
Vol.:(0123456789)

Automated Software Engineering (2022) 29:29
https://doi.org/10.1007/s10515-022-00327-z

1 3

A three‑valued model abstraction framework for PCTL*
stochastic model checking

Yang Liu1,3 · Yan Ma2,3 · Yongsheng Yang1

Received: 30 July 2021 / Accepted: 24 January 2022 / Published online: 2 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Stochastic model checking can automatically verify and analyse the software-driven
autonomous systems with stochastic behaviors, which is a formal verification tech-
nique based on system models. When coping with large-scale systems, it suffers
from state space explosion problem very seriously. Model abstraction is a poten-
tial technique for mitigating this problem. At present, only a few properties speci-
fied by PCTL (Probabilistic Computation Tree Logic), such as probabilistic safety
and probabilistic reachability, can be preserved in the practical model abstraction
of stochastic model checking, which are the proper subset of PCTL* (Probabilistic
Computation Tree Logic*) properties. For dealing with this, an effective and effi-
cient three-valued model abstraction framework for full PCTL* stochastic model
checking is proposed in this paper. We propose a new abstract model to preserve
full PCTL* properties for nondeterministic and probabilistic system, which orthogo-
nally integrates interval probability of transition and game for nondeterminism. A
game-based three-valued PCTL* stochastic model checking algorithm is developed
to verify abstract model, and a BPSO (binary particle swarm optimization) algo-
rithm integrated with sample learning is designed to refine the indefinite result of
three-valued PCTL* stochastic model checking abstract model. It is proved that full
PCTL* properties are preserved when the result of three-valued stochastic model
checking is definite, and the efficiency of this framework is demonstrated by some
large cases.

Keywords Stochastic model checking · Three-valued model abstraction · Game ·
Abstraction-refinement · BPSO

 * Yan Ma
 yanma_nus@126.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00327-z&domain=pdf

 Automated Software Engineering (2022) 29:29

1 3

29 Page 2 of 46

1 Introduction

Software-driven autonomous systems are increasingly being used in a lot of
domains, e.g., industry automation, transport, finance, medical surgery and so on
(Ebert and Weyrich 2019; Shivakumar et al. 2020; Fremont et al. 2020).

They are becoming larger and more complex, some of which are accompanied
with the stochastic behaviors (Clarke et al. 2018). The essential reasons for exhib-
iting stochastic behaviors can be classified as, among others: (a) the system itself
contains randomness, e.g., probabilistic algorithms or randomized algorithms are
included; (b) the running environment of system is open, dynamic and unmanage-
able, which may lead to random failures, e.g., message loss or failing to invoke
some components; (c) the stochastic variables are artificially employed to cap-
ture system performance index for evaluation and analysis, e.g., reliability. As
an automatic and formal verification technique, stochastic model checking (a.k.a.
probabilistic model checking) (Clarke et al. 2018, 2009; Kwiatkowska et al. 2022;
Baier and Katoen 2008) can be naturally applied to quantitatively analyse intel-
ligent software-driven autonomous systems with stochastic behaviors. In prac-
tice, stochastic model checking has been exploited to analyze or guarantee the
correctness of probabilistic program (Hark et al. 2020), system performance of
mobile service robots (Lacerda et al. 2019), reliability of critical communication
protocols (Oxford et al. 2020), resource control mechanisms in cloud computing
(Evangelidis 2020), software adaptation of an unmanned undersea vehicle (Pfef-
fer et al. 2019), trustworthiness of deep learning systems (Kwiatkowska 2019),
and so on. In the verification process, the autonomous systems are modelled as
full probabilistic models, e.g., DTMCs (Discrete-time Markov Chains), PPNs
(Probabilistic Petri Nets), or nondeterministic and probabilistic models, e.g.,
MDPs (Markov Decision Processes), NPPNs (Nondeterministic Probabilistic
Petri Nets); and the requirement properties are specified by LTL (Linear Tem-
poral Logic) with probability or PCTL (Probabilistic Computation Tree Logic)
(Kwiatkowska et al. 2022).

The biggest obstacle is state space explosion in stochastic model checking the
software-driven autonomous systems, especially the large-scale systems. This is
rooted in the facts that: (a) the number of states grows double exponentially in
the number of variables or components in a software-driven autonomous system;
(b) stochastic model checking algorithm combines the classical model checking
algorithm and linear equation solving or linear programming algorithms, which
computes the probabilistic vector over states rather than bit-vector in classical
model checking. Hence, how to fight state space explosion problem is a major
challenge in the field of stochastic model checking software-driven autonomous
systems. Clarke, Turing Award winner for founding the field of model checking,
points out that it is an important direction in the future research of model check-
ing at “Turing Lecture” (Clarke et al. 2009). In recent years, some techniques
have been proposed for combating this problem, ranging from the multi-terminal
binary decision diagram (MTBDD) (Kwiatkowska et al. 2017), abstraction (Deh-
nert 2018; Dams and Grumberg 2018), and bounded stochastic model checking

1 3

Automated Software Engineering (2022) 29:29 Page 3 of 46 29

algorithm (Hartmanns et al. 2018) to compositional reasoning (He et al. 2016;
Ma et al. 2019a). However, it is still an open problem.

1.1 Problem statement of model abstraction for stochastic model checking

As an important means to tackle the state space explosion problem, abstraction
(Clarke et al. 2003, 1994a) has been applied in the field of stochastic model check-
ing. It performs stochastic model checking on the abstraction of one or more compo-
nents in the concrete stochastic model checking. Concrete stochastic model checking
is to decide whether M ⊨ Φ holds, where M is the stochastic system model, Φ is
the quantitative requirement property specification, and ⊨ is the satisfaction relation.
Abstraction for stochastic model checking can be denoted as: MA ⊨A ΦA , where MA
is the model abstraction of M , ⊨A is the relation abstraction of ⊨ based on algo-
rithm, ΦA is the specification abstraction of Φ . In fact, MA usually leads to ⊨A and
ΦA ; ⊨A also results in ΦA ; ΦA may also lead to MA and ⊨A . In the present research on
abstraction for stochastic model checking, the abstraction refers to model abstraction
by default; while relation abstraction (Alfaro and Roy 2007; Didier et al. 2010; Fil-
ieri et al. 2011; Huang et al. 2019; Younes 2005) and specification abstraction (Deh-
nert 2018; Dams and Grumberg 2018) are specifically identified, and the related
works of them is less. This paper also focuses on model abstraction for stochastic
model checking.

Informally, model abstraction for stochastic model checking is omitting details
from concrete stochastic system model, which are not relevant for verifying proper-
ties under consideration(Liu et al. 2015). It concludes the value of M ⊨ Φ from the
result of MA ⊨ Φ . Applying model abstraction in stochastic model checking faces
the following four issues, which is named MA4SMC (model abstraction for stochas-
tic model checking) problem: P1) how to construct abstract model, P2) how to ver-
ify the abstract model, P3) what quantitative properties can be preserved, P4) how to
present the counterexample. Thereinto, the answer to P1) is the key for solving the
MA4SMC problem. It has an important effect on the answers to P2), P3) and P4).
The goal of model abstraction is to make the abstract model that has a small enough
state space, yet contains abundant information of concrete model. In other words,
perfect model abstraction technology should meet the following conditions: C1) the
state space of abstract model MA is significantly less than the concrete model M ;
C2) the results of stochastic model checking MA is equivalent to the results of sto-
chastic model checking M , i.e., MA ⊨ Φ → M ⊨ Φ , and MA⊭ Φ → M⊭ Φ . That is
to say, if MA satisfies Φ , M satisfies Φ ; and if MA doesnot satisfy Φ , M doesnot sat-
isfy Φ . However, abstraction process will cause information loss inevitably. There is
a tradeoff in abstraction process between state space and information loss, and vari-
ous model abstraction techniques choose the different tradeoffs.

The existing model abstraction techniques, discussed elaborately in Sect. 2, can
be divided into two categories: (a) accurate abstraction, e.g., probabilistic bisim-
ulation-based abstraction (Larsen and Skou 1991; Milner 1980, 1971; Park 1981;
Buchholz 1994; Segala and Lynch 1995; Paige and Tarjan 1987; Huynh and Tian
1992; Hermanns and Katoen 2000; Derisavi 2007; Christian et al. 2013; Zhang et al.

