
Vol.:(0123456789)

Automated Software Engineering (2022) 29:45
https://doi.org/10.1007/s10515-022-00343-z

1 3

MerIt: improving neural program synthesis by merging
collective intelligence

Yating Zhang1  · Daiyan Wang1 · Wei Dong1

Received: 29 December 2020 / Accepted: 25 May 2022 / Published online: 22 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Program synthesis is the task of automatically generating programs from user intent,
which is one of the central problems in automated software engineering. Recently
many researchers use a neural network to learn the distribution over programs based
on user intent (such as API and type name), known as neural program synthesis
(NPS). The generated programs of NPS are highly dependent on user intent. How-
ever, it is difficult for users to provide an accurate and complete intent for the NPS
model, which decreases the synthesis accuracy of NPS. Collective Intelligence (CI)
is an emerging trend, which illustrates that collective wisdom surpasses individual
wisdom. Inspired by CI techniques, we propose an automatic task-specific user
intent merging framework for NPS named MerIt (Merge User Intent of Program
Synthesis). The key point of our framework is that we propose an improved Unsu-
pervised Ant Colony Optimization (UACO) algorithm to selectively merge effec-
tive intent from multiple developers, and design three selection strategies to guide
the merge process. The experiments show that our approach is able to provide more
adequate and efficient input for NPS and improve the synthesis accuracy. Besides,
our evaluation shows that selectively merging knowledge from multiple developers
could be a significant way of promoting automated software engineering.

Keywords  Neural program synthesis · Swarm intelligence · Collective intelligence ·
Pattern mining · User intent

 *	 Yating Zhang
	 zhangyating18@nudt.edu.cn

	 Daiyan Wang
	 wangdaiyan@nudt.edu.cn

	 Wei Dong
	 wdong@nudt.edu.cn

1	 College of Computer, National University of Defense Technology, Changsha, China

http://orcid.org/0000-0002-0836-7742
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00343-z&domain=pdf

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 2 of 35

1  Introduction

Program synthesis, the task of automatically generating programs from user intent
(Gulwani et al. 2017), is considered as one of the central problems in automated
software engineering. Recently, many studies solved the program synthesis problem
on top of neural network architecture, known as Neural Program Synthesis (NPS).
NPS tends to learn a conditional distribution that satisfies user intent over the high-
level abstraction of programs. One challenge in NPS is the diversity of user intent
since the efficiency and correctness of NPS are highly dependent on the accurate
description of user intent.

User intent can be expressed in different forms, significant progress has been
made in solving programming tasks from natural language descriptions, input–out-
put examples, and small information desired by the target program. Programming
by descriptions (Lin et al. 2018; Xu et al. 2017) is faced with a problem that is the
accuracy of synthesis is limited by the ambiguity and hugeness of natural language.
Programming by input–output examples (Balog et al. 2017; Gulwani et al. 2012;
Devlin et al. 2017; Zohar and Wolf 2018) have to avoid the false positive answers
by requiring elaborate effort to provide multiple corner cases of input–output pairs.
Programming from small information (Feng et al. 2017; Shi et al. 2019; Murali et al.
2018) generates programs from the Application Programming Interfaces (APIs)
or types, which also faces the limitation of incompleteness and inaccuracy of the
intent. These factors make it clear that the expression of user intent has a close influ-
ence on the effectiveness of the synthesis models and systems while providing pre-
cise intent is not an easy task for some users who need to use synthesis tools to aid
development.

To improve the automation and intelligence of software development, combin-
ing Collective Intelligence (CI) with software development is an emerging trend. CI
is inspired by Swarm Intelligence (SI), which typically refers to the emergence of
intelligent global behavior by interactions between individual agents in biological
systems (Yudong et al. 2014). Studies of SI focus on biological systems, while CI
concentrates mainly on humans, but they both demonstrate that collective wisdom
surpasses individual wisdom. Recently, many advanced techniques based on CI have
been proposed, including SwarmDebugging (Petrillo et al. 2019), PyReco (D’Souza
et al. 2016), TopCoder (Lakhani et al. 2010), GitMerge,1 and IntelliMerge (Shen
et al. 2019). These techniques could significantly improve the efficiency of software
development when the wisdom of multiple developers is collected and merged. Tak-
ing a cue from the traditional software development process of gathering and col-
lating requirements before proceeding with the actual development, we exploit the
advantages of CI by merging intentions from multiple developers to build a more
adequate and accurate NPS input, thereby improving the accuracy of the NPS and
enabling automated software code generation.

1  https://​git-​scm.​com/​docs/​git-​merge.

https://git-scm.com/docs/git-merge

1 3

Automated Software Engineering (2022) 29:45	 Page 3 of 35  45

Nevertheless, simply merging multiple knowledge cannot bring the best effi-
ciency. We explore strategies for selectively merging user intent by applying the
bio-inspired optimization algorithms in SI to NPS. The bio-inspired algorithms are
designed from the studies on the collective behaviors in SI system, including Parti-
cle Swarm Optimization (PSO) (Kennedy and Eberhart 1995), Ant Colony Optimi-
zation (ACO) (Bonabeau et al. 1999), Bat Algorithm (BA) (Yang 2011) and many
others (Yang et al. 2014; Fong et al. 2015). They have been proved to be efficient
in feature selection in some areas of Artificial Intelligence, such as text clustering
(Abualigah and Khader 2017), text classification (Kyaw and Limsiroratana 2019;
Peng et al. 2018; Moslehi and Haeri 2020) and recommendation systems (Jain and
Dixit 2019; Peška et al. 2019). However, these studies tend to find a fixed feature
subset for the entire dataset, which is not suitable for the case where a specific fea-
ture subset needs to be selected for each task. Program synthesis certainly belongs to
the latter problem. Therefore, to extract a specific set of features for each program-
ming task, we also try to improve the bio-inspired algorithm to be more suitable for
NPS in this paper.

Extracting more accurate labels for each task to represent the intent of the user
is meaningful and also challenging. Meanwhile, with the unprecedented growth
of online platforms and open source code, we also expect to combine the general
knowledge on these bulky code resources to facilitate the development of program
synthesis. We notice that some API methods are often called together in some pro-
grams, namely, the usage of API follows certain patterns. For example, when writ-
ing a file, we usually need to handle a file by opening, writing, and finally closing.
Big data is usually the cornerstone of the probabilistic model and machine learn-
ing and machine learning technology develops rapidly consequently, many advanced
techniques have emerged in API usage pattern mining, such as MAPO (Zhong et al.
2009), UPMiner (Wang et al. 2013) and PAM (Fowkes and Sutton 2016). Hence we
integrate the frequency patterns information of APIs into the process of label extrac-
tion to express the intent more precisely.

Selectively merging information from CI produced by multiple developers is
a significant way to construct adequate and accurate user intent for NPS. In this
paper, we propose an automatic task-specific user intent merging method named
MerIt combining both SI and CI to underpin NPS. It contains two meanings: one
is to merge user intent to facilitate program synthesis, and the other is to merge
the collective intelligence of developers from big code. We choose a bayesian
encoder–decoder synthesis model Bayou (Murali et al. 2018) as the synthesizer,
which takes some labels (APIs and types possibly used in the target program) as
input. Considering the ability of bio-inspired algorithms in SI to solve the optimi-
zation problem, we take the ACO algorithm to perform label selection. We divide
our method into two stages: preparation for the label selection strategies and pro-
gram synthesis based on Unsupervised ACO. In the preparation stage, we propose
three label selection strategies. The ultimate goal of the three strategies is to com-
bine big code knowledge and CI of multiple developers to improve the effectiveness
of label selection in the ACO algorithm. The first strategy is the construction of a
Label Movement Efficiency Matrix (LMEM), which deposits efficient movements
constructed by the ants in more similar labels. We obtain this matrix by executing

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 4 of 35

an improved Supervised ACO (SACO) algorithm. To promote our second strategy,
we mine API frequent usage patterns from the Internet code and build them into a
Pattern Conditional Probability Matrix (PCPM) of labels to store general knowledge
between the usage of the label. The last strategy is the merging of CI. Given the
natural language description of a specific programming task, we merge intelligence
or knowledge from multiple developers and construct the initial weighted label set
by heuristically sorting these labels. After the preparation of three label selection
strategies, our second state is the application of our novel Unsupervised ACO algo-
rithm to program synthesis, where “Unsupervised” means that our algorithm does
not depend on any specific NPS model. All three strategies are integrated into our
UACO algorithm and we also propose a novel n random proportional rule to further
improve our UACO algorithm. Our UACO algorithm is utilized to perform label
selection for the NPS model, then programs are generated based on the selected
label set.

We evaluated the performance of our improved ACO algorithms on 10,000 test
data. Compared with program synthesis over no label selection, our algorithms
increased the synthesis accuracy by 27%. In addition, our evaluation of three label
selection strategies shows that either way of the above strategies can increase the
efficiency of label selection. Moreover, we evaluated the influence of CI on NPS
based on 25 real programming tasks. We simulated the scene of synthesizing pro-
grams on an isolated software development environment, and on a collaborative
software development environment using our proposed method, the latter signifi-
cantly increased the accuracy by 38% compared with the former. This evaluation of
CI indicates that the cooperation and knowledge merging among isolated software
developers is essential for program synthesis.

In summary, this paper makes the following contributions:

•	 We propose an automatic task-specific user intent merging method named MerIt
for NPS. Our method can selectively merge user intent from the wisdom of mul-
tiple developers, which provides NPS models with more accurate and complete
input.

•	 We propose an improved Unsupervised ACO algorithm, and design three label
selection strategies to optimize the process of feature selection in NPS. Our
novel algorithm could be a new way of feature engineering in the field of natural
language processing.

•	 Inspired by the n-gram language model, we innovatively propose an n random
proportional rule for our UACO algorithm.

•	 Our experiments on CI shows that code knowledge merging from multiple devel-
opers could be a significant way of promoting automated software development
at a macro level.

The rest of this paper is organized as follows: we first discuss the related work
in Sect. 2, then introduce the motivating example and fundamental knowledge in
Sect. 3. Section 4 firstly presents the framework of our heuristic strategies and algo-
rithmic frameworks, and then the detailed description is given in Sects. 5 and 6,
respectively. The experimental results for each part are given in Sect. 7, and Sect. 8

1 3

Automated Software Engineering (2022) 29:45	 Page 5 of 35  45

discusses the limitations and threats of MerIt. Finally, Sect. 9 gives our conclusions
and discusses our future research.

