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Abstract
Stochastic model checking can automatically verify and analyse the software-driven 
autonomous systems with stochastic behaviors, which is a formal verification tech-
nique based on system models. When coping with large-scale systems, it suffers 
from state space explosion problem very seriously. Model abstraction is a poten-
tial technique for mitigating this problem. At present, only a few properties speci-
fied by PCTL (Probabilistic Computation Tree Logic), such as probabilistic safety 
and probabilistic reachability, can be preserved in the practical model abstraction 
of stochastic model checking, which are the proper subset of PCTL* (Probabilistic 
Computation Tree Logic*) properties. For dealing with this, an effective and effi-
cient three-valued model abstraction framework for full PCTL* stochastic model 
checking is proposed in this paper. We propose a new abstract model to preserve 
full PCTL* properties for nondeterministic and probabilistic system, which orthogo-
nally integrates interval probability of transition and game for nondeterminism. A 
game-based three-valued PCTL* stochastic model checking algorithm is developed 
to verify abstract model, and a BPSO (binary particle swarm optimization) algo-
rithm integrated with sample learning is designed to refine the indefinite result of 
three-valued PCTL* stochastic model checking abstract model. It is proved that full 
PCTL* properties are preserved when the result of three-valued stochastic model 
checking is definite, and the efficiency of this framework is demonstrated by some 
large cases.
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1  Introduction

Software-driven autonomous systems are increasingly being used in a lot of 
domains, e.g., industry automation, transport, finance, medical surgery and so on 
(Ebert and Weyrich 2019; Shivakumar et al. 2020; Fremont et al. 2020).

They are becoming larger and more complex, some of which are accompanied 
with the stochastic behaviors (Clarke et al. 2018). The essential reasons for exhib-
iting stochastic behaviors can be classified as, among others: (a) the system itself 
contains randomness, e.g., probabilistic algorithms or randomized algorithms are 
included; (b) the running environment of system is open, dynamic and unmanage-
able, which may lead to random failures, e.g., message loss or failing to invoke 
some components; (c) the stochastic variables are artificially employed to cap-
ture system performance index for evaluation and analysis, e.g., reliability. As 
an automatic and formal verification technique, stochastic model checking (a.k.a. 
probabilistic model checking) (Clarke et al. 2018, 2009; Kwiatkowska et al. 2022; 
Baier and Katoen 2008) can be naturally applied to quantitatively analyse intel-
ligent software-driven autonomous systems with stochastic behaviors. In prac-
tice, stochastic model checking has been exploited to analyze or guarantee the 
correctness of probabilistic program (Hark et  al. 2020), system performance of 
mobile service robots (Lacerda et al. 2019), reliability of critical communication 
protocols (Oxford et al. 2020), resource control mechanisms in cloud computing 
(Evangelidis 2020), software adaptation of an unmanned undersea vehicle (Pfef-
fer et  al. 2019), trustworthiness of deep learning systems (Kwiatkowska 2019), 
and so on. In the verification process, the autonomous systems are modelled as 
full probabilistic models, e.g., DTMCs (Discrete-time Markov Chains), PPNs 
(Probabilistic Petri Nets), or nondeterministic and probabilistic models, e.g., 
MDPs (Markov Decision Processes), NPPNs (Nondeterministic Probabilistic 
Petri Nets); and the requirement properties are specified by LTL (Linear Tem-
poral Logic) with probability or PCTL (Probabilistic Computation Tree Logic) 
(Kwiatkowska et al. 2022).

The biggest obstacle is state space explosion in stochastic model checking the 
software-driven autonomous systems, especially the large-scale systems. This is 
rooted in the facts that: (a) the number of states grows double exponentially in 
the number of variables or components in a software-driven autonomous system; 
(b) stochastic model checking algorithm combines the classical model checking 
algorithm and linear equation solving or linear programming algorithms, which 
computes the probabilistic vector over states rather than bit-vector in classical 
model checking. Hence, how to fight state space explosion problem is a major 
challenge in the field of stochastic model checking software-driven autonomous 
systems. Clarke, Turing Award winner for founding the field of model checking, 
points out that it is an important direction in the future research of model check-
ing at “Turing Lecture” (Clarke et  al. 2009). In recent years, some techniques 
have been proposed for combating this problem, ranging from the multi-terminal 
binary decision diagram (MTBDD) (Kwiatkowska et al. 2017), abstraction (Deh-
nert 2018; Dams and Grumberg 2018), and bounded stochastic model checking 



1 3

Automated Software Engineering (2022) 29:29	 Page 3 of 46  29

algorithm (Hartmanns et  al. 2018) to compositional reasoning (He et  al. 2016; 
Ma et al. 2019a). However, it is still an open problem.

1.1 � Problem statement of model abstraction for stochastic model checking

As an important means to tackle the state space explosion problem, abstraction 
(Clarke et al. 2003, 1994a) has been applied in the field of stochastic model check-
ing. It performs stochastic model checking on the abstraction of one or more compo-
nents in the concrete stochastic model checking. Concrete stochastic model checking 
is to decide whether M ⊨ Φ holds, where M is the stochastic system model, Φ is 
the quantitative requirement property specification, and ⊨ is the satisfaction relation. 
Abstraction for stochastic model checking can be denoted as: MA ⊨A ΦA , where MA 
is the model abstraction of M , ⊨A is the relation abstraction of ⊨ based on algo-
rithm, ΦA is the specification abstraction of Φ . In fact, MA usually leads to ⊨A and 
ΦA ; ⊨A also results in ΦA ; ΦA may also lead to MA and ⊨A . In the present research on 
abstraction for stochastic model checking, the abstraction refers to model abstraction 
by default; while relation abstraction (Alfaro and Roy 2007; Didier et al. 2010; Fil-
ieri et al. 2011; Huang et al. 2019; Younes 2005) and specification abstraction (Deh-
nert 2018; Dams and Grumberg 2018) are specifically identified, and the related 
works of them is less. This paper also focuses on model abstraction for stochastic 
model checking.

Informally, model abstraction for stochastic model checking is omitting details 
from concrete stochastic system model, which are not relevant for verifying proper-
ties under consideration(Liu et al. 2015). It concludes the value of M ⊨ Φ from the 
result of MA ⊨ Φ . Applying model abstraction in stochastic model checking faces 
the following four issues, which is named MA4SMC (model abstraction for stochas-
tic model checking) problem: P1) how to construct abstract model, P2) how to ver-
ify the abstract model, P3) what quantitative properties can be preserved, P4) how to 
present the counterexample. Thereinto, the answer to P1) is the key for solving the 
MA4SMC problem. It has an important effect on the answers to P2), P3) and P4). 
The goal of model abstraction is to make the abstract model that has a small enough 
state space, yet contains abundant information of concrete model. In other words, 
perfect model abstraction technology should meet the following conditions: C1) the 
state space of abstract model MA is significantly less than the concrete model M ; 
C2) the results of stochastic model checking MA is equivalent to the results of sto-
chastic model checking M , i.e., MA ⊨ Φ → M ⊨ Φ , and MA⊭ Φ → M⊭ Φ . That is 
to say, if MA satisfies Φ , M satisfies Φ ; and if MA doesnot satisfy Φ , M doesnot sat-
isfy Φ . However, abstraction process will cause information loss inevitably. There is 
a tradeoff in abstraction process between state space and information loss, and vari-
ous model abstraction techniques choose the different tradeoffs.

The existing model abstraction techniques, discussed elaborately in Sect. 2, can 
be divided into two categories: (a) accurate abstraction, e.g., probabilistic bisim-
ulation-based abstraction (Larsen and Skou 1991; Milner 1980, 1971; Park 1981; 
Buchholz 1994; Segala and Lynch 1995; Paige and Tarjan 1987; Huynh and Tian 
1992; Hermanns and Katoen 2000; Derisavi 2007; Christian et al. 2013; Zhang et al. 
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2018; Baier and Hermanns 1997; Philippou et  al. 2000; Ferrer et  al. 2016; Her-
manns and Turrini 2012; Jonsson and Larsen 1991; Clarke et al. 1994b; Baier et al. 
2005a; Zhang 2008; Zhang and David 2016; Hashemi et al. 2013), symmetry reduc-
tion-based abstraction (Clarke et  al. 1996; Emerson and Sistla 1996; Norris and 
Dill 1996; Miller et al. 2006; Donaldson and Miller 2006; Emerson and Wahl 2003, 
2005a, b; Donaldson et al. 2009; Wahl et al. 2008; Kwiatkowska et al. 2006a; Kama-
leson 2018; Christopher 2012) and partial order reduction-based abstraction (Gerth 
et al. 1995; Peled 1993, 1996; Peled et al. 1997; Valmari 1992; Baier et al. 2004, 
2005b; D’Argenio and Niebert 2004; Ciesinski 2011; Fernandez-Diaz et  al. 2012; 
Hansen et  al. 2011; Kwiatkowska et  al. 2011; Hansen and Wang 2011; Winterer 
et al. 2017); (b) approximate abstraction, e.g., probabilistic CEGAR (counterexam-
ple-guided abstraction-refinement) (Clarke et al. 2003; Hermanns et al. 2008; Hahn 
et al. 2010; Chadha and Viswanathan 2010; Ma et al. 2019b), error-guided abstrac-
tion (Ma et  al. 2019b; Kwiatkowska et  al. 2006b; Kattenbelt et  al. 2010; Katoen 
and Sher 2017; Wachter and Zhang 2010; Winterer et al. 2020; Kwiatkowska et al. 
2020), indefinite result-guided abstraction (Fecher et al. 2006; Katoen et al. 2012; 
Luisa et al. 2017). In accurate abstraction, the abstract model is the quotient of con-
crete model, verification algorithm and counterexample generation are the same 
with traditional stochastic model checking. The abstract model of exact abstraction 
is not small enough, but it preserves almost all the properties. The accurate abstrac-
tion is difficult to realize in practical application at technical level, as it cannot 
reduce state space obviously, and the system models need to have the corresponding 
special structure. In approximate abstraction, probabilistic CEGAR has a wide range 
of practical applications, but the preserved properties are too less, only probabilis-
tic safety is preserved. Error-guided abstraction and indefinite result-guided abstrac-
tion are the potential model abstraction paradigms for stochastic model checking. 
The limitations of error-guided abstraction are: (1) the scope of preserved proper-
ties is too narrow, only probabilistic reachability, (2) the refinement algorithm is 
not efficient enough, and (3) counterexample generation is not included. Indefinite 
result-guided abstraction can preserve PCTL properties, but it isnot complete, which 
solves the MASMC problem partially, and the limitations of which are: (1) the veri-
fied system model is full probabilistic model, (2) the refinement is not involved for 
steering repartition of abstract model, and (3) counterexample generation is also not 
included.

1.2 � Our contributions

For preserving more properties in model abstraction, we argue that error-guided 
abstraction and indefinite result-guided abstraction can be combined orthogonally 
to form an ideal abstraction framework, as they have the complementary advantages. 
Game can characterize the new nondeterminism occurred by abstraction, which can 
reduce the state space of abstract model. Indefinite result-guided abstraction can 
over-approximate and under-approximate the concrete system model at the same 
time, which can get the tight lower and upper bounds. This paper is dedicated to this 
direction.
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In this paper, with a breakthrough in constructing and presenting abstract 
model, we propose a complete and efficient model abstraction framework, i.e., 
three-valued abstraction-refinement, for PCTL* (Probabilistic Computation 
Tree Logic*) stochastic model checking nondeterministic and probabilistic sys-
tems. As shown in Fig. 1, we mainly make the following contributions to solve 
the MA4SMC problem: (1) proposing a new abstract model which orthogo-
nally integrates interval probability of transition and game for nondeterminism, 
i.e. LGIPPN (Game Interval PPN with Label), and combining sample learning 
and BPSO (binary particle swarm optimization) algorithm to refine the abstract 
model; (2) generalizing two-player ( verifier and refuter ) stochastic game semantics 
(Liu et al. 2016; Shoham and Grumberg 2007) for three-valued PCTL* stochastic 
model checking the abstract model, and exploiting coloring process for strategy 
solving; (3) preserving the full PCTL* properties which is a proper superset of 
probabilistic safety, probabilistic reachability, and PCTL properties; (4) extend-
ing the evidence for refutation (Liu et al. 2016; Shoham and Grumberg 2007) to 
express the counterexample. This solution meets the conditions of perfect model 
abstraction well: (1) the state space of abstract model MA is significantly less than 
the concrete model M ; C2) MA ⊨ Φ → M ⊨ Φ , MA⊭ Φ → M⊭ Φ , except for the 
indefinite result. As far as we know, this is the first complete framework for three-
valued abstraction-refinement in stochastic model checking, and it is also the first 
abstraction framework for preserving full PCTL*. In this framework, the concrete 
system model that we deal with is LNPPN (Nondeterministic Probabilistic Petri 
Net with Label) (Albanese et al. 2008; Liu et al. 2016; Bernemann et al. 2020) 
which is a high-level formal model for modelling autonomous systems with non-
deterministic and probabilistic behaviors. The LNPPN model can be modelled 
from an existing autonomous system, or it is a design model by designer for 
developing the autonomous system. Note that this framework can also be used to 

LNPPN model PCTL* property Φ

LGIPPN PCTL* Φ in PNF

Game semantics for three-valued PCTL* stochastic model checking

Strategy solving for two-player stochastic game by three-valued coloring

Φ
Evidence for refutation(Counterexample)

Φ
Evidence for verification

Three-valued abstract with game Normalize

Identify indefinite nodes

Split abstract places

Refine by BPSO + sample learning

Indefinite

wins, Φwins, Φ

Fig. 1   Three-valued abstraction-refinement for PCTL* stochastic mode checking
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abstract other nondeterministic and probabilistic systems models, such as MDP or 
probabilistic automaton.

