. To investigate how often the relations are violated, for each
relation, we define its violation rate as the percentage of the anomalies that violate
this relation (shown in Formula 11). Figure 7 shows the violation rate of each discov-
ered relation from HDFS. The relations are sorted by the violation rates in descend-
ing order. We can be seen that some relations are violated much more often than oth-
ers. For example, 18 of the mined relations are violated by 64.9% of the abnormal
sessions. One of them is c(E1) = c(E2) where E1 is “ Deleting block ⟨∗⟩ file ⟨∗⟩” and
E2 is “ BLOCK ⟨∗⟩NameSystem.delete: ⟨∗⟩ is added to invalidSet of ⟨∗⟩” . Mean-
while, some of the relations are only violated by a few anomalies. The discrepancy
between the high and low violation rates indicates that some workflows may be
more error-prone and should be paid more attention to.

7.2 The choice of training data

To measure the stability of the proposed approach, we repeat the training/testing
splitting process multiple times. Specifically, we randomly choose 250 sessions for
HDFS, BGL, and Spirit logs to train sADR. For Hadoop, we randomly choose 30
sessions as the training set. We repeat this process 20 times to avoid bias from the
randomness. For uADR, we randomly choose 80% for training and also repeat this
random process 20 times. We report the average results (including mean and stand-
ard error), as shown in Fig. 7. We can observe that our approach performs consist-
ently when different training data is used. For sADR, the standard error of F1 is
0.917 and the standard error over 20 random runs is from 0.003 to 0.006. For uADR,
the standard error of F1 ranges from 0.001 to 0.019 (Table 7).

(11)violation rate =
anomalies violating the relation

total detected anomalies

Table 7 Results (mean and standard error) over 20 random runs

sADR uADR

Precision Recall F1 Precision Recall F1

HDFS 0.908±0.006 1.0 0.951±0.003 0.679±0.004 1.0 0.809±0.003

BGL 0.847±0.007 1.0 0.917±0.004 0.660±0.001 1.0 0.795±0.001

Spirit 0.771±0.007 1.0 0.870±0.005 0.568±0.002 0.987±0.004 0.715±0.001

Hadoop 0.834±0.011 1.0 0.909±0.006 0.827±0.032 1.0 0.902±0.019

 Automated Software Engineering (2023) 30:4

1 3

4 Page 24 of 29

7.3 The choice of log parsers

We use Drain (He et al. 2017) as the log parser in our work as it is currently one of
the most accurate log parsers (Zhu et al. 2019). Recent studies show that different
log parsers can have different impact on the performance of anomaly detection (Le
and Zhang 2021, 2022). Therefore, we experimented with two additional log pars-
ers, AEL (Jiang et al. 2008) and IPLoM (Makanju et al. 2012). These log parsers are
well-known and commonly-used in both industry and academia (Zhu et al. 2019).
We also repeat the random splitting process 20 times and report the average results,
as shown in Fig. 8. On the BGL dataset, IPLoM performs slightly better than Drain
for uADR. Overall, Drain performs the best in most cases (Table 8).

7.4 Threats to validity

We have identified the following threats to validity:

• Capacity of the approach. Both of the proposed approaches sADR and uADR
are based on the quantitative relationship of the log events. In our experiments,
we can detect all anomalies occurring in the subject datasets using the pro-
posed approach sADR (the Recall is 1.0), which means that in all anomalous
cases, there is an inconsistency in the numerical relations among log events.
Our subject datasets were collected from real-world systems such as distrib-
uted systems (Hadoop) and supercomputing systems (BGL). The proportion of
anomalies varies from 2.9% to 45.3% in our experimental settings. Therefore,
the issue we address in this paper, the inconsistency in numerical values of log
events, does happen in real-life projects and is prevalent. Still, some anoma-
lies are out of the power of the approaches if they comply with the quantita-
tive relationship. For example, the approaches may find that the number of the
event A “ File ⟨∗⟩ is opened ” should be equal to the number of another event
B “ File ⟨∗⟩ is closed ” . But an anomaly where event B occurs before event A
still complies with the quantitative relation and it will not be detected by the