2 � Related work

2.1 � Neural program synthesis

Neural Program Synthesis (NPS) typically applied the standard encoder–decoder
framework to automatically generate code from a specific input (Ling et al. 2016),
in particular, Seq2Seq architecture (Sutskever et al. 2014) is mostly the elemental
model. One challenge the baseline model applied to NPS is that it had not considered
the underlying syntax of the target programming language. To generate well-formed
code, recently some researches predicted the grammar rule of the abstract syntax
tree (AST) (Sun et al. 2019; Yin and Neubig 2017) or modeled the ASTs with a
modular decoder in a top-down manner (Rabinovich et al. 2017). Another challenge
is that these seq2seq models penalized many semantically correct programs satisfy-
ing the given input because they maximized the likelihood of only a single reference
program. To address this limitation, Bunel (Bunel et al. 2018) and Daniel (Abolafia
et al. 2018) performed reinforcement learning on top of a supervised model with
the log-likelihood objective that maximizes the top-k semantically correct programs.
Furthermore, considering the fact that RNN cannot capture a long sequence in some
cases, Sun (Sun et al. 2019) proposed the grammar-based structural convolutional
neural network for code generation, Allamanis represented source code with graphs
(Allamanis et al. 2018) and applied gated graph neural network to model the source
code graph (Brockschmidt et al. 2019).

Besides the researches on the improvement of the model architecture mentioned
above, significant progress has been made in program synthesis from different
kinds of specific inputs. Programming by example such as FlashFill (Gulwani et al.
2012), RobustFill (Devlin et al. 2017), and deepCoder (Balog et al. 2017), PCC-
Coder (Zohar and Wolf 2018), mainly generates code from given sample input–out-
put pairs, these methods struggle with the expansion of the types of programs for
they rely on a limited domain-specific language(DSL), and need a large engineering
effort to provide multiple examples. Programming by description, such as NL2Bash
(Lin et al. 2018), SQLNet (Xu et al. 2017), exists the problem in achieving high
accuracy of synthesis programs caused by the ambiguity and hugeness of natural
language. Component-based synthesis generates a program from a library of compo-
nents, each component is a domain-specific function that could be used in the target
program, existing work of this type contain SYPET (Feng et al. 2017) and FrAngel
(Shi et al. 2019).

As mentioned earlier, the degree of accuracy with which users express their
intents has a significant impact on the performance of the NPS model. The main sce-
nario of our concern is those where it is difficult for the average or non-professional
user to provide an absolutely complete and accurate user intent for the NPS, and
this is where our work differs from the above. We design a user-friendly, automati-
cally merged NPS extension framework that treats small information representing

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 6 of 35

user intent as features and uses the feature selection process to improve the accuracy
of intent representation, thereby improving the performance of program synthesis.

2.2 � Swarm intelligence

We focus on the application of swarm intelligence in artificial intelligence, espe-
cially the successful application of bio-inspired algorithms in feature selection
(Brezočnik et al. 2018). Laith proposed a hybrid of PSO algorithm with genetic
operators for the feature selection, their experiments show that the proposed algo-
rithm encourages the k-means clustering algorithm to obtain more accurate clusters
in text clustering (Abualigah and Khader 2017). In addition, great progress has been
made in enabling bio-inspired algorithms to extract more informative and efficient
features for text classification problems. Most researches obtained more accurate
classification results by improving the algorithms such as PSO (Bai et al. 2018; Jain
et al. 2019) and ACO (Kyaw and Limsiroratana 2019; Peng et al. 2018), or by pro-
posing a hybrid of multiple algorithms such as a binary hybrid Grey Wolf Optima-
tion and PSO algorithm (BGWOPSO) (Al-Tashi et al. 2019) and a hybrid Genetic
Algorithm and PSO algorithm (GAPSO) (Moslehi and Haeri 2020). Moreover, bio-
inspired algorithms have been widely used in the recommendation system (RS) (Jain
and Dixit 2019), according to the comprehensive review of 77 research publications
applying SI in RS (Peška et al. 2019).

Working on applying the bio-inspired algorithm to program synthesis differ from
the above works in that, these studies tend to find a fixed optimal subset of features
for the entire dataset, whereas the goal of program synthesis is to generate the cor-
responding code that satisfied the specific user intent. The native ACO algorithm is
not fit for situations where a specific subset of features needs to be selected for each
task, so we have modified and extended the ACO algorithm in the process of appli-
cation with this in mind.

2.3 � API usage pattern mining

The emergence and growth of big code resources on the Internet brings hope and
inspiration to API usage pattern mining. MAPO (Zhong et al. 2009) is the first algo-
rithm for mining API usage patterns, which applies a clustering on the extracted API
sequence to mine API usage patterns. After that, an extension of MAPO is proposed
named UP-Miner (Wang et al. 2013), in an attempt to effectively reduce redundancy
and improve the succinctness of the mined API usage patterns. Others frequent pat-
tern mining are the work by Acharya et al. (2007) and Buse and Weimer (2012). A
major challenge in the above frequent pattern mining is the sheer size of its min-
ing results (Han et al. 2007). In many cases, an enormous number of output pat-
terns severely limit the usage of a frequent pattern miner. Researchers have proposed
various techniques to reduce a large number of frequent patterns while maintaining
the quality of identified patterns. For example, pCluster (Wang et al. 2002) is an
algorithm to detect clusters of patterns. PAM (Fowkes and Sutton 2016) is a near

1 3

Automated Software Engineering (2022) 29:45	 Page 7 of 35  45

parameter-free probabilistic API mining method, which largely avoids returning
redundant and spurious sequences.

Our focus is on using pattern mining techniques to extract relationships between
API sequence patterns, so we extracted the API sequences from the AST and mined
them using PAM, and then learned the API usage pattern letters.

3 � Motivation and preliminaries

In this section, we firstly illustrate our motivation through a programming task
and then introduce the fundamental knowledge of the ACO algorithm on feature
selection.

3.1 � Motivating example

In this paper, we focus on generating programs conditioned on some labels that may
contain small information such as API calls and types desired by the target program.
Bayou (Murali et al. 2018) is a typical example of this case. The input of Bayou is a
code draft such as Fig. 1, which represents the user intent by labels X (that consists
of API calls and types) and a function signature, then generates a high-level abstrac-
tion of the program named sketches (that only contains APIs sequences and control
structure), the sketches are further concretized into type-safe programs by adding
variable usage and verifying whether the syntax is correct. Bayou utilizes a Bayes-
ian encoder–decoder (BED) model to learn the distribution over sketches based on
X.

The sketches synthesized by Bayou is strongly dependent on the labels provided
in the draft. As an example, we have a programming task for List manipulation in
Java, we require to append all elements in the List to a String variable. We asked
five users to utilize Bayou to automatically synthesize the program of this task, the
labels they provided are shown in Table 1 (User range from 1 to 5). However, no
generated programs of all the five users satisfied our demand (we use 0 and 1 to
denote whether the top-10 generated programs of Bayou satisfy our demand or not
in Table 1. Figure 2 is the program synthesized based on the labels of user 1, which
is the best result generated from five inputs. The code in Fig. 2 is finished with iter-
ating over a List but failed to return a String containing all elements of the List. This
example shows that people have trouble providing absolutely complete and accurate
labels for a specific task, especially for those non-professionals.

Fig. 1   A draft provided by 5th user in Table 1

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 8 of 35

Considering that CI usually surpasses individual intelligence, we could obtain a
more efficient label set satisfying our demand by merging all the incomplete knowl-
edge from individuals. However, the result shows that simply merging all the labels
(denoted by user 6 in Table 1) cannot synthesize the correct program, either. To
address this problem, we propose a user intents merging method named MerIt,
which can selectively merge efficient information from CI of multiple develop-
ers. Besides that, MerIt combines big code knowledge with SI algorithm, which
integrates the frequent patterns of API usage mined from code knowledge into our
UACO algorithm to improve the efficiency of ant movement. The details of MerIt
will be shown in Sect. 4.

3.2 � Ant colony optimization

ACO is inspired by the foraging behavior in ant colony systems on how to find
the shortest path between their nest and food. Each ant explores a path indi-
vidually and discards a chemical substance called pheromone during their search
path, this allows the swarms to move to the optimal path via following the rein-
forced pheromone trail. ACO could be applied to find the best feature subset by

Table 1   Labels provided by five users and corresponding synthesis results

User API calls Types Result

1 iterator, hasNext, next, join ArrayList, Iterator, String 0
2 size, get, append, toString ArrayList, StringBuilder 0
3 asList, next Arrays, Iterator 0
4 hasNext, next, add, join Iterator, ArrayList, String 0
5 forEach, append List, StringBuilder 0
6 API calls and types that simply merged from five users 0

Fig. 2   The best generated program of five users in Table 1

1 3

Automated Software Engineering (2022) 29:45	 Page 9 of 35  45

constructing a completed directed graph through n features (Peng et al. 2018).
At each iteration of ACO, all ants individually construct a search path. Before
the first iteration (t = 1), all the pheromone concentration �j(t) is initialized with
the same value, where �j(t) is the pheromone concentration value on the feature
node j at t-iteration. The detailed flow of each iteration is as follows:

Initialize population At the initial moment, the pheromone concentration �(1)
of each feature node is initialized to a fixed value and m ants are placed on ran-
domly selected feature nodes.

Move ant Each ant applies a probabilistic action choice rule, called random
proportional rule, to decide which node to visit next. In particular, the probabil-
ity that ant k, currently at feature node i, chooses to go to feature node j is:

where Nk is the set of feature nodes that ant k has not visited yet. � and � are the
pheromone factor and heuristic factor, which are used to determine the relative influ-
ence of pheromone concentration and heuristic information, respectively. The heu-
ristic item �ij is generally set to the value 1

dij
 , where dij is the Euclidean distance

between feature nodes i and j.
Update phromone concentration After all the ants have constructed their

search path at each iteration, the pheromone concentration on node j is updated:

where � is the evaporation rate to avoid the unlimited accumulation of the phero-
mone concentration, Δ�k

j
 is the adding pheromone of node j on the path L that the

ant k have crossed in their tours. The adding pheromone value Δ�k
j
 is generally

followed:

where Q is a constant that is used to control the rate at which the pheromone con-
centration is increased, and Lk is the search path length of ant k.