 Automated Software Engineering (2022) 29:29

1 3

29 Page 4 of 46

2018; Baier and Hermanns 1997; Philippou et al. 2000; Ferrer et al. 2016; Her-
manns and Turrini 2012; Jonsson and Larsen 1991; Clarke et al. 1994b; Baier et al.
2005a; Zhang 2008; Zhang and David 2016; Hashemi et al. 2013), symmetry reduc-
tion-based abstraction (Clarke et al. 1996; Emerson and Sistla 1996; Norris and
Dill 1996; Miller et al. 2006; Donaldson and Miller 2006; Emerson and Wahl 2003,
2005a, b; Donaldson et al. 2009; Wahl et al. 2008; Kwiatkowska et al. 2006a; Kama-
leson 2018; Christopher 2012) and partial order reduction-based abstraction (Gerth
et al. 1995; Peled 1993, 1996; Peled et al. 1997; Valmari 1992; Baier et al. 2004,
2005b; D’Argenio and Niebert 2004; Ciesinski 2011; Fernandez-Diaz et al. 2012;
Hansen et al. 2011; Kwiatkowska et al. 2011; Hansen and Wang 2011; Winterer
et al. 2017); (b) approximate abstraction, e.g., probabilistic CEGAR (counterexam-
ple-guided abstraction-refinement) (Clarke et al. 2003; Hermanns et al. 2008; Hahn
et al. 2010; Chadha and Viswanathan 2010; Ma et al. 2019b), error-guided abstrac-
tion (Ma et al. 2019b; Kwiatkowska et al. 2006b; Kattenbelt et al. 2010; Katoen
and Sher 2017; Wachter and Zhang 2010; Winterer et al. 2020; Kwiatkowska et al.
2020), indefinite result-guided abstraction (Fecher et al. 2006; Katoen et al. 2012;
Luisa et al. 2017). In accurate abstraction, the abstract model is the quotient of con-
crete model, verification algorithm and counterexample generation are the same
with traditional stochastic model checking. The abstract model of exact abstraction
is not small enough, but it preserves almost all the properties. The accurate abstrac-
tion is difficult to realize in practical application at technical level, as it cannot
reduce state space obviously, and the system models need to have the corresponding
special structure. In approximate abstraction, probabilistic CEGAR has a wide range
of practical applications, but the preserved properties are too less, only probabilis-
tic safety is preserved. Error-guided abstraction and indefinite result-guided abstrac-
tion are the potential model abstraction paradigms for stochastic model checking.
The limitations of error-guided abstraction are: (1) the scope of preserved proper-
ties is too narrow, only probabilistic reachability, (2) the refinement algorithm is
not efficient enough, and (3) counterexample generation is not included. Indefinite
result-guided abstraction can preserve PCTL properties, but it isnot complete, which
solves the MASMC problem partially, and the limitations of which are: (1) the veri-
fied system model is full probabilistic model, (2) the refinement is not involved for
steering repartition of abstract model, and (3) counterexample generation is also not
included.

1.2 Our contributions

For preserving more properties in model abstraction, we argue that error-guided
abstraction and indefinite result-guided abstraction can be combined orthogonally
to form an ideal abstraction framework, as they have the complementary advantages.
Game can characterize the new nondeterminism occurred by abstraction, which can
reduce the state space of abstract model. Indefinite result-guided abstraction can
over-approximate and under-approximate the concrete system model at the same
time, which can get the tight lower and upper bounds. This paper is dedicated to this
direction.

1 3

Automated Software Engineering (2022) 29:29 Page 5 of 46 29

In this paper, with a breakthrough in constructing and presenting abstract
model, we propose a complete and efficient model abstraction framework, i.e.,
three-valued abstraction-refinement, for PCTL* (Probabilistic Computation
Tree Logic*) stochastic model checking nondeterministic and probabilistic sys-
tems. As shown in Fig. 1, we mainly make the following contributions to solve
the MA4SMC problem: (1) proposing a new abstract model which orthogo-
nally integrates interval probability of transition and game for nondeterminism,
i.e. LGIPPN (Game Interval PPN with Label), and combining sample learning
and BPSO (binary particle swarm optimization) algorithm to refine the abstract
model; (2) generalizing two-player (verifier and refuter) stochastic game semantics
(Liu et al. 2016; Shoham and Grumberg 2007) for three-valued PCTL* stochastic
model checking the abstract model, and exploiting coloring process for strategy
solving; (3) preserving the full PCTL* properties which is a proper superset of
probabilistic safety, probabilistic reachability, and PCTL properties; (4) extend-
ing the evidence for refutation (Liu et al. 2016; Shoham and Grumberg 2007) to
express the counterexample. This solution meets the conditions of perfect model
abstraction well: (1) the state space of abstract model MA is significantly less than
the concrete model M ; C2) MA ⊨ Φ → M ⊨ Φ , MA⊭ Φ → M⊭ Φ , except for the
indefinite result. As far as we know, this is the first complete framework for three-
valued abstraction-refinement in stochastic model checking, and it is also the first
abstraction framework for preserving full PCTL*. In this framework, the concrete
system model that we deal with is LNPPN (Nondeterministic Probabilistic Petri
Net with Label) (Albanese et al. 2008; Liu et al. 2016; Bernemann et al. 2020)
which is a high-level formal model for modelling autonomous systems with non-
deterministic and probabilistic behaviors. The LNPPN model can be modelled
from an existing autonomous system, or it is a design model by designer for
developing the autonomous system. Note that this framework can also be used to

LNPPN model PCTL* property Φ

LGIPPN PCTL* Φ in PNF

Game semantics for three-valued PCTL* stochastic model checking

Strategy solving for two-player stochastic game by three-valued coloring

Φ
Evidence for refutation(Counterexample)

Φ
Evidence for verification

Three-valued abstract with game Normalize

Identify indefinite nodes

Split abstract places

Refine by BPSO + sample learning

Indefinite

wins, Φwins, Φ

Fig. 1 Three-valued abstraction-refinement for PCTL* stochastic mode checking

 Automated Software Engineering (2022) 29:29

1 3

29 Page 6 of 46

abstract other nondeterministic and probabilistic systems models, such as MDP or
probabilistic automaton.

1.3 Outline of the paper

In the next section, we survey the related works of model abstraction techniques for
stochastic model checking. We give the necessary preliminaries for LNPPN, PCTL*
and stochastic model checking LNPPN in Sect. 3. In Sect. 4, we propose a novel
abstract model for nondeterministic and probabilistic system, and describe how to
construct the abstract models for LNPPN. Section 5 extends the game-based PCTL*
stochastic model checking to verify abstract model, which transforms the three-
valued PCTL* stochastic model checking into strategy solving of three-valued sto-
chastic game. We propose the refinement algorithm for refining the abstract model,
which integrates BPSO and sample learning in Sect. 6. The experimental results are
presented in Sect. 7. We conclude the paper in Sect. 8.

2 Related works

There are some model abstraction techniques have been proposed for stochastic
model checking. We classify them according to the methods of presenting and con-
structing abstract model, summarise their solutions to MA4SMC problem, and ana-
lyse the extent to which they satisfy the conditions of perfect abstraction.

2.1 Simulation relation‑based model abstraction

(1) Strong probabilistic bisimulation
 Strong probabilistic bisimulation (Larsen and Skou 1991), i.e., probabilistic

bisimulation, is the quantitative extension of strong bisimulation (Milner 1980;
Park 1981) on LTS (labelled transition system). It has been used for model
abstraction for DTMC (discrete-time Markov chain), CTMC (discrete-time
Markov chain) (Buchholz 1994) and MDP (Markov decision process) (Segala
and Lynch 1995). Based on study (Paige and Tarjan 1987), Huynh et al. (1992)
gave the first automatic constructing abstract model algorithm for DTMC. Her-
manns et al. (2000) adopted compositional method to transform the strong proba-
bilistic bisimulation of model into the strong probabilistic bisimulation of sub-
model, and used it to quantitatively verify POTS (plain-old telephone system).
Derisavi (2007) firstly presented a symbolic algorithm and its implementation
for the construct abstract model of CTMC, which was optimal for generating the
smallest possible abstract model. Christian et al. (2013) leveraged satisfiability
solvers to extract the minimised system from the PRISM modelling language
directly, which could generate coarser abstract model and no state space was
generated. Song et al. (Zhang et al. 2018) introduced novel notions of strong
probabilistic bisimulation relation for PA (probabilistic automaton), which could
get the coarsest abstract model among the existing strong probabilistic bisimu-

1 3

Automated Software Engineering (2022) 29:29 Page 7 of 46 29

lation techniques. Strong probabilistic bisimulation-based abstraction solves
the MA4SMC problem in the following way: W1) use the strong probabilistic
bisimulation minimization to construct a smaller equivalent abstract model, and
use the quotient model to present abstract model; W2) use existing stochastic
model checking algorithm to verify abstract model; W3) preserve all the quanti-
tative temporal logics; W4) use existing method to generate the counterexample.
It meets condition C2) of perfect model abstraction well, and performs badly
for condition C1). The limitation of it: the abstract model is so refined that the
state space of it does not become smaller obviously, and the time to construct
the abstract model may exceed the stochastic model checking time for concrete
model.