1.3 � Outline of the paper

In the next section, we survey the related works of model abstraction techniques for 
stochastic model checking. We give the necessary preliminaries for LNPPN, PCTL* 
and stochastic model checking LNPPN in Sect.  3. In Sect.  4, we propose a novel 
abstract model for nondeterministic and probabilistic system, and describe how to 
construct the abstract models for LNPPN. Section 5 extends the game-based PCTL* 
stochastic model checking to verify abstract model, which transforms the three-
valued PCTL* stochastic model checking into strategy solving of three-valued sto-
chastic game. We propose the refinement algorithm for refining the abstract model, 
which integrates BPSO and sample learning in Sect. 6. The experimental results are 
presented in Sect. 7. We conclude the paper in Sect. 8.

2 � Related works

There are some model abstraction techniques have been proposed for stochastic 
model checking. We classify them according to the methods of presenting and con-
structing abstract model, summarise their solutions to MA4SMC problem, and ana-
lyse the extent to which they satisfy the conditions of perfect abstraction.

2.1 � Simulation relation‑based model abstraction

(1)	 Strong probabilistic bisimulation
	   Strong probabilistic bisimulation (Larsen and Skou 1991), i.e., probabilistic 

bisimulation, is the quantitative extension of strong bisimulation (Milner 1980; 
Park 1981) on LTS (labelled transition system). It has been used for model 
abstraction for DTMC (discrete-time Markov chain), CTMC (discrete-time 
Markov chain) (Buchholz 1994) and MDP (Markov decision process) (Segala 
and Lynch 1995). Based on study (Paige and Tarjan 1987), Huynh et al. (1992) 
gave the first automatic constructing abstract model algorithm for DTMC. Her-
manns et al. (2000) adopted compositional method to transform the strong proba-
bilistic bisimulation of model into the strong probabilistic bisimulation of sub-
model, and used it to quantitatively verify POTS (plain-old telephone system). 
Derisavi (2007) firstly presented a symbolic algorithm and its implementation 
for the construct abstract model of CTMC, which was optimal for generating the 
smallest possible abstract model. Christian et al. (2013) leveraged satisfiability 
solvers to extract the minimised system from the PRISM modelling language 
directly, which could generate coarser abstract model and no state space was 
generated. Song et al. (Zhang et al. 2018) introduced novel notions of strong 
probabilistic bisimulation relation for PA (probabilistic automaton), which could 
get the coarsest abstract model among the existing strong probabilistic bisimu-
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lation techniques. Strong probabilistic bisimulation-based abstraction solves 
the MA4SMC problem in the following way: W1) use the strong probabilistic 
bisimulation minimization to construct a smaller equivalent abstract model, and 
use the quotient model to present abstract model; W2) use existing stochastic 
model checking algorithm to verify abstract model; W3) preserve all the quanti-
tative temporal logics; W4) use existing method to generate the counterexample. 
It meets condition C2) of perfect model abstraction well, and performs badly 
for condition C1). The limitation of it: the abstract model is so refined that the 
state space of it does not become smaller obviously, and the time to construct 
the abstract model may exceed the stochastic model checking time for concrete 
model.

(2)	 Weak probabilistic bisimulation
	   Compared with Strong probabilistic bisimulation, weak probabilistic bisimu-

lation (Zhang et al. 2018; Baier and Hermanns 1997; Philippou et al. 2000) is 
a coarse simulation relation. It solves the MA4SMC problem in the following 
way: W1) use the weak probabilistic bisimulation minimization to construct 
a smaller stuttering equivalent abstract model, and use the quotient model to 
present abstract model; W2) use existing stochastic model checking algorithm 
to verify abstract model; W3) preserve all the quantitative temporal logics with-
out next operator; W4) use existing method to generate the counterexample. 
Although some work (Baier and Hermanns 1997; Ferrer et al. 2016; Hermanns 
and Turrini 2012) manage to reduce the time complexity of constructing abstract 
model, it is still subject to the cost of a complex minimization algorithm.

(3)	 Strong probabilistic simulation
	   Strong probabilistic simulation (Larsen and Skou 1991; Jonsson and Larsen 

1991) can be seen as the quantitative extension of strong simulation (Milner 
1971; Clarke et al. 1994b). Baier et al. (2005a) proved that equivalence of strong 
probabilistic simulation over DTMC or CTMC was in accordance with strong 
probabilistic bisimulation. For MDP, the quotient under strong probabilistic 
simulation is strict coarser than strong probabilistic bisimulation. Zhang et al. 
(2008, 2016) pursued the optimization of constructing abstract model based on 
strong probabilistic bisimulation, and Huang et al. (2019) generalized proba-
bilistic simulation to probabilistic pushdown automata and finite-state systems. 
Strong probabilistic simulation-based abstraction solves the MA4SMC problem 
in the following way: W1) use the strong probabilistic simulation minimization 
to construct a smaller abstract model, and use the quotient model to present 
abstract model; W2) use existing stochastic model checking algorithm to verify 
abstract model; W3) preserve the truth value of quantitative safety temporal 
logics; W4) use existing method to generate the counterexample. It meets the 
perfect model abstraction C1) well, but for C2), it just preserves the truth value 
of quantitative safety temporal logics formula Φ, i.e., MA ⊨ Φ → M ⊨ Φ.

(4)	 Weak probabilistic simulation
	   Weak probabilistic simulation is the coarsest among all the simulation 

relations. At present, the related work about weak probabilistic simulation is 
less (Zhang 2008; Zhang and David 2016; Hashemi et al. 2013). It solves the 
MA4SMC problem in the following way: W1) use the weak probabilistic simu-



	 Automated Software Engineering (2022) 29:29

1 3

29  Page 8 of 46

lation minimization to construct a smaller abstract model, and use the quotient 
model to present abstract model; W2) use existing stochastic model checking 
algorithm to verify abstract model; W3) preserve the truth value of quantitative 
safety temporal logics without next operator; W4) use existing method to pro-
duce the counterexample. It meets the perfect model abstraction C1) well, but 
for C2), it just preserves the truth value of quantitative safety temporal logics 
without next operator.

2.2 � Symmetry reduction‑based model abstraction

Symmetry reduction (Clarke et al. 1996; Emerson and Sistla 1996; Norris and Dill 
1996; Miller et al. 2006) exploits presence of replication within model to be veri-
fied. Donaldson et al. (2006) applied symmetry reduction (Emerson and Wahl 2003, 
2005a) for non-probabilistic symbolic model checking in PRSIM with MDP or 
DTMC semantics, translated the SP (symmetric PRISM) program into the reduced 
form, and developed corresponding tool GRIP. Based on study (Donaldson and 
Miller 2006), Donaldson et  al. (2009) presented a much richer language, which 
allowed specification of probabilistic systems in a way that guaranteed the applica-
bility of the generic representative technique, together with an extended translation 
algorithm. Via dynamic symmetry reduction (Emerson and Wahl 2005b; Wahl et al. 
2008), Kwiatkowska et al. (2006a) proposed an efficient algorithm for the construc-
tion of quotient models of DTMC, CTMC, MDP, which were built PRISM with 
MTBDD data structure. Kamaleson (2018) and Christopher (2012) applied symme-
try reduction to stochastic model checking with explicit states, which could the auto-
mated detect component symmetries or arbitrary data in the probabilistic specifica-
tion. Symmetry reduction-based abstraction uses quotient to present abstract model. 
The relation between it and concrete model is probabilistic bisimulation, but it needs 
less cost when constructing abstract model compared with probabilistic bisimula-
tion-based abstraction.

2.3 � Partial order reduction‑based model abstraction

Partial order reduction methods (Gerth et al. 1995; Peled 1993; Peled et al. 1997; 
Valmari 1992) rely on expanding a state space only partially, exploring representa-
tives of sets of executions of a system. Baier et al. (2004) firstly investigated partial 
order reduction for LTL without next operator model-checking MDP via a variant 
of Peled’s ample set method (Peled 1993, 1996). Argenio et  al. (2004) enhanced 
ample set conditions of study (Baier et al. 2004) to make the abstraction preserve 
maximum and minimum probabilities of next-free LTL properties, which was 
implemented in LiQuor (Ciesinski 2011). Baier et al. (2005b) presented the partial 
order reduction criteria for verifying branching time properties formalized by PCTL. 
Fernandez et al. (2012) regarded the work of Baier et al. (2004, 2005b), D’Argenio 
and Niebert (2004) as the dynamic partial order reduction methods, the drawback 
of which was that they can hardly be combined with other techniques to tackle the 
state space explosion problem. It studied partial order reduction realized by a static 
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analysis which injected the reduction criteria into the control flow graph. Different 
from partial order reduction via ample set, Hansen et al. (2011) and Kwiatkowska 
et al. (2011) firstly proposed a weak variant of the stubborn set (Hansen and Wang 
2011) to reduce the state space of MDP, which would preserve the maximal prob-
abilities of reaching bottom end components under far schedulers and realizability 
of unconditional fairness. This work is then extended in Winterer et al. (2017). Par-
tial order reduction-based abstraction can be seen as the weak probabilistic bisimu-
lation-based abstraction.

2.4 � Probabilistic counterexample‑guided model abstraction

CEGAR (counterexample-guided abstraction-refinement) (Clarke et  al. 2003) has 
been en vogue for the automatic verification of very large systems in the past years. 
At present, there are two methods for applying CEGAR in stochastic model check-
ing, i.e., probabilistic CEGAR (Hermanns et  al. 2008; Chadha and Viswanathan 
2010), which are based on over-approximation of concrete model. Hermanns et al. 
(2008) firstly applied CEGAR for stochastic model-checking probabilistic automa-
ton, and developed the corresponding tool PASS (Hahn et  al. 2010). It solves the 
MA4SMC problem in the following way: W1) use counterexample-guided refine-
ment to construct abstract model, and use the abstract quotient automaton to pre-
sent abstract model; W2) use existing stochastic model checking algorithm to verify 
abstract model; W3) preserve the truth value of reachability properties; W4) use 
existing method to produce the counterexample expressed by a finite Markov chain. 
It meets condition C1) of perfect model abstraction well, and performs badly for 
condition C2), for reachability property Φ, i.e., MA ⊨ Φ → M ⊨ Φ . Chadha et  al. 
(2010) pointed out that DTMC could not serve as counterexample for the richer 
class of properties and argued that no formal statement characterizing process based 
on the refinement algorithm outlined in Hermanns et al. (2008). This was supple-
mented by Ma et al. (2019b), in which counterexample was represented with sub-
graph. They can be seen as the second solution for MA4SMC problem in the follow-
ing way: W1) use counterexample-guided refinement to construct abstract model, 
and use the another MDP or sub-graph to present abstract model; W2) use exist-
ing stochastic model checking algorithm to verify abstract model; W3) preserve the 
truth value of safety and liveness fragments of PCTL; W4) use existing method with 
heuristics to generate the counterexample expressed by a sub-MDP or sub-graph. It 
meets condition C1) of perfect model abstraction well, and does not perform well 
for condition C2), i.e., for safety and liveness fragments of PCTL formulae Φ, i.e., 
MA ⊨ Φ → M ⊨ Φ.

2.5 � Error‑guided model abstraction

Error-guided abstraction-refinement (game-based abstraction) proposed by Marta, 
Mark, et  al. (Kwiatkowska et  al. 2006b; Kattenbelt et  al. 2010; Katoen and Sher 
2017) is a new framework for model abstraction in stochastic model checking. 
Error-guided abstraction-refinement framework comprises an abstraction based 
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on stochastic 2-player games, two refinement methods (strategy-based refinement, 
value-based refinement) and an efficient algorithm for an abstraction-refinement 
loop. Recent extensions to the PASS tool (Wachter and Zhang 2010) use this frame-
work and demonstrate that it is faster and yields smaller abstractions. Winterer et al. 
(2020) extended and complemented the work (Katoen and Sher 2017) for strategy 
synthesis for POMDPs in robot planning. The solution of game-based abstraction to 
the MA4PMC problem is as follows: W1) use error-guided refinement to construct 
abstract model, and use stochastic game to present abstract model; W2) use exist-
ing stochastic game algorithm (Kwiatkowska et al. 2006b, 2020) to analyze abstract 
model; W3) allows lower and upper bounds to be computed for the values of reach-
ability properties of the MDP; W4) do not involve the counterexample generation. It 
meets condition C1) of perfect model abstraction well, but the properties to be veri-
fied is limited to reachability properties.

