
1 3

Automated Software Engineering (2022) 29:34
https://doi.org/10.1007/s10515-022-00332-2

Abstract
Currently, cloud computing is being used in many scientific areas like geoscience,
DNA sequencing, healthcare, and many more. In a cloud computing environment, a
Virtual Machine (VM) is a virtualized instance of any computer that can execute al-
most all the tasks of a computer. VM migration can be referred to as a task to move
VMs from one physical machine to another physical machine. During VM migra-
tion, there are many issues, such as fault occurrence, seamless connectivity, and
maintaining the quality of service. The cloud service provider has to anticipate the
server downtime and various other delays like slow processing of user’s request due
to the occurrence of a fault, improper allocation of VMs, and many more. A reliable
and advanced live migration optimization technique has been proposed in this work
for a trustworthy cloud computing environment. There are three main algorithms in
the proposed scheme considering the total migration time, namely Host Selection
Migration Time (HSMT), VM Reallocation Migration Time (VMRMT), and VM
Reallocation Bandwidth Usage (VMRBU). These algorithms support to enhance the
performance of cloud computing environments by minimizing the migration time.
The proposed scheme has been compared to some existing approaches, namely Ker-
nel-based Virtual Machines (KVM) and Pareto Optimized Framework for Seamless
VM Live Migration (POF-SVLM), to evaluate its performance. The results show
that the proposed scheme reduces the total cores of CPU by 60-70%, downtime by
70-80%, data transfer rate by 40-50%, and migration time by 40-50%.

Keywords  Virtual machine · Downtime · Data transfer · Migration time ·
Performance

Received: 1 September 2021 / Accepted: 15 February 2022 / Published online: 23 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

A Novel Technique for Accelerating Live Migration in Cloud
Computing

Ambika Gupta1,2 · Suyel Namasudra2

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00332-2&domain=pdf&date_stamp=2022-3-22

Automated Software Engineering (2022) 29:342

1 3

1  Introduction

Cloud computing is one of the most useful technologies due to its advanced features
like pay-per-use, scalability, flexibility, resiliency, and many more (Armbrust et al.
2010). It is very emerging, and nowadays, almost all IT companies are using cloud
computing environments. There are mainly three service delivery models in cloud
computing: (1) Infrastructure as a Service (IaaS), (2) Platform as a Service (PaaS),
and (3) Software as a Service (SaaS). IaaS is the backbone of any cloud environment
as it provides the entire infrastructure, PaaS provides a platform for developing and
running applications, and SaaS allows cloud users to access a set of applications or
software from cloud environments.

A cloud environment consists of three entities: (1) users, (2) data owner, and (3)
Cloud Service Provider (CSP). Here, virtualization plays an important role as it pro-
vides the cloud clients or users with virtual storage and software. Various other com-
puting services like database, networking, storage, and analytics are also available
over the internet through virtualization (Sangpetch et al. 2017). Sometimes, virtual-
ization technology also called a virtual machine monitor, requires a certain number
of resources to work effectively. The execution of VMs is occurred using a software
tool called hypervisor as depicted in Fig. 1. It creates a bridge between hardware
and various guest Operating Systems (OSs) that effectively handle shared memory
control (Zhang et al. 2018; Obasuyi and Sari 2015). There are major benefits of vir-
tualization, such as flexible operations, cost efficiency, adaptability in transferring
data, and reducing the risk of system failure (Bala and Chana 2012). To provide a

Fig. 1  Multiple guest OSs on the hypervisor

34  Page 2 of 21

Automated Software Engineering (2022) 29:34 3

1 3

service to the cloud users on request, generally, VMs are migrated from one physi-
cal node to another, which is known as live migration (Malleswari and Vadivu 2019;
Choudhary et al. 2017). As mentioned earlier, there are many issues in live migration
like the performance of applications, fault occurrence during inter VM migration,
seamless connectivity in network link, as well as security concerns. These challenges
proactively occur in the systems, where cloud computing environments are used. As
a result, some steps must be taken to determine how migration may be performed or
what alternative options are available to address these issues. These problems of live
migration must be resolved to increase the system performance and better function-
ing among many VMs (Motaki et al. 2021).

For resolving the problems of live migration, there are many existing techniques
(Wang et al. 2021; Garrido et al. 2021; Namasudra 2020; Yuan et al. 2020; Gao et al.
2020, 2021; Sharma et al. 2021; Gómez et al. 2020; Hamdy et al. 2020; Namasudra
et al. 2020; Suruliandi et al. 2021; Rauf et al. 2021; Agrawal et al. 2021; Aljunid and
Huchaiah 2020; Ali et al. 2021; Kumar et al. 2021). The pre-copy migration consists
of two phases: (1) warm-up phase, and (2) stop and copy phase (Hu et al. 2013).
The warm-up phase uses the push technique in which foul memory pages are recon-
structed on the host server. Foul memory represents data on a disc that is modified,
but has not yet been written on the disc. It means that the upgraded or changed mem-
ory pages have been regenerated in the migration process. In the stop and copy phase,
VM is stopped at the source node server (Cui et al. 2017). In the case of the post-copy
migration method, at first, the VM is suspended at the host of the data center. (Hines
et al. 2009). Then, VM is moved to the Target Server (TS) and starts execution. If
any requests emerge for the memory page that is unavailable at the target server, it
generates a page fault. In the hybrid-copy migration technique, there is a combination
of pre-copy and post-copy migration techniques (Salfner et al. 2011). Here, at first, it
works as a pre-copy live migration, and then, it uses the concept of post-copy migra-
tion technique. The main limitation of both these approaches, namely pre-copy and
post-copy migration, is that the complete migration time consumption is increased,
and live migration is used for allocating a VM from one physical node to another
without turning it off (Huang et al. 2011; Deshpande et al. 2013). For significant
improvement of the number of task allocations in the live migration process, a high
accuracy-based cloud classifier model is used in (Zhang et al. 2021). There is a lot
of overhead in this scheme in calculating the accuracy of cloud classification. In the
KVM strategy (Deshpande et al. 2012), all the memory pages are initially transferred
from the source to the target server, which results in large data transfer rate. The large
data transfer rate generates additional overhead in the migration process. In 2020,
Dhule et al. (Dhule and Shrawankar 2020) have proposed POF-SVLM to support
low data transfer rate and lower downtime, for live VM migration. It uses a shared
network between the source node and the destination node. By using this approach, it
is easy to monitor the entire system for all the input and output requests. POF-SVLM
reduces the migration time by 55–60%, but only a 20% reduction in CPU utilization
time, which is another major concern.