(2) Weak probabilistic bisimulation
 Compared with Strong probabilistic bisimulation, weak probabilistic bisimu-

lation (Zhang et al. 2018; Baier and Hermanns 1997; Philippou et al. 2000) is
a coarse simulation relation. It solves the MA4SMC problem in the following
way: W1) use the weak probabilistic bisimulation minimization to construct
a smaller stuttering equivalent abstract model, and use the quotient model to
present abstract model; W2) use existing stochastic model checking algorithm
to verify abstract model; W3) preserve all the quantitative temporal logics with-
out next operator; W4) use existing method to generate the counterexample.
Although some work (Baier and Hermanns 1997; Ferrer et al. 2016; Hermanns
and Turrini 2012) manage to reduce the time complexity of constructing abstract
model, it is still subject to the cost of a complex minimization algorithm.

(3) Strong probabilistic simulation
 Strong probabilistic simulation (Larsen and Skou 1991; Jonsson and Larsen

1991) can be seen as the quantitative extension of strong simulation (Milner
1971; Clarke et al. 1994b). Baier et al. (2005a) proved that equivalence of strong
probabilistic simulation over DTMC or CTMC was in accordance with strong
probabilistic bisimulation. For MDP, the quotient under strong probabilistic
simulation is strict coarser than strong probabilistic bisimulation. Zhang et al.
(2008, 2016) pursued the optimization of constructing abstract model based on
strong probabilistic bisimulation, and Huang et al. (2019) generalized proba-
bilistic simulation to probabilistic pushdown automata and finite-state systems.
Strong probabilistic simulation-based abstraction solves the MA4SMC problem
in the following way: W1) use the strong probabilistic simulation minimization
to construct a smaller abstract model, and use the quotient model to present
abstract model; W2) use existing stochastic model checking algorithm to verify
abstract model; W3) preserve the truth value of quantitative safety temporal
logics; W4) use existing method to generate the counterexample. It meets the
perfect model abstraction C1) well, but for C2), it just preserves the truth value
of quantitative safety temporal logics formula Φ, i.e., MA ⊨ Φ → M ⊨ Φ.

(4) Weak probabilistic simulation
 Weak probabilistic simulation is the coarsest among all the simulation

relations. At present, the related work about weak probabilistic simulation is
less (Zhang 2008; Zhang and David 2016; Hashemi et al. 2013). It solves the
MA4SMC problem in the following way: W1) use the weak probabilistic simu-

 Automated Software Engineering (2022) 29:29

1 3

29 Page 8 of 46

lation minimization to construct a smaller abstract model, and use the quotient
model to present abstract model; W2) use existing stochastic model checking
algorithm to verify abstract model; W3) preserve the truth value of quantitative
safety temporal logics without next operator; W4) use existing method to pro-
duce the counterexample. It meets the perfect model abstraction C1) well, but
for C2), it just preserves the truth value of quantitative safety temporal logics
without next operator.

2.2 Symmetry reduction‑based model abstraction

Symmetry reduction (Clarke et al. 1996; Emerson and Sistla 1996; Norris and Dill
1996; Miller et al. 2006) exploits presence of replication within model to be veri-
fied. Donaldson et al. (2006) applied symmetry reduction (Emerson and Wahl 2003,
2005a) for non-probabilistic symbolic model checking in PRSIM with MDP or
DTMC semantics, translated the SP (symmetric PRISM) program into the reduced
form, and developed corresponding tool GRIP. Based on study (Donaldson and
Miller 2006), Donaldson et al. (2009) presented a much richer language, which
allowed specification of probabilistic systems in a way that guaranteed the applica-
bility of the generic representative technique, together with an extended translation
algorithm. Via dynamic symmetry reduction (Emerson and Wahl 2005b; Wahl et al.
2008), Kwiatkowska et al. (2006a) proposed an efficient algorithm for the construc-
tion of quotient models of DTMC, CTMC, MDP, which were built PRISM with
MTBDD data structure. Kamaleson (2018) and Christopher (2012) applied symme-
try reduction to stochastic model checking with explicit states, which could the auto-
mated detect component symmetries or arbitrary data in the probabilistic specifica-
tion. Symmetry reduction-based abstraction uses quotient to present abstract model.
The relation between it and concrete model is probabilistic bisimulation, but it needs
less cost when constructing abstract model compared with probabilistic bisimula-
tion-based abstraction.

2.3 Partial order reduction‑based model abstraction

Partial order reduction methods (Gerth et al. 1995; Peled 1993; Peled et al. 1997;
Valmari 1992) rely on expanding a state space only partially, exploring representa-
tives of sets of executions of a system. Baier et al. (2004) firstly investigated partial
order reduction for LTL without next operator model-checking MDP via a variant
of Peled’s ample set method (Peled 1993, 1996). Argenio et al. (2004) enhanced
ample set conditions of study (Baier et al. 2004) to make the abstraction preserve
maximum and minimum probabilities of next-free LTL properties, which was
implemented in LiQuor (Ciesinski 2011). Baier et al. (2005b) presented the partial
order reduction criteria for verifying branching time properties formalized by PCTL.
Fernandez et al. (2012) regarded the work of Baier et al. (2004, 2005b), D’Argenio
and Niebert (2004) as the dynamic partial order reduction methods, the drawback
of which was that they can hardly be combined with other techniques to tackle the
state space explosion problem. It studied partial order reduction realized by a static

1 3

Automated Software Engineering (2022) 29:29 Page 9 of 46 29

analysis which injected the reduction criteria into the control flow graph. Different
from partial order reduction via ample set, Hansen et al. (2011) and Kwiatkowska
et al. (2011) firstly proposed a weak variant of the stubborn set (Hansen and Wang
2011) to reduce the state space of MDP, which would preserve the maximal prob-
abilities of reaching bottom end components under far schedulers and realizability
of unconditional fairness. This work is then extended in Winterer et al. (2017). Par-
tial order reduction-based abstraction can be seen as the weak probabilistic bisimu-
lation-based abstraction.

2.4 Probabilistic counterexample‑guided model abstraction

CEGAR (counterexample-guided abstraction-refinement) (Clarke et al. 2003) has
been en vogue for the automatic verification of very large systems in the past years.
At present, there are two methods for applying CEGAR in stochastic model check-
ing, i.e., probabilistic CEGAR (Hermanns et al. 2008; Chadha and Viswanathan
2010), which are based on over-approximation of concrete model. Hermanns et al.
(2008) firstly applied CEGAR for stochastic model-checking probabilistic automa-
ton, and developed the corresponding tool PASS (Hahn et al. 2010). It solves the
MA4SMC problem in the following way: W1) use counterexample-guided refine-
ment to construct abstract model, and use the abstract quotient automaton to pre-
sent abstract model; W2) use existing stochastic model checking algorithm to verify
abstract model; W3) preserve the truth value of reachability properties; W4) use
existing method to produce the counterexample expressed by a finite Markov chain.
It meets condition C1) of perfect model abstraction well, and performs badly for
condition C2), for reachability property Φ, i.e., MA ⊨ Φ → M ⊨ Φ . Chadha et al.
(2010) pointed out that DTMC could not serve as counterexample for the richer
class of properties and argued that no formal statement characterizing process based
on the refinement algorithm outlined in Hermanns et al. (2008). This was supple-
mented by Ma et al. (2019b), in which counterexample was represented with sub-
graph. They can be seen as the second solution for MA4SMC problem in the follow-
ing way: W1) use counterexample-guided refinement to construct abstract model,
and use the another MDP or sub-graph to present abstract model; W2) use exist-
ing stochastic model checking algorithm to verify abstract model; W3) preserve the
truth value of safety and liveness fragments of PCTL; W4) use existing method with
heuristics to generate the counterexample expressed by a sub-MDP or sub-graph. It
meets condition C1) of perfect model abstraction well, and does not perform well
for condition C2), i.e., for safety and liveness fragments of PCTL formulae Φ, i.e.,
MA ⊨ Φ → M ⊨ Φ.