2.6 � Indefinite result‑guided model abstraction

In recent years, indefinite result-guided abstraction-refinement (three-valued abstrac-
tion) (Fecher et al. 2006) is used in stochastic model checking, which is both over-
approximation and under-approximation of concrete model. Fecher et  al. (2006) 
considered three-valued abstraction for DTMC firstly. It solves the MA4SMC 
problem partially in the following way: W1) use abstract Markov chain to present 
abstract model, do not involve refinement method; W2) use a dedicated three-val-
ued stochastic model checking to verify abstract model; W3) preserve PCTL of 
the DTMC, except for the indefinite results; W4) do not include the counterexam-
ple generation. Katoen et  al. (2012) extended the work of Fecher et  al. (2006) to 
CTMC, and laid down the theoretical underpinnings of three-valued abstraction for 
DTMC and CTMC. Luisa et al. (2017) extended the work of Fecher et al. (2006), 
Katoen et  al. (2012) to Spatio-Temporal Logic for stochastic systems, and Belar-
dinelli et al. (2019) generalized the three-valued abstraction to verify strategic prop-
erties in multi-agent systems with imperfect information. It solves the MA4SMC 
problem partially in the following way: W1) use interval Markov chain to present 
abstract model, do not involve refinement method; W2) use a dedicated three-valued 
stochastic model checking to verify abstract model; W3) preserve PCTL/CSL of the 
DTMC/CTMC, except for the indefinite results; W4) do not include the counterex-
ample generation. The work of Katoen et al. (2012), Luisa et al. (2017), Belardinelli 
et  al. (2019) meets condition C1) and C2) of perfect model abstraction well, but 
they are incomplete, and there is not yet an implementation to test this on practical 
examples.
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3 � Preliminaries

3.1 � LNPPN

Petri net is a high-level formal method for modeling, analyzing, and verifying 
the complex systems. It was proposed by C. A. Petri in his dissertation “Com-
munication with Automata” in 1962. Today, it has been widely used in all aspects 
of software or system engineering to ensure the quality. For modeling the com-
plex system with stochastic behaviors, probability measurement theory is intro-
duced in Petri net (Albanese et al. 2008; Liu et al. 2016; Bernemann et al. 2020), 
which is under the guidance of general net theory (Petri 1979). At present, there 
are 4 types of probabilistic Petri nets for modelling stochastic systems, as shown 
in Table  1. We consider the nondeterministic probabilistic system models, i.e., 
NPPN. PPN can be seen as the special case of NPPN without nondeterminism. 
LNPPN (Liu et al. 2016) is the NPPN with label functions.

Definition 1  LNPPN (NPPN with Label). The LNPPN can be defined as a 7-tuple 
M = (S, T; F, f ; C; AP, L) , where: (1) T = (Transition,Prt) , Transition denotes the 
transition act, Prt ∈ [0, 1] denotes the success probability of the transition; T  is the 
act transition (AT) with the probability equals 1, or the probabilistic act transition 
(AT ,Prt) with an act satisfying a certain probability distribution, or the pure proba-
bility transition (PT) without any act. If Prt = 0 , it means that the transition is inva-
lid; (2) S is the set of places,S ∩ T = � , S ∪ T ≠ � , F ⊆ S × T ∪ T × S , which is the 
flow relation of net, and N = (S,AT ,F) is the pure net, where AT  is the act transition 
with probability equals 1; (3) f = fT ∪ fS ∪ fS×T ∪ fT×S , fT ∶ T → 2Transition×Prt , 
fS = S → [0, 1] , fS×T = S × T → [0, 1] , fT×S = T × S → [0, 1] , and the value of fS×T 
is determined by the nondeterminism of transitions, the value of fT×S can be 
obtained from the probability value of fT (t) , i.e., �Prt

(
fT (t)

)
 , the value of fS except 

initial place can be computed according to the value of fS×T and fT×S ; (4) ∀t ∈ T  , 
∃s ∈ S, fT×S = 1 − �Prt

(
fT (t)

)
. fT×S(t × s) = 0 , if �Prt

(
fT (t)

)
= 1 , which represents 

transition (t, s) and place s are invalid; (5) C is the set of nondeterminism classes, 
and each nondeterminism class is a set comprised of 

(
s, ti

)
 . If {(

s, t1
)
,
(
s, t1

)
…

(
s, t1

)}
∈ C , then 

n∑
i=1

fS×T
�
s, ti

�
= 1 ; (6) AP is a set of atomic prop-

ositions; (7) L ∶ S → 2AP is the labeling function, which can express the require-
ments of users, i.e., the properties.

Table 1   Petri nets with probability measurement theory

Fully probabilistic Nondeterministic + probabilistic

Discrete time Probabilistic Petri net
(PPN)

Nondeterministic probabilistic 
Petri net (NPPN)

Continuous time Stochastic Petri net
(SPN)

Probabilistic timed Petri net
(PTPN)
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A LNPPN M is finite, if S and T  are finite. The size of M is the number of places 
and transitions plus the number of pairs (s, t) with fS×T > 0 and (t, s) with fT×S > 0 . 
A LNPPN model is measurable with probability (Liu et al. 2016).

Definition 2  Adversary (Policy, or Scheduler) of LNPPN. An adversary of a 
LNPPN model M is a function Adv ∶ S+ → T  , such that Adv

(
s0s1s2 … sn

)
∈ C for 

all s0s1s2 … sn ∈ S+ . The path π = s0 →
t1 s1 →

t2
⋯ →

ti si ⋯ is called a Adv-path if 
ti = Adv

(
s0 … si−1

)
 for all i > 0.

3.2 � PCTL* in release‑PNF

Every PCTL* (Baier and Katoen 2008) formula can be transformed as a canonical 
form. Release-PNF (positive normal form) of PCTL* is a kind of canonical forms 
for PCTL*, which is described by a restriction that negation operator only occurs 
adjacent to atomic propositions. It can avoid the exponential blowup in transforming 
the PCTL* formulae into PNF.

Definition 3  Release-PNF of PCTL*. Let AP be a set of atomic proposi-
tions, the release-PNF of PCTL* state formulae Φ are defined as follows: 
Φ ∶∶= true|false|a|¬a|Φ ∧ Φ|Φ ∨ Φ|P∼p(Ψ) , where a ∈ AP,Ψ is the path formula, 
∼∈ {⟨,≤,⟩,≥} , and p ∈ [0, 1] is the rational bound; the release-PNF of PCTL* path 
formulae Ψ are defined as follows: Ψ ∶∶= Φ|Ψ ∧ Ψ|Ψ ∨ Ψ|XΨ|ΨUΨ|ΨRΨ , where 
the temporal modality R is dual to the until operator U . Ψ0RΨ1 is “true” over a path, 
if Ψ1 always holds, a requirement that is released no sooner than Ψ0 becomes valid.

3.3 � Stochastic model checking LNPPN

The descriptive powers of PPN, NPPN, SPN and PTPN are the same with low-lever 
formal model DTMC, MDP, CTMC (Continuous-time Markov Chain) and CTMDP 
(Continuous-time Markov Decision Process), respectively. State-of-the-art stochas-
tic model checker, e.g., PRISM, PAT, can verify LNPPN, Markov process or proba-
bilistic automaton, indiscriminately. Actually, PCTL* stochastic model checking 
NPPN is a very complex process, as shown in Fig. 2, because the PCTL* is a combi-
nation of PCTL and LTL with probability. The time complexity of it is proved to be 
double exponential in | Ψ | and polynomial in the size of NPPN M (Clarke et al. 2018; 
Liu et al. 2016), where Ψ is the path formula in PCTL* Φ . Liu et al. (2016) pro-
posed a game (Shoham and Grumberg 2007)-based PCTL* stochastic model check-
ing algorithm, which yielded a single exponential time complexity in | Ψ | for PCTL* 
stochastic model checking LNPPN. They proved that this cannot be improved fur-
ther, as the LTL with probability stochastic model checking LNPPN is PSPACE-
completeness. Moreover, in reference Liu et al. (2016), the counterexample was gen-
erated by evidence of winning strategy of player refuter refuter . It is the first work to 
generate counterexamples for PCTL* stochastic model checking.

From the point of view of time complexity, abstraction for PCTL* stochastic 
model checking LNPPN is also very important and necessary. The model abstraction 
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methods in Sect.  2 can also be used to LNPPN, if they don’t take the LNPPN as 
the concrete model, originally. It should be noted that there are currently no model 
abstraction methods to preserve full PCTL* properties for LNPPN.

4 � Three‑valued abstraction for LNPPN

In the fields of classical model checking, three-valued abstraction (Fecher et  al. 
2006; Shoham and Grumberg 2007) has been advocated as a better method for fight-
ing state space explosion problem. It uses may and must transitions between abstract 
states to over- and under-approximate the concrete model. When lifting the three-
valued abstraction to nondeterministic and probabilistic system model (i.e., LNPPN 
in this paper), it should be considered to handle the new nondeterminism and the 
probabilistic transition for over- and under-approximation in abstraction process.

5 � Abstract model

We firstly present two kinds of extended LNPPN, which are used later for defining 
the abstract model of LNPPN.

Definition 4  Interval NPPN with Label (LINPPN). The interval LNPPN (LINPPN) 
can also be defined as a 7-tuple M = (S, T; F, f ; C; AP, L) , where: (1) 
T =

(
Transition,

[
Ptl,Ptu

])
 , Transition denotes the transition act, Ptl,Ptu ∈ [0, 1] 

Fig. 2   PCTL* stochastic model checking
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denotes the success probability interval of the transition, and Ptl ≤ Ptu ; (2) 
f = fT ∪ fS ∪ fS×T ∪ fT×S , fT ∶ T → 2Transition×[Ptl,Ptu] , and Ptl,Ptu ∶ T → [0, 1] 
describe the lower and upper bounds for the success probabilities of T  , 
fS = S → [0, 1] , fS×T = S × T → [0, 1] describe the probabilities between places and 
transitions, the value of fT×S can be obtained from the probability interval value of 
fT (t) , i.e., [ �Ptl

(
fT (t)

)
, �Ptu

(
fT (t)

)
 ], the value of fS except initial place can be com-

puted according to the value of fS×T and fT×S ; (3) ∀t ∈ T  , 
∃s ∈ S, fT×S =

[
1 − �Ptu

(
fT (t)

)
, 1 − �Ptl

(
fT (t)

)]
. fT×S(t × s) = [0, 0] , if the probability 

interval value of fT (t) is [1, 1] , which represents transition (t, s) and place s are inva-
lid; (4) C is the set of nondeterminism classes, and each nondeterminism class is a 
set comprised of 

(
s, ti

)
 and 

∑
�Ptl

�
fT
�
ti
��

≤ 1 ≤
∑

�Ptu

�
fT
�
ti
��

 . If {(
s, t1

)
,
(
s, t1

)
…

(
s, t1

)}
∈ C , then 

n∑
i=1

fS×T
�
s, ti

�
= 1 ; (5) the others are the same 

with LNPPN.

An INPPN can be regarded as the extension of NPPN in transition probability, 
which permits the probability value of transition is the interval. The standard and 
complete LNPPN is a special case of LINPPN with Ptl = Ptu.

Definition 5  Game Probabilistic Petri Net with Label (LGPPN). A Game Probabilis-
tic Petri Net with Label (LGPPN) is a tuple M =

(
S,

(
S0, S1, Sp

)
, T; F, f ; AP, L

)
 

where: (1) 
(
S0, S1, Sp

)
 is a partition of S , and places in S0, S1 and Sp are called ‘Player 

0’, ‘Player 1’ and ‘Probabilistic’ places, respectively; (2) if place s ∈ S0 ∪ S1 ( s is 
called player place), fS×T (s, t) ∈ [0, 1] for every t ∈ T  , and if s ∈ Sp , 

∑
t∈T

fS×T (s, t) = 1 ; 

(3) the others are the same with LNPPN.

On the one hand, a LGPPN can be seen as the turn-based stochastic 2-player 
game played on NPPN. On the other hand, we can say that LGPPN extends the 
LNPPN with another non-deterministic choice among the enabled transitions in 
place s occurred. Moreover, either the non-deterministic choice has been made for 
reaching place s, or the non-deterministic choice has to be made after the enabled 
transitions in place s having been occurred. The standard and complete LNPPN can 
be defined as 

(
S,

(
S0, ∅, Sp

)
, T; F, f

)
 in LGPPN form, which substitutes the set of 

nondeterminism classes C with 
(
S0, ∅, Sp

)
.

To contain more information in abstract model for both negative and affirmative 
results of three-valued PCTL* stochastic model checking, we extend both LGPPN 
and LINPPN orthogonally to present abstract model that is named LGIPPN. As 
defined in Definition 5, ‘Player 0’ making choices in S0 corresponds to the new non-
determinism caused by abstraction, ‘Player 1’ making choices in S1 corresponds to 
the original nondeterminism in LNPPN, lower bound and upper bound of the inter-
val under- and over-approximate probabilistic transition, respectively.