To solve the concerns of the existing approaches, a novel scheme has been pro-
posed in this work. In the proposed algorithm, the Master Server (MS) keeps tracking
the entire processing of transferring the load from the Faulty Node (FN) to the target

Page 3 of 21  34

Automated Software Engineering (2022) 29:344

1 3

server. The proposed technique is mainly based on three approaches, i.e. HSMT,
VMRMT, and VMRBU, for minimizing the migration time, downtime, data transfer
rate, and the total CPU cores used during migration. By shifting the load towards
the master server and quick identification of faulty node, the overall migration time
gets reduced. The proposed scheme is simulated using the CloudSim simulator, and
many experiments are performed to evaluate the efficiency of the proposed scheme.
Results and discussion show that this proposed novel scheme is better than the exist-
ing schemes.

The following are the key contributions of this paper:

1)	 In this paper, a novel approach has been proposed to solve the issues faced
by VMs during live migration. It reduces the downtime, migration time, total
cores of CPU, and data transfer rate to a great extent to make the overall system
efficient.

2)	 The proposed novel approach breaks down the servers into two primary compo-
nents: master server and Slave Server (SS). The master server always keeps track
of the slave servers, which helps in identifying the fault immediately.

3)	 The performance of the proposed scheme has been evaluated by executing many
experiments. Results and discussion show the efficiency of the proposed scheme
over the existing schemes.

The rest of the paper is structured into several parts. Some related works and key
findings from the existing approaches are described in Sect. 2. In Sect. 3, there is a
description of the entire proposed scheme. The experimental results and their discus-
sion are given in Sect. 4, and finally, Sect. 6 concludes the entire paper with some
future work directions.

2  Related Works

There are many existing approaches for the live migration of VMs proposed by
many academicians and researchers. Buyya et al. (Beloglazov and Buyya 2012)
have presented three algorithms, namely Maximum Correlation Policy (MCP), Ran-
dom Choice Policy (RCP), and Minimum Migration Time Policy (MMTP), which
are used to migrate a VM to other host-assigned VM that requires minimal time to
complete the migration process. In their scheme, the host gets shut down frequently.
Xu et al. (2016) have proposed an approach for predicting the performance of the
application on the basis of IaaS. They have considered hardware heterogeneity and
interference-aware VM provisioning using online measured resource utilization. The
performance of this scheme is low, if there is heterogeneity in the hardware system.
Tao et al. (2016) have introduced a methodology related to energy consumption,
which is based on bucket code to generate the token, i.e., a unit of bytes. Their Binary
Graph Matching-based Bucket-code Learning Algorithm (BGM-BLA) uses a triple
optimization model to reduce energy consumption, migration cost, and communica-
tion time between VMs. For comparison and analysis purposes, no open-source tool
has been employed in this work. Wu et al. (2016) have proposed an approach for

34  Page 4 of 21

Automated Software Engineering (2022) 29:34 5

1 3

cloud infrastructure based on storage area networks. The system developed in this
approach can be applied to the private cloud. The model can predict the overhead
during VM allocation using various variables like CPU utilization, I/O utilization,
and VM CPU utilization. The limitation to this approach is that it has not been tested
for various cloud infrastructures and hypervisors. An approach using different cloud
platforms to improve the system efficiency in case of any fault tolerance is suggested
by Ahmad and Andras (2019). This model uses open source software, namely Micro-
soft Azure and Amazon Elastic Compute Cloud (EC2), to measure the scalability of
the entire system. Here, the response time varies even if the same experiments are
executed in different clouds.

of cloud-based software services. Our technical scalability metrics are inspired by
metrics of elasticity. We used two.

cloud-based systems to demonstrate the usefulness of our metrics and compare
their scalability performance in.

two cloud platforms: Amazon EC2 and Microsoft Azure. O.
Moghaddam et al. (2020) have proposed an intelligent VM migration algorithm,

i.e., Cellular Learning Automata-based Evolutionary Computing (CLA-EC), which
minimizes the frequency of migrations and physical servers during the placement
and replacement of physical servers. Thus, it reduces the power consumption at the
data centers. However, the replacement of physical servers across data centers con-
sumes more resources, which creates issues in many practical cases. Rajabzadeh et
al. (2020) have suggested a resource monitoring method that efficiently uses memory
and bandwidth by following a particular sequence. The sequence starts with testing
the critical state of physical machines, then, defines the exact VM for migration, as
well as applies the VM migration policy. This scheme continuously tracks load across
the node servers, which generates overhead. Here, the node server provides the inter-
action between users and application.