2.5 Error‑guided model abstraction

Error-guided abstraction-refinement (game-based abstraction) proposed by Marta,
Mark, et al. (Kwiatkowska et al. 2006b; Kattenbelt et al. 2010; Katoen and Sher
2017) is a new framework for model abstraction in stochastic model checking.
Error-guided abstraction-refinement framework comprises an abstraction based

 Automated Software Engineering (2022) 29:29

1 3

29 Page 10 of 46

on stochastic 2-player games, two refinement methods (strategy-based refinement,
value-based refinement) and an efficient algorithm for an abstraction-refinement
loop. Recent extensions to the PASS tool (Wachter and Zhang 2010) use this frame-
work and demonstrate that it is faster and yields smaller abstractions. Winterer et al.
(2020) extended and complemented the work (Katoen and Sher 2017) for strategy
synthesis for POMDPs in robot planning. The solution of game-based abstraction to
the MA4PMC problem is as follows: W1) use error-guided refinement to construct
abstract model, and use stochastic game to present abstract model; W2) use exist-
ing stochastic game algorithm (Kwiatkowska et al. 2006b, 2020) to analyze abstract
model; W3) allows lower and upper bounds to be computed for the values of reach-
ability properties of the MDP; W4) do not involve the counterexample generation. It
meets condition C1) of perfect model abstraction well, but the properties to be veri-
fied is limited to reachability properties.

2.6 Indefinite result‑guided model abstraction

In recent years, indefinite result-guided abstraction-refinement (three-valued abstrac-
tion) (Fecher et al. 2006) is used in stochastic model checking, which is both over-
approximation and under-approximation of concrete model. Fecher et al. (2006)
considered three-valued abstraction for DTMC firstly. It solves the MA4SMC
problem partially in the following way: W1) use abstract Markov chain to present
abstract model, do not involve refinement method; W2) use a dedicated three-val-
ued stochastic model checking to verify abstract model; W3) preserve PCTL of
the DTMC, except for the indefinite results; W4) do not include the counterexam-
ple generation. Katoen et al. (2012) extended the work of Fecher et al. (2006) to
CTMC, and laid down the theoretical underpinnings of three-valued abstraction for
DTMC and CTMC. Luisa et al. (2017) extended the work of Fecher et al. (2006),
Katoen et al. (2012) to Spatio-Temporal Logic for stochastic systems, and Belar-
dinelli et al. (2019) generalized the three-valued abstraction to verify strategic prop-
erties in multi-agent systems with imperfect information. It solves the MA4SMC
problem partially in the following way: W1) use interval Markov chain to present
abstract model, do not involve refinement method; W2) use a dedicated three-valued
stochastic model checking to verify abstract model; W3) preserve PCTL/CSL of the
DTMC/CTMC, except for the indefinite results; W4) do not include the counterex-
ample generation. The work of Katoen et al. (2012), Luisa et al. (2017), Belardinelli
et al. (2019) meets condition C1) and C2) of perfect model abstraction well, but
they are incomplete, and there is not yet an implementation to test this on practical
examples.

1 3

Automated Software Engineering (2022) 29:29 Page 11 of 46 29

3 Preliminaries

3.1 LNPPN

Petri net is a high-level formal method for modeling, analyzing, and verifying
the complex systems. It was proposed by C. A. Petri in his dissertation “Com-
munication with Automata” in 1962. Today, it has been widely used in all aspects
of software or system engineering to ensure the quality. For modeling the com-
plex system with stochastic behaviors, probability measurement theory is intro-
duced in Petri net (Albanese et al. 2008; Liu et al. 2016; Bernemann et al. 2020),
which is under the guidance of general net theory (Petri 1979). At present, there
are 4 types of probabilistic Petri nets for modelling stochastic systems, as shown
in Table 1. We consider the nondeterministic probabilistic system models, i.e.,
NPPN. PPN can be seen as the special case of NPPN without nondeterminism.
LNPPN (Liu et al. 2016) is the NPPN with label functions.

Definition 1 LNPPN (NPPN with Label). The LNPPN can be defined as a 7-tuple
M = (S, T; F, f ; C; AP, L) , where: (1) T = (Transition,Prt) , Transition denotes the
transition act, Prt ∈ [0, 1] denotes the success probability of the transition; T is the
act transition (AT) with the probability equals 1, or the probabilistic act transition
(AT ,Prt) with an act satisfying a certain probability distribution, or the pure proba-
bility transition (PT) without any act. If Prt = 0 , it means that the transition is inva-
lid; (2) S is the set of places,S ∩ T = � , S ∪ T ≠ � , F ⊆ S × T ∪ T × S , which is the
flow relation of net, and N = (S,AT ,F) is the pure net, where AT is the act transition
with probability equals 1; (3) f = fT ∪ fS ∪ fS×T ∪ fT×S , fT ∶ T → 2Transition×Prt ,
fS = S → [0, 1] , fS×T = S × T → [0, 1] , fT×S = T × S → [0, 1] , and the value of fS×T
is determined by the nondeterminism of transitions, the value of fT×S can be
obtained from the probability value of fT (t) , i.e., �Prt

(
fT (t)

)
 , the value of fS except

initial place can be computed according to the value of fS×T and fT×S ; (4) ∀t ∈ T ,
∃s ∈ S, fT×S = 1 − �Prt

(
fT (t)

)
. fT×S(t × s) = 0 , if �Prt

(
fT (t)

)
= 1 , which represents

transition (t, s) and place s are invalid; (5) C is the set of nondeterminism classes,
and each nondeterminism class is a set comprised of

(
s, ti

)
 . If {(

s, t1
)
,
(
s, t1

)
…

(
s, t1

)}
∈ C , then

n∑
i=1

fS×T
�
s, ti

�
= 1 ; (6) AP is a set of atomic prop-

ositions; (7) L ∶ S → 2AP is the labeling function, which can express the require-
ments of users, i.e., the properties.

Table 1 Petri nets with probability measurement theory

Fully probabilistic Nondeterministic + probabilistic

Discrete time Probabilistic Petri net
(PPN)

Nondeterministic probabilistic
Petri net (NPPN)

Continuous time Stochastic Petri net
(SPN)

Probabilistic timed Petri net
(PTPN)

 Automated Software Engineering (2022) 29:29

1 3

29 Page 12 of 46

A LNPPN M is finite, if S and T are finite. The size of M is the number of places
and transitions plus the number of pairs (s, t) with fS×T > 0 and (t, s) with fT×S > 0 .
A LNPPN model is measurable with probability (Liu et al. 2016).

Definition 2 Adversary (Policy, or Scheduler) of LNPPN. An adversary of a
LNPPN model M is a function Adv ∶ S+ → T , such that Adv

(
s0s1s2 … sn

)
∈ C for

all s0s1s2 … sn ∈ S+ . The path π = s0 →
t1 s1 →

t2
⋯ →

ti si ⋯ is called a Adv-path if
ti = Adv

(
s0 … si−1

)
 for all i > 0.

3.2 PCTL* in release‑PNF

Every PCTL* (Baier and Katoen 2008) formula can be transformed as a canonical
form. Release-PNF (positive normal form) of PCTL* is a kind of canonical forms
for PCTL*, which is described by a restriction that negation operator only occurs
adjacent to atomic propositions. It can avoid the exponential blowup in transforming
the PCTL* formulae into PNF.

Definition 3 Release-PNF of PCTL*. Let AP be a set of atomic proposi-
tions, the release-PNF of PCTL* state formulae Φ are defined as follows:
Φ ∶∶= true|false|a|¬a|Φ ∧ Φ|Φ ∨ Φ|P∼p(Ψ) , where a ∈ AP,Ψ is the path formula,
∼∈ {⟨,≤,⟩,≥} , and p ∈ [0, 1] is the rational bound; the release-PNF of PCTL* path
formulae Ψ are defined as follows: Ψ ∶∶= Φ|Ψ ∧ Ψ|Ψ ∨ Ψ|XΨ|ΨUΨ|ΨRΨ , where
the temporal modality R is dual to the until operator U . Ψ0RΨ1 is “true” over a path,
if Ψ1 always holds, a requirement that is released no sooner than Ψ0 becomes valid.