Definition 6  Game Interval PPN with Label (LGIPPN). A LGIPPN can be defined 
as M =

(
S,

(
S0, S1, Sp

)
, T; F, f ; AP, L

)
 where: (1) 

(
S0, S1, Sp

)
 is a partition ofS , 

and places in S0, S1 and Sp are called ‘Player 0’, ‘Player 1’ and ‘Probabilistic’ places, 
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respectively; (2) f = fT ∪ fS ∪ fS×T ∪ fT×S , fT ∶ T → 2Transition×[Ptl,Ptu] , and 
Ptl,Ptu ∶ T → [0, 1] describe the lower and upper bounds for the success probabili-
ties of T , fS = S → [0, 1] , fS×T = S × T → [0, 1] describe the probabilities between 
places and transitions, the value of fT×S can be obtained from the probability interval 
value of fT (t) , i.e., [ �Ptl

(
fT (t)

)
, �Ptu

(
fT (t)

)
 ], the value of fS except initial place can be 

computed according to the value of fS×T and fT×S ; (3) ∀t ∈ T  , 
∃s ∈ S, fT×S =

[
1 − �Ptu

(
fT (t)

)
, 1 − �Ptl

(
fT (t)

)]
. fT×S(t × s) = [0, 0] , if the probability 

interval value of fT (t) is[1, 1] , which represents transition (t, s) and place s are inva-
lid; (4) if place s ∈ S0 ∪ S1 ( s is called player place), fS×T (s, t) ∈ {0, 1} for 
everyt ∈ T  , ifs ∈ Sp , 

∑
t∈T

fS×T (s, t) = 1 , and for everyti ∈ s. , ∑ �Ptl

�
fT
�
ti
��

≤ 1 ≤
∑

�Ptu

�
fT
�
ti
��

 
and �Ptl

(
fT
(
ti
))

≤ �Ptu

(
fT
(
ti
))

 ; (5) L ∶ S × AP → {true, ?, flase} is a labeling func-
tion that assigns a truth value in {true, ?, flase} to each pair of place in S and propo-
sition in AP ; (6) the others are the same with LNPPN.

Note that we don’t consider the place without any outgoing transition, which 
can be implemented by augmenting a transition to itself with probability 1. 
L(s, a) = ? means that the truth value of an atomic proposition a is indefinite in 
the place s. Player 0, probability interval and the third value “?” are used to model 
explicitly a loss of information due to abstraction of place and probabilistic tran-
sition properties of the LNPPN, respectively. We call a LGIPPN model a LNPPN 
if S1 = � , Ptl = Ptu , and there is no proposition taking value ? in any place. The 
relationship among LNPPN, ILNPPN, GLPPN and LGIPPN is shown in Fig. 3.

We formalize the notion of the 3-valued abstraction in Definition 7 on the level 
of interval LGIPPN, because: (1) the LNPPN is a special case of LGIPPN; (2) 
generally speaking, appropriate abstract model LGIPPN cannot be constructed at 
the first time, when abstraction is used after the first time, the concrete model is 
just LGIPPN which is constructed in abstract process at last time.

Definition 7  Three-valued abstraction of LGIPPN. Let 
M =

(
S,

(
S0, S1, Sp

)
, T; F, f ; AP, L

)
 be a concrete model and 

P =
{
P1,P2,… ,Pn

}
⊆ 2S a partition ofS , i.e., Pi ≠ ∅ , Pi ∩ Pj = � , for i ≠ j , 

1 ≤ i, j ≤ n , and ∪n
i=1

Pi = S . Then the three-valued abstract model 
MA =

(
SA,

(
SA
0
, SA

1
, SA

p

)
, TA; FA, f A; AP, LA

)
 of M induced by P can be defined 

as:

(1)	 SA = SA
0
∪ SA

1
∪ SA

p

Fig. 3   Relationship between 
LNPPN, LGPPN, LINPPN and 
LGIPPN

LNPPN

LGPPN ILNPPN

LGIPPN

Interval transition Nondeterminism

Interval transition Nondeterminism

Nondeterminism+ Interval transition
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(2)	 SA
0
= P ; SA

1
 is composed of place s from S , whose next places reached by s. are 

identical after lifting; SA
p
 is set of probabilistic transitions emanating from each 

element of SA
1
 , in the same style as M.

(3)	 For ∀tA
i
 between (sA

1
)m    and 

(
sA
0

)
k
 , �Ptl

�
fTA

�
tA
i

��
= inf

⋅

�
tj
�
∈(sA

1
)m

⎛⎜⎜⎜⎝

∑
�
tj
�
⋅∈
�
sA
0

�
k

�Ptl

�
fT
�
tj
��⎞⎟⎟⎟⎠

 and 

�Ptu

�
fTA

�
tA
i

��
= min

�
1, sup

⋅(tj)∈(sA1 )m

�
∑

(tj)⋅∈(sA0 )k

�Ptu

�
fT
�
tj
����

(4)	 TA is the set of tA
i

(5)	 FA and f A can be got from SA , 
(
SA
0
, SA

1
, SA

p

)
 and TA according to Definition 5.

(6)	 LA
�
(sA

0
)n, a

�
=

⎧
⎪⎨⎪⎩

true, if L(s, a) = true for all s ∈ (sA
0
)n

false, if L(s, a) = false for all s ∈ (sA
0
)n

?, otherwise

(7)	 Initial place of MA is sA
init

= Pi , where initial place of M sinit ∈ Pi . Initial distribu-
tion of MA is �A

0

�
(sA

0
)n
�
=

∑
s∈(sA

0
)n

�0(s).

Note that partition P is usually depending on where M are used. In this paper, 
partition P is based on invisible variables (Clarke et al. 2002) which means that an 
abstract place ( Pi ) “agrees” on all the variables that are visible. Intuitively speaking, 
the Player 0 place is an element of the partition of places in concrete M . Player 0 
selects a concrete place in the set P firstly, then Player 1 selects a probability dis-
tribution over the concrete ti , which is a distribution over abstract places rather than 
concrete places.

Theorem 1  For any LGIPPN M and partition P, the three-valued abstract model 
MA constructed by Definition 7 is also a LGIPPN.

Proof  It is obvious that SA , 
(
SA
0
, SA

1
, SA

p

)
 , FA , f A , AP and LA are all in accordance 

with the definition of LGIPPN. To prove MA is a LGIPPN, it is just to prove: (1) 
�Ptl

(
fTA

(
tA
i

))
∈ [0, 1] , �Ptu

(
fTA

(
tA
i

))
∈ [0, 1] , and �Ptl

(
fTA

(
tA
i

))
≤ �Ptu

(
fTA

(
tA
i

))
 ; (2) ∑

�Ptl

�
fTA

�
tA
i

��
≤ 1 ≤

∑
�Ptu

�
fTA

�
tA
i

��
 . The former obligation (1) follows by easy 

derivation from (3) of Definition 7. We show that obligation (2) holds: 
∑

�Ptl

�
fTA

�
tA
i

�� ∑
(tj)⋅∈SA0

�
∑

⋅(tj)∈(SA1 )m,(tj)⋅∈(S
A
0 )k

�Ptl

�
fT
�
tj
���

≤ 1 ; 
∑

�Ptu

�
fTA

�
tA
i

��
=

∑
�
tj

�
⋅∈SA

0

⎛⎜⎜⎜⎝
min

⎧⎪⎨⎪⎩
1, sup

⋅

�
tj

�
∈(SA

1
)m

⎛⎜⎜⎜⎝

∑
�
tj

�
⋅∈
�
SA
0

�
k

�Ptu

�
fT
�
tj
��⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭

⎞⎟⎟⎟⎠
≥

∑
�
tj

�
⋅∈SA

0

⎛⎜⎜⎜⎝

∑
⋅

�
tj

�
∈(SA

1
)m ,

�
tj

�
⋅∈
�
SA
0

�
k

�Ptu

�
fT
�
tj
��⎞⎟⎟⎟⎠

≥ 1 . So, MA 

is a LGIPPN.� □
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5.1 � Simulation relation on LGIPPN

To compare the behavior between LGIPPN model and its abstract model, we will 
discuss simulation relation on LGIPPN model. Simulation relations have been 
extensively studied both in classical model checking and stochastic model checking. 
The state-based simulation for probabilistic models (Jonsson and Larsen 1991) is a 
preorder on a state space. It requires that if state u simulates state v, u can mimic the 
stepwise behavior of v but may have more behavior that cannot be matched by u. 
This state-based simulation can be employed to distributions over places of LGIPPN 
model via weight function (Jonsson and Larsen 1991).

Definition 8  Distribution-based simulation. Let S , S′ be the set of places in LGIPPN 
model, and � ∈ distr(S) , �� ∈ distr

(
S�
)
 . For R ⊆ S × S� , �′ simulates � w.r.t. R , 

denoted �R�′ , if there exists a weight function Δ ∶ S × S� → [0, 1] such that for all 
u ∈ S , v ∈ S� : (1) Δ(u, v) > 0 ⇒ uRv , (2) 

∑
s�∈ S�

Δ
�
u, s�

�
= �(u) , (3)

∑
s∈S

Δ(s, v) = ��(v)

Distribution-based simulation can be computed by reducing them to a maximum-
flow problem (Zhang et al. 2018). It plays an important role in defining simulation 
relation on LGIPPN model.

Definition 9  Probabilistic simulation. Let M , M′ be LGIPPN models, �0 , 
�

′

0
 be the initial distributions. R ⊆ S × S� is a probabilistic simulation rela-

tion for 
(
M,M′

)
 , which holds that: (1) �0R�

′

0
 , (2) for ∀

(
s, s�

)
∈ R : (2–1) 

L�
(
s�, a

)
≠ ? ⇒ L�

(
s�, a

)
= L(s, a) , (2–2) s →t � implies s′ →t′ �′ such that �R�′ , 

where t =
(
Transition,

[
Ptl,Ptu

])
 , t� =

(
Transition,

[
Pt

�

l
,Pt

�

u

])

If there exists a probabilistic simulation relation for 
(
M,M′

)
 , we say that LGIPPN 

model M is simulated by M′ , denoted M⪯M�.

Theorem 2  Given a LGIPPN model M, the LGIPPN model MA obtained by apply-
ing Definition 7 is such that M ≼ MA.

Proof  In order to proveM ≼ MA , we just show that R = {(s,Pi)|s ∈ Pi,Pi ∈ P} is a 
probabilistic simulation in Definition 8. According to Definition 7-(7), 
�A
0

�
(sA

0
)
n

�
=
∑

s∈(sA
0
)
n

�0(s) , it directly follows �0R�
A
0
 and fulfils condition (1) of Defi-

nition 8. It can also show that LA fulfills condition (2–1) of Definition 8 by the Defi-
nition 7-(6). Let

(
s, (sA

0
)
n

)
∈ R , s

t
→ � andPi

tA

→ �A , then we construct a weight func-
tion Δ and show it fulfills the condition (2–2) of Definition 8, i.e., the condition (1) 
(2) (3) of Definition 7. (1) for v ∈ P let�A(v) =

∑
u∈v�(u) , and for u ∈ S 

letΔ(u, v) =
{

�(u) if (u, v) ∈ R

0 otherwise
 , function �A is a probability distribution if � 

is:
∑

v∈P �
A(v) =

∑
v∈P, u∈v �(u) =

∑
u∈S �(u) = 1 . Then forv

tA

→ Pi , 
�Ptl (fT (t

A)) ≤ �A(v) ≤ �Ptu(fT (t
A)) is hold according to Definition 6. Condition (1) of 

Definition 7 is fulfilled trivially, since Δ(u, v) = 0 if (u, v) ∉ R . (2) ∑
P i∈ P

Δ
�
u,P i

�
= �(u) , condition (2) of Definition 7 is fulfilled. 
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(3)
∑

u∈S Δ(u, v) =
∑

u∈v Δ(u, v) =
∑

u∈v �(u) = �A(v) , condition (3) of Definition 7 
is fulfilled. So, M ≼ MA.� □

5.2 � Preservation of PCTL*

When evaluating a PCTL* formula over the LGIPPN model, a place may no longer just 
satisfy or refuse the formula, i.e., “true” or “false”, but indefinitely satisfy or refuse it, 
i.e., value “?”. If a formula is evaluated to “true” or “false” in a place, we say that the 
result is definite. Otherwise, we say that it is indefinite. We generalize Kleene’s strong 
3-valued propositional logic (Paoli and Prabaldi 2020) to interpret propositional opera-
tors on the LGIPPN model. Operator conjunction ⊓ is defined as follows: the operation 
value is “true”, if both arguments of ⊓ are “true”; the operation value is “false”, if either 
of arguments is “false”; and the operation value is “?” (i.e., the value is indefinite), 
otherwise. Operator negation ¬ maps “true” to “false”, “false” to “true”, and “?” to “?”. 
Operator disjunction 

⨆
 can be derived from the operator ⊓ with De Morgan’s laws.