Table 8 The results with different log parsers

Dataset Drain AEL IPLoM

Precision Recall F1 Precision Recall F1 Precision Recall F1

 sADR HDFS 0.908 1.0 0.951 0.892 1.0 0.942 0.893 0.984 0.935
BGL 0.847 1.0 0.917 0.844 1.0 0.915 0.866 0.961 0.907
Spirit 0.771 1.0 0.870 0.488 1.0 0.655 0.653 1.0 0.790
Hadoop 0.834 1.0 0.909 0.830 1.0 0.906 0.812 1.0 0.895

 uADR HDFS 0.679 1.0 0.809 0.636 0.983 0.770 0.687 1.0 0.789
BGL 0.660 1.0 0.795 0.651 1.0 0.788 0.665 1.0 0.799
Spirit 0.568 0.987 0.715 0.434 1.0 0.605 0.497 1.0 0.664
Hadoop 0.827 1.0 0.902 0.836 1.0 0.907 0.818 1.0 0.895

1 3

Automated Software Engineering (2023) 30:4 Page 25 of 29 4

approaches proposed by this paper. However, we did not witness this case in
our subject datasets. In our future work, we will apply the proposed approach to
more datasets to further evaluate its capacity.

• Subject log datasets. In this paper, the subject log datasets are collected from two
distributed systems (HDFS and Hadoop) and two supercomputer systems (BGL
and Spirit). Although the logs are public datasets and come from real systems,
the number of subjects is still limited. In our future work, we will evaluate the
proposed approach on more datasets.

• Noise in the logs. In our approach, we take advantage of matrix nullspace to
extract the workflow relations. If there exists some noise in the training set (e.g.,
problems in data collection or inaccurate log parsing), the number of available
relations will decrease. We performed a simulation experiment in which we
inject some noise into the training set by randomly changing a number of log
events’ counts. We find that the F1 scores drop significantly when the degree of
noise increases. For example, on HDFS, the F1 score decreases from 0.97 to 0.93
when 1% of the training set (i.e., 120 log messages are impacted by noise, and to
0.54 when 10% of the training set (i.e., 1200 log messages) is impacted by noise.
Currently, this problem is alleviated by the smaller size of training set required
by sADR, which significantly reduces the effort to acquire a high-quality training
set. In the future, we will tackle this problem by introducing a noise tolerance
method that enables the approach to extract relations from noisy log data.

• The accuracy of unsupervised uADR. In uADR, the hyper-parameter is the esti-
mated proportion of normal sessions in the logs (pN in Eq. 6). Figure 8 shows
the F1 scores for anomaly detection when using different estimated pN values. It
can be seen from the figure that uADR can achieve better results when the esti-
mated pN values are closer to the ground truth values. If the pN values are signif-
icantly wrongly estimated, uADR’s capacity for anomaly detection will decrease.
To address this problem, the estimation of pN should be given by experts who
are familiar with the subject system. We think this is feasible because the system
developers and maintainers usually have a lot of experience obtained from the
development and operation of the system.

• Correspondence between relations and workflows. In this paper, each discovered
relation is deemed to correspond to a workflow, but it is possible that one relation

Fig. 8 Impact of estimated pN on anomaly detection accuracy for uADR

 Automated Software Engineering (2023) 30:4

1 3

4 Page 26 of 29

is shared by several workflows. Moreover, if the workflows can be determined
precisely, the approach will provide more information for troubleshooting. In
future work, we will make use of other information in the raw logs (such as the
timestamps of events) to increase the explainability of the mined relations.

8 Related work

Current research on log-based anomaly detection mainly focuses on two processes:
one is to parse the unstructured or semi-structured logs into structured logs, and the
other is to determine the system status by checking the logs automatically. For log
parsing, the popular log parsers include IPLoM (Makanju et al. 2009), LKE (Fu
et al. 2009), Spell (Du and Li 2016), and Drain (He et al. 2017). Zhu et al. have con-
ducted a comparative study and summarized their mechanisms and performance in
an ICSE’19 paper (Zhu et al. 2019).