3.3 Stochastic model checking LNPPN

The descriptive powers of PPN, NPPN, SPN and PTPN are the same with low-lever
formal model DTMC, MDP, CTMC (Continuous-time Markov Chain) and CTMDP
(Continuous-time Markov Decision Process), respectively. State-of-the-art stochas-
tic model checker, e.g., PRISM, PAT, can verify LNPPN, Markov process or proba-
bilistic automaton, indiscriminately. Actually, PCTL* stochastic model checking
NPPN is a very complex process, as shown in Fig. 2, because the PCTL* is a combi-
nation of PCTL and LTL with probability. The time complexity of it is proved to be
double exponential in | Ψ | and polynomial in the size of NPPN M (Clarke et al. 2018;
Liu et al. 2016), where Ψ is the path formula in PCTL* Φ . Liu et al. (2016) pro-
posed a game (Shoham and Grumberg 2007)-based PCTL* stochastic model check-
ing algorithm, which yielded a single exponential time complexity in | Ψ | for PCTL*
stochastic model checking LNPPN. They proved that this cannot be improved fur-
ther, as the LTL with probability stochastic model checking LNPPN is PSPACE-
completeness. Moreover, in reference Liu et al. (2016), the counterexample was gen-
erated by evidence of winning strategy of player refuter refuter . It is the first work to
generate counterexamples for PCTL* stochastic model checking.

From the point of view of time complexity, abstraction for PCTL* stochastic
model checking LNPPN is also very important and necessary. The model abstraction

1 3

Automated Software Engineering (2022) 29:29 Page 13 of 46 29

methods in Sect. 2 can also be used to LNPPN, if they don’t take the LNPPN as
the concrete model, originally. It should be noted that there are currently no model
abstraction methods to preserve full PCTL* properties for LNPPN.

4 Three‑valued abstraction for LNPPN

In the fields of classical model checking, three-valued abstraction (Fecher et al.
2006; Shoham and Grumberg 2007) has been advocated as a better method for fight-
ing state space explosion problem. It uses may and must transitions between abstract
states to over- and under-approximate the concrete model. When lifting the three-
valued abstraction to nondeterministic and probabilistic system model (i.e., LNPPN
in this paper), it should be considered to handle the new nondeterminism and the
probabilistic transition for over- and under-approximation in abstraction process.

5 Abstract model

We firstly present two kinds of extended LNPPN, which are used later for defining
the abstract model of LNPPN.

Definition 4 Interval NPPN with Label (LINPPN). The interval LNPPN (LINPPN)
can also be defined as a 7-tuple M = (S, T; F, f ; C; AP, L) , where: (1)
T =

(
Transition,

[
Ptl,Ptu

])
 , Transition denotes the transition act, Ptl,Ptu ∈ [0, 1]

Fig. 2 PCTL* stochastic model checking

 Automated Software Engineering (2022) 29:29

1 3

29 Page 14 of 46

denotes the success probability interval of the transition, and Ptl ≤ Ptu ; (2)
f = fT ∪ fS ∪ fS×T ∪ fT×S , fT ∶ T → 2Transition×[Ptl,Ptu] , and Ptl,Ptu ∶ T → [0, 1]
describe the lower and upper bounds for the success probabilities of T ,
fS = S → [0, 1] , fS×T = S × T → [0, 1] describe the probabilities between places and
transitions, the value of fT×S can be obtained from the probability interval value of
fT (t) , i.e., [�Ptl

(
fT (t)

)
, �Ptu

(
fT (t)

)
], the value of fS except initial place can be com-

puted according to the value of fS×T and fT×S ; (3) ∀t ∈ T ,
∃s ∈ S, fT×S =

[
1 − �Ptu

(
fT (t)

)
, 1 − �Ptl

(
fT (t)

)]
. fT×S(t × s) = [0, 0] , if the probability

interval value of fT (t) is [1, 1] , which represents transition (t, s) and place s are inva-
lid; (4) C is the set of nondeterminism classes, and each nondeterminism class is a
set comprised of

(
s, ti

)
 and

∑
�Ptl

�
fT
�
ti
��

≤ 1 ≤
∑

�Ptu

�
fT
�
ti
��

 . If {(
s, t1

)
,
(
s, t1

)
…

(
s, t1

)}
∈ C , then

n∑
i=1

fS×T
�
s, ti

�
= 1 ; (5) the others are the same

with LNPPN.

An INPPN can be regarded as the extension of NPPN in transition probability,
which permits the probability value of transition is the interval. The standard and
complete LNPPN is a special case of LINPPN with Ptl = Ptu.

Definition 5 Game Probabilistic Petri Net with Label (LGPPN). A Game Probabilis-
tic Petri Net with Label (LGPPN) is a tuple M =

(
S,

(
S0, S1, Sp

)
, T; F, f ; AP, L

)

where: (1)
(
S0, S1, Sp

)
 is a partition of S , and places in S0, S1 and Sp are called ‘Player

0’, ‘Player 1’ and ‘Probabilistic’ places, respectively; (2) if place s ∈ S0 ∪ S1 (s is
called player place), fS×T (s, t) ∈ [0, 1] for every t ∈ T , and if s ∈ Sp ,

∑
t∈T

fS×T (s, t) = 1 ;

(3) the others are the same with LNPPN.

On the one hand, a LGPPN can be seen as the turn-based stochastic 2-player
game played on NPPN. On the other hand, we can say that LGPPN extends the
LNPPN with another non-deterministic choice among the enabled transitions in
place s occurred. Moreover, either the non-deterministic choice has been made for
reaching place s, or the non-deterministic choice has to be made after the enabled
transitions in place s having been occurred. The standard and complete LNPPN can
be defined as

(
S,

(
S0, ∅, Sp

)
, T; F, f

)
 in LGPPN form, which substitutes the set of

nondeterminism classes C with
(
S0, ∅, Sp

)
.

To contain more information in abstract model for both negative and affirmative
results of three-valued PCTL* stochastic model checking, we extend both LGPPN
and LINPPN orthogonally to present abstract model that is named LGIPPN. As
defined in Definition 5, ‘Player 0’ making choices in S0 corresponds to the new non-
determinism caused by abstraction, ‘Player 1’ making choices in S1 corresponds to
the original nondeterminism in LNPPN, lower bound and upper bound of the inter-
val under- and over-approximate probabilistic transition, respectively.

Definition 6 Game Interval PPN with Label (LGIPPN). A LGIPPN can be defined
as M =

(
S,

(
S0, S1, Sp

)
, T; F, f ; AP, L

)
 where: (1)

(
S0, S1, Sp

)
 is a partition ofS ,

and places in S0, S1 and Sp are called ‘Player 0’, ‘Player 1’ and ‘Probabilistic’ places,

1 3

Automated Software Engineering (2022) 29:29 Page 15 of 46 29

respectively; (2) f = fT ∪ fS ∪ fS×T ∪ fT×S , fT ∶ T → 2Transition×[Ptl,Ptu] , and
Ptl,Ptu ∶ T → [0, 1] describe the lower and upper bounds for the success probabili-
ties of T , fS = S → [0, 1] , fS×T = S × T → [0, 1] describe the probabilities between
places and transitions, the value of fT×S can be obtained from the probability interval
value of fT (t) , i.e., [�Ptl

(
fT (t)

)
, �Ptu

(
fT (t)

)
], the value of fS except initial place can be

computed according to the value of fS×T and fT×S ; (3) ∀t ∈ T ,
∃s ∈ S, fT×S =

[
1 − �Ptu

(
fT (t)

)
, 1 − �Ptl

(
fT (t)

)]
. fT×S(t × s) = [0, 0] , if the probability

interval value of fT (t) is[1, 1] , which represents transition (t, s) and place s are inva-
lid; (4) if place s ∈ S0 ∪ S1 (s is called player place), fS×T (s, t) ∈ {0, 1} for
everyt ∈ T , ifs ∈ Sp ,

∑
t∈T

fS×T (s, t) = 1 , and for everyti ∈ s. , ∑ �Ptl

�
fT
�
ti
��

≤ 1 ≤
∑

�Ptu

�
fT
�
ti
��

and �Ptl

(
fT
(
ti
))

≤ �Ptu

(
fT
(
ti
))

 ; (5) L ∶ S × AP → {true, ?, flase} is a labeling func-
tion that assigns a truth value in {true, ?, flase} to each pair of place in S and propo-
sition in AP ; (6) the others are the same with LNPPN.