Given a LGIPPN model M =
(
S,

(
S0, S1, Sp

)
, T; F, f ; AP, L

)
 a PCTL* state 

formula Φ , the three-valued semantics of Φ in a place s , denoted as 
[
(M, s) ⊨3 Φ

]
 , can 

be defined inductively:
[
(M, s) ⊨3 true

]
= true

�
(M, s)⊨3 a

�
=

⎧⎪⎨⎪⎩

true if a ∈ L(s)
false if ¬ a ∈ L(s)
? otherwise

�
(M, s) ⊨3 ¬Φ

�
=

⎧⎪⎨⎪⎩

true if s⊭3Φ

false if s ⊨3 Φ

? otherwise

�
(M, s)⊨3 Φ0 ∧ Φ1

�
=

⎧
⎪⎨⎪⎩

true if
�
(M, s) ⊨3 Φ0

�
= true ⊓

�
(M, s) ⊨3 Φ1

�
= true

false if
�
(M, s) ⊨3 Φ0

�
= false ⊔

�
(M, s) ⊨3 Φ1

�
= false

? otherwise

�
(M, s)⊨3 P≥p(Ψ)

�
=

⎧⎪⎨⎪⎩

true if Probinf(s, Ψ, true) ≥ p

false if Probsup(s, Ψ, false) < p

? otherwise
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where Probinf(s,Ψ, true) is the probability measure of path set such that 𝜋 ⊨ Ψ , i.e., 
Prob(s, Ψ)= Prs({𝜋 ∈ Path(s) |𝜋 ⊨ Ψ}) , Path(s) is the path set which starts with 
places . Case 

[
(M, s) ⊨3 Φ0 ∨ Φ1

]
 can be derived from 

[
(M, s) ⊨3 Φ0 ∧ Φ1

]
 according 

to De Morgan’s laws. Cases 
[
(M, s) ⊨3 P>p(Ψ)

]
 and 

[
(M, s) ⊨3 P<p(Ψ)

]
 are similar to 

the cases 
[
(M, s) ⊨3 P≥p(Ψ)

]
 and 

[
(M, s) ⊨3 P≤p(Ψ)

]
 , respectively, but we exchange ≥ 

by > and vice versa. For a path � = s0 →
t0 s1 →

t1 s2 →
t2 s3 … (abbr.� = s0s1s2s3 … , 

if it is not related tot ), the three-valued semantics of a path formula Ψ on� , denoted [
(M,𝜋) ⊨3 Ψ

]
 , is defined inductively as follows:

�
(M, 𝜋) ⊨3 Ψ0 ∧ Ψ1

�
=

⎧⎪⎪⎨⎪⎪⎩

true if
�
(M, 𝜋) ⊨3 Ψ0

�
= true ⊓

�
(M, 𝜋) ⊨3 Ψ1

�
= true

false if
�
(M, 𝜋) ⊨3 Ψ0

�
= false ⊔

�
(M,𝜋) ⊨3 Ψ1

�
= false

? otherwise

 

�
(M,𝜋) ⊨3 Ψ0UΨ1

�
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

true
if ∃ 0 ≤ k < �𝜋� ∶ [

���
M, sk

�
⊨3 Ψ1

�
= true

�
⊓

(∀j < k ∶
��
M, sj

�
⊨3 Ψ0

�
= true)]

false

if (∀ 0 ≤ k < �𝜋� ∶ �
[(∀j < k ∶

��
M, sj

�
⊨3 Ψ0

�
≠ false

�

⇒

���
M, sk

�
⊨3 Ψ1

�
= false

�
])⊓

��
∀0 ≤ k < �𝜋� ∶ ��

M, sk
�
⊨3 Ψ0

�
≠ false

�
⇒ �𝜋� = ∞

�

? otherwise

 The other path 

operators can be derived from above cases.
If ∀s0 ∈ S0 ∶

[(
M, s0

)
⊧3Φ

]
= true , we can conclude that 

[
M⊧3Φ

]
= true , i.e., 

M⊧3Φ . If ∃s0 ∈ S0 ∶
[(
M, s0

)
⊧3Φ

]
= false , we can conclude that 

[
M⊧3Φ

]
= false , 

i.e., M⊭3Φ . 
[
M⊧3Φ

]
= ? , otherwise. Formally, the three-valued semantics of 

PCTL* characters a preorder relation over a LGIPPN model that reflects the 
degree of completeness. Let ≲ denote an information ordering over the truth 
values, in which ? ≲ true , ? ≲ false , and x ≲ x ( x ∈ {true, false, ?} ). The oper-
ators comp , min and max are monotonic on≲ , i.e., if x1 ≲ x2 and y1 ≲ y2 , then 
comp(x1) ≲ comp(x2) , min(x1) ≲ min(x2) and max(x1) ≲ max(x2) . We can conclude 

�
(M, s) ⊨3 P≤p(Ψ)

�
=

⎧
⎪⎨⎪⎩

true if Probsup(s,Ψ, false) ≤ p

false if Probinf(s,Ψ, true) > p

? otherwise

[
(M,𝜋) ⊨3 Φ

]
=

{ [(
M, s0

)
⊨3 Φ

]
if |𝜋| > 0

? otherwise

[
(M,𝜋) ⊨3 XΨ

]
=

{ [(
M, s1

)
⊨3 Ψ

]
if |𝜋| > 1

? otherwise

�
(M,𝜋) ⊨3 ¬Ψ

�
=

⎧⎪⎨⎪⎩

true if 𝜋⊭3Ψ

false if 𝜋 ⊨3 Ψ

? otherwise
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that [(MA, sA
init
)⊧3Φ] ≲ [(M, sinit)⊧3Φ] . Informally, if a LGIPPN model is more 

abstract with respect to ≼ , it has less definite properties that are either “true” or 
“false” with respect to ≲ . Moreover, a formula of PCTL* is evaluated to “true” 
of “false” on an abstract LGIPPN model, then it has the same truth value on any 
refinement models. In other words, the result of three-valued PCTL* stochastic 
model-checking an abstract LGIPPN model agrees with the concrete model, if 
the results are definite. This is asserted in Theorem 3.

Theorem  3  Let R ⊆ S × SA be a mixed probabilistic simulation relation from a 
LGIPPN model M to a LGIPPN model MA, i.e., M ≼ MA. Then for all PCTL* for-
mulas Φ:

[
MA⊧3Φ

]
≠ ?implies

[
MA⊧3Φ

]
= [M ⊧ Φ].

Proof 
[
MA⊧3Φ

]
= [(MA, sA

init
)⊧3Φ] and [M ⊧ Φ] = [(M, sinit)⊧3Φ] , 

so, we can prove the following proposition for proving it. For every 
(s, sA) ∈ R and all PCTL* formulas Φ : 

[(
MA, sA

)
⊧3Φ

]
≠ ? implies [(

MA, sA
)
⊧3Φ

]
= [(M, s) ⊧ Φ] . It can be proved by the induction method: (1) 

Φ = true : 
[(
MA, sA

)
⊧3true

]
= true = [(M, s) ⊧ true] , since s ≼ sA . (2) PCTL* for-

mulae Φ is atomic proposition a : 
[(
MA, sA

)
⊧3a

]
= LA

(
sA, a

)
= L(s, a) = [(M, s) ⊧ a] . 

Induction hypothesis: suppose Φ
� represents all sub-formulas of Φ , [(

MA, sA
)
⊨3 Φ

�
]
≠ ? implies that 

[(
MA, sA

)
⊨3 Φ

�
]
=
[
(M, s) ⊨ Φ�

]
 . (3) Φ = ¬Φ� : [(

MA, sA
)
⊨3 ¬Φ

�
]
= ¬

[(
M, sA

)
⊨3 Φ

�
]
= ¬

[
(M, s) ⊨ Φ�

]
=
[
(M, s) ⊨ ¬Φ�

]
  . 

(4) Φ = Φ
�

0
∧ Φ

�

1
 : 

[(
MA , sA

)
⊧3Φ

�

0
∧ Φ

�

1

]
=
[(
MA , sA

)
⊧3Φ

�

0

]
⊓
[(
MA , sA

)
⊧3Φ

�

1

]
=
[
(M, s) ⊧ Φ

�

0

]
∧
[
(M, s) ⊧ Φ

�

1

]
=
[
(M, s) ⊧ Φ

�

0
∧ Φ

�

1

]   . 
(5) Φ = P≤p(Ψ) , where Ψ = Φ�∕XΨ�∕¬Ψ�∕Ψ0 ∧ Ψ1∕Ψ0 U Ψ1 : if [(
MA, sA

)
⊧3Φ

]
= true ⇒ Probsup(s,Ψ, true) ≤ Probsup

(
sA,Ψ, true

)
≤ p ⇒ [(M, s) ⊧ Φ] = true ; if [(

MA, sA
)
⊧3Φ

]
= false ⇒ Probinf (s,Ψ, true) ≥ Probinf

(
sA,Ψ, true

)
> p ⇒ [(M, s) ⊧ Φ] = false   . 

(6) Φ = P≥p(Ψ) , where Ψ = Φ�∕XΨ�∕¬Ψ�∕Ψ0 ∧ Ψ1∕Ψ0 U Ψ1 : if [(
MA, sA

)
⊧3Φ

]
= true ⇒ Probinf (s,Ψ, true) ≥ Probinf

(
sA,Ψ, true

)
≥ p ⇒ [(M, s) ⊧ Φ] = true ; if [(

MA, sA
)
⊧3Φ

]
= false ⇒ Probsup(s,Ψ, true) ≤ Probsup

(
sA,Ψ, true

)
< p ⇒ [(M, s) ⊧ Φ] = false.� □

The above theorem states that our abstraction framework can indeed be used 
as a solution to MA4SMC problem, which constructs three-valued abstract 
model according to Definition 7, and preserves the full PCTL* properties. 
Intuitively speaking, in this framework, the results of PCTL* stochastic model-
checking an abstract model agree with PCTL* stochastic model-checking a con-
crete model, unless the result is indefinite.

6 � Three‑valued stochastic model checking

Given a three-valued abstract model (LGIPPN model MA ) and a PCTL* formula 
Φ in release-PNF, deciding whether MA⊧3Φ , i.e., 

(
MA, sA

init

)
⊧3Φ , holds or not, is 

named the three-valued PCTL* stochastic model checking. Theoretically speak-
ing, it can be reduced to two instances of the traditional PCTL* stochastic model 



1 3

Automated Software Engineering (2022) 29:29	 Page 21 of 46  29

checking, as the three-valued model checking to traditional model checking. In 
this section, we give a direct game-based three-valued PCTL* stochastic model 
checking algorithm.

6.1 � Game semantics for three‑valued stochastic model checking

The game-based operational semantics for PCTL* stochastic model checking is 
an intuitive and succinct approach for stochastic model checking, and it can pro-
vide the succinct evidences for corresponding results. In this section, we generate 
it to three-valued PCTL* stochastic model checking.

The game GΦ
MA

(player, board, rule) for a three-valued abstract model (LGIPPN 
model MA ) and a PCTL* formula Φ in release-PNF can be defined as in Liu et al. 
(2016). However, some move rules of the player and the winning criteria need 
to be changed. The differences are caused by the fact that LGIPPN model has 
the interval transitions. Since the transitions are considered only in configurations 
with sub-formulae of P≥p(XΨ) or P≤p(XΨ) , the new move rules for game consist 
of move rules in Liu et  al. (2016), with exception that rule (6) are adapted as 
follows:

	 (0)	 p = 0 , the play finishes and player verifier wins.
	 (1)	 Coni =

(
player, s, true∕false∕a∕¬a∕P≥p(true∕false∕a∕¬a),Ω

)
 , the play finishes.

	 (2)	 Coni =
(
verifier, s,Φ0 ∧ Φ1,Ω

)
 , player refuter chooses Φj, j ∈ {0, 1} , and 

Coni+1 =
(
verifier, s,Φj,

{
Φ1−j

}
∪ Ω

)
.

	 (3)	 Coni =
(
verifier, s,Φ0 ∨ Φ1,Ω

)
 , player verifier chooses Φj, j ∈ {0, 1} , and 

Coni+1 =
(
verifier, s,Φj,Ω

)
.

	 (4)	 Coni =
(
refuter, s,Φ0 ∧ Φ1,Ω

)
 ,  p layer  refuter  choosesΦj , j ∈ {0, 1} , 

andConi+1 =
(
refuter, s,Φj,Ω

)
.

	 (5)	 Coni =
(
refuter, s,Φ0 ∨ Φ1,Ω

)
 ,  p layer  verifier  choosesΦj , j ∈ {0, 1} , 

andConi+1 =
(
refuter, s,Φj,

{
Φ1−j

}
∪ Ω

)
.

	 (6)	 Coni =
(
verifier, sA, P≥p(XΨ),Ω

)
 : player verifier  chooses some tran-

sitions tA in the minimum nondeterministic class by an adversary, 
and Coni+1 =

(
verifier, sA�, P≥psA� (Ψ)

)
 ,  where sA →

tA sA′ ,  and where ∑
Pl

�
sA, s′

�
⋅ ps′ ≥ p where Pl

(
sA, s′

)
 is the lower probability from the 

place sA to sA′ and psA′ is the probability of sA′ satisfies Ψ ; or player refuter 
chooses some transitions tA in the maximum nondeterministic class by an 
adversary, and Coni+1 =

(
refuter, sA�, P<psA� (Ψ)

)
 , where sA →

t sA′ , and where ∑
Pu

�
sA, sA′

�
⋅ psA′ ≥ p where Pu

(
sA, sA′

)
 is the upper probability from place 

sA to sA′ and psA′ is the probability of sA′ satisfies Ψ.
	 (7)	 Coni =

(
verifier, s, P≥p

(
Ψ1 ∧ Ψ2

)
,Ω

)
 , player refuter chooses Ψj, j ∈ {0, 1} , and 

Coni+1 = (refuter, s, P≥pj
(
Ψj

)
 ), and p0 + p1 − 1 < p.

	 (8)	 Coni =
(
verifier, s, P≥p

(
Ψ0 ∨ Ψ1

)
,Ω

)
 , player verifier  chooses Ψj , and 

Coni+1 =
(
verifier, s, P≥pj

(
Ψj

))
 , and p0 + p1 ≥ p.