Many log-based anomaly detection approaches have been proposed over the
years. For example, Decision Tree (Chen et al. 2004) uses labeled logs to train a top-
down tree structure. The SVM-based approach (Liang et al. 2007) is to find a hyper-
plane in high-dimensional space that separates the normal and abnormal instances.
Logistic Regression (Bodik et al. 2010; He et al. 2016) is to train a logistic function
using labeled logs and use the function to estimate the probability of the system
being normal or abnormal. The PCA approach (Xu et al. 2009) generates a normal
space and an anomaly space, then uses the distance to normal space to identify the
anomalies. Invariants Mining (Lou et al. 2010) tries to discover some linear relations
among the system events by using a search algorithm and use the invariants to detect
the anomalies. Log Clustering (Lin et al. 2016) is to generate clusters based on the
normal logs and the instances which do not belong to any cluster are detected as
anomalies. DeepLog (Du et al. 2017) proposed to train an LSTM model and detect
the anomaly by predicting the events in the sequence and comparing them with the
actual events. Bertero et al. (Bertero et al. 2017) proposed to use modern natural
language processing techniques such as word2vec (Mikolov et al. 2013) to map the
logs words to a high dimensional metric space and then they employed some stand-
ard classifiers such as Naive Bayes and Random Forests. LogAnomaly(Meng et al.
2019) uses template2vec (similar to word2vec) to map the logs to vectors and feed
the extracted vectors to train an LSTM model. Log3C (He et al. 2018) is a cluster-
ing algorithm for iteratively sampling, clustering, and matching log sequences and
then identifies the problems by correlating the clusters with system KPIs (Key Per-
formance Indicators). LogRobust (Zhang et al. 2019) is designed to extract seman-
tic information from log events and then detect anomalies by utilizing an attention-
based Bi-LSTM model. Yin et al. (Yin et al. 2020) proposed LogC which turned
log entries into event sequences and component sequences and used both of the
sequences to train a combined LSTM model. The difference between LogC and
Deeplog is that LogC considers the components in the log entries as well as the
events.

One limitation of the current supervised models is that they require labeled logs
for training (He et al. 2016). The log labeling task requires knowledge of the subject

1 3

Automated Software Engineering (2023) 30:4 Page 27 of 29 4

system and is often tedious and time-consuming. Another drawback of the current
approaches is that they usually do not provide further information for troubleshoot-
ing because the original logs are usually transformed into another feature space.
Although Invariants Mining (Lou et al. 2010) can provide meaningful invariants that
are human-understandable, it suffers from performance issues when the size of the
logs grows and the search space expands (He et al. 2016).

sADR proposed in this paper requires only a small number of normal logs and
uADR does not need labeled logs for training, so they alleviate the pain of log labe-
ling. Moreover, the mined relations and the related anomalies could provide hints for
diagnosing the problematic workflows.

ADR (including semi-supervised sADR and unsupervised uADR) proposed in
this paper aims to mine numerical relations from logs and use the mined relations
to detect anomalies. Among the approaches, ADR and Invariants Mining belong to
the same type as they are based on the relations among the log events. In this paper,
the experiment results show that sADR can find more relations in less time than
Invariants Mining. Besides, the experiments also show that sADR can achieve better
or comparable accuracies in anomaly detection than the supervised methods Logis-
tic Regression, SVM, Decision Tree and the semi-supervised DeepLog. To alleviate
the efforts for labeling the logs, uADR employs a sampling method and uses the
samples to detect anomalies in an ensemble manner. The experiments show that on
the three subject datasets, uADR can achieve higher F1 scores than Log Clustering,
Invariants Mining, and Isolation Forest.

9 Conclusion

In this paper, we propose ADR, which can automatically extract numerical relations
among log events and apply the mined relations to detect system anomalies in both
semi-supervised (sADR) and unsupervised (uADR) manners. The experimental
results on four public log datasets show that sADR can achieve comparable results as
what existing supervised and semi-supervised approaches can achieve, even with a
small training set. Therefore, tedious manual log labeling effort can be reduced. The
mined relations can also provide hints for identifying the problematic workflows.
Furthermore, the unsupervised uADR is able to detect anomalies without labeled
training data and outperforms other unsupervised state-of-the-art approaches.

Our experimental tool and data are publicly available at https:// github. com/ LogIn
telli gence/ ADR.

In the future, we will evaluate ADR (both sADR and uADR) on more datasets
from a variety of systems. We will investigate techniques to further improve the
accuracy of ADR, especially uADR. We will also extend the proposed approach to
support anomaly detection with noisy log data.