Note that we don’t consider the place without any outgoing transition, which
can be implemented by augmenting a transition to itself with probability 1.
L(s, a) = ? means that the truth value of an atomic proposition a is indefinite in
the place s. Player 0, probability interval and the third value “?” are used to model
explicitly a loss of information due to abstraction of place and probabilistic tran-
sition properties of the LNPPN, respectively. We call a LGIPPN model a LNPPN
if S1 = � , Ptl = Ptu , and there is no proposition taking value ? in any place. The
relationship among LNPPN, ILNPPN, GLPPN and LGIPPN is shown in Fig. 3.

We formalize the notion of the 3-valued abstraction in Definition 7 on the level
of interval LGIPPN, because: (1) the LNPPN is a special case of LGIPPN; (2)
generally speaking, appropriate abstract model LGIPPN cannot be constructed at
the first time, when abstraction is used after the first time, the concrete model is
just LGIPPN which is constructed in abstract process at last time.

Definition 7 Three-valued abstraction of LGIPPN. Let
M =

(
S,

(
S0, S1, Sp

)
, T; F, f ; AP, L

)
 be a concrete model and

P =
{
P1,P2,… ,Pn

}
⊆ 2S a partition ofS , i.e., Pi ≠ ∅ , Pi ∩ Pj = � , for i ≠ j ,

1 ≤ i, j ≤ n , and ∪n
i=1

Pi = S . Then the three-valued abstract model
MA =

(
SA,

(
SA
0
, SA

1
, SA

p

)
, TA; FA, f A; AP, LA

)
 of M induced by P can be defined

as:

(1) SA = SA
0
∪ SA

1
∪ SA

p

Fig. 3 Relationship between
LNPPN, LGPPN, LINPPN and
LGIPPN

LNPPN

LGPPN ILNPPN

LGIPPN

Interval transition Nondeterminism

Interval transition Nondeterminism

Nondeterminism+ Interval transition

 Automated Software Engineering (2022) 29:29

1 3

29 Page 16 of 46

(2) SA
0
= P ; SA

1
 is composed of place s from S , whose next places reached by s. are

identical after lifting; SA
p
 is set of probabilistic transitions emanating from each

element of SA
1
 , in the same style as M.

(3) For ∀tA
i
 between (sA

1
)m and

(
sA
0

)
k
 , �Ptl

�
fTA

�
tA
i

��
= inf

⋅

�
tj
�
∈(sA

1
)m

⎛⎜⎜⎜⎝

∑
�
tj
�
⋅∈
�
sA
0

�
k

�Ptl

�
fT
�
tj
��⎞⎟⎟⎟⎠

 and

�Ptu

�
fTA

�
tA
i

��
= min

�
1, sup

⋅(tj)∈(sA1)m

�
∑

(tj)⋅∈(sA0)k

�Ptu

�
fT
�
tj
����

(4) TA is the set of tA
i

(5) FA and f A can be got from SA ,
(
SA
0
, SA

1
, SA

p

)
 and TA according to Definition 5.

(6) LA
�
(sA

0
)n, a

�
=

⎧
⎪⎨⎪⎩

true, if L(s, a) = true for all s ∈ (sA
0
)n

false, if L(s, a) = false for all s ∈ (sA
0
)n

?, otherwise

(7) Initial place of MA is sA
init

= Pi , where initial place of M sinit ∈ Pi . Initial distribu-
tion of MA is �A

0

�
(sA

0
)n
�
=

∑
s∈(sA

0
)n

�0(s).

Note that partition P is usually depending on where M are used. In this paper,
partition P is based on invisible variables (Clarke et al. 2002) which means that an
abstract place (Pi) “agrees” on all the variables that are visible. Intuitively speaking,
the Player 0 place is an element of the partition of places in concrete M . Player 0
selects a concrete place in the set P firstly, then Player 1 selects a probability dis-
tribution over the concrete ti , which is a distribution over abstract places rather than
concrete places.

Theorem 1 For any LGIPPN M and partition P, the three-valued abstract model
MA constructed by Definition 7 is also a LGIPPN.

Proof It is obvious that SA ,
(
SA
0
, SA

1
, SA

p

)
 , FA , f A , AP and LA are all in accordance

with the definition of LGIPPN. To prove MA is a LGIPPN, it is just to prove: (1)
�Ptl

(
fTA

(
tA
i

))
∈ [0, 1] , �Ptu

(
fTA

(
tA
i

))
∈ [0, 1] , and �Ptl

(
fTA

(
tA
i

))
≤ �Ptu

(
fTA

(
tA
i

))
 ; (2) ∑

�Ptl

�
fTA

�
tA
i

��
≤ 1 ≤

∑
�Ptu

�
fTA

�
tA
i

��
 . The former obligation (1) follows by easy

derivation from (3) of Definition 7. We show that obligation (2) holds:
∑

�Ptl

�
fTA

�
tA
i

�� ∑
(tj)⋅∈SA0

�
∑

⋅(tj)∈(SA1)m,(tj)⋅∈(S
A
0)k

�Ptl

�
fT
�
tj
���

≤ 1 ;
∑

�Ptu

�
fTA

�
tA
i

��
=

∑
�
tj

�
⋅∈SA

0

⎛⎜⎜⎜⎝
min

⎧⎪⎨⎪⎩
1, sup

⋅

�
tj

�
∈(SA

1
)m

⎛⎜⎜⎜⎝

∑
�
tj

�
⋅∈
�
SA
0

�
k

�Ptu

�
fT
�
tj
��⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭

⎞⎟⎟⎟⎠
≥

∑
�
tj

�
⋅∈SA

0

⎛⎜⎜⎜⎝

∑
⋅

�
tj

�
∈(SA

1
)m ,

�
tj

�
⋅∈
�
SA
0

�
k

�Ptu

�
fT
�
tj
��⎞⎟⎟⎟⎠

≥ 1 . So, MA

is a LGIPPN. □

1 3

Automated Software Engineering (2022) 29:29 Page 17 of 46 29

5.1 Simulation relation on LGIPPN

To compare the behavior between LGIPPN model and its abstract model, we will
discuss simulation relation on LGIPPN model. Simulation relations have been
extensively studied both in classical model checking and stochastic model checking.
The state-based simulation for probabilistic models (Jonsson and Larsen 1991) is a
preorder on a state space. It requires that if state u simulates state v, u can mimic the
stepwise behavior of v but may have more behavior that cannot be matched by u.
This state-based simulation can be employed to distributions over places of LGIPPN
model via weight function (Jonsson and Larsen 1991).

Definition 8 Distribution-based simulation. Let S , S′ be the set of places in LGIPPN
model, and � ∈ distr(S) , �� ∈ distr

(
S�
)
 . For R ⊆ S × S� , �′ simulates � w.r.t. R ,

denoted �R�′ , if there exists a weight function Δ ∶ S × S� → [0, 1] such that for all
u ∈ S , v ∈ S� : (1) Δ(u, v) > 0 ⇒ uRv , (2)

∑
s�∈ S�

Δ
�
u, s�

�
= �(u) , (3)

∑
s∈S

Δ(s, v) = ��(v)

Distribution-based simulation can be computed by reducing them to a maximum-
flow problem (Zhang et al. 2018). It plays an important role in defining simulation
relation on LGIPPN model.

Definition 9 Probabilistic simulation. Let M , M′ be LGIPPN models, �0 ,
�

′

0
 be the initial distributions. R ⊆ S × S� is a probabilistic simulation rela-

tion for
(
M,M′

)
 , which holds that: (1) �0R�

′

0
 , (2) for ∀

(
s, s�

)
∈ R : (2–1)

L�
(
s�, a

)
≠ ? ⇒ L�

(
s�, a

)
= L(s, a) , (2–2) s →t � implies s′ →t′ �′ such that �R�′ ,

where t =
(
Transition,

[
Ptl,Ptu

])
 , t� =

(
Transition,

[
Pt

�

l
,Pt

�

u

])

If there exists a probabilistic simulation relation for
(
M,M′

)
 , we say that LGIPPN

model M is simulated by M′ , denoted M⪯M�.