A novel scheme using the concept of mirroring approach of continuous transmis-
sion of memory pages from source to target is suggested by Rajapackiyam et al.
(2020). Their scheme includes an algorithm consisting of two layers, namely data
mover and mirror block. In this scheme, a master node and a table are maintained to
define a migrated VM list. This technique does not use the iterative transmission of
data to avoid overhead. However, it faces high migration time. In (Zhang et al. 2013),
the authors have mentioned that by using OpenStack, it is easy to maintain server
consolidation and balancing of load across different nodes during VM live migration.
To remove duplication of data blocks, a Static Chunking (SC) methodology is used
in this scheme. It also saves the overall transmission time. The main limitation of this
scheme is that it fails to optimize the deduplication time. The deduplication time is
the amount of time to process the same message twice within a particular time limit.
Sun et al. (2016) have proposed an enhanced serial migration strategy based on the
post-copy migration strategy. They have developed queuing models for quantify-
ing performance metrics, such as the average waiting time and the blocking ratio
of all the migration requests. To manage large data size in video summarization, an
algorithm based on deep bidirectional analysis has been proposed in (Hussain et al.
2020). However, this scheme is slow in its processing. Table 1 shows a comparison
and illustrates brief details of existing schemes.

Page 5 of 21  34

Automated Software Engineering (2022) 29:346

1 3

Schemes Key Findings Advantages Disadvantages
(Cui et al.
2017)

The pre-copy migration technique
consists of two phases: (1) warm-
up phase, and (2) stop and copy
phase.

Here, all the memory
pages are shifted from
source to target server
before the VM shuts down
due to fault occurrence.

In this scheme, foul
memory pages are re-
constructed on the host
server. Therefore, the
migration time is high.

(Desh-
pande et
al. 2012)

In KVM technique, an initial proto-
type model has been developed that
allows migration of various VMs
within a cluster.

This approach reduces
the network traffic, which
results in a 26% reduction
in the migration time.

Here, all data stored in
RAM is first tagged as
dirty and must be re-
located, which creates
overhead during data
transfer.

(Dhule and
Shrawan-
kar 2020)

Here, a network is shared between
the source node and destination
node to monitor the entire system.

This scheme uses a shared
network to maintain the
details of all input and
output requests.

This model does not
reduce the downtime to
a great extent.

(Belo-
glazov
and Buyya
2012)

This scheme deals with various
methods like MCP, RCP, and
MMTP, which are used to migrate a
VM to other host-assigned VM.

It requires minimal time to
identify the target server in
the migration process.

Here, the host gets shut
down frequently.

(Xu et al.
2016)

In this scheme, the resource is
provided to the users using VM
provisioning based on hardware
heterogeneity and interference.

It supports predicting the
performance of the appli-
cation on the basis of IaaS.

However, predictable
performance is some-
times low, when there
is heterogeneity in the
hardware system.

(Tao et al.
2016)

BGM-BLA is used in this scheme
to optimize energy consumption.

This scheme reduces over-
all energy consumption
and migration cost.

This scheme does not
consider fault cases.

(Wu et al.
2016)

It can predict the overhead during
VM assignment using various
variables like CPU utilization, I/O
utilization, and memory usage.

This scheme is suitable in
the private cloud.

It cannot be applied
in different cloud
infrastructures.

(Ahmad
and An-
dras 2019)

It uses different cloud platforms to
improve system efficiency in case
of any fault tolerance.

The performance of this
scheme is high.

Here, the response time
varies as per the cloud
platforms.

(Moghad-
dam et al.
2020)

An algorithm is proposed to find
out the replacement of physical
servers during migrations of virtual
machines.

The key benefit of this
work is the minimal usage
of energy during VM
migrations.

This approach con-
sumes more resources
due to multiple replace-
ments of physical
servers.

(Rajabza-
deh et al.
2020)

Here, an approach to monitor
resources is proposed to efficiently
use memory and bandwidth for
migrating virtual machines.

The main advantage of this
approach is that it reduces
bandwidth usage during
the VM migration process.

This algorithm gener-
ates overhead because
of the continuous track-
ing of workload across
hosts.

Table 1  Comparative study on existing approaches

34  Page 6 of 21

Automated Software Engineering (2022) 29:34 7

1 3

Table 2  Description of notations
Abbreviation Description

RS i ith running server
N Total number of running server

S S i ith slave server
M Total number of slave server
VMi ith VM
Ri ith resource
k Processed UserRequest on the TS
m replica of k at the MS
Ack Acknowledgment

MaxCapacity Maximum capacity of the node

MaxCapacity (Ri) Maximum capacity of the node forRi

MS VMExecutionS tate
Execution state of VM at the MS

FNVMExecutionS tate
Execution state of VM at the FN

S S VMExecutionS tate
Execution state of VM at the SS

TS VMExecutionS tate
Execution state of VM at the TS

UserRequest User’s request

MSReceivedUserRequest
User request received at the MS

TSReceivedUserRequest
User request received at the TS

FNSendUserRequest
User request send from the FN

MSMemPg
Memory pages of the MS

FNMemPg
Memory pages of the FN

TS MemPg
Memory pages of the TS

ProducedResultReceived Processed result received by the user

Schemes Key Findings Advantages Disadvantages
(Rajapac-
kiyam et
al. 2020)

Here, continuous transmission
of memory pages from source to
target machine is performed using
the mirroring technique.

This technique does not
use the iterative transmis-
sion of data for minimizing
overhead.

This scheme faces high
migration time.

(Zhang et
al. 2013)

In this scheme, the authors have
used OpenStack to easily maintain
a server, server consolidation, and
balancing of load across different
nodes during live migration.

This scheme minimizes the
overall transmission time.

This approach fails to
optimize the deduplica-
tion time.

(Sun et al.
2016)

It proposes an enhanced serial
migration strategy based on the
post-copy migration strategy.

In this work, there is a
reduction in the average
waiting time.