Update global best solution The global best solution, the best feature subset,
in this case, is updated at each iteration based on the fitness function, which is
used to measure the quality of the selected subset and is usually defined as the
accuracy of the target model. The algorithm finishes and returns the global best
solution when t reaches the maximum number of iterations.

(1)Pk
ij
(t) =

�j(t)
�
�ij(t)

�

∑
s∉Nk

�s(t)
�
�is(t)

�
, if j ∉ Nk

(2)�j = (1 − �)�j +

m∑

k=1

Δ�k
j

(3)Δ�k
j
=

{
Q

Lk
, if j ∈ L

0, else

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 10 of 35

4 � Framework

The framework of MerIt proposed in this paper as shown in Fig. 3, basically
includes two stages: (1) preparation for the label selection strategies; (2) program
synthesis based on Unsupervised ACO.

Preparation stage We firstly propose three label selection strategies, as shown
in the dotted box of Fig. 3. The ultimate goal of our three strategies is to combine
big code knowledge and CI of multiple developers to improve the effectiveness of
label selection in the ACO algorithm.

The first strategy constructs a label movement efficiency matrix (LMEM)
based on an improved supervised ACO algorithm (SACO, Supervised ACO) in
our previous work (Wang et al. 2020). In the primary ACO, the pheromone con-
centration between features is added dynamically and is not stored after the train-
ing, which is a difference from our work. We treat all labels in the code corpus
as features and store the efficient moves by ants to mine for more similar labels
in the big code. We perform label selection of a large Java corpus by using an
improved Supervised ACO algorithm (SACO) with real-time feedback from the
BED model of Bayou. Ultimately, the two labels with bigger values of effective
movement in LMEM imply a higher task similarity in the big data code.

The second strategy is to build a pattern conditional probability matrix
(PCPM), in which each element represents the conditional probability of two
labels in the API usage patterns. We have considered mining the patterns of API
usage to shorten the synthesis path of reachable graph-based programs and accel-
erate synthesis speed (Liu et al. 2019). Far apart from before, we utilize condi-
tional probabilities to represent relationships between the patterns of API usage,
thus prompting the model to capture some API usage inertia and store it in the
PCPM, which then allows the NPS decoder to consider the probabilities of API
usage patterns during the inference, hence prompting more efficient synthesis.
Specifically, we use a tool of API usage pattern mining to mine the patterns in the

Fig. 3   The framework of MerIt, which merge the user intent of NPS by three strategies

1 3

Automated Software Engineering (2022) 29:45	 Page 11 of 35  45

code snippet of the same corpus and then calculate the probability of labels from
the mined API usage patterns.

While the first two strategies effectively guide the label selection process by tap-
ping into the knowledge of large code sources, the third strategy optimizes the label
selection process by combining the intelligence of multiple developers from the CI
perspective. Given only the natural language description of a programming task, we
firstly merge labels crawled from web pages involving the CI of multiple develop-
ers. And then by heuristically weighting and sorting the mined labels, we construct
the initial weighted label set. The third strategy provides the basis for establishing a
user-friendly framework that automatically merges user intent based on natural lan-
guage descriptions.

Application unsupervised ACO Our second stage is the application of our novel
Unsupervised ACO (UACO) algorithm to program synthesis. “Unsupervised” in
UACO means that our algorithm is independent of the NPS model, that is, it does
not depend on the loss function, objective function, or other feedback from the
NPS. Here we emphasize the difference and connection between UACO and SACO.
SACO only passes the weight matrix of the labels to the NPS model, while the
UACO model makes inferences together with NPS to generate the code, and the
learning parameters of the two models are not shared.

The above three label selection strategies of the first stage eventually become
the three heuristic information in the random proportional rule of our novel UACO
algorithm, and the weighted label set constructed by the CI Strategy is the range of
labels we can select from. Meanwhile, we propose a novel n random proportional
rule to further improve the accuracy of our UACO algorithm. By combing three
strategies and the n random proportional rule, our novel UACO algorithm is utilized
to perform label selection. Finally, programs are generated based on the final label
set.

5 � Label selection strategies

In this section, we will illustrate our three label selection strategies in detail. Sec-
tion 5.1 introduces the SACO algorithm and the construction of the LMEM. Sec-
tion 5.2 introduces the process of API usage pattern mining and how to construct
PCPM. Section 5.3 introduces how to efficiently organize labels from the Internet
from the perspective of CI, and how to build our initial weighted label set.

5.1 � Label moving efficiency matrix

We perform label selection on a large Java corpus based on our improved SACO
algorithm and utilize feedback from the NPS model to gradually optimize the
selected label subset. Furthermore, with the aim of taking advantage of the effective
movements made by all the ants in the procedure of label selection, we construct an
LMEM.

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 12 of 35

5.1.1 � Supervised ACO algorithm

To be better suitable for the NPS model, label selection in the ACO algorithm
takes the feedback from the NPS model into consideration. The quality of the
label subset selected by the ACO is evaluated by the generated loss of the NPS
model based on these selected labels. By gradually obtaining feedback from the
NPS model, the ACO algorithm updates the pheromone concentration of label
nodes and optimizes the selected label subset. We call our improved algorithm as
SACO, the details of optimization are as follows:

Firstly, we modify the strategy of Initialize Population. Similar to the Round
Robin algorithm, each ant is put on the different label node in turn at the initial
time of each iteration rather than put randomly, to avoid bias towards some labels
occasionally.

Secondly, to overcome the inadaptability of the Euclidean distance in the orig-
inal random proportional rule to labels of NPS, we consider the cosine similarity
of the labels in the entire corpus. the cosine similarity between label i and label j
is calculated as follows:

where DocsVec is an N-dimensional vector, N is the data size of the corpus and each
value in the vector represents the label frequency in the corresponding programming
task. |DocsVec| is the norm of vector. We take cosine similarity between two labels
as the heuristic information, thus the random proportional rule is modified to:

Thirdly, we consider the feedback on the ACO algorithm from the BED model, the
generated loss of model is used to measure the quality of the selected label set. Spe-
cifically, Δ�k

j
 and fitness function are both defined as:

where Jk(t) is the label subset selected by ant k at iteration t. The reason of defines
the Eq. 6 in this way, is that when the search path constructed by an ant makes the
NPS model bring less loss, the label node j contained in this path will be updated
with more pheromone concentration values. At the same time, the label subset that
makes the model bring lower loss value has a higher fitness function value.

(4)Simij =
DocsVeciDocsVecj

||DocsVeci||
|||DocsVecj

|||

(5)Pk
ij
(t) =

�j(t)
�Simij

�

∑
s∉Nk

�s(t)
�Simis

�
, if j ∉ Nk

(6)Δ�k
j
=

Q

loss(Jk(t))
, if j ∈ Jk(t)

(7)fitness function =
Q

loss(Jk(t))

1 3

Automated Software Engineering (2022) 29:45	 Page 13 of 35  45

5.1.2 � Label move efficiency matrix

By deeply and carefully researching our SACO algorithm, we analyzed the ques-
tions of (1) how to define the effective search paths and (2) how to take advantage of
these efficient movements constructed by the ants. To answer the question (1), simi-
lar to the research of (Peng et al. 2018), we define both the optimal search path and
top-d adjacent search path of the optimal path as the effective search paths. Namely,
the top-d + 1 label subset with the lowest generated loss in each iteration is finally
considered. To answer question (2), a Label Moving Efficiency Matrix (LMEM) is
created with the dimension S × S , where S is the vocabulary size of APIs and types.
With the aim to deposit effective movements between labels, and further find higher
frequency movements from one label to another label, the LMEM can finally find
two labels with higher similarity or frequently used together in the same code snip-
pet. Each element in the LMEM is initialized with 0 and the moving efficiency from
label i to label j, at iteration t, are updated as follows:

where bs, near is the ant that made the best solution and the ants made the top-d best
adjacent paths, respectively. ΔLMEMbs

ij
(t) and ΔLMEMnear

ij
(t) are defined as follows:

(8)LMEMij(t) = LMEMij(t − 1) + ΔLMEMbs
ij
(t) +

d∑

near=1

ΔLMEMnear
ij

(t)

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 14 of 35

where � is the balance coefficient of nearest and optimal paths, generally set to 0.7.
As shown in Eq. 8, the smaller the loss value, the larger the adding value to LMEM,
and the more effective the movement from label i to label j. Actually, the above
equations show that, in each iteration, when the optimal search path and the top-d
adjacent search path are obtained, if the label i and j appear in the above-mentioned
top-d + 1 effective search paths at the same time, we hold the opinion that an effec-
tive movement is formed between these two labels. And then, we accumulate the
moving efficiency LMEMij(t) of the two labels according to the generated loss of the
corresponding search path.

In summary, the workflow of our SACO algorithm is shown in Algorithm 1,
which takes the data set D, the number of ants m, and the total number of iterations
t as input. We first initialize the value of each element in LMEM to zero, and then
perform label selection for each (X, Y) pair in the corpus. In each iteration, each ant
constructs its search path according to Eq. 5. After all the ants have constructed their
respective search paths, we use the fitness function of Eq. 7 to evaluate the label
subset constructed by each ant, and record top-d + 1 search paths with the highest
fitness function. And then, we update the LMEM according to Eq. 8. Meanwhile, we
update the pheromone concentration according to Eqs. 6 and 2. After all the data is
traversed, the algorithm returns the heuristic LMEM.

5.2 � Pattern conditional probability matrix

We collect the Java projects from Github and then use the API usage pattern min-
ing tool to mine the patterns in the code snippets. After that, we construct a Pattern
Conditional Probability Matrix (PCPM) for labels that extracts information and cal-
culates probability from the mined API usage patterns. The workflow of construct-
ing the PCPM is shown in Fig. 4. The first thing to build the PCPM is to collect a
large number of code snippets. Afterward, the API sequences should be cleaned and

(9)ΔLMEMbs
ij
(t) =

{ �

loss(Jbs(t))
, if i ∈ Jbs(t) and j ∈ Jbs(t)

0, else

(10)ΔLMEMnear
ij

(t) =

{
1−�

loss(Jnear(t))
, if i ∈ Jnear(t) and j ∈ Jnear(t)

0, else

Fig. 4   The workflow of PCPM construction

1 3

Automated Software Engineering (2022) 29:45	 Page 15 of 35  45

sorted out, then the patterns of API usage are mined by mining tools. Finally, the
PCPM of labels is extracted and constructed according to patterns.