Theorem 2 Given a LGIPPN model M, the LGIPPN model MA obtained by apply-
ing Definition 7 is such that M ≼ MA.

Proof In order to proveM ≼ MA , we just show that R = {(s,Pi)|s ∈ Pi,Pi ∈ P} is a
probabilistic simulation in Definition 8. According to Definition 7-(7),
�A
0

�
(sA

0
)
n

�
=
∑

s∈(sA
0
)
n

�0(s) , it directly follows �0R�
A
0
 and fulfils condition (1) of Defi-

nition 8. It can also show that LA fulfills condition (2–1) of Definition 8 by the Defi-
nition 7-(6). Let

(
s, (sA

0
)
n

)
∈ R , s

t
→ � andPi

tA

→ �A , then we construct a weight func-
tion Δ and show it fulfills the condition (2–2) of Definition 8, i.e., the condition (1)
(2) (3) of Definition 7. (1) for v ∈ P let�A(v) =

∑
u∈v�(u) , and for u ∈ S

letΔ(u, v) =
{

�(u) if (u, v) ∈ R

0 otherwise
 , function �A is a probability distribution if �

is:
∑

v∈P �
A(v) =

∑
v∈P, u∈v �(u) =

∑
u∈S �(u) = 1 . Then forv

tA

→ Pi ,
�Ptl (fT (t

A)) ≤ �A(v) ≤ �Ptu(fT (t
A)) is hold according to Definition 6. Condition (1) of

Definition 7 is fulfilled trivially, since Δ(u, v) = 0 if (u, v) ∉ R . (2) ∑
P i∈ P

Δ
�
u,P i

�
= �(u) , condition (2) of Definition 7 is fulfilled.

 Automated Software Engineering (2022) 29:29

1 3

29 Page 18 of 46

(3)
∑

u∈S Δ(u, v) =
∑

u∈v Δ(u, v) =
∑

u∈v �(u) = �A(v) , condition (3) of Definition 7
is fulfilled. So, M ≼ MA. □

5.2 Preservation of PCTL*

When evaluating a PCTL* formula over the LGIPPN model, a place may no longer just
satisfy or refuse the formula, i.e., “true” or “false”, but indefinitely satisfy or refuse it,
i.e., value “?”. If a formula is evaluated to “true” or “false” in a place, we say that the
result is definite. Otherwise, we say that it is indefinite. We generalize Kleene’s strong
3-valued propositional logic (Paoli and Prabaldi 2020) to interpret propositional opera-
tors on the LGIPPN model. Operator conjunction ⊓ is defined as follows: the operation
value is “true”, if both arguments of ⊓ are “true”; the operation value is “false”, if either
of arguments is “false”; and the operation value is “?” (i.e., the value is indefinite),
otherwise. Operator negation ¬ maps “true” to “false”, “false” to “true”, and “?” to “?”.
Operator disjunction

⨆
 can be derived from the operator ⊓ with De Morgan’s laws.

Given a LGIPPN model M =
(
S,

(
S0, S1, Sp

)
, T; F, f ; AP, L

)
 a PCTL* state

formula Φ , the three-valued semantics of Φ in a place s , denoted as
[
(M, s) ⊨3 Φ

]
 , can

be defined inductively:
[
(M, s) ⊨3 true

]
= true

�
(M, s)⊨3 a

�
=

⎧⎪⎨⎪⎩

true if a ∈ L(s)
false if ¬ a ∈ L(s)
? otherwise

�
(M, s) ⊨3 ¬Φ

�
=

⎧⎪⎨⎪⎩

true if s⊭3Φ

false if s ⊨3 Φ

? otherwise

�
(M, s)⊨3 Φ0 ∧ Φ1

�
=

⎧
⎪⎨⎪⎩

true if
�
(M, s) ⊨3 Φ0

�
= true ⊓

�
(M, s) ⊨3 Φ1

�
= true

false if
�
(M, s) ⊨3 Φ0

�
= false ⊔

�
(M, s) ⊨3 Φ1

�
= false

? otherwise

�
(M, s)⊨3 P≥p(Ψ)

�
=

⎧⎪⎨⎪⎩

true if Probinf(s, Ψ, true) ≥ p

false if Probsup(s, Ψ, false) < p

? otherwise

1 3

Automated Software Engineering (2022) 29:29 Page 19 of 46 29

where Probinf(s,Ψ, true) is the probability measure of path set such that 𝜋 ⊨ Ψ , i.e.,
Prob(s, Ψ)= Prs({𝜋 ∈ Path(s) |𝜋 ⊨ Ψ}) , Path(s) is the path set which starts with
places . Case

[
(M, s) ⊨3 Φ0 ∨ Φ1

]
 can be derived from

[
(M, s) ⊨3 Φ0 ∧ Φ1

]
 according

to De Morgan’s laws. Cases
[
(M, s) ⊨3 P>p(Ψ)

]
 and

[
(M, s) ⊨3 P<p(Ψ)

]
 are similar to

the cases
[
(M, s) ⊨3 P≥p(Ψ)

]
 and

[
(M, s) ⊨3 P≤p(Ψ)

]
 , respectively, but we exchange ≥

by > and vice versa. For a path � = s0 →
t0 s1 →

t1 s2 →
t2 s3 … (abbr.� = s0s1s2s3 … ,

if it is not related tot), the three-valued semantics of a path formula Ψ on� , denoted [
(M,𝜋) ⊨3 Ψ

]
 , is defined inductively as follows:

�
(M, 𝜋) ⊨3 Ψ0 ∧ Ψ1

�
=

⎧⎪⎪⎨⎪⎪⎩

true if
�
(M, 𝜋) ⊨3 Ψ0

�
= true ⊓

�
(M, 𝜋) ⊨3 Ψ1

�
= true

false if
�
(M, 𝜋) ⊨3 Ψ0

�
= false ⊔

�
(M,𝜋) ⊨3 Ψ1

�
= false

? otherwise

�
(M,𝜋) ⊨3 Ψ0UΨ1

�
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

true
if ∃ 0 ≤ k < �𝜋� ∶ [

���
M, sk

�
⊨3 Ψ1

�
= true

�
⊓

(∀j < k ∶
��
M, sj

�
⊨3 Ψ0

�
= true)]

false

if (∀ 0 ≤ k < �𝜋� ∶ �
[(∀j < k ∶

��
M, sj

�
⊨3 Ψ0

�
≠ false

�

⇒

���
M, sk

�
⊨3 Ψ1

�
= false

�
])⊓

��
∀0 ≤ k < �𝜋� ∶ ��

M, sk
�
⊨3 Ψ0

�
≠ false

�
⇒ �𝜋� = ∞

�

? otherwise

 The other path

operators can be derived from above cases.
If ∀s0 ∈ S0 ∶

[(
M, s0

)
⊧3Φ

]
= true , we can conclude that

[
M⊧3Φ

]
= true , i.e.,

M⊧3Φ . If ∃s0 ∈ S0 ∶
[(
M, s0

)
⊧3Φ

]
= false , we can conclude that

[
M⊧3Φ

]
= false ,

i.e., M⊭3Φ .
[
M⊧3Φ

]
= ? , otherwise. Formally, the three-valued semantics of

PCTL* characters a preorder relation over a LGIPPN model that reflects the
degree of completeness. Let ≲ denote an information ordering over the truth
values, in which ? ≲ true , ? ≲ false , and x ≲ x (x ∈ {true, false, ?}). The oper-
ators comp , min and max are monotonic on≲ , i.e., if x1 ≲ x2 and y1 ≲ y2 , then
comp(x1) ≲ comp(x2) , min(x1) ≲ min(x2) and max(x1) ≲ max(x2) . We can conclude

�
(M, s) ⊨3 P≤p(Ψ)

�
=

⎧
⎪⎨⎪⎩

true if Probsup(s,Ψ, false) ≤ p

false if Probinf(s,Ψ, true) > p

? otherwise

[
(M,𝜋) ⊨3 Φ

]
=

{ [(
M, s0

)
⊨3 Φ

]
if |𝜋| > 0

? otherwise

[
(M,𝜋) ⊨3 XΨ

]
=

{ [(
M, s1

)
⊨3 Ψ

]
if |𝜋| > 1

? otherwise

�
(M,𝜋) ⊨3 ¬Ψ

�
=

⎧⎪⎨⎪⎩

true if 𝜋⊭3Ψ

false if 𝜋 ⊨3 Ψ

? otherwise

 Automated Software Engineering (2022) 29:29

1 3

29 Page 20 of 46

that [(MA, sA
init
)⊧3Φ] ≲ [(M, sinit)⊧3Φ] . Informally, if a LGIPPN model is more

abstract with respect to ≼ , it has less definite properties that are either “true” or
“false” with respect to ≲ . Moreover, a formula of PCTL* is evaluated to “true”
of “false” on an abstract LGIPPN model, then it has the same truth value on any
refinement models. In other words, the result of three-valued PCTL* stochastic
model-checking an abstract LGIPPN model agrees with the concrete model, if
the results are definite. This is asserted in Theorem 3.