Multi-threading is used
in this approach, which
makes the system more
complex.

use a technical measurement of the scalability

Table 1  (continued)

Page 7 of 21  34

Automated Software Engineering (2022) 29:348

1 3

3  Proposed Scheme

In the proposed scheme, a network is developed that consists of two clusters linked
by an interconnection network. Each cluster consists of a MS and SSs. If the required
resource is available, at least one TS from a set of slave servers is selected as a process
migration server. Here, the entire workload is transferred to the master server, when a
fault arises. The MS manages every request and starts maintaining the replica copy of
memory pages. To transfer the entire load to the TS, at first, it identifies the available
resources of TSs. Then, transfers the execution state of the VM to the selected TS.
After that, all memory pages are shifted to the TS. The TS now manages the entire
workload of the FN, and provides a response to the MS. There is a regular shifting
of memory pages from the FN to the TS, and the MS is responsible for maintaining
each replica copy of the FN. It is easy to transfer all the memory pages immediately
because of parallel processing, which supports maintaining replica copies at the MS
and starts searching for the next TS to continue the processing. Figure 2 depicts the
creation process of a MS from all running servers based on the ability to process all
user requests. The MS checks the existence of the FN. Then, a TS is selected with
the highest capacity node from all SSs. After the selection of the TS, the execution
state of the VM is transferred from the MS to the TS. Now, all memory pages are
processed on TS. After that, the user’s request and memory pages are loaded on the
TS, and the request is processed on the TS. Then, the replica on the MS is generated,
and finally, a response is sent to the user.

There are mainly three algorithms in the proposed scheme, namely HSMT,
VMRMT, and VMRBU, and an objective function. HSMT optimizes the data trans-

Fig. 2  Framework of the proposed approach to migrate the entire workload from the FN to the TS

34  Page 8 of 21

Automated Software Engineering (2022) 29:34 9

1 3

fer rate and downtime, VMRMT optimizes the migration time, VMRBU optimizes
the actual bandwidth consumption to reduce the consumption of the overall CPU
core, and the objective function is responsible for overall optimization of processing
of users’ requests from the FN to the TS. The proposed work ensures low data trans-
fer rate, so indirectly it consumes fewer CPU cores. There is no traffic congestion
because of the gradual shifting of load, which supports quick processing and results
in less downtime and less migration time.

3.1  Host Selection Migration Time

This algorithm starts by receiving all users’ requests, and forwards them for creat-
ing VMs, which supports to continuously track all nodes. Here, the MS is selected
among the Running Servers (RSs) on the basis of the maximum capacity of a par-
ticular node, so that it must accept many requests during any unexpected fault. When
a fault occurs, the processing of the user request gets stuck on the SS, and the SS
stops responding by giving an acknowledgment to the MS. This triggers the MS that
a fault has occurred. Now, the MS tracks the node, where the process gets stuck and
marks that particular SS as FN. After that, every request of the FN is managed by the
MS. The proposed approach helps in the quick identification of the FN by sending a
broadcast message to all SSs. If all SSs give acknowledgments to the MS, then, there
is no need for migration. Then, the execution state of the FN is transferred to the MS
along with all memory pages for further processing of the user request. The VMs are
then stopped at the FN and the memory pages are returned to the MS. This approach
easily handles the load of the FN through the MS and provides a better approach by
consuming less time, which results in low downtime. Due to the gradual transfer
of data, the overall data transfer rate gets down that results in low network conges-
tion. Therefore, it decreases the downtime, and memory pages are quickly transferred
from the FN to the MS. Algorithm 1 represents the working of HSMT and Table 2
represents the details of the notations used in this paper.

Page 9 of 21  34

Automated Software Engineering (2022) 29:3410

1 3

3.2  VM Reallocation Migration Time

After completing the execution of Algorithm 1, Algorithm 2 executes a search opera-
tion for the maximum capacity node from the existing SSs and marks it as the TS.
The node with maximum capacity, which has sufficient resources is selected for host-
ing the load from the MS. After that, the execution state of the MS is transferred
to the TS. If sufficient resources are not available, the current TS is discarded and
the next TS is chosen for execution as shown in Fig. 2. Then, the user’s request is
transferred from the MS to the TS along with memory pages. The running VMs are
suspended after shifting all the memory pages at the TS. This approach consumes less
timespan for migrating the VMs because of the quick transfer of the load from the FN
to the appropriate TS with the help of the MS by maintaining all tracks and replica
copies of memory pages. This reduces the overall time period for the entire migration
process. The functioning of VMRMT optimizes the migration time by immediately
shifting all workloads from the MS to the TS.

34  Page 10 of 21

Automated Software Engineering (2022) 29:34 11

1 3

3.3  VM Reallocation Bandwidth Usage

After the completion of Algorithm 2, VM starts to migrate from the FN to the TS. At
first, it loads the user’s request along with the memory pages on the TS. After that,
the response of the processed user’s request is stored in a variable k in step 6. The
response to that user’s request must be displayed to the requested user, when the fault
has been fixed and the memory page and workload have been shifted from the FN
to the TS. When any produced result fails before reaching the user, it can be handled
by the replica (in step 7) of the response maintained at the MS. The data transfer in
VMRBU is consistent since all memory pages operate on the MS, which prevents the
formation of dirty pages. This approach consumes less CPU usage for migrating the
VMs from the FN to the TS through the MS. Algorithm 3 represents all the steps in
which the user’s request is not lost during migration and it is managed through the
MS, if any fault occurs on the FN.

Page 11 of 21  34

Automated Software Engineering (2022) 29:3412

1 3

3.4  Objective Function

The objective function identifies the optimum utilization of CPU cores, and mini-
mizes the downtime, migration time, and data transfer rate during the live migration
process. In this work, the cumulative time to migrate a VM is the weighted sum of
the HSMT, VMRMT, and VMRBU as given in Eq. (1) (Mousavi et al. 2017). This
helps the algorithms to predict the time of migration near to reality and guarantees
the algorithm’s extensibility and adaptability. If variables A , B and C represent the
times taken to execute Algorithms 1, 2, and 3, respectively, to change the effects of
these three variables in the optimization objective function, weight coefficients, α
, β and γ , are used. The sum of values of these coefficients must be equal to 1 for
maintaining the result normalized as all the variables contribute to one entity, i.e., the
total time consumed.