5.2.1 � API usage pattern mining

In order to collect a huge amount of high-quality code snippets, we rank the Java
projects on Github by stars, obtain projects on it, clean and collect the appropriate
snippets. Considering the aim is that to synthesis a more generic application, we are
no longer mining like previous classification pattern mining methods [such as min-
ing by projects (Fowkes and Sutton 2016) and mining by application domain (Liu
et al. 2019)], but rather mining all of the common and possibly cross-domain API
usage patterns at once.

When got a large number of method-level code, we extract a sequence of API
calls for each method, where we only consider method calls and object initializa-
tion. The complete API information is extracted based on the AST, which contains
the fully qualified names from the top to the lowest layer packages, an example is
shown in Fig. 6. When the sequences of API calls for each method are extracted,
we mine the usage patterns of the API from those sequences. In this paper, we use
an advanced API usage mining tool named PAM (Fowkes and Sutton 2016) to
mine patterns. PAM is a near parameter-free probabilistic algorithm for mining the
most interesting API patterns from a list of API call sequences. PAM largely avoids
returning redundant and spurious sequences, unlike API mining approaches based
on frequent pattern mining. Figure 5 is a method-level code, the API sequence cor-
responding in it is extracted as shown in Fig. 6.

5.2.2 � Pattern conditional probability matrix construction

According to the excavated API usage patterns, we construct the PCPM of labels,
which contains API usage information at the label level. The first step is to extract

Fig. 5   A code snippet for API pattern mining

Fig. 6   The extracted API sequence corresponding in Fig. 5

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 16 of 35

the label from the API patterns. Here we qualify the label as the short name of the
API method, and the type of the calling object. Besides, we remove the duplicate
label. We then calculate the PCPM, which is a conditional probability matrix that
describes the frequency relationship between every two labels. The dimension of
PCPM is K × K , where K represents the label number in all the API usage patterns.
For the two labels i and j, we define the matrix element PCPMij as follows:

where T represents the number of patterns we mined, Patternt(i) represents whether
i appears in pattern Patternt . This formula represents the conditional probability
relationship between two labels, that is, the probability that label j occurs when label
i appears.

5.3 � Collective intelligence

In order to address the problem of artificially providing absolutely complete and
accurate labels for those NPS tools, we take CI of the extraordinary knowledge
from the Internet into additional consideration. The main idea is that given only a
natural language description of one programming task, we can search and merge
labels from web pages involving CI of multiple developers and then obtain an initial
weighted label set.

We used our API recommendation approach via searching on general search
engines (Google Search) proposed in our previous study (Liu et al. 2020), called
Args, to mine APIs and types from web pages. Args takes the natural language
description of the programming task as input and returns a list of APIs. The web
pages that Args retrieves include StackOverFlow, JavaDocs,2 ProgramCreek3 and
Codota,4 as they contain important programming information of Java. In this paper,
we record the searching result containing both APIs and types from top-10 returned
URLs. From the perspective of CI, we regarded each URL or web page as an indi-
vidual agent of CI, under the hypothesis that each web page independently explores
the solution to a given problem. After that, we further filter out irrelevant APIs and
types depending on the Java Package name that each programming task belongs
to. After that, all the labels that appeared in the 10 individual agents are weighted
heuristically:

where Nj is the frequency of occurrence of label j in the 10 individual agents and M
is the total number of agents (In case there are less than 10 web pages returned by

(11)PCPMij = P(j�i) =
∑

t Patternt(i) ∩ Patternt(j)∑
t Patternt(i)

, t ∈ [1, T]

(12)Wj =
Nj

M

2  https://​docs.​oracle.​com/​javase/​8/​docs/​api/.
3  https://​www.​progr​amcre​ek.​com.
4  https://​www.​codota.​com.

https://docs.oracle.com/javase/8/docs/api/
https://www.programcreek.com
https://www.codota.com

1 3

Automated Software Engineering (2022) 29:45	 Page 17 of 35  45

Args). Note that if one label appears more than one time on a web page, it will only
be counted once on this web page. A higher weight value of a label indicates that
most of the individual agents of CI tend to provide this label. At the end of this step,
the top-15 labels with the highest weight constitute the initial label set.

6 � Program synthesis based on unsupervised ACO

In this section, we will illustrate how to use the three label selection strategies men-
tioned in Sect. 5 (LMEM, PCPM, CI) to guide the label selection in the prediction
phase of the NPS model. We introduce our Unsupervised ACO (UACO) algorithm
on the prediction phase, which takes the weighted label set constructed by the CI
strategy mentioned in Sect. 5.3 as input. Then, we optimize the random proportional
rule of UACO by integrating three label selection strategies into it. Additionally,
inspired by the n-gram language model, we proposed a novel n random proportional
rule to further increase the accuracy of our UACO algorithm.

6.1 � Improved unsupervised ACO algorithm

In the prediction phase of the NPS model, it should be emphasized that no feedback
from the NPS model could be used to gradually guide the process of label selection
in ACO, namely, the target sketch Y is invisible and unknown for the given label set
X. To address this problem, we propose an improved Unsupervised ACO (UACO)
algorithm, which takes the label selection strategies mentioned in Sect. 5 as three
heuristic information in the random proportional rule: (1) LMEM that deposit effec-
tive movement between labels; (2) PCPM that mines frequent API usage patterns
among big code data; (3) CI that merges intelligence and code knowledge of multi-
ple developers. More specifically, “Unsupervised" in UACO have two meanings: (1)
it makes inferences together with NPS to generate the code, the parameters between
SACO and UACO are not shared, and SACO only pass the LMEM to the decoder of
NPS; (2) it does not depend on the loss function, objective function, or other feed-
back from the NPS, that is, no use of the fitness function in Eq. 7. The details of the
improvements are as follows:

(1)	 The initial pheromone concentration of each label j is modified to the weight of
the label Wj obtained in Sect. 5.3:

(2)	 In Sect. 5.1, the heuristic information term in the random proportional rule is
modified to Cosine Similarity. But in our UACO algorithm, we take the LMEM,
the PCPM, and the weight of the labels into consideration. A higher value of
LMEMij means that a lot of effective movements are deposited between label i
and label j. A higher value of PCPMij means label i and label j are commonly
used together in some frequency API usage patterns, and label j with a higher
weight value Wj represents that most of the developers tend to provide the label

(13)�j = Wj

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 18 of 35

j when given a specific programming task. In summary, combing both the con-
centration information and three heuristic information, the random proportional
rule is defined as:

 where CIj is equal to Wj , � , � , � is the heuristic factor of LMEM, PCPM and
CI respectively, their magnitudes modulate the influence level of each heuristic
rule on label selection.

(3)	 As for the update rule of pheromone concentration �j at each iteration, from an
unsupervised perspective, we define it as:

 where Aj(t) is the total times of label j is selected by all ants at iteration t, and
B(t) is the total number of movements of all ants. The higher the value Aj(t)

B(t)
 , the

larger the total number of times label j was selected by all ants, and the higher
the adding pheromone concentration to label j.

After the end of all iterations, we sort labels by the total accumulative phero-
mone concentration of each label and finally return top-k labels with the highest
pheromone concentration, where k is the number of labels to be selected for a
specific programming task. The workflow of UACO is shown in Algorithm 2. It
takes the initial weighted label set X, number of ants m, number of iterations t,
LMEM, PCPM, number of labels to be selected k as input, and then returns the
selected label set.

(14)Pk
ij
(t) =

�j(t)
�LMEMij

�PCPMij
�CIj

�

∑
s∉Nk

�s(t)
�LMEMis

�PCPMis
�CIs

�
, if j ∉ Nk

(15)�j = (1 − �)�j +
Aj(t)

B(t)

1 3

Automated Software Engineering (2022) 29:45	 Page 19 of 35  45

6.2 � N random proportional rule

In the field of natural language processing, the n-gram language model assumes that
the appearance of the ith word is only related to the previous n-1 words. This idea
can be applied to the label selection of the NPS model. In the current random pro-
portional rule, the probability that label j is selected is only dependent on the last
selected label i. However, when writing a line of code, we should consider both the
declared variables and the API call in the previous lines. This means that the cur-
rent random proportional rule does not consider the complete code context. In order
to solve this problem, we propose a n random proportional rule based on multiple
visited labels. This rule divides the total labels into two parts: a set of selected labels
(as shown on the left in Fig. 7) and a set of labels to be selected (as shown on the
right in Fig. 7). In our new rule, the label j to be selected is depend on the previous n
visited labels(label i-n+1 to label i). The probability that label j is to be selected by
ant k at iteration t is modified as follows:

where Pk
yj
(t) is the probability with which ant k, currently at feature node y, chooses

to go to feature node j, this is equal to Eq. 14. Figure 7 is the calculation diagram of
n random proportional rule when n is 2. For each unvisited label on the right, their
probability of being selected is determined by label i-1 and label i label in the
selected set of labels.

7 � Evaluation

In this section, we provide a comprehensive evaluation of our approach to address-
ing the following research questions:

RQ1: How does our approach perform compared to the baseline model? How
much improvement does each of the two strategies from the general knowledge
(LMEM and PCPM) of big data bring to the original method? Can two strategies
capture useful label information and knowledge internally?

(16)Pk
t
(j|i, i − 1,… , i − n + 1) =

i−n+1∏

y=i

Pk
yj
(t)

Fig. 7   The workflow of n random proportional rule when n is 2

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 20 of 35

RQ2: How effective is the n random proportional rule in unsupervised ACO in
boosting the model? How does the value of n affect performance, and what is the
best value?

RQ3: How many contributions do the merging of task-specific knowledge derived
from the developer (CI) to program synthesis in real programming tasks? How many
differences between independent development, simple merging development, and
selective merging for program synthesis?

7.1 � Experiment setup

Data collection We constructed a new dataset from approximately 3000 high-star
Java projects crawled from Github. By analyzing and cleaning the data, 466,129
method-level programs use java.io, java.lang, java.util libraries were extracted,
which are three of the most common Java standard packages in Bayou model. After
that, we pre-processed all method-level programs by parsing the code from Java to
sketch Y, where each method-level code is considered as a programming task. To
construct the initial label set X for each programming task, we first extracted labels
from sketches, including API calls and types, and then added extra noise items ran-
domly selected from all the labels appearing in the sketches yet. The noise items
were used to better train our algorithms and to better evaluate our proposed strate-
gies. The reason for this treatment is, on the one hand, to make the method generic
and to build on top of the model training for program synthesis, so that only noise
is added to the input. On the other hand, to verify the effectiveness of our UACO
framework to select the right labels for program synthesis in the presence of interfer-
ence information. Finally, the ratio of the correct items to noise items is 7:3 in each
programming task. As a result, over 88,000 programs randomly selected from the
top-1000 Java projects and 10,000 programs randomly selected from the top-1000 to
top-3000 Java projects, constructed the training dataset and test dataset, respectively.
The statistics in the test set are given in Fig. 8a, each column from left to right repre-
sents the information of the three labels in X, the last column indicates the sequence
size of sketch, where there is no statistic of the control structure, but the sequence
can also reflect the size of each task. As for the data preparation for API usage pat-
tern mining, we selected the training dataset to mine API usage patterns.