Theorem 3 Let R ⊆ S × SA be a mixed probabilistic simulation relation from a
LGIPPN model M to a LGIPPN model MA, i.e., M ≼ MA. Then for all PCTL* for-
mulas Φ:

[
MA⊧3Φ

]
≠ ?implies

[
MA⊧3Φ

]
= [M ⊧ Φ].

Proof
[
MA⊧3Φ

]
= [(MA, sA

init
)⊧3Φ] and [M ⊧ Φ] = [(M, sinit)⊧3Φ] ,

so, we can prove the following proposition for proving it. For every
(s, sA) ∈ R and all PCTL* formulas Φ :

[(
MA, sA

)
⊧3Φ

]
≠ ? implies [(

MA, sA
)
⊧3Φ

]
= [(M, s) ⊧ Φ] . It can be proved by the induction method: (1)

Φ = true :
[(
MA, sA

)
⊧3true

]
= true = [(M, s) ⊧ true] , since s ≼ sA . (2) PCTL* for-

mulae Φ is atomic proposition a :
[(
MA, sA

)
⊧3a

]
= LA

(
sA, a

)
= L(s, a) = [(M, s) ⊧ a] .

Induction hypothesis: suppose Φ
� represents all sub-formulas of Φ , [(

MA, sA
)
⊨3 Φ

�
]
≠ ? implies that

[(
MA, sA

)
⊨3 Φ

�
]
=
[
(M, s) ⊨ Φ�

]
 . (3) Φ = ¬Φ� : [(

MA, sA
)
⊨3 ¬Φ

�
]
= ¬

[(
M, sA

)
⊨3 Φ

�
]
= ¬

[
(M, s) ⊨ Φ�

]
=
[
(M, s) ⊨ ¬Φ�

]
 .

(4) Φ = Φ
�

0
∧ Φ

�

1
 :

[(
MA , sA

)
⊧3Φ

�

0
∧ Φ

�

1

]
=
[(
MA , sA

)
⊧3Φ

�

0

]
⊓
[(
MA , sA

)
⊧3Φ

�

1

]
=
[
(M, s) ⊧ Φ

�

0

]
∧
[
(M, s) ⊧ Φ

�

1

]
=
[
(M, s) ⊧ Φ

�

0
∧ Φ

�

1

] .
(5) Φ = P≤p(Ψ) , where Ψ = Φ�∕XΨ�∕¬Ψ�∕Ψ0 ∧ Ψ1∕Ψ0 U Ψ1 : if [(
MA, sA

)
⊧3Φ

]
= true ⇒ Probsup(s,Ψ, true) ≤ Probsup

(
sA,Ψ, true

)
≤ p ⇒ [(M, s) ⊧ Φ] = true ; if [(

MA, sA
)
⊧3Φ

]
= false ⇒ Probinf (s,Ψ, true) ≥ Probinf

(
sA,Ψ, true

)
> p ⇒ [(M, s) ⊧ Φ] = false .

(6) Φ = P≥p(Ψ) , where Ψ = Φ�∕XΨ�∕¬Ψ�∕Ψ0 ∧ Ψ1∕Ψ0 U Ψ1 : if [(
MA, sA

)
⊧3Φ

]
= true ⇒ Probinf (s,Ψ, true) ≥ Probinf

(
sA,Ψ, true

)
≥ p ⇒ [(M, s) ⊧ Φ] = true ; if [(

MA, sA
)
⊧3Φ

]
= false ⇒ Probsup(s,Ψ, true) ≤ Probsup

(
sA,Ψ, true

)
< p ⇒ [(M, s) ⊧ Φ] = false. □

The above theorem states that our abstraction framework can indeed be used
as a solution to MA4SMC problem, which constructs three-valued abstract
model according to Definition 7, and preserves the full PCTL* properties.
Intuitively speaking, in this framework, the results of PCTL* stochastic model-
checking an abstract model agree with PCTL* stochastic model-checking a con-
crete model, unless the result is indefinite.

6 Three‑valued stochastic model checking

Given a three-valued abstract model (LGIPPN model MA) and a PCTL* formula
Φ in release-PNF, deciding whether MA⊧3Φ , i.e.,

(
MA, sA

init

)
⊧3Φ , holds or not, is

named the three-valued PCTL* stochastic model checking. Theoretically speak-
ing, it can be reduced to two instances of the traditional PCTL* stochastic model

1 3

Automated Software Engineering (2022) 29:29 Page 21 of 46 29

checking, as the three-valued model checking to traditional model checking. In
this section, we give a direct game-based three-valued PCTL* stochastic model
checking algorithm.

6.1 Game semantics for three‑valued stochastic model checking

The game-based operational semantics for PCTL* stochastic model checking is
an intuitive and succinct approach for stochastic model checking, and it can pro-
vide the succinct evidences for corresponding results. In this section, we generate
it to three-valued PCTL* stochastic model checking.

The game GΦ
MA

(player, board, rule) for a three-valued abstract model (LGIPPN
model MA) and a PCTL* formula Φ in release-PNF can be defined as in Liu et al.
(2016). However, some move rules of the player and the winning criteria need
to be changed. The differences are caused by the fact that LGIPPN model has
the interval transitions. Since the transitions are considered only in configurations
with sub-formulae of P≥p(XΨ) or P≤p(XΨ) , the new move rules for game consist
of move rules in Liu et al. (2016), with exception that rule (6) are adapted as
follows:

 (0) p = 0 , the play finishes and player verifier wins.
 (1) Coni =

(
player, s, true∕false∕a∕¬a∕P≥p(true∕false∕a∕¬a),Ω

)
 , the play finishes.

 (2) Coni =
(
verifier, s,Φ0 ∧ Φ1,Ω

)
 , player refuter chooses Φj, j ∈ {0, 1} , and

Coni+1 =
(
verifier, s,Φj,

{
Φ1−j

}
∪ Ω

)
.

 (3) Coni =
(
verifier, s,Φ0 ∨ Φ1,Ω

)
 , player verifier chooses Φj, j ∈ {0, 1} , and

Coni+1 =
(
verifier, s,Φj,Ω

)
.

 (4) Coni =
(
refuter, s,Φ0 ∧ Φ1,Ω

)
 , p layer refuter choosesΦj , j ∈ {0, 1} ,

andConi+1 =
(
refuter, s,Φj,Ω

)
.

 (5) Coni =
(
refuter, s,Φ0 ∨ Φ1,Ω

)
 , p layer verifier choosesΦj , j ∈ {0, 1} ,

andConi+1 =
(
refuter, s,Φj,

{
Φ1−j

}
∪ Ω

)
.

 (6) Coni =
(
verifier, sA, P≥p(XΨ),Ω

)
 : player verifier chooses some tran-

sitions tA in the minimum nondeterministic class by an adversary,
and Coni+1 =

(
verifier, sA�, P≥psA� (Ψ)

)
 , where sA →

tA sA′ , and where ∑
Pl

�
sA, s′

�
⋅ ps′ ≥ p where Pl

(
sA, s′

)
 is the lower probability from the

place sA to sA′ and psA′ is the probability of sA′ satisfies Ψ ; or player refuter
chooses some transitions tA in the maximum nondeterministic class by an
adversary, and Coni+1 =

(
refuter, sA�, P<psA� (Ψ)

)
 , where sA →

t sA′ , and where ∑
Pu

�
sA, sA′

�
⋅ psA′ ≥ p where Pu

(
sA, sA′

)
 is the upper probability from place

sA