	 (9)	 Coni =
(
verifier, s, P≥p

(
Ψ0UΨ1

)
,Ω

)
:Coni+1 =

(
verifier, s, P≥p

(
Ψ1 ∨

(
Ψ0 ∧ X

(
Ψ0U Ψ1

))))
.
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	(10)	 Coni =
(
verifier, s,P≥p

(
Ψ0RΨ1

)
,Ω

)
:Coni+1 =

(
verifier, s, P≥p

(
Ψ1 ∧

(
Ψ0 ∨ X

(
Ψ0RΨ1

))))
.

	(11)	 Coni = (player, s,Φ, {P≥p(Ψ)} ∪ Ω) ∶ Coni+1 = (player, s,Φ,Ω).
	(12)	 Coni = (player, s,Φ, {true∕false∕a∕¬a} ∪ Ω) ∶ Coni+1 = (player, s,Φ,Ω).
	(13)	 Coni =

(
verifier, s,Φ0,

{
Φ1

}
∪ Ω

)
 ,  p l aye r  refuter  c h o o s e s ,  a n d 

Coni+1 =
(
verifier, s,Φ1,

{
Φ0

}
∪ Ω

)
.

	(14)	 Coni =
(
refuter, s,Φ0,

{
Φ1

}
∪ Ω

)
 ,  p l aye r  verifier  c h o o s e s ,  a n d 

Coni+1 =
(
refuter, s,Φ1,

{
Φ0

}
∪ Ω

)
.

For Coni =
(
verifier, s, P≤p(XΨ),Ω

)
 , the move rule can be defined analogously. 

Intuitively speaking, each player can use both lower and upper bound of transi-
tion, and the players use lower bond of transition in order to win, while they use 
upper bound of transition in order to prevent the other player from wining. There-
fore, the new winning criteria are:

(1)	 The verifier wins the play if and only if one of the following conditions holds: 
(a) the play ends with rule (0); (b) the play ends with rule (1), and the configu-
ration is (player, s, true∕P≥p(true),Ω) , or (player, s, a∕¬a∕P≥p(a∕¬a),Ω) and 
a∕¬a ∈ L(s) ; (c) the play iterates infinitely with rule (10); (d) the rule (13) is 
used for second time.

(2)	 The refuter wins the play if and only if one of the following conditions holds: 
(a) the play ends with rule (0); (b) the play ends with rule 1), and the configu-
ration is (player, s, false∕P≥p(false),Ω) , or (player, s, a∕¬a∕P≥p(a∕¬a),Ω) and 
a∕¬a ∉ L(s) ; (c) the play infinitely with rule (9); (d) the rule (14) is used for 
second time.

(3)	 Either verifier or refuter cannot win the play, and the play ends with a tie.

With the winning criteria in GΦ
MA

 , we can capture the operational semantics for 
three-valued PCTL* stochastic model checking.

Theorem  4  Let MA be a three-valued abstract model (LGIPPN), Φ a PCTL* for-
mula Φ in release-PNF and sA ∈ SA. Then, for ∀s: 

[(
MA, sA

)
⊧3Φ

]
= true if and 

only if verifier has a winning strategy for game GΦ
MA

 with start configuration 
(player, sA,Φ,Ω); 

[(
MA, sA

)
⊧3Φ

]
= false if and only if refuter has a winning strat-

egy for game GΦ
MA

 with start configuration (player, sA,Φ,Ω); 
[(
MA, sA

)
⊧3Φ

]
= ? 

if and only if either of the players has a winning strategy with start configuration 
(player, sA,Φ,Ω). In addition, it is independent of initial player which is verifier or 
refuter.

Proof  The “if” part is obvious, it is sufficient to prove the “only if” part which 
can be done by constructing the winning strategy of player verifier or refuter for [(
MA, sA

)
⊧3Φ

]
= true or 

[(
MA, sA

)
⊧3Φ

]
= false , as for 

[(
MA, sA

)
⊧ Φ

]
= true or [(

MA, sA
)
⊧ Φ

]
= false in game for stochastic model checking. So, we just show the 

result for the truth value “?”.
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(1)	 Φ = true∕false∕a∕¬a∕P≥p(true∕false∕a∕¬a) : if 
[(
MA, sA

)
⊧3Φ0 ∧ Φ1

]
= ? , every 

play ends with a tie, and either of them has a winning strategy.
(2)	 Φ = Φ0 ∧ Φ1 : if 

[(
MA, sA

)
⊧3Φ0 ∧ Φ1

]
= ? , then, according to the denotational 

semantics, 
[(
MA, sA

)
⊨3 Φj

]
= ? or false at least for one of j ∈ {0, 1} . So, by the 

induction hypothesis, whatever strategies verifier (or refuter ) chooses, refuter (or 
verifier ) can always choose to proceed to (player, sA, Φj, Ω) in which verifier 
(or refuter ) has no winning strategy.

(3)	 Φ = Φ0 ∨ Φ1 : if 
[(
MA, sA

)
⊧3Φ0 ∨ Φ1

]
= ? ,  according to the denota-

tional semantics, 
[(
MA, sA

)
⊧3Φj

]
= ? at least for one of j ∈ {0, 1} , and [(

MA, sA
)
⊨3 Φj

]
= ? or false for the one k ∈ {0, 1} k ≠ j . So, by the induction 

hypothesis, whatever strategies verifier (or refuter ) chooses, refuter (or verifier ) 
can always choose to proceed to (player, sA,Φj,Ω) in which verifier (or refuter ) 
has no winning strategy.

(4)	 Φ = P≥p(XΨ) : if 
[(
MA, sA

)
⊧3P≥p(XΨ)

]
= ? , according to the denotational seman-

tics, the value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ XΨ} ≥ p is ? or false, i.e., the value 
of PrsA{𝜋 ∈ Path

(
sA
)|𝜋 ⊨ XΨ} ≥ p is ? or false, where P(sA, sA�) is the lowest 

probability from the place sA to sA′ , sA
tA

→ sA′ and psA′ is the probability of sA′ 
satisfying Ψ , and the value of PrsA

{
𝜋 ∈ Path

(
sA
)|𝜋⊭XΨ

}
> 1 − p is ? or false, 

i.e., the value of 
∑

P
�
sA, sA

���
⋅ psA

��

> 1 − p is ? or false, where P(sA, sA��) is the 
lowest probability from the place sA to sA′′ , sA

tA
′

→ sA
′′ and psA′′ is the probabil-

ity of sA′′ satisfying ¬Ψ . So, by the induction hypothesis, whatever strategies 
verifier (or refuter ) chooses, refuter (or verifier ) can always choose to proceed 
to (player, sA,P≥p(XΨ),Ω) in which verifier (or refuter ) has no winning strategy.

(5)	 Φ = P≥p(Ψ0 ∧ Ψ1) : if 
[(
MA, sA

)
⊧3P≥p(Ψ0 ∧ Ψ1)

]
= ? , according to the denota-

tional semantics, the value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ Ψ0 ∧ Ψ1} ≥ p is ? under 
the lowest probability, and value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ XΨ} ≥ p is true or ? 
under the upperest probability. So, by the induction hypothesis, whatever strate-
gies verifier (or refuter ) chooses, refuter (or verifier ) can always choose to pro-
ceed to (player, sA,P≥p(Ψ0 ∧ Ψ1),Ω) in which verifier (or refuter ) has no winning 
strategy.

(6)	 Φ = P≥p(Ψ0 ∨ Ψ1) : if 
[(
MA, sA

)
⊧3P≥p(Ψ0 ∨ Ψ1)

]
= ? , according to the denota-

tional semantics, the value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ Ψ0 ∨ Ψ1} ≥ p is ? under 
the lowest probability, and value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ XΨ} ≥ p is true or ? 
under the upperest probability. So, by the induction hypothesis, whatever strate-
gies verifier (or refuter ) chooses, refuter (or verifier ) can always choose to pro-
ceed to (player, sA,P≥p(Ψ0 ∨ Ψ1),Ω) in which verifier (or refuter ) has no winning 
strategy.

(7)	 Φ = P≥p(Ψ0 U Ψ1) : if 
[(
MA, sA

)
⊧3P≥p(Ψ0UΨ1)

]
= ? , according to the denota-

tional semantics, the value of PrsA{𝜋 ∈ Path (sA)|𝜋⊨ Ψ0 U Ψ1} ≥ p is ? under 
the lowest probability, and value of PrsA{𝜋 ∈ Path (sA)|𝜋⊨ X Ψ} ≥ p is true 
or ? under the upperest probability. So, by the induction hypothesis, whatever 
strategies verifier (or refuter ) chooses, refuter (or verifier ) can always choose 
to proceed to (player, sA, P≥p(Ψ0U Ψ1),Ω) in which verifier (or refuter ) has no 
winning strategy.

(8)	 Φ = P≥p(Ψ1 R Ψ2) : if 
[(
MA, sA

)
⊨3 P≥p(Ψ0 R Ψ1)

]
= ? , according to the denota-

tional semantics, the value of PrsA{𝜋 ∈ Path (sA)|𝜋 ⊨ Ψ0 R Ψ1} ≥ p is ? under 
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the lowest probability, and value of PrsA{𝜋 ∈ Path (sA)|𝜋 ⊨ Ψ0R Ψ1} ≥ p is true 
or ? under the upperest probability. So, by the induction hypothesis, whatever 
strategies verifier (or refuter ) chooses, refuter (or verifier ) can always choose 
to proceed to (player, sA, P≥p(Ψ0R Ψ1), Ω) in which verifier (or refuter ) has no 
winning strategy.

The Theorem 4 states three-valued PCTL* stochastic model checking is equiva-
lent to two-player stochastic game GΦ

MA
(player, board, rule) . If the player verifier has 

a winning strategy from the initial place sA
init

 of MA , then MA satisfies Φ , i.e., MA⊧3Φ , 
and the winning strategy can be served as the evidence for MA⊧3Φ . If the player 
refuter has a winning strategy from the initial place sA

init
 of MA , then MA does not 

satisfy Φ , i.e., MA⊭3Φ , and the winning strategy can be served as the evidence for 
MA⊭3Φ , i.e., the counterexample. If either of them has the winning strategy, then 
the result is indefinite, which means the abstract model should be refined.

6.2 � Strategy solving in three‑valued stochastic game

A two-player game process GΦ
MA

 for three-valued PCTL* stochastic model checking 
can be presented by the game-graph Gg(N,E,w) . It can be constructed from initial 
configuration as the initial node in a BFS (breadth first search) or DFS (depth first 
search) manner, and owns the same characteristics (Liu et al. 2016): game-graph can 
be partitioned into some MSCCs (maximal strongly connected components), and 
every play never leaves a MSCCm into a MSCCn with m < n.

The game GΦ
MA

 for three-valued PCTL* stochastic model checking is a three-val-
ued stochastic game, essentially. We implement a three-valued coloring method for 
strategy solving, which can alter the coloring process (Liu et al. 2016; Shoham and 
Grumberg 2007) of traditional PCTL* stochastic model checking game and CTL 
model checking game. It colors each node in the MSCCs of game-graph Gg(N,E,w) , 
and processes MSCCi according to i bottom-up. Let MSCCi be the smallest MSCC 
at present, i.e., the other MSCCm with m < i have all been colored, the three-valued 
coloring rules of a node in MSCCi is as follows: for a node with a current Φ� of sub-
formula Φ , (1) if player verifier can win for current Φ� , the corresponding node is 
colored white; (2) if player refuter can win for current Φ� , the corresponding node is 
colored black; (3) if either of the players can win for current Φ� , the corresponding 
node is colored gray.

We color all the nodes of the game-graph Gg(N,E,w) according to the coloring 
rules. If the initial node is colored white, player verifier wins the game, and all the 
white nodes compose the winning strategy of verifier . This means MA⊧3Φ accord-
ing to Theorem 4, and M ⊧ Φ according to Theorem 3. If the initial node is colored 
black, player refuter wins the game, and all the black nodes compose the winning 
strategy of refuter . This means MA⊭3Φ according to Theorem 4, and M⊭Φ accord-
ing to Theorem 3. If the initial node is colored gray, either of players wins the game. 
This means the result of three-valued PCTL* stochastic model checking MA is indef-
inite, according to Theorem 4; and the result of PCTL* stochastic model checking 
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M is also indefinite, according to Theorem 3. The gray nodes need to be refined, 
which is presented in Sect. 6.

Strategy solving algorithm for three-valued PCTL* stochastic model checking 
game can be summarized into three steps: (1) construct the game-graph Gg(N,E,w) 
for MA and Φ ; (2) find the MSCCs and sort them bottom-up, (3) three-valued color 
the nodes of game-graph with the MSCCs’ order, according to the three-valued col-
oring rules; (4) determine the color of the initial node and return the corresponding 
winning strategy in DFS manner. It is the combination of searching MSCCs with 
order algorithm and three-valued coloring process, and the complexity of which is 
PSPACE. It can be proved similarly with stochastic model checking game (Liu et al. 
2016; Kwiatkowska et al. 2021; Shoham and Grumberg 2007).

The winning strategy of verifier or refuter is the evidence whether PCTL* Φ is 
satisfied or not, respectively. An evidence of refuter , i.e., the black nodes of the 
three-valued colored game-graph, can be served as a kind of counterexample. It 
should be noted that the ideal counterexample(Abraham et  al. 2014) just contains 
the smallest set of necessary nodes from the winning strategy of refuter.