Preparation for PCPM and LMEM In order to obtain the PCPM mentioned in
Sect. 5.2, We extracted API sequences from the training set for API pattern mining
and used the pattern mining tool PAM to mine for 1000 iterations.In order to obtain
the PCPM mentioned in Sect. 5.2, we used the pattern mining tool PAM to mining
for 1000 iterations. Secondly, to obtain the LMEM mentioned in Sect. 5.1, we used
our SACO algorithm (Sect. 5.1) to extract 70% labels from the initial label set for
each programming task in the training dataset. In this process, the feedback from
BED model gradually guides the optimization of the selected label set. As for the
hyper-parameter of SACO, the value of the initial pheromone concentration �(0) ,
the pheromone evaporation rate � , the pheromone factor � , the heuristic factor � , the
number of ants m, the times of iterations t, the ratio of increased pheromone concen-
tration Q, the number of adjacent search paths d and the ratio of nearest and optimal

1 3

Automated Software Engineering (2022) 29:45	 Page 21 of 35  45

paths � were set to 0.2, 0.2, 1, 1, 30, 20, 0.1, 6, 0.7, respectively. These hyper-param-
eters were set partly by referring to others of the related collect intelligence research
and partly selected by our experience.

Training preparation Note that the ultimate goal of label selection on the above
training dataset with noise items is to deposit the effective movement of ants
between similar labels, so as to construct our LMEM. Nevertheless, in the prediction
phase of BED model, our UACO algorithm is independent of the model, that is, it
does not rely on any feedback from the model. Therefore, toward providing a better
model for the UACO in the prediction phase, we train the BED model on the above
training dataset without noise items. The absence of noise under the training is to
simulate the training situation of the original model and to ensure the independence
of our approach. Besides, we have added attention mechanism to the origin BED
models to improve the synthesis accuracy in our previous work (Zhang et al. 2020).
The setting of other hyper-parameters in the BED models is the same as Bayou.

Metrics To measure the program equivalence between the predicted results and
the expected program, we use the same metrics proposed in Bayou. They define the
following metrics on the top-10 programs predicted by the model: (1) M1, a binary
metric, measures whether the expected program appeared in a syntactically equiva-
lent form in the results; (2) M2 and M3, measure the minimum Jaccard distance
between the sequences of API calls and the sets of API calls in the expected and
predicted programs, respectively; (3) M4 and M5, measure the minimum absolute
difference between the number of statements and the number of control structures
in the expected and sampled programs, respectively. To summarize, the higher
the value of M1, and the lower the values of M2 to M5, the better the generated
programs.

Fig. 8   Statistics on test sets which collected from the big code

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 22 of 35

7.2 � Evaluation of label selection strategies of PCPM and LMEM (RQ1)

External analysis Our first experiment focuses more on the label selection strategies
of both LMEM and PCPM in Sect. 5, because they are heuristic strategies prompted
by large code data. It is conducted on 10,000 test data mentioned in Sect. 7.1, with
noise labels in each programming task. Our UACO algorithm is used to extract 70%
of labels from the initial label set of every task. In this experiment, we have not con-
sidered the CI strategy from the Internet, in that it needs a natural language descrip-
tion of each task to promote this crawler process, but these descriptions are missing
in this 10,000 test data. Nevertheless, this allows us to better evaluate our LMEM
and PCPM individually. We restrain the availability of LMEM and PCPM by con-
trolling � and � values in Eq. 14 (random proportional rule). Besides that, the initial
pheromone concentration �(0) of each label was set to a constant 0.2, the heuristic
factor � was set to 0, and other parameter settings were consistent with SACO ( � , � ,
m, t).

We select three baselines and three comparison models to evaluate our strategies.
Three baseline models are as follows: (1) randomly selecting the same amount of
labels from the initial label set (denoted by Random); (2) selecting all the labels
(denoted by All); (3) selecting the labels using our framework but without LMEM
and PCPM (denoted by Uaco-Zero). The Uaco-Zero model shows the base result
in our framework, the Random model simulates the result of random selection, and
the All model represents the case that generating programs use not label extrac-
tion method. Three comparison models are as follows: (1) Uaco-PCPM, which only
contains PCPM in the framework; (2) Uaco-LMEM, which only contains LMEM
in the framework; (3) Uaco-Mix, which contains both PCPM and LMEM in the
framework.

Table 2 shows the synthesis accuracy of different models, we bolded the best
results of each metric. The comparison between Random and All in the baseline
models reflects the conclusion in Bayou, that is, the performance improves with
the increase of the number of labels, and the comparison between Uaco-Zero and
Random proves that our swarm intelligence framework without the assistance of any
label selection strategies is also better than random selection. The last four lines of
models exhibit a similar trend, our Uaco-PCPM and Uaco-LMEM both improved
over Random, which proved that PCPM and LMEM strategies are able to generate

Table 2   Synthesis results of
different models in 10,000
test data, to evaluate the
effectiveness of LMEM and
PCPM

Bold values indicate the optimal values in the same column

Extraction method M1 M2 M3 M4 M5 � �

Random 0.19 0.81 0.72 0.19 0.06 – –
All 0.29 0.70 0.59 0.14 0.05 – –
Uaco-Zero 0.21 0.79 0.70 0.19 0.06 0 0
Uaco-PCPM 0.40 0.59 0.46 0.13 0.05 0.25 0
Uaco-LMEM 0.55 0.43 0.29 0.12 0.04 0 1
Uaco-Mix 0.56 0.43 0.28 0.11 0.04 0.25 1

1 3

Automated Software Engineering (2022) 29:45	 Page 23 of 35  45

better programs and extract more correct labels from the label set with noise items,
respectively. Furthermore, our mixed model Uaco-Mix improves by 37% in accu-
racy compared to the Random model. It can be seen from the differentiation that
Uaco-Mix is slightly superior to Uaco-LMEM. The result of our analysis is that
LMEM vocabulary is much larger than PCPM, so the similarity of those label pairs
that do not exist in PCPM is amplified by LMEM. Besides that, not every program
will utilize API usage patterns. The two reason leads to a slight improvement in the
performance of the mixing effect in the big data test.

Internal analysis For the PCPM, we mined API usage patterns on more than
88,000 programs with 1000 iterations. A total of 5639 patterns were mined. Table 3
shows some of the mined API patterns, and we present these API patterns by five
domains. According to the mined API patterns, we constructed the PCPM. The
total number of labels in the matrix is 1321, where labels consist of API calls and
types. The matrix has 6857 non-empty terms. Figure 9a shows the top-10 labels that
are most similar to the type Iterator in PCPM and the corresponding conditional
probabilities. On the other hand, we obtained the colony moving LMEM after the
combined training of BED with SACO described in Sect. 7.1. The number of labels
contained in LMEM is 1422, which has 454,386 non-zero items. Figure 9b shows
the top-20 labels that are most similar to the type Iterator in LMEM. The value
on Fig. 9b represents the accumulative moving effective times that the ant moves
from type Iterator to the next label, which reflects the effective frequency between
two labels. We normalize it and then put it into the n random proportional rule in
Eq. 14. As shown in Fig. 9, the LMEM contains some labels that are not in the API
patterns, but the forefront labels in the PCPM keep the same trend in the LMEM.

We found that the range in LMEM is from 1e−9 to 1 and the range in PCPM is
from 1e−3 to 1, therefore, we set � to 0.25 and � to 1 is that we want to control two
strategies with the matching influence, that is, the maximum and minimum range
to be similar. In addition, the statistics show that the number of non-zero elements
in LMEM is about 66 times higher than in PCPM. Because not every program uses
the API usage patterns, which explains why PCPM has only a slight boost effect
in 10,000 test data. In Sect. 7.4, some of our 25 real programming tasks contain
API patterns, which experiments demonstrate the effectiveness of PCPM for label
selection.

Answer to RQ1 The results show that our model improves the accuracy by 27%
compared to the baseline model that provides all label information. The PCPM and
LMEM improve by 11% and 26%, respectively, and both matrixes hold some label
association knowledge from the visualization of the example.

7.3 � Evaluation of N random proportional rule (RQ2)

In order to evaluate the influence of different values of n in n random proportional
rule mentioned in Sect. 6.2 on label selection, we extracted 3000 data from the
10,000 test dataset for experiments. Among the 3000 test data, 1500 test data have
a sequence length greater than 2, in that a larger set of labels can better evaluate
the influence of n. All the parameter of UACO is the same as model Uaco-Mix in

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 24 of 35

Table 3   Some of the API usage
patterns are mined by PAM

Domian API usage pattern ID

I/O java.util.Scanner.Scanner 1
java.util.Scanner.nextInt
java.io.PrintStream.println
java.io.FileInputStream.FileInputStream 2
java.io.InputStreamReader.InputStreamReader
java.io.BufferedReader.BufferedReader
java.io.BufferedReader.readLine
java.io.BufferedReader.close
java.io.FileOutputStream.FileOutputStream 3
java.io.FileOutputStream.write
java.io.FileOutputStream.close
java.io.File.exists 4
java.io.File.mkdirs

Regex java.util.regex.Pattern.compile 5
java.util.regex.Pattern.matcher
java.util.regex.Matcher.find
java.util.regex.Matcher.group
java.util.regex.Pattern.matcher 6
java.util.regex.Matcher.replaceAll

Collection java.util.Map.containsKey 7
java.util.Map.get
java.util.Map.put
java.lang.Iterable.iterator 8
java.util.Iterator.hasNext
java.util.Iterator.next
java.util.Collection.stream 9
java.util.stream.Stream.map
java.util.stream.Collectors.toList
java.util.stream.Stream.collect

String java.lang.StringBuilder.StringBuilder 10
java.lang.StringBuilder.append
java.lang.StringBuilder.toString
java.util.StringTokenizer.StringTokenizer 11
java.util.StringTokenizer.hasMoreTokens
java.util.StringTokenizer.nextToken
java.lang.String.lastIndexOf 12
java.lang.String.length
java.lang.String.substring

Date java.util.Date.Date 13
java.util.Date.getTime
java.util.Calendar.getInstance 14
java.util.Calendar.setTime
java.util.Calendar.get

1 3

Automated Software Engineering (2022) 29:45	 Page 25 of 35  45

Sect. 7.2. In this experiment, we completed the label selection process by setting
n to 1 to 5. When n ranges from 1 to 5, the number of correct generated programs
are shown in Fig. 10a. The reason why we used the number of correct generated
programs instead of the metrics mentioned above to evaluate the influence of n
on the synthesis result is that the number of correct generated programs can more
clearly reflect the influence of n on the synthesis result. It can be seen from Fig. 10a
that when n ranges from 1 to 5, the number of correct generated programs firstly
increases and then decreases. When n takes 3, the number of correct generated

Table 3   (continued) Domian API usage pattern ID

Math java.lang.Double.isNaN 15

java.lang.Double.isInfinite

java.lang.Math.max 16

java.util.Arrays.copyOf

Fig. 9   A comparison example of type Iterator in PCPM and LMEM

Fig. 10   Influence of different n values on model accuracy

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 26 of 35

programs reaches the highest value. This experiment shows that when the value of n
in the n random proportional rule is 3, it will be most beneficial to our UACO algo-
rithm to perform label selection.