	 Totaltimeconsumed =∝ ×A (HS MT)+ β × B (VMRMT)+ γ ×C (VMRBU)� (1)

These three coefficients can efficiently balance the optimization of the HSMT,
VMRMT, and VMRBU. Datacenter administrators can adjust these three coefficients
to have different HSMT, VMRMT, and VMRBU as shown in Eq. (1). When ∝= 0.4
, β = 0.4 and γ = 0.2, the performance of these proposed algorithms is better as
it reduces execution time for the entire migration process and to process the user
request. The implementation of these algorithms shows optimization of the total
migration time that leads to improvement of the objective function.

4  Performance Analysis

This section represents the performance analysis of the proposed scheme. The experi-
ments regarding the above algorithms are performed on a set of hardware and soft-
ware as discussed in Sect. 4.1.

34  Page 12 of 21

Automated Software Engineering (2022) 29:34 13

1 3

4.1  Experimental Setup

The experiments are executed on a Dell XPS 8940 desktop. The hardware specifica-
tions of this computer system are Intel Core i7-11700 processor (11th generation
CPU, 4.9 GHz), Windows 10 Pro OS (64-bit), 64 GB RAM, 1 TB SSD, and 2 TB
HDD. Java 17 and CloudSim 3.0.3 are installed on the computer system for executing
experiments (Calheiros et al. 2011). In the CloudSim, the CPU utilization is managed
on the basis of uniform distribution of load. As represented in Table 3, there are dif-
ferent configurations of VMs to define specific attributes, such as length of instruc-
tion, input/output file size, the number of processors required, etc., for responding to
user requests and other tasks. Datacenter defines a set of hosts with their hardware
configurations, such as memory, CPU cores, capacity, and many more, and the provi-
sion for allocating these resources is based on the availability of the number of hosts
and other resources (Zhang et al. 2015).

In the experiments, three different types of VMs are considered, i.e., VM-1, VM-2,
and VM-3. The configurations of these VMs are given in Table 3. There is an auto-
mated environment for live migration by using the Bash script (LeCun et al. 2010).
The Bash script automates live migration after running VM-1 for 5 min. Similarly,
the automation of live migration takes place after running the setup of VM-2 and
VM-3 for 15 and 20 min, respectively. The start and end times of the live VM migra-
tion are recorded in a log file for data transfer, and downtime is measured by sending
an ICMP echo request from the client computer to network hosts.

4.2  Results and Discussion

To evaluate the performance of the proposed scheme, a variety of workloads, namely
(1) compress, (2) compiler, (3) derby, (4) crypto, (5) scimark.small, (6) mpegaudio,
(7) scimark.large, (8) Sunflow, (9) serial, (10) XML, 11) ApacheBench, 12) MySQL,
13) startup, and 14) TensorFlow, are considered in multiple iterations of VM live
migration setups, i.e. VM-1, VM-2, and VM-3. The data transfer rate, CPU utiliza-
tion, VM downtime, and migration time, are calculated for 14 migrations of each
form of various workloads on VM1, VM2, and VM3 setups for the proposed scheme,
as well as for the existing schemes, i.e. KVM and POF-SVLM.

Figure 3(a), 3(b), and 3(c) show the comparisons of data transfer rate among exist-
ing approaches and proposed HSMT for 14 different workloads on three VM setups,
i.e. VM-1, VM-2, and VM-3, during live migration. The proposed HSMT approach
helps in keeping the data transfer rate low, as a result, HSMT outperforms traditional

Table 3  Configurations of VM setup
Configuration VM-1 VM-2 VM-3
CPU speed (MIPS) 250 300 500
I/O file size (MB) 10,000 20,000 30,000
RAM (MB) 613 870 1740
Bandwidth (bits/s) 500 700 1000
No. of CPU (cores) 2 3 2

Page 13 of 21  34

Automated Software Engineering (2022) 29:3414

1 3

KVM and POF-SVLM approaches. The proposed approach transfers data to the MS,
and then, makes all memory pages available at the TS. In this way, the total data
transmission rate has been reduced by 40-50%. In the case of derby and Tensor-
Flow workloads, the workload is large. To accommodate this large workload, the VM
memory size is increased as the live migration phase maintains a copy of memory

Fig. 3  Comparison of data transfer among KVM, POF-SVLM, and HSMT. (a) VM-1 setup (b) VM-2
setup, and (c) VM-3 setup

34  Page 14 of 21

Automated Software Engineering (2022) 29:34 15

1 3

pages from the original node (FN) to the destination node (TS). The more data trans-
fer rate, the more time it takes to migrate the VM.

Figure 4(a), 4(b), and 4(c) display the comparisons of VM downtime of the pro-
posed HSMT and already developed approaches, namely KVM and POF-SVLM.
HSMT helps in reducing downtime for the migration process by quickly identifying

Fig. 4  Comparison of downtime among KVM, POF-SVLM, and HSMT. (a) VM-1 setup (b) VM-2 setup,
and (c) VM-3 setup

Page 15 of 21  34

Automated Software Engineering (2022) 29:3416

1 3

the FN. Here, by executing the automated bash script on the system, the initialization
of the workloads process and the live migration process are executed, and a log file is
maintained for the entire experimental procedure to secure the start time and end time
of the script execution. In the existing approaches, the downtime is more because all
the memory pages are transferred to the target machine and VM takes a long time

Fig. 5  Comparison of CPU utilization among KVM, POF-SVLM, and VMRBU. (a) VM-1 setup (b) VM-2
setup, and (c) VM-3 setup

34  Page 16 of 21

Automated Software Engineering (2022) 29:34 17

1 3

to resume at the target machine. The results show an improvement as the downtime
of the proposed approach is in the range of 0–20 s, which is less than 60 s, the time
taken by the existing POF-SVLM approach. Thus, it reduces the total downtime by
70-80%. Further, it is also recorded that since the memory size of VM is large for
workloads like derby and Tensorflow, the downtime is relatively high.