7 � Refinement

If the three-valued stochastic model checking returns an indefinite result, i.e., “?”, 
it means the abstract place is so coarse that we can say nothing from it and have to 
refine the abstract place. Roughly, refining an invalid abstract place is to split it into 
the smaller abstract places until the three-valued stochastic model checking result is 
definite on it. We can exploit information of the colored three-valued game-graph in 
refinement process.

7.1 � Identifying and analyzing failure nodes

Definition 10  Failure node. A node in colored three-valued game-graph is the failure 
node, if it is colored gray, and none of its sons was colored gray when it is colored.

Intuitively speaking, a failure node is responsible for the loss of information in 
abstraction. Thus, it should be refined. If the initial node is colored gray, a failure 
node can be found by the identifying failure nodes algorithm. For each node, it is 
colored gray and is not a failure node, the coloring algorithm is adapted to remem-
ber that a son was colored gray when n is colored, denoted as go(n). Identifying 

FNIdentify (n){

If n satisfies the definition of failure node, return n
Else FNIdentify(go(n))

}

Fig. 4   Identifying failure nodes algorithm
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failure nodes algorithm in Fig.  4 can identify the failure node from go(n), which 
starts from the initial node.

Theorem 5  The identifying failure nodes algorithm can terminate.

Proof  If the current node n is not a failure node, the algorithm continues to identify 
at go(n). According to Definition 10 (failure node), there is a node that was colored 
gray before n. Thus, each recursive call is applied on the node colored gray earlier. 
So, the number of recursive calls is not bigger than the run time of the coloring 
algorithm that is finite.� □

Failure nodes identifying (FNIdentify) algorithm is a DFS-like greedy algorithm. 
It proceeds from node to node of colored three-valued game-graph recursively, until 
it finds a failure node. Moreover, the failure node fulfils Theorem 6.

Identifying failure nodes algorithm is a recursive algorithm, which needs a recur-
sive stack, so its space complexity is O(|S|) . It takes time complexity O(|S|) to find 
the adjacent points of each node in the adjacency matrix. To get the whole matrix, 
the total time complexity is O(|S|2) , where |S| is the number of nodes.

Theorem  6  A failure node returned by Identifying failure nodes algorithm is one 
of the following: (1) the terminal node (verifier, sA, a∕P≥p(a)) colored gray, where 
a ∈ AP; (2) the node in form of (verifier, sA,P≥p(XΨ),Ω) colored gray, where ∑

P(sA, sA�) ⋅ psA� > 1 − p, P(sA, sA�) is the upper probability from the place sA to sA′, 
sA

tA

→ sA′ and psA′ is the probability of sA′ satisfying ¬Ψ.

Proof  According to coloring algorithm, Φ is Φ0 ∧ Φ1 , Φ0 ∨ Φ1 , P≥p(Ψ0 ∧ Ψ1) , 
or P≥p(Ψ0 ∨ Ψ1) , the node of which is colored gray only if it has at least one son 
that is colored gray. Thus, these nodes do not satisfy Definition 10 (failure node). 
For P≥p(Ψ1U Ψ2) or P≥p(Ψ1 RΨ2) , the node of which is colored gray depends 
on the witness of operator ∧ , ∨ or X , so, it also does not satisfy Definition (fail-
ure node). If the node is a terminal node, it has to be (verifier, sA, a∕P≥p(a)) , 
since (verifier, sA, true∕false∕P≥p(true)∕P≥p(false)) is colored by black or 
white, definitely. If the node is the form of (verifier, sA,P≥p(XΨ),Ω) , the value of ∑

P(sA, sA�) ⋅ psA� > 1 − p has to be true, where P(sA, sA�) is the upper probability 
from the place sA to sA′ , sA

tA

→ sA′ and psA′ is the probability of sA′ satisfying ¬Ψ . 
Otherwise, it will be colored by black.� □

7.2 � Refining failure nodes

For returning the definite result of three-valued stochastic model checking, it is 
enough to refine the failure node not all the indefinite nodes. The type of failure 
node in Theorem 6 provides the criteria for the refinement.

(1)	 The failure node is a terminal node (verifier, sA, a∕P≥p(a)) . The reason for its gray 
color is the fact that one or some concrete places abstracted by sA are labeled a , 
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meanwhile one or some concrete places abstracted by sA are labeled ¬a . In order 
to avoid the indefinite result returned at sA , sA is refined by two abstract places 
sA1 and sA2 , where the concrete place set FPt abstracted by sA1 are labeled a and 
the concrete place set FPf  abstracted by sA2 are labeled ¬a.

(2)	 The failure node is the form of (verifier, sA,P≥p(XΨ),Ω) ,  where ∑
P(sA, sA�) ⋅ psA� > 1 − p , P(sA, sA�) is the upper probability from the place sA 

to sA′ , sA
tA

→ sA′ and psA′ is the probability of sA′ satisfying ¬Ψ . In order to avoid 
the indefinite result returned at sA , sA is refined by two abstract places sA1 and 
sA2 , where the concrete place set FPt abstracted by sA1 refute P≥p(XΨ) definitely 
and the concrete place set FPf  abstracted by sA2 = sA�sA1.

From the above analysis, it can be seen that the key for refining failure nodes is to 
split the abstract places in a way that eliminates the failure cause. Actually, a place 
is a family of valuations for all variables in V. We usesA

→v
 to denote the valuation of 

a place sA for the variablev . Given an abstract place in the failure node, they cannot 
be distinguished in the abstract model with the visible variables. Formally, ∀v ∈ VSA , 
sA1
→v

= sA2
→v

 , but sA1 and sA2 should be distinguished in the refinement model. This is a 
state separation problem (SSP), and the minimal state separation problem (MSSP) is 
the NP-hard problem (Clarke et al. 2002). Moreover, the place at a failure node may 
abstract many concrete places, especially for large concrete model, which makes 
time complexity of refining is high. For dealing with this, we take the approximate 
solution of SSP as a tradeoff between the precision and time complexity. We infer 
the separation set on sample place set selected by sample learning (He et al. 2016, 
2010; Clarke et al. 2002), instead of the entire concrete place set abstracted by the 
failure node, then, we use BPSO (binary particle swarm optimization) algorithm to 
solve the separation set for refinement.

7.2.1 � Formalizing refinement as the MSSP

The place sA at a failure node is denoted as a vector of length n with sA[i] = sA
→v

 , 
where v is the i th invisible variable in VN . sA cannot be separated by any present vis-
ible variable, so, we only consider its invisible variables. For simplicity, we use pj to 
denote a pair of places in FPt × FPf  , i.e., FPt × FPf = {p1, p2,… , pm} , 1 ≤ j ≤ m . 
Assume pj =< (s)pj , (s�)pj > , pj can be separated by certain variable in the separation 
set Λ , i.e., ∃vi ∈ Λ , (s)pj [i] ≠ (s�)pj [i] , where (s)pj =< (s)pj [1], (s)pj [2],… , (s)pj [n] > 
and (s� )pj =< (s

�

)
pj [1], (s

�

)
pj[2],… , (s

�

)
pj [n] > . If vi ∈ Λ , we define the decision vari-

able xi = 1 , else xi = 0 , which is equivalent to 
∑n

i=1
((s)pj[i]⊕ (s

�

)
pj
[i]) ∙ xi , where 

⊕ is the exclusive or operator, xi is the decision variable of vi . Let A = {aij}m×n 
be a coefficient matrix where aij = (s)pj [i]⊕ (s

�

)
pj
[i] , 1 ≤ i ≤ n, 1 ≤ j ≤ m . 

aij = 1 iff the state pair pj is separated by the variable vi . The refinement is 
the MSSP with n invisible variables and m state pairs: min

∑n

i=1
xi , where ∑n

i=1
aijxi ≥ 1, j = 1,… ,m;xi = {0, 1}, i = 1,… , n.
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7.2.2 � Sample learning

We adopt sample learning (Clarke et al. 2002) algorithm to get the smaller place set 
SFPt

 and SFPf
 from SFPt

 and SFPf
 , respectively, where SFPt

⊆ FPt and SFPf
⊆ FPf  . 

Then, the minimal separation set is computed on SFPt
 and SFPf

 , which equals to be 
computed on FPt and FPf  . In the process of selecting the sample, places that contain 
more information will be selected, instead of random selecting places.

The iterative sample learning algorithm is shown in Fig. 5. MAXSAM denotes the 
maximal number of samples picked in the iteration. At each iteration, MAXSAM sam-
ples are selected from FPt × FPf  which cannot be separated by the present separation 
set. Then separation set is computed, and FPt × FPf  is updated, until FPt × FPf = ∅.

According to the formula 
∑n

i=1
(s)pj [i]⊕ (s

�

)
pj
[i]) ∙ xi , if 

∑n

i=1
aijxi ≥ 1 , i.e., Ajxi ≥ 1 , 

the place pair pj can be separated. The effective approach of checking the validity of 
samples is based on 

∑n

i=1
aijxi ≥ 1 . This is easy to be performed and can always be 

accomplished in a constant time. Note that the order of selecting the sample is also 
important. In each iteration process, if there are not place pairs separated by the exist-
ing separation set, it will be selected, as can be separated by less variables in a greater 
probability as a sample. The sample learning algorithm is a recursive process, and its 
time complexity is O

(|||FPt × FPf
||| ∗ MAXSAM

)
.

7.2.3 � BPSO algorithm

PSO (Particle swarm optimization) algorithm (Kennedy and Eberhart 1995; Wang 
et al. 2020) is a kind of EA (evolutionary algorithm), which originally was put forward 
by Eberhart and Kennedy in 1995. PSO algorithm is modified in binary form to obtain 
the invisible variables which should be visible in the refined model.

(1)	 Objective function

Fig. 5   Sample learning algorithm
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The MSSP problem that we are solving is a constraint optimi-
zation problem, which can be described as: min

∑n

i=1
xi , where ∑n

i=1
aijxi ≥ 1, j = 1,… ,m; xi = {0, 1}, i = 1,… , n.

The particle in PSO algorithm has a strong ability to search generally at the first 
time, then it has to convergence. We adopt a non-stationary multi-stage assignment 
penalty to gain more accurate results and improve the convergence. The penalty factor 
is modified dynamically, according to the constraint function. Then, the optimization 
problem turns into:

where h(k) is a penalty factor, the value of which is sup(
√
k) , k is the current itera-

tion, f (∙) is a penalty function which has a strong influence on the performance of 
the algorithm. A simple and efficient penalty function is employed as follows: 

f (x) =

{
0, if x is true

BIGVALUE, otherwise
.

(2)	 Probabilistic initialization of particles

We use a n-bit vector ⇀

xx as a particle, i.e., ⇀

xx =
(
v1, v2,… , vn

)
 , where n is the num-

ber of invisible variables. If the value of the i th bit is 1, the variable vi is selected into 
the separation set. The number of populations is Pop-size. We generate particles ran-
domly in order to get wide guidance particles. The initialization process of particles is 
shown in Fig. 6.

(3)	 Velocity and position evolution

The update formulae of velocity and position in the classical PSO algorithm is not 
suitable for discrete constraint optimization problem, we need to reconstruct the formu-
lae. We adopt the method proposed in Nguyen et al. (2021) with some modifications to 
update the velocity and position of a particle, which is named as BPSO (binary particle 
swarm optimization algorithm).

Two vectors for each particle are introduced as ��⃗V
0

i
 and ��⃗V

1

i
.��⃗V

0

i
 is the probability of the 

bits of the i th particle to change to zero, while ��⃗V
1

i
 is the probability that bits of the i th 

particle to change to one. Since the inertia term is used in the process of update equa-
tion, these velocities are not complementing. Then, we give the definition of the prob-
ability of change in the j th bit of the i th particle:

(1)Minimize

n∑
i=1

xi + h(k)

m∑
j=1

f

(
n∑
i=1

aijxi ≥ 1

)

Produce the size of the separation set randomly, i.e., an integer 0 ≤ ≤ .

Select variables randomly into the separation set, and the probability to be selected is proportional to 

the number of place pairs it separated.

Fig. 6   Initializing a particle
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Assume that the j th bit of the i th best particle is one. The velocity of particle is cal-
culated in this way. The j th bit of the i th particle is guided to its best position. The 
velocity of change to one ( ��⃗V

1

ij
 ) for that particle increase and the velocity of change to 

zero ( ��⃗V
0

ij
 ) is decreased. We get the following rules: (1) 

If p
j

ibest
= 1 then d1

ij,1
= c1r1 and d0

ij,1
= −c1r1 , (2) 

If p
j

ibest
= 0 then d0

ij,1
= c1r1 and d1

ij,1
= −c1r1 , (3) 

If p
j

gbest
= 1 then d1

ij,2
= c2r2 and d0

ij,2
= −c2r2 , (4) 

If p
j

gbest
= 0 then d0

ij,2
= c2r2 and d1

ij,2
= −c2r2 , where d1

ij
 , d0

ij
 are two temporary val-

ues, r1 and r2 . are two random variable in the range of (0,1) which are updated at each 
iteration, c1 and c2 are two fixed constants which are determined by user. Then: 
V1
ij
(t + 1) = wV1

ij
(t) + d1

ij,1
+ d1

ij,2
 , V0

ij
(t + 1) = wV0

ij
(t) + d0

ij,1
+ d0

ij,2
 , where w is the 

inertia term.
Due to the velocities of the particles must be restricted within the range between 

0 and 1 (Nguyen et al. 2017) the normalization function used here is a sigmoid func-
tion: vel�

ij
= sig

(
velij

)
=

1

1+e
−velij

 . So, the new position of the particle is obtained with 
the below equation:

where xxij is the 2’s complement of xxij . i.e., if xxij = 0 , then xxij = 1 ; if xxij = 1 , then 
xxij = 0.rij is a uniform random number between 0 and 1. The value is proportional 
to the number of place pairs it separated. The BPSO algorithm shown in Fig. 7.