The above experiments also imply some relevance between the value of n and the
length of the sequence in the sketch. So as to study their specific relationship, we
analyze the relationship between n and API sequence of length L, the experimental
results are shown in Fig. 10b. We use the 10,000 test data collected in the Sect. 7.1
as the test set with the shortest length L of 1, and then filter the test sets with the
shortest lengths of 2 and 3 respectively on this basis, and the statistics of these three
data is shown in Fig 8. We perform three experiments on each data set separately
and calculate the accuracy means. Because of the incoherence size on each test set,
for comparison, we also normalize the accuracy at different models to facilitate the
observation of the relationship between n and L. Finally, the average fluctuations
over the three test sets were calculated as shown by the red line in Fig. 10b. The
results appear that as L increases from 1 to 3, the optimal value of n rises from 1
to 4, indicating that the relationship between n and L is indeed a positive growth.
Furthermore, The choice of n from 2 to 5 is better than 1 (without n random pro-
portional rule), nevertheless, we finally choose n as 3 to control the complexity of
computation and over-length dependence.

Answer to RQ2 Compared to the baseline, the n random proportional rule has
some boosting effect, and n choices 2 to 5 all improve the accuracy, while there
needs to be a balance between the boosting effect of n and the complexity of compu-
tation, and the result is 3.

7.4 � Overall evaluation of UACO framework (RQ3)

In the above-mentioned experiments on big test data in Sect. 7.2 and 7.3, we lacked
the evaluation of CI strategy mentioned in Sect. 5.3. Thus, in this experiment, we
will first evaluate the efficiency of CI on 25 real programming tasks. And then, we
performed an overall evaluation of our UACO framework mentioned in Sect. 6 by
combing LMEM, PCPM, and CI strategies.

Evaluation of collective intelligence In this experiment, we simulated the scene of
synthesizing programs on an isolated software development environment and on a
collaborative software development environment, to evaluate how much support CI
can provide for program synthesis. To promote this evaluation, we collected 25 real
programming tasks from open-source repositories such as StackOverflow and Pro-
gramCreek, involving six categories (manipulation of I/O, Math, Regex, Collection,
and Date). Each task uses java.io, java.util, and java.lang, and has a corresponding
natural language description and the number of labels to be selected. The detailed
natural language description of each task is shown in Table 4. The statistics for the
25 tasks are shown in Fig. 11, which contains the number of types and API con-
tained in each task, the sequence length, the selected value k of labels. The number
of labels to be selected is pre-specified by professionals through the difficulty of the
task, which is measured from the length of the task solution, the complexity of the

1 3

Automated Software Engineering (2022) 29:45	 Page 27 of 35  45

task across domains, and so on. The average number of labels to be selected for all
tasks is 4.36, which accounts for about 77% of labels in each gold sketch and about
30% of all user-supplied labels.

In order to simulate these two environments, we defined each web page that
we crawled labels from as an individual agent from the perspective of CI, under
the hypothesis that each web page independently explores the solution to a given
problem. We simulated the two environments of isolation and collaboration by
controlling the number of individual agents of CI. In a collaborative environment,
we considered 10 individual agents for each task at the same time and had knowl-
edge fusion among them. While in an isolated environment, we only considered
one individual agent at a time for each task and had no knowledge fusion. More
specifically, to simulate the collaborative environment, we first constructed the
initial weighted label set by merging the cooperative knowledge of 10 web pages

Table 4   Summary of the 25 real programming tasks

ID Method name Natural language description

1 insertChar Insert the character to the specified position in the string
2 isBeginWith Determines whether the string ends with a character and returns a sub-

string of the string
3 readFile Read a string from the specified file
4 listFiles Determine if the input is a folder and return all the subfiles and subfolders

of the folder
5 getSuffixName Get the suffix name of the file string
6 judgeDir Determine if a directory exists, or create a new directory if it doesn’t
7 judgeFileExists If the file does not exist, create a new file
8 getTimeOfTimeZone Get the current time of a given time zone
9 addTime Get the time after 7 days
10 appendAllELemTostr Add all the string from the List collection to the a String variable
11 addNewStr Add a new String to a List set
12 removeElem Delete an element if it exists in the collection
13 visitAllElem Iterate over all the elements in list and print it
14 visitAllElemMap Get all the keys and values in map
15 breakingString How to break a string into tokens
16 getNextint How to get the next integer from the scanner
17 toBinaryString Read an integer from the console and convert it to binary
18 getNextRandomInt Use a random number seed to generate the next random number
19 getCurrentTime How to get the current time
20 replaceStringWithRegex Replace the string with regex expression
21 getABSValue Generate a random number and return its absolute value
22 convertHexString Convert hex string to float in Java
23 matchString Compile the expression and find the matched string
24 reverseString Reverse a string and append the result to it
25 readFile2Str Return the content of the file

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 28 of 35

as mentioned in Sect. 5.3, and then UACO was applied to obtain the final label
set, this method is denoted by CollectUaco. To simulate the isolated environ-
ment, for each task, we enabled each web page (individual agent of CI) to con-
struct the initial label set individually based on its own knowledge, rather than
merged labels from 10 web pages, afterwards, each individual agent performed
UACO separately. Note that the weight value W of each label in UACO, in this
case, represented the word frequency on a single web page. Finally, the metrics of
each task is the average value of the 10 synthesis results based on these 10 indi-
vidual agents. This method is denoted by IsolatedUaco.

The same parameter list of UACO is used in the above two experiments, and
the total number of ants and iterations were both set to 10, � , � , � , � , � , were
set to 0.2, 1, 0.25, 1, 1, respectively. The synthesis results are shown in Table 5.
Compared with the IsolatedUaco, the CollectUaco significantly improved
the accuracy of generating programs (M1) by 38%, which indicates that coop-
eration and knowledge fusion among isolated developers is essential for program
synthesis.

Fig. 11   Statistics on 25 programming tasks

Table 5   Synthesis accuracy
of different models in 25
programming tasks, to evaluate
the effectiveness of CI and
heuristic information

Bold values indicate the optimal values in the same column

Extraction Method M1 M2 M3 M4 M5 � � �

CollectUaco 0.56 0.44 0.36 0 0.02 0.25 1 1
Random 0.03 0.96 0.72 0.05 0.11 – – –
All 0.04 0.96 0.65 0.21 0.09 – – –
IsolatedUaco 0.18 0.81 0.64 0.2 0.16 0.25 1 1
UACO-RemCI 0.44 0.56 0.46 0 0.02 0.25 1 0
UACO-RemLMEM 0.40 0.6 0.45 0 0 0 1 1
UACO-RemPCPM 0.44 0.56 0.43 0.01 0.03 0.25 0 1

1 3

Automated Software Engineering (2022) 29:45	 Page 29 of 35  45

Overall evaluation of our UACO framework In fact, the experimental result of
CollectUaco is the overall evaluation of our entire UACO framework. However,
in this section, we will pay more attention to the impact of the lack of the three
heuristic information(as mentioned in the random proportional rule in Eq. 14)
on label selection and program synthesis. Specially, we separately evaluated the
influence of the three heuristic information. All other details of UACO are con-
sistent with CollectUaco, except for the heuristic information to be considered in
the random proportional rule (Eq. 14). We evaluated the influence of CI (denoted
by Uaco-RemCI), LMEM (denoted by Uaco-RemLMEM), and PCPM (denoted
by Uaco-RemPCPM) by setting the heuristic factor � , � , � to 0, respectively. The
synthesis result is shown in the Table 5.

As can be seen from Table 5, the inexistence of LMEM (Uaco-RemLMEM)
and CI (Uaco-RemCI) both reduce the accuracy of the synthesis results (M1) by
16% and 12% comparing with CollectUaco, respectively. To be more specific of
our UACO algorithm and the influence of the LMEM and CI, we show the labels
merging process of the motivation example based on strategy UACO-RemPCPM
(which has a combined effect of both CI and LMEM). We use the 10th program-
ming task (ID = 10) to illustrate the influence of LMEM on label selection, where
the task can not be solved when the model is without LMEM. The initail weighted
label set merged from 5 users in Sect. 3.1 are: ArrayList (0.6), Iterator (0.6), next
(0.6), append (0.4), join (0.4), hasNext (0.4), StringBuilder (0.4), String (0.4),
size (0.2), get (0.2), toString (0.2), iterator (0.2), add (0.2), asList (0.2), forEach
(0.2). After performing UACO-RemPCPM, we obtained the top-7 labels: Iterator,
String, next, ArrayList, hasNext, iterator, StringBuilder, which could synthesize
the program(shown in Fig. 12) satifying our demand. This can be explained by
Fig. 9b, which shows the top-20 most similar labels of type Iterator according
to the accumulative moving efficiency in LMEM. Although the API call iterator
has the lowest weight value (0.2) at the perspective of CI, it was finally selected
by UACO-RemPCPM because of its high similarity with type Iterator (which has

Fig. 12   Generated program from Uaco-RemPCPM model

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 30 of 35

the highest weight value (0.6)). This further reflects the balance of two heuristic
information (LMEM and CI) in Eq. 14.