Fig. 6  Comparison of migration time among KVM, POF-SVLM, and VMRMT. (a) VM-1 setup (b) VM-2
setup, and (c) VM-3 setup

Page 17 of 21  34

Automated Software Engineering (2022) 29:3418

1 3

Figure 5(a), 5(b), and 5(c) show the CPU utilization for various workloads with
different VM setups for live VM migration. In this experimental procedure, the num-
ber of CPU cores utilized during live migration is considered as a parameter. It can
be easily seen in Fig. 5(a), 5(b), and 5(c) that the CPU consumption has reduced by
60-70% due to VMRBU. When VM starts to migrate from the FN to TS, in VMRBU,
the data transfer is consistent because the production of dirty pages is avoided by
keeping all the memory pages running on MS. Whereas, KVM and POF-SVLM send
all the dirty pages to the destination. Therefore, a large number of dirty pages are
transferred. These existing schemes take additional time to resume VM at the destina-
tion node. Thus, the utilization of CPU cores is more.

Figure 6(a), 6(b), and 6(c) show that the migration time is less than 50 s except
for extremely heavy workloads. Here, the cloud users are unable to detect the migra-
tion time because the entire load of the FN is quickly managed through the TS. By
using VMRMT, the total migration time is reduced by 40-50% in comparison to the
existing approaches. In the case of KVM, it transfers all memory pages and keeps
recording every memory page in the VM memory as foul memory. POF-SVLM uses
a shared network to send all the information regarding input and output requests to
the target machine, which generates a longer delay in migration time. Among all the
comparisons made, there is a significant change, when workloads of derby, serial, and
TensorFlow, are executed as the workload is more because of the large VM memory
size. The final results show an improvement in the overall time consumption of the
live migration process by reducing the data transfer rate, CPU utilization, migration
time, and VM downtime.

5  Conclusions and Future Works

In a cloud computing environment, sometimes, it is required to move a running VM
to various servers during live migration without disconnecting the client or applica-
tion. Accelerating the live migration process can be helpful to manage data centers for
correct and efficient functioning. In this paper, the main emphasis is given on the live
migration challenges, such as transfer of data, time consumed for migration, CPU uti-
lization, and downtime. To solve these problems, this paper proposes a novel scheme
using three main algorithms, namely HSMT, VMRMT, and VMRBU. Here, in the
first phase, the master server is created and all user’s requests are handled through
the master server. In the second phase, an appropriate target server is selected, and
at last, the user’s requests are processed and the result of it is shown to the user by
maintaining a replica copy of memory pages at the master server. The experimental
results demonstrate that the proposed scheme is better than the existing schemes, and
it reduces the total CPU cores by 60-70%, downtime by 70-80%, data transfer rate by
40-50%, and migration time by 40-50%. In the future, the proposed scheme can be
extended by developing a novel scheme for deallocating the virtual machines, when
users are removed from the system. In addition, there is a huge scope to identify fail-
ures that occur during live migration in a cloud computing environment.

34  Page 18 of 21

Automated Software Engineering (2022) 29:34 19

1 3

References

Agrawal, D., Minocha, S., Namasudra, S., Gandomi, A.H.: “A robust drug recall supply chain manage-
ment system using hyperledger blockchain ecosystem,” Comput. Biol. Med. 140, 2021. DOI: https://
doi.org/10.1016/j.compbiomed.2021.105100

Ahmad, A.A.S., Andras, P.: “Scalability analysis comparisons of cloud-based software services,” J. Cloud
Computing: Adv. Syst. Appl. 8, 1, 2019. DOI:https://doi.org/10.1186/s13677-019-0134-y

Ali, H.M., Liu, J., Bukhari, S.A.C., Rauf, H.T.: “Planning a secure and reliable IoT-enabled FOG-assisted
computing infrastructure for healthcare,” Cluster Comput. 24, 2021. DOI:https://doi.org/10.1007/
s10586-021-03389-y

Aljunid, M.F., Huchaiah, M.D.: Multi-model deep learning approach for collaborative filtering recom-
mendation system. CAAI Trans. Intell. Technol. 5(4), 268–275 (2020) “,”,

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin,
A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010) “,”,

Bala, A., Chana, I.: Fault tolerance-challenges, techniques and implementation in cloud computing. Int. J.
Comput. Sci. Issues 9(1), 288–293 (2012) “,”,

Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and
performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency
and Computation: Practice and Experience 24(13), 1397–1420 (2012) “,”,

Calheiros, R.N., Ranjan, R., Beloglazov, A.: CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Software: Pract. Expe-
rience 41(1), 23–50 (2011) “,”,

Choudhary, A., Govil, M.C., Singh, G., Awasthi, L.K., Pilli, E.S., Kapil, D., “A critical survey of live
virtual machine migration techniques,” Journal of Cloud Computing, Advances, Systems and Appli-
cations, vol. 6, no.1, 2017. DOI: https://doi.org/10.1186/s13677-017-0092-1

Cui, Y., Yang, Z., Xiao, S., Wang, X., Yan, S.: Traffic-aware virtual machine migration in topology-adap-
tive dcn. IEEE/ACM Trans. Networking 25(6), 3427–3440 (2017) “,”,

Deshpande, U., Kulkarni, U., Gopalan, K., “Inter-rack live migration of multiple virtual machines,” In
Proceedings of the 6th international workshop on virtualization technologies in distributed comput-
ing, ACM, Delft, Netherland, 2012, pp 19–26

Deshpande, U., Schlinker, B., Adler, E., Gopalan, K., “Gang migration of virtual machines using cluster-
wide deduplication,” In Proceedings of 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, ACM, Delft, Netherland, 2013, pp. 394–401