The time complexity of BPSO algorithm is linear with the number of iterations m 
and dimension n, its time complexity is O(m ∗ n).

7.3 � Incremental refinement

We refine the abstract model via splitting its places belong to failure node. There 
is no reason to split places for which the three-valued stochastic model check-
ing results are definite. Although, the refinement process is decided locally, it has 
a global effect, since the refinement leads to the change of whole abstract model. 

(2)Vc
ij
=

{
V1
ij
if xxij = 0

V0
ij
if xxij = 1

(3)xxij(t + 1) =

{
xxij(t), if rij < Vel’

ij

xxij(t), otherwise

 
Generate an initial population according to algorithm in Figure 6; 

While not (terminal condition) do 
  Computing the fitness of each particle according to the object functi on equality (1) in section 6.2; 

  Update the local best position for each particle according to classical PSO algorithm; 

  Update the global best position for all particles according to classical PSO algorithm; 
  Substitute the velocity and position according to equality (2) (3) in section 6.2; 

End while. 

Fig. 7   BPSO algorithm
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The results of game-based three-valued stochastic model checking provide the valu-
able information for avoiding unnecessary refinement. At the end of the ith itera-
tion of three-valued abstraction-refinement, the nodes that were colored gray are 
remembered. During the construction of a new refined three-valued game-graph in 
the (i + 1)th iteration, we prune the game-graph according to the remembered infor-
mation. As a result of this, only the places of gray nodes are refined. The iterative 
abstraction-refinement process give rise to an incremental three-valued abstrac-
tion-based stochastic model checking framework. Moreover, the termination of the 
abstraction-refinement is given by the following theorem.

Theorem 7  For a finite concrete LNPPN model, the iterative three-valued abstrac-
tion-refinement process can guarantee to terminate with a definite result.

Proof  The refinement is done by means of splitting the indefinite places, which leads 
to a refined abstract LGIPPN model. So, every place sA

r
 in the refined model has 

some corresponding super-place sA
s
 in the less refined model, in the sense that the set 

of concrete places that sA
r
 abstracts is a subset of those abstracted by sA

s
 . Moreover, 

there is at least one abstract place is splited in the refinement, which ensures that at 
least one of the refined places abstracts strictly fewer concrete places than its super-
place. Thus, the number of concrete places is the bound of iterations of abstraction-
refinement. Therefore, the abstraction-refinement process is guaranteed to terminate 
if the place space is finite, and when there are not the indefinite places which leads 
to the indefinite result.� □

The termination of the three-valued abstraction-refinement process means the 
three-valued abstraction-based PCTL* stochastic model checking returns a definite 
result.

Fig. 8   Prototype tool TVAR

Abstraction-

Refinement:

abstracting with 

interval + game

Coloring 3-valed game-

graph

Refining with 

BPSO+sample

PAT: model construction and representation

PAT: verification results and representation

LNPPN+PCTL*
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8 � Case study

8.1 � Experiments

Based on our open-source model checker PAT(Liu et al. 2011; Liu 2019), we imple-
ment three-valued abstraction-refinement framework in a prototype tool TVAR 
(three-valued abstraction-refinement), as shown in Fig.  8. It is developed in Java 
language with explicit-state data structures (sparse matrices, bit-sets, etc.). A sym-
bolic (MTBDD-based) implementation of TVAR with implicit-state data structures 
(MTBDD), is being developed to offer more scalability on models with regularity. 
It will be released as the open-source software at PAT website (http://​pat.​comp.​nus.​
edu.​sg).

In order to demonstrate the feasibility and efficiency of three-valued abstraction-
refinement framework in this paper, we compare it with the current approximate 
abstraction techniques of stochastic model checking (game-based abstraction and 
probabilistic CEGAR). The cases are the popular protocol algorithms in software-
driven autonomous systems, and belong to the PRISM Benchmark Suite. All exper-
iments are run on a PC with CPU Intel Core i7-3632QM (2.20  GHz) and RAM 
8.00 GB.

The first case is the IPv4 Zeroconf protocol, which is a dynamic IP addresses 
configuration protocol for some software-driven autonomous systems connect-
ing the network(Ejaz et al. 2019). It is a distributed "plug-and-play" manner for IP 
address configuration, which is automatically executed when an autonomous system 
is connected to the network. The process of IP addresses configuration is as fol-
lows: (1) When an autonomous system is being connected to the network, it firstly 
chooses a random IP address from the 65,024 available addresses (from 169.254.1.0 
to 169.254.254.255) which are allocated by the Internet Assigned Number Authority 
for the purpose of such link-local networks. (2) Then the autonomous system will 
send messages to the other autonomous systems that have been connected to the net-
work, and ask whether any of them are currently using the chosen IP address. (3) If 
no reply is received by the system, even after such messages were resent three more 
times, it starts to use the chosen IP address, and sends two more messages to claim 
that the IP address is occupied. (4) If the chosen IP address is being used, which 
will be replied by the corresponding system, the configuration process will return 
to 1) and the new system will choose another random IP address. Note that it sends 
the message repeatedly to avoid the message loss in the network. This IP address 
configuration process is both probabilistic and timed. Probability is used to charac-
terize the random in initial selection of an IP address, or the message loss. Whereas, 
timing aspect is used to define the time periods that elapse between repeated retrans-
missions of the same message. In this case, the model to be verified is Zeroconf net-
work configuration protocol for configured hosts K and IP addresses J, the property 
to be verified is minimum probability that the host configures successfully.

The second case is the IEEE 802.11 WLAN (Wireless Local Area Networks) pro-
tocol for network composed with the autonomous systems, which is used for a lim-
ited geographical area, e.g., stations, homes, offices, campuses(Chi and Chen 2019). 

http://pat.comp.nus.edu.sg
http://pat.comp.nus.edu.sg
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The international standard IEEE 802.11 is developed for the interoperability of het-
erogeneous communication devices of autonomous systems in WLAN. It is part 
of the IEEE 802 technical standards, and specifies the set of MAC (Media Access 
Control) and PHY (Physical Layer) protocols for implementing wireless devices 
communication of autonomous systems. It is not the same as wired devices, the sta-
tions of a WLAN cannot employ medium access control schemes, e.g., CSMA/CD 
(Carrier Sense Multiple Access with Collision Detection), to prevent simultaneous 
transmission on the channel, as they are unable to listen to their own transmission. 
IEEE 802.11 standard describes a CSMA/CA (Carrier Sense Multiple Access with 
Collision Avoidance) mechanism, which uses a randomized exponential backoff rule 
to minimize the likelihood of transmission collision. In this case, the model to be 
verified is IEEE 802.11 WLAN protocols with a backoff counter maximum of bc 
and a maximum packet send time of 500 μs, and the property to be analyzed is the 
minimum probability that a station’s backoff counter reaches bc.

The third case is the IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with 
Collision Detection) protocol for autonomous systems network, which is also part of 
the IEEE 802 technical standards (Dey et al. 2020). It is designed for networks with 
a single channel and specifies the behaviors of stations with the aim of minimizing 
simultaneous use of the channel (data collision). The basic structure of the protocol 
is as follows: (1) When a station tries to send data, it will listen to the medium; (2) If 
the medium was free (no one transmitting), the station starts to send its data; (3) If 
the medium is busy, the station waits a random amount of time and then repeats this 
process. In this case, the model to be verified is IEEE 802.3 CSMA/CD protocols 
with a backoff counter maximum of bc and a maximum packet send time of 500 μs, 
the property to be analyzed is minimum probability that a station’s backoff counter 
reaches bc.

The experimental results are shown in Tables 2 and 3. The “actual value” col-
umns in Tables 2 and 3 are the exact probability value obtained by monolithic sto-
chastic model checking tool PRISM. The model statistics are shown in Tables  4 
and 5. We will compare them further and analyse the reasons for them in the next 
section.

8.2 � Analysis

The experimental results are very encouraging. In 14 cases of Tables 2 and 3, three-
valued abstraction of this paper and game-based abstraction successfully generate 
tighter results than Probabilistic CEGAR. The three-valued abstraction framework 
gets the tightest results of them. The upper bounds produced by our framework is 
in coincidence with the actual value, and yields the exact values in some cases (for 
instance, IPv4 Zeroconf protocol with parameters J = 32, K = 4; J = 32, K = 5; and 
J = 64, K = 4). The reasons for this are that in three-valued abstraction and game-
based abstraction, the additional nondeterministic behaviors of player 1 place are 
kept, and the transitions are equipped with interval in three-valued abstraction. In 
order to present the significance of our framework on the lower bound and upper 
bound, we make the statistical tests, as shown in Figs. 9 and 10. It can be seen that 
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LNPPN, LGPPN and LGIPPN get very similar results in solving their upper bound 
probability for IPv4 Zeroconf protocol. The results of LGPPN and LGIPPN are bet-
ter than LNPPN in solving the lower bound probability. For WLAN and CSMA pro-
tocols, the compactness of the solutions by LGIPPN, LGPPN and LNPPN decreases 
in turn. The reasons for which are the nondeterminism modeled by LGPPN can be 
closer to the real probability value than LNPPN as an abstract model, and LGIPPN 
introduces a third kind of nondeterministic interval value, which preserves more 
information of transition probability and can simultaneously approximate the upper 
bound and lower bound.

The state space of abstract model LGIPPN in our framework is significantly 
reduced, compared with LNPPN and LGPPN. The state space of concrete model 
for 14 cases is shown in Fig. 11, and the state space of abstract model is compared 
in Fig. 12. The abscissa represents 14 cases, and the ordinate represents the size of 
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state space in bytes. Figure 12 shows that the abstract state space of our framework 
is smaller than probabilistic CEGAR or game-based abstraction, and the state space 
of probabilistic CEGAR and game-based abstraction are almost the same. This is 
because: (1) the places and transitions of abstract model is constructed by nearly 
the same method in all abstraction techniques, but in three-valued abstraction, the 
transitions are equipped by interval; (2) the dependent relation of variables is very 
strong, or the domain of some a variable is too big. It hides all logical relation which 
is defined on these variables. When some invisible variables are made visible in the 
refinement, the corresponding predicates variables are added, which may also lead 
to search more place space. It can be concluded that different transition methods 
have great influence on the state space.

We also compare the time efficiency of our framework with others. As shown in 
Fig.  13, we compare our framework with probabilistic CEGAR (LNPPN), game-
base abstraction (LGPPN), and our framework without sample learning + BPSO. 
The run time (in seconds) contains the time spent on all stages, including abstract 
model construction, model checking abstract model and refinement. The run time 
of three-valued abstraction in this paper is distinctly less than probabilistic CEGAR 
and game-based abstraction, because the refinement in it is accelerated by sample 
learning and BPSO algorithm. When our framework integrates the sample learn-
ing + BPSO, it takes obvious less time, which makes the advantage of time con-
sumption more apparent. BPSO has a trade-off between the solution precision 
and cost, which gives a suboptimal but sufficiently good set separation and makes 
refinement iterations less. It plays an important role to reduce the running time 
of LGIPPN. Moreover, the bigger of concrete model, the more preponderance of 
three-valued abstraction emerges. But, if the three-valued abstraction do not use the 
sample learning and BPSO algorithm for refining, it will be the worst among the 
abstraction techniques. Because refining the transitions with interval and places of 
player 1 in iteration is very time-consuming. The run time of probabilistic CEGAR 
is less than game-based abstraction, because refining the places of player 1 in itera-
tion is very time-consuming.

9 � Conclusion

In this paper, we focus on approximate model abstraction techniques for dealing 
with state space explosion problem in stochastic model checking. We propose the 
first three-valued abstraction-refinement framework for stochastic model checking, 
which is also the first abstraction framework for preserving full PCTL* proper-
ties. We present a good balance between the state space and preserved properties 
of abstract model. The key components of the framework are a new abstract model 
which orthogonally integrates interval probability of transition and game for nonde-
terminism, and the refinement process which combines sample learning and BPSO 
algorithm. Some popular protocols in software-drived autonomous systems are used 
to demonstrate the efficiency of the framework, which are the best among the cur-
rent approximate model abstraction techniques. This framework takes LNPPN as 
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the concrete model, but it is applicable to other formal system models as well, such 
as probabilistic automaton and MDP. However, this framework can just abstract the 
autonomous system with discrete time stochastic behaviors, and just can be applied 
at the level of system model. In the future work, we will (1) generalize the three-
valued abstraction framework to software-driven autonomous system in continuous 
time style or hybrid system, (2) generate models from the runtime autonomous sys-
tem by L* or reinforcement learning algorithms(Zhang et al. 2020), and (3) develop 
the symbolic (MTBDD-based) implementation of this abstraction framework to 
offer improved scalability on models exhibiting regularity.
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