Meanwhile, compared with CollectUaco, the lack of PCPM (UACO-RemP-
CPM) also reduced the accuracy of synthesis results by 12%. We use the 6th pro-
gramming task (ID = 6) to illustrate the influence of PCPM on label selection,
where the model can solve this task when it contains PCPM. The purpose of the
sixth programming task is to determine whether a directory exists, and create a
new directory if it does not exist. Through label mining from web pages, the ini-
tial weighted label set we obtained are: File (0.5), get (0.3), exists (0.3), mkdir
(0.2), mkdirs (0.2), getAbsoluteFile (0.1), write (0.1), close (0.1), getAbsolute-
Path (0.1), isFile (0.1), isDirectory (0.1), FileWriter (0.1), BufferedWriter (0.1),
the weight value is marked in parentheses. By executing UACO-RemPCPM, the
accumulative pheromone concentration of each label is shown in the left half of
Table 6, where the labels in the table are arranged in descending order of the
accumulative pheromone concentration. And we got the top-3 labels with the
highest accumulative pheromone concentration: File, exists, get. The best-gener-
ated program based on these 3 labels is as shown in Fig. 13 on the left, which
cannot satisfy our demand to create a new directory. But when we use Collec-
tUaco to perform label selection, the top-3 labels we obtained are: File, exists,
mkdirs, as shown in the right half of Table 6, which can generate the correct pro-
gram shown in Fig. 13 on the right. Compared with UACO-RemPCPM, the con-
centration of get in the CollectUaco method dropped from 0.245 to 0.032, and
then the concentration of mkdirs rose from 0.173 to 0.377, and the concentration
of mkdirs rose to third place. The reason for this phenomenon is that our PCPM
has mined frequent pattern between the API exists and API mkdirs, which can be
seen in Table 3 at Pattern 4. And this pattern we mined increases the probability

Table 6   A comparison example
between the CollectUaco
and UACO-RemPCPM
model, which reflect the final
accumulative pheromone
concentration of labels about the
task 6 in Table 4

Bold values indicate the concentration of mkdir in two models

UACO-RemPCPM CollectUaco

Label name Concentration Label name Concentration

File 2.134 File 1.999
exists 2.051 exists 1.684
get 0.245 mkdirs 0.377
mkdirs 0.173 close 0.367
mkdir 0.021 write 0.164
getAbsoluteFile 0.011 get 0.032
write 0.011 mkdir 0.021
close 0.011 getAbsoluteFile 0.011
getAbsolutePath 0.011 getAbsolutePath 0.011
isFile 0.011 isFile 0.011
isDirectory 0.011 isDirectory 0.011
FileWriter 0.011 FileWriter 0.011
BufferedWriter 0.011 BufferedWriter 0.011

1 3

Automated Software Engineering (2022) 29:45	 Page 31 of 35  45

of mkdirs being selected when exists is selected by ants. In addition, by using the
strategy CollectUaco instead of UACO-RemPCPM, API usage patterns 2, 12,
and 11 we mined from big data, as shown in Table 3, played similar roles in the
programming task 3, 5, and 15, respectively. Namely, our API usage pattern min-
ing and PCPM help increase the correct rate of label selection of those program-
ming synthesis tasks involving API usage patterns.

In summary, the results of this experiment show that the three heuristic infor-
mation terms we proposed in this paper are both essential for the application of
the ACO algorithm to program synthesis.

Answer to RQ3: The experimental results show that the task-specific knowl-
edge from developers (CI) improves accuracy by 12%, while it also illustrates that
selective merging of developer knowledge has a significant improvement over
independent development and simple merging development.

8 � Threats to validity

Generality of approach Due to the current state of research, we can only perform
the evaluation of MerIt on the Bayou. However, this does not affect the general-
ity of our approach, because the ACO strategy is to select the optimal subset of a
feature set. Meanwhile, in the field of neural program synthesis, when the intent
of the user is similar to token-level or vocab-level representation, each token is
discrete, it is possible to extend and apply the model on the framework of our
proposed method.

Degree of coverage A threat to the external validity of the results is the big
data we collected from GitHub. We selected the high-star projects and filtered
them by strategies, which did not cover all labels eventually. However, the current
NPS approach cannot solve the problem outside of the vocabulary, even the large

Fig. 13   The best synthesis results between the CollectUaco and UACO-RemPCPM model about task 6

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 32 of 35

pre-trained models are shielded from this problem by organizing a huge training
set. In addition, the 25 programming tasks we chose were collected from multiple
sources and manually filtered, which may introduce some subjectivity.

9 � Conclusion

In this paper, we innovatively applied both the CI merged from multiple develop-
ers and a bio-inspired algorithm of SI to NPS, to address the problem of incom-
pleteness and inaccurate user intents in NPS. As a result, an automatic task-spe-
cific user intent merging technique based on natural language description for NPS
was proposed. We implement our approach on Bayou and propose an improved
UACO algorithm to improve the accuracy of program synthesis from small infor-
mation. Meanwhile, we propose three label selection strategies to optimize the
process of label selection of our UACO algorithm. Our experiments show that our
method is able to provide more adequate and efficient input for NPS and mean-
while, either way of these three label selection strategies can increase the syn-
thesis accuracy. Besides, the extra evaluation of CI, which was conducted on 25
real programming tasks, shows that selectively knowledge merging among mul-
tiple developers in our approach could be a significant way of promoting auto-
mated software engineering at a macro level. More generally, our proposed user
intent merging framework provides non-professionals a more convenient way to
use these NPS methods by just taking natural language as input. Lastly, We also
hold the opinion that our selective knowledge merging framework based on CI
and SI could be a new way of feature engineering in the field of natural language
processing.

We have demonstrated that our framework can help to improve the accuracy
of label selection for program synthesis from small information. However, there
are still more potentialities that can be dug. Firstly, our UACO algorithm returns
a sorted set based on the pheromone concentrations of labels and is required to
manually provide the number of labels to be selected (denoted by k) to determine
the final subset. Nevertheless, this difficulty can be achieved by introducing addi-
tional test cases for the programming task, specifically, synthesis iteratively by
increasing the value k until all the test cases are passed, this can be addressed in
a manner similar to the forward search algorithm in feature selection. Secondly,
our current considered labels only include API calls and data types. In fact, there
are many other ways of expressing the user intent of a specific programming task,
such as input–output examples, keywords in natural language descriptions, and so
on. Thus, further work can be done to improve our algorithm to adapt to program
synthesis from different kinds of user intents. Moreover, the API usage pattern
mining tools we currently used are aimed at API sequences, and information of
the input parameters types and return types that correspond to the related API is
removed from the API sequences. However, this useful information could also be
utilized to support pattern mining that contains both API calls and types, which
can better assist our algorithm in label selection. All these aspects will be consid-
ered in our future work.

1 3

Automated Software Engineering (2022) 29:45	 Page 33 of 35  45

Acknowledgements  This work was supported by National Natural Science Foundation of China (Nos.
61690203, 62032019).

References

Abolafia, D.A., Norouzi, M., Le, Q.V.: Neural program synthesis with priority queue training. CoRR abs
arXiv:​1801.​03526 (2018)

Abualigah, L.M., Khader, A.T.: Unsupervised text feature selection technique based on hybrid particle
swarm optimization algorithm with genetic operators for the text clustering. J. Supercomput. 73(11),
4773–4795 (2017)

Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code: from usage
scenarios to specifications. In: Proceedings of the 6th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2007, Dubrovnik, Croatia, 3–7 Sept 2007, pp. 25–34 (2007). https://​doi.​org/​10.​1145/​
12876​24.​12876​30

Al-Tashi, Q., Kadir, S.J.A., Rais, H.M., Mirjalili, S., Alhussian, H.: Binary optimization using hybrid
grey wolf optimization for feature selection. IEEE Access 7, 39496–39508 (2019)

Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with graphs. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30
April–3 May 2018, Conference Track Proceedings, OpenReview.net (2018)

Bai, X., Gao, X., Xue, B.: Particle swarm optimization based two-stage feature selection in text mining.
In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder: Learning to write pro-
grams. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
24–26 April 2017, Conference Track Proceedings, OpenReview.net (2017)

Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence—From Natural to Artificial Systems. Stud-
ies in the Sciences of Complexity, Oxford University Press, Oxford (1999)

Brezočnik, L., Fister, I., Podgorelec, V.: Swarm intelligence algorithms for feature selection: a review.
Appl. Sci. 8(9), 1521 (2018)

Brockschmidt, M., Allamanis, M., Gaunt, A.L., Polozov, O.: Generative code modeling with graphs. In:
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
6–9 May 2019, OpenReview.net (2019)

Bunel, R., Hausknecht, M.J., Devlin, J., Singh, R., Kohli, P.: Leveraging grammar and reinforcement
learning for neural program synthesis. In: 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings,
OpenReview.net (2018)

Buse, R.P.L., Weimer, W.: Synthesizing API usage examples. In: 34th International Conference on Soft-
ware Engineering, ICSE 2012, 2–9 June 2012, Zurich, Switzerland, pp. 782–792 (2012). https://​doi.​
org/​10.​1109/​ICSE.​2012.​62271​40

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A., Kohli, P.: Robustfill: neural program
learning under noisy I/O. In: Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6–11 Aug 2017, PMLR, Proceedings of Machine Learn-
ing Research, vol. 70, pp. 990–998 (2017)

D’Souza, A.R., Yang, D., Lopes, C.V.: Collective intelligence for smarter API recommendations in
python. In: 16th IEEE International Working Conference on Source Code Analysis and Manipula-
tion, SCAM 2016, Raleigh, NC, USA, 2–3 Oct 2016, pp. 51–60. IEEE Computer Society (2016).
https://​doi.​org/​10.​1109/​SCAM.​2016.​22

Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based synthesis for complex apis. In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, 18–20 Jan 2017, pp. 599–612. ACM (2017)

Fong, S., Deb, S., Yang, X.S.: A heuristic optimization method inspired by wolf preying behavior. Neural
Comput. Appl. 26(7), 1725–1738 (2015)