Dhule, C., Shrawankar, U.: POF-SVLM: Pareto optimized framework for seamless VM live migration.
Comput. Springer-Verlag GmbH Austria 102(8), 2158–2183 (2020) “,”,

Gao, Z., Zhang, H., Dong, S., Sun, S., Wang, X., Yang, G., Wu, W., Li, S., de Albuquerque, V.H.C.: Salient
object detection in the distributed cloud-edge intelligent network. IEEE Netw. 34(2), 216–224 (2020)
“,”,

Gao, J., Wang, W., Liu, Z., Billah, M.F.R.M., Campbell, B., “Decentralized federated learning framework
for the neighborhood: A case study on residential building load forecasting,” In Proceedings of the
19th ACM Conference on Embedded Networked Sensor Systems, ACM, Portugal, 2021, pp. 453–459

Garrido, L.D., Sanz, J.J.G., Mestras, J.P.: Foundations for the design of a creative system based on the
analysis of the main techniques that stimulate human creativity. Int. J. Interact. Multimedia Artif.
Intell. 7(2), 199–211 (2021) “,”,

Gómez, A.B., Sánchez, J.L.L., Aguilar, M.A.: Blockverse: A cloud blockchain-based platform for tracking
in affiliate systems. Int. J. Interact. Multimedia Artif. Intell. 6(3), 24–31 (2020) “,”,

Hamdy, M., Helmy, S., Magdy, M.: Design of adaptive intuitionistic fuzzy controller for synchronisation
of uncertain chaotic systems. CAAI Trans. Intell. Technol. 5(4), 237–246 (2020) “,”,

Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual machines. ACM SIGOPS
Operating System Review 43(3), 14–26 (2009) “,”,

Hu, W., Hicks, A., Zhang, L., Dow, E.M., Soni, V., Jiang, H., Bull, R., Matthews, J.N., “A quantitative
study of virtual machine live migration,” In Proceedings of the ACM cloud and autonomic computing
conference, ACM, Miami, Florida, USA, 2013, pp. 1–10

Huang, D., Ye, D., He, Q., Chen, J., Ye, K., “Virt-LM: A benchmark for live migration of virtual machine,”
In Proceedings of 2nd ACM/SPEC International Conference on Performance Engineering, ACM,
Karlsruhe, Germany, 2011, pp. 307–316

Page 19 of 21  34

http://dx.doi.org/10.1016/j.compbiomed.2021.105100
http://dx.doi.org/10.1016/j.compbiomed.2021.105100
http://dx.doi.org/10.1186/s13677-019-0134-y
http://dx.doi.org/10.1007/s10586-021-03389-y
http://dx.doi.org/10.1007/s10586-021-03389-y
http://dx.doi.org/10.1186/s13677-017-0092-1

Automated Software Engineering (2022) 29:3420

1 3

Hussain, T., Muhammad, K., Ullah, A., Cao, Z., Baik, S.W., de Albuquerque, V.H.C.: Cloud-assisted mul-
tiview video summarization using CNN and bidirectional LSTM. IEEE Trans. Industr. Inf. 16(1),
77–86 (2020) “,”,

Kumar, A., Shah, K., Namasudra, S., Kadry, S.: A novel elliptic curve cryptography based system for smart
grid communication. Int. J. Web Grid Serv. 17(4), 321–342 (2021) “,”,

LeCun, Y., Cortes, C., Burges, C.J., Mnist handwritten digit database at&t labs. Available:
<background-color:#FF3300;uvertical-align:super;>http://yann.lecun.com/exdb/mnist/.</
background-color:#FF3300;uvertical-align:super;><uvertical-align:super;>,</uvertical-
align:super;><uvertical-align:super;> </uvertical-align:super;>2010 [Accessed on 10 June 2021]

Malleswari, T.Y.J.N., Vadivu, G.: “Adaptive deduplication of virtual machine images using AKKA stream
to accelerate live migration process in cloud environment,” J. Cloud Computing: Adv. Syst. Appl., 8,
1, 2019. DOI:https://doi.org/10.1186/s13677-019-0125-z

Moghaddam, M.J., Esmaeilzadeh, A., Ghavipour, M., Zadeh, A.K.: Minimizing virtual machine migration
probability in cloud computing environments. Cluster Comput. 23(1), 3029–3038 (2020) “,”,

Motaki, S.E., Yahyaouy, A., Gualous, H., Sabor, J.: A new weighted fuzzy C-means clustering for work-
load monitoring in cloud datacenter platforms. ” Cluster Computing 24(4), 3367–3379 (2021) “, ,

Mousavi, S., Mosavi, A., Várkonyi-Kóczy, A.R., Fazekas, G.: Dynamic resource allocation in cloud com-
puting. Acta Polytech. Hungarica 14(4), 83–104 (2017) “,”,

Namasudra, S.: “Fast and secure data accessing by using DNA computing for the cloud environment,”
IEEE Trans. Serv. Comput., 2020. DOI:https://doi.org/10.1109/TSC.2020.3046471

Namasudra, S., Chakraborty, R., Majumder, A., Moparthi, N.R.: Securing multimedia by using DNA
based encryption in the cloud computing environment. ACM Trans. Multimedia Comput. Commun.
Appl. 16(3), 1–19 (2020) “,”,

Obasuyi, G., Sari, A.: Security challenges of virtualization hypervisors in virtualized hardware environ-
ment. Int. J. Commun. Netw. Syst. Sci. 8(8), 260–273 (2015) “,”,

Rajabzadeh, M., Haghighat, A.T., Rahmani, A.M.: New comprehensive model based on virtual clusters
and absorbing Markov chains for energyefficient virtual machine management in cloud computing. J.
Supercomputing 76(3), 7438–7457 (2020) “,”,