Acknowledgements This research is supported by Australian Research Council’s Discovery Projects
(DP200102940 and DP220103044).

https://github.com/LogIntelligence/ADR
https://github.com/LogIntelligence/ADR

 Automated Software Engineering (2023) 30:4

1 3

4 Page 28 of 29

References

Astekin, M., Zengin, H., Sözer, H.: Evaluation of distributed machine learning algorithms for anomaly
detection from large-scale system logs: a case study. In: 2018 IEEE International Conference on Big
Data (Big Data), pp. 2071–2077 (2018)

Bertero, C., Roy, M., Sauvanaud, C., et al.: Experience report: log mining using natural language
processing and application to anomaly detection. In: 2017 IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE), pp. 351–360 (2017)

Bodik, P., Goldszmidt, M., Fox, A., et al.: Fingerprinting the datacenter: automated classification of
performance crises. In: Proceedings of the 5th European Conference on Computer Systems. ACM,
Paris, France, EuroSys ’10, pp. 111–124 (2010)

Breier, J., Branišová, J.: A dynamic rule creation based anomaly detection method for identifying security
breaches in log records. Wirel. Pers. Commun. 94(3), 497–511 (2017)

Chen, M., Zheng, A.X., Lloyd, J., et al.: Failure diagnosis using decision trees. In: International
Conference on Autonomic Computing, 2004. Proceedings., pp. 36–43 (2004)

Du, M., Li, F.: Spell: streaming parsing of system event logs. In: 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 859–864 (2016)

Du, M., Li, F., Zheng, G., et al.: DeepLog: anomaly detection and diagnosis from system logs
through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, Dallas, Texas, USA, CCS ’17, pp. 1285–1298 (2017)

Farshchi, M., Schneider, J., Weber, I., et al.: Experience report: anomaly detection of cloud application
operations using log and cloud metric correlation analysis. In: 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pp. 24–34 (2015)

Fu, Q., Lou, J.G., Wang, Y., et al.: Execution anomaly detection in distributed systems through
unstructured log analysis. In: International Conference on Data Mining (Full Paper). IEEE, pp. 149–
158 (2009)

Hamooni, H., Debnath, B., Xu, J., et al.: LogMine: fast pattern recognition for log analytics. In:
Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, Indianapolis, Indiana, USA, CIKM ’16, pp. 1573–1582 (2016)

He, P., Zhu, J., Zheng, Z., et al.: Drain: an online log parsing approach with fixed depth tree. In: 2017
IEEE International Conference on Web Services (ICWS), pp. 33–40 (2017)

He, S., Zhu, J., He, P., et al.: Experience report: system log analysis for anomaly detection. In: 2016 IEEE
27th International Symposium on Software Reliability Engineering (ISSRE), pp. 207–218 (2016)

He, S., Lin, Q., Lou, J.G., et al.: Identifying impactful service system problems via log analysis. In:
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, Lake Buena Vista, FL, USA,
ESEC/FSE 2018, pp. 60–70 (2018)

He, S., Zhu, J., He, P., et al.: Loghub: a large collection of system log datasets towards automated log
analytics. arXiv: 2008. 06448 [cs] (2020)

Jiang, Z.M., Hassan, A.E., Hamann, G., et al.: An automated approach for abstracting execution logs to
execution events. J. Softw. Maint. Evol. Res. Pract. 20(4), 249–267 (2008)

Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proceedings of the 10th ACM
Conference on Computer and Communications Security. ACM, Washington D.C., USA, CCS ’03,
pp. 251–261 (2003)

Le, V.H., Zhang, H.: Log-based anomaly detection without log parsing. In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE, pp. 492–504 (2021)

Le, V.H., Zhang, H.: Log-based anomaly detection with deep learning: How far are we? In: 2022 IEEE/
ACM 44th International Conference on Software Engineering (ICSE), IEEE, pp. 1356–1367 (2022)

Li, T., Jiang, Y., Zeng, C., et al.: FLAP: An end-to-end event log analysis platform for system
management. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, Halifax, NS, Canada, KDD ’17, pp. 1547–1556 (2017)

Liang, Y., Zhang, Y., Xiong, H., et al.: Failure prediction in IBM BlueGene/L event logs. In: Seventh
IEEE International Conference on Data Mining (ICDM 2007), pp. 583–588 (2007)

Lin, Q., Zhang, H., Lou, J., et al.: Log clustering based problem identification for online service systems.
In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp. 102–111
(2016)

http://arxiv.org/abs/2008.06448

1 3

Automated Software Engineering (2023) 30:4 Page 29 of 29 4

Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data
Mining, pp. 413–422 (2008)

Lou, J.G., Fu, Q., Yang, S., et al.: Mining program workflow from interleaved traces. In: Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, Washington, DC, USA, KDD ’10, pp. 613–622 (2010)

Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: A lightweight algorithm for message type extraction in
system application logs. IEEE Trans. Knowl. Data Eng. 24(11), 1921–1936 (2012)

Makanju, A.A., Zincir-Heywood, A.N., Milios, E.E.: Clustering event logs using iterative partitioning.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pp. 1255–1264 (2009)

Mariani, L., Pastore, F.: Automated identification of failure causes in system logs. In: 2008 19th
International Symposium on Software Reliability Engineering (ISSRE), pp. 117–126 (2008)

Meng, W., Liu, Y., Zhu, Y., et al.: LogAnomaly: unsupervised detection of sequential and quantitative
anomalies in unstructured logs. In: IJCAI, pp. 4739–4745 (2019)

Meng, W., Liu, Y., Zhang, S., et al.: LogClass: anomalous log identification and classification with partial
labels. IEEE Transactions on Network and Service Management p. 1 (2021)

Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases and their
compositionality. arXiv preprint arXiv: 1310. 4546 (2013)

Nedelkoski, S., Bogatinovski, J., Acker, A., et al.: Self-attentive classification-based anomaly detection in
unstructured logs. arXiv: 2008. 09340 [cs, stat] (2020)

Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs. In: 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’07), pp. 575–584 (2007)

Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach.
Learn. Res. 12, 2825–2830 (2011)

Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists, 4th edn. Academic
Press, Amsterdam, Boston (2009)

Strang, G.: Linear Algebra and Its Applications, 4th edn. Cengage Learning, Belmont, CA (2006)
Virtanen, P., Gommers, R., Oliphant, T.E., et al.: SciPy 1.0: fundamental algorithms for scientific

computing in Python. Nat. Methods 17(3), 261–272 (2020)
van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical

computation. Comput. Sci. Eng. 13(2), 22–30 (2011)
Xu, W., Huang, L., Fox, A., et al.: Detecting large-scale system problems by mining console logs. In:

Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles. ACM, Big
Sky, Montana, USA, SOSP ’09, pp. 117–132 (2009)

Yin, K., Yan, M., Xu, L., et al.: Improving log-based anomaly detection with component-aware analysis.
In: 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE,
pp. 667–671 (2020)

Zhang, B., Zhang, H., Moscato, P., et al.: Anomaly detection via mining numerical workflow relations
from logs. In: Proceedings of the 39th International Symposium on Reliable Distributed Systems
(SRDS 2020), Shanghai, China (2020)

Zhang, X., Xu, Y., Lin, Q., et al.: Robust log-based anomaly detection on unstable log data. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, Tallinn, Estonia, ESEC/FSE
2019, pp. 807–817 (2019)

Zhu, J., He, P., Fu, Q., et al.: Learning to log: helping developers make informed logging decisions. In:
Proceedings of the 37th International Conference on Software Engineering, Vol. 1. IEEE Press,
Florence, Italy, ICSE ’15, pp. 415–425 (2015)

Zhu, J., He, S., Liu, J., et al.: Tools and benchmarks for automated log parsing. In: Proceedings of the
41st International Conference on Software Engineering: Software Engineering in Practice. IEEE
Press, Montreal, Quebec, Canada, ICSE-SEIP ’10, pp. 121–130 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/2008.09340

	Semi-supervised and unsupervised anomaly detection by mining numerical workflow relations from system logs
	Abstract
	1 Introduction
	2 Background
	3 Numerical relations in logs
	4 Proposed approach
	4.1 Overview
	4.2 Semi-supervised anomaly detection (sADR)
	4.3 Unsupervised anomaly detection (uADR)

	5 Experimental design
	5.1 Subject datasets
	5.2 Research questions
	5.2.1 RQ1: Can the proposed approach mine numerical relations from logs?
	5.2.2 RQ2: How effective is sADR, the proposed semi-supervised approach to anomaly detection?
	5.2.3 RQ3: How effective is uADR, the proposed unsupervised approach to anomaly detection?

	6 Experimental results
	6.1 Results of RQ1
	6.2 Results of RQ2
	6.3 Results of RQ3

	7 Discussion
	7.1 Distribution of the violated relations
	7.2 The choice of training data
	7.3 The choice of log parsers
	7.4 Threats to validity

	8 Related work
	9 Conclusion
	Acknowledgements
	References