Fowkes, J.M., Sutton, C.: Parameter-free probabilistic API mining across github. In: Zimmermann, T.,
Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIGSOFT International Symposium

http://arxiv.org/abs/1801.03526
https://doi.org/10.1145/1287624.1287630
https://doi.org/10.1145/1287624.1287630
https://doi.org/10.1109/ICSE.2012.6227140
https://doi.org/10.1109/ICSE.2012.6227140
https://doi.org/10.1109/SCAM.2016.22

	 Automated Software Engineering (2022) 29:45

1 3

45  Page 34 of 35

on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, 13–18 Nov 2016, pp. 254–
265. ACM (2016). https://​doi.​org/​10.​1145/​29502​90.​29503​19

Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using examples. Commun. ACM
55(8), 97–105 (2012). https://​doi.​org/​10.​1145/​22402​36.​22402​60

Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Found. Trends® Program. Lang. 4(1–2),
1–119 (2017)

Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data
Min. Knowl Discov. 15(1), 55–86 (2007). https://​doi.​org/​10.​1007/​s10618-​006-​0059-1

Jain, D.K., Kumar, A., Sangwan, S.R., Nguyen, G.N., Tiwari, P.: A particle swarm optimized learning
model of fault classification in web-apps. IEEE Access 7, 18480–18489 (2019)

Jain, P., Dixit, V.S.: Recommendations with context aware framework using particle swarm optimization
and unsupervised learning. J. Intell. Fuzzy Syst. 36(5), 4479–4490 (2019)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Con-
ference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

Kyaw, K.S., Limsiroratana, S.: Traditional and swarm intelligent based text feature selection for docu-
ment classification. In: 2019 19th International Symposium on Communications and Information
Technologies (ISCIT), pp. 226–231. IEEE (2019)

Lakhani, K.R., Garvin, D.A., Lonstein, E.: Topcoder (a): Developing software through crowdsourcing.
Harvard Business School General Management Unit Case (610-032) (2010)

Lin, X.V., Wang, C., Zettlemoyer, L., Ernst, M.D.: Nl2bash: a corpus and semantic parser for natural
language interface to the linux operating system. In: Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, 7–12 May 2018.
European Language Resources Association (ELRA) (2018)

Ling, W., Blunsom, P., Grefenstette, E., Hermann, K.M., Kociský, T., Wang, F., Senior, A.W.: Latent pre-
dictor networks for code generation. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, 7–12 Aug 2016, Berlin, Germany, vol. 1: Long Papers.
The Association for Computer Linguistics (2016) https://​doi.​org/​10.​18653/​v1/​p16-​1057

Liu, B., Dong, W., Zhang, Y.: Accelerating API-based program synthesis via API usage pattern mining.
IEEE Access 7, 159162–159176 (2019). https://​doi.​org/​10.​1109/​ACCESS.​2019.​29502​32

Liu, J., Liu, B., Dong, W., Zhang, Y., Wang, D.: How much support can API recommendation methods
provide for component-based synthesis? In: 44th IEEE Annual Computers, Software, and Applica-
tions Conference, COMPSAC 2020, Madrid, Spain, 13–17 July 2020, pp. 872–881 (2020). https://​
doi.​org/​10.​1109/​COMPS​AC486​88.​2020.0-​155

Moslehi, F., Haeri, A.: A novel hybrid wrapper-filter approach based on genetic algorithm, particle swarm
optimization for feature subset selection. J. Ambient. Intell. Humaniz. Comput. 11(3), 1105–1127
(2020)

Murali, V., Qi, L., Chaudhuri, S., Jermaine, C.: Neural sketch learning for conditional program genera-
tion. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, 30 April–3 May 2018, Conference Track Proceedings, OpenReview.net (2018)

Peng, H., Ying, C., Tan, S., Hu, B., Sun, Z.: An improved feature selection algorithm based on ant colony
optimization. IEEE Access 6, 69203–69209 (2018)

Peška, L., Tashu, T.M., Horváth, T.: Swarm intelligence techniques in recommender systems—a review
of recent research. Swarm Evol. Comput. 48, 201–219 (2019)

Petrillo, F., Guéhéneuc, Y., Pimenta, M., Freitas, C.M.D.S., Khomh, F.: Swarm debugging: the collective
intelligence on interactive debugging. J. Syst. Softw. 153, 152–174 (2019). https://​doi.​org/​10.​1016/j.​
jss.​2019.​04.​028

Rabinovich, M., Stern, M., Klein, D.: Abstract syntax networks for code generation and semantic pars-
ing. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, 30 July–4 Aug, vol. 1: Long Papers, pp. 1139–1149. Association
for Computational Linguistics (2017). https://​doi.​org/​10.​18653/​v1/​P17-​1105

Shen, B., Zhang, W., Zhao, H., Liang, G., Jin, Z., Wang, Q.: Intellimerge: a refactoring-aware software
merging technique. Proc. ACM Program. Lang. 3(OOPSLA), 170:1-170:28 (2019). https://​doi.​org/​
10.​1145/​33605​96

Shi, K., Steinhardt, J., Liang, P.: Frangel: component-based synthesis with control structures. Proc. ACM
Program. Lang. 3(POPL), 73:1-73:29 (2019). https://​doi.​org/​10.​1145/​32903​86

Sun, Z., Zhu, Q., Mou, L., Xiong, Y., Li, G., Zhang, L.: A grammar-based structural CNN decoder for
code generation. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth

https://doi.org/10.1145/2950290.2950319
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.18653/v1/p16-1057
https://doi.org/10.1109/ACCESS.2019.2950232
https://doi.org/10.1109/COMPSAC48688.2020.0-155
https://doi.org/10.1109/COMPSAC48688.2020.0-155
https://doi.org/10.1016/j.jss.2019.04.028
https://doi.org/10.1016/j.jss.2019.04.028
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.1145/3360596
https://doi.org/10.1145/3360596
https://doi.org/10.1145/3290386

1 3

Automated Software Engineering (2022) 29:45	 Page 35 of 35  45

AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, 27 Jan–1 Feb 1 2019, pp. 7055–7062. AAAI Press (2019). https://​doi.​org/​10.​1609/​
aaai.​v33i01.​33017​055

Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in
Neural Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, 8–13 Dec 2014, Montreal, QC, Canada, pp. 3104–3112 (2014)

Wang, D., Dong, W., Zhang, Y.: Collective Intelligence for Smarter Neural Program Synthesis, pp.
98–104. Association for Computing Machinery, New York (2020). https://​doi.​org/​10.​1145/​34171​13.​
34233​71

Wang, H., Wang, W., Yang, J., Yu, P.S.: (2002) Clustering by pattern similarity in large data sets. In: Pro-
ceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison,
Wisconsin, USA, 3–6 June 2002, pp. 394–405. https://​doi.​org/​10.​1145/​564691.​564737

Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining succinct and high-coverage API
usage patterns from source code. In: Proceedings of the 10th Working Conference on Mining Soft-
ware Repositories, MSR ’13, San Francisco, CA, USA, 18–19 May 2013, pp. 319–328 (2013).
https://​doi.​org/​10.​1109/​MSR.​2013.​66240​45

Xu, X., Liu, C., Song, D.: Sqlnet: generating structured queries from natural language without reinforce-
ment learning. CoRR abs arXiv:​1711.​04436 (2017)

Yang, X.: Bat algorithm for multi-objective optimisation. Int. J. Bio Inspired Comput. 3(5), 267–274
(2011). https://​doi.​org/​10.​1504/​IJBIC.​2011.​042259

Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective
optimization. Eng. Optim. 46(9), 1222–1237 (2014)

Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation. In: Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, 30 July–4 Aug, vol. 1: Long Papers, pp. 440–450. Association for Computational Linguis-
tics (2017). https://​doi.​org/​10.​18653/​v1/​P17-​1041

Yudong, Z., Praveen, A., Vishal, B., Saeed, B., Xuewu, Z.: Swarm intelligence and its applications
(2014). https://​doi.​org/​10.​1155/​2014/​204294

Zhang, Y., Dong, W., Wang, D., Liu, B., Liu, J.: Accuracy improvement for neural program synthesis via
attention mechanism and program slicing. In: 44th IEEE Annual Computers, Software, and Appli-
cations Conference, COMPSAC 2020, Madrid, Spain, 13–17 July 2020, pp. 963–972. IEEE (2020).
https://​doi.​org/​10.​1109/​COMPS​AC486​88.​2020.0-​146

Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: mining and recommending API usage patterns. In:
ECOOP 2009—Object-Oriented Programming, 23rd European Conference, Genoa, Italy, 6–10 July
2009. Proceedings, pp. 318–343 (2009). https://​doi.​org/​10.​1007/​978-3-​642-​03013-0_​15

Zohar, A., Wolf, L.: Automatic program synthesis of long programs with a learned garbage collector. In:
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018. NeurIPS 2018, 3–8 Dec 2018, pp. 2098–2107. Montréal, Canada (2018)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1609/aaai.v33i01.33017055
https://doi.org/10.1609/aaai.v33i01.33017055
https://doi.org/10.1145/3417113.3423371
https://doi.org/10.1145/3417113.3423371
https://doi.org/10.1145/564691.564737
https://doi.org/10.1109/MSR.2013.6624045
http://arxiv.org/abs/1711.04436
https://doi.org/10.1504/IJBIC.2011.042259
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.1155/2014/204294
https://doi.org/10.1109/COMPSAC48688.2020.0-146
https://doi.org/10.1007/978-3-642-03013-0_15

	MerIt: improving neural program synthesis by merging collective intelligence
	Abstract
	1 Introduction
	2 Related work
	2.1 Neural program synthesis
	2.2 Swarm intelligence
	2.3 API usage pattern mining

	3 Motivation and preliminaries
	3.1 Motivating example
	3.2 Ant colony optimization

	4 Framework
	5 Label selection strategies
	5.1 Label moving efficiency matrix
	5.1.1 Supervised ACO algorithm
	5.1.2 Label move efficiency matrix

	5.2 Pattern conditional probability matrix
	5.2.1 API usage pattern mining
	5.2.2 Pattern conditional probability matrix construction

	5.3 Collective intelligence

	6 Program synthesis based on unsupervised ACO
	6.1 Improved unsupervised ACO algorithm
	6.2 N random proportional rule

	7 Evaluation
	7.1 Experiment setup
	7.2 Evaluation of label selection strategies of PCPM and LMEM (RQ1)
	7.3 Evaluation of N random proportional rule (RQ2)
	7.4 Overall evaluation of UACO framework (RQ3)

	8 Threats to validity
	9 Conclusion
	Acknowledgements
	References