Rajapackiyam, E., Subramanian, A.V., Arumugam, U.: Live migration of virtual machines using mirroring
technique. J. Comput. Sci. 16(4), 543–550 (2020) “,”,

Rauf, H.T., Gao, J., Almadhor, A., Arif, M., Nafis, M.T.: “Enhanced bat algorithm for COVID-19 short-
term forecasting using optimized LSTM,” Soft. Comput., 25, 2021. DOI:https://doi.org/10.1007/
s00500-021-06075-8

Salfner, F., Troger, P., Polze, A., “Downtime analysis of virtual machine live migration,” In Proceedings of
DEPEND the Fourth International Conference on Dependability, Nice, France, 2011, pp. 100–105

Sangpetch, A., Sangpetch, O., Juangmarisakul, N., Warodom, S.: “Thoth: Automatic resource management
with machine learning for container-based cloud platform,” In Proceedings of the 7th International
Conference on Cloud Computing and Services Science, ACM, Porto, Portugal, 2017, pp. 75–83

Sharma, P., Moparthi, N.R., Namasudra, S., Vimal, S., Hsu, C.H.: “Blockchain-based IoT architecture
to secure healthcare system using identity-based encryption,” Expert Syst., 2021. DOI:https://doi.
org/10.1111/EXSY.12915

Sun, G., Liao, D., Anand, V., Zhao, D., Yu, H., “A new technique for efficient live migration of multiple
virtual machines,” Future Generation Computer Systems, vol. 55, no. C, pp. 74–86, 2016

Suruliandi, A., Kasthuri, A., Raja, S.P.: Deep feature representation and similarity matrix based noise label
refinement method for efficient face annotation. Int. J. Interact. Multimedia Artif. Intell. 7(2), 66–77
(2021) “,”,

Tao, F., Li, C., Liao, T.W., Laili, Y.: BGM-BLA: A new algorithm for dynamic migration of virtual
machines in cloud computing. IEEE Trans. Serv. Comput. 9(6), 910–925 (2016) “,”,

Wang, C., Yang, G., Papanastasiou, G., Zhang, H., Rodrigues, J.J.P.C., de Albuquerque, V.H.C.: Indus-
trial Cyber-Physical Systems-Based Cloud IoT Edge for Federated Heterogeneous Distillation. IEEE
Trans. Industr. Inf. 17(8), 5511–5521 (2021) “,”,

Wu, H., Ren, S., Garzoglio, G., Timm, S., Bernabeu, G., Chadwick, K., Noh, S.: A reference model for
virtual machine launching overhead. IEEE Trans. Cloud Comput. 4(3), 1–14 (2016) “,”,

Xu, F., Liu, F., Jin, H.: Heterogeneity and interference-aware virtual machine provisioning for predictable
performance in the cloud. IEEE Trans. Comput. 65(8), 2470–2483 (2016) “,”,

Yuan, G., Li, J., Fan, H.: Evaluating the robustness of image matting algorithm. CAAI Trans. Intell. Tech-
nol. 5(4), 247–259 (2020) “”, ,

34  Page 20 of 21

http://dx.doi.org/10.1186/s13677-019-0125-z
http://dx.doi.org/10.1109/TSC.2020.3046471
http://dx.doi.org/10.1007/s00500-021-06075-8
http://dx.doi.org/10.1007/s00500-021-06075-8
http://dx.doi.org/10.1111/EXSY.12915
http://dx.doi.org/10.1111/EXSY.12915

Automated Software Engineering (2022) 29:34 21

1 3

Zhang, J., Han, S., Wan, J., Zhu, B., Zhou, L., Ren, Y., Zhang, W.: “IM-Dedup: An image management sys-
tem based on deduplication applied in DWSNs,” Int. J. Distrib. Sens. Netw., 9, 7, 2013. DOI:https://
doi.org/10.1155/2013/625070

Zhang, R., Su, X., Wang, J., Wang, C., Liu, W., Lau, R.W.H.: On mitigating the risk of cross-VM covert
channels in a public cloud. IEEE Trans. Parallel Distrib. Syst. 26(8), 2327–2339 (2015) “,”,

Zhang, F., Liu, G., Fu, X., Yahyapour, R.: A survey on virtual machine migration: challenges, techniques,
and open issues. IEEE Commun. Surv. Tutorials 20(2), 1206–1243 (2018) “,”,

Zhang, J., Liu, P., Zhang, F., Iwabuchi, H., A. A. d. H. e. A. de Moura, de Albuquerque, V.H.C., “Ensem-
ble meteorological cloud classification meets internet of dependable and controllable things,” IEEE
Internet of Things, vol. 8, no. 5, pp. 3323–3330, 2021

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Ambika Gupta1,2 · Suyel Namasudra2

	
 Suyel Namasudra
suyelnamasudra@gmail.com

1	 Department of Computer Engineering and Applications, GLA University, Mathura, India
2	 Department of Computer Science and Engineering, National Institute of Technology Patna,

Bihar, India

Page 21 of 21  34

http://dx.doi.org/10.1155/2013/625070
http://dx.doi.org/10.1155/2013/625070

	﻿A Novel Technique for Accelerating Live Migration in Cloud Computing
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Related Works
	﻿﻿3﻿ ﻿Proposed Scheme
	﻿3.1﻿ ﻿Host Selection Migration Time
	﻿3.2﻿ ﻿VM Reallocation Migration Time
	﻿3.3﻿ ﻿VM Reallocation Bandwidth Usage
	﻿3.4﻿ ﻿Objective Function

	﻿﻿4﻿ ﻿Performance Analysis
	﻿﻿4.1﻿ ﻿Experimental Setup
	﻿4.2﻿ ﻿Results and Discussion

	﻿5﻿ ﻿Conclusions and Future Works
	﻿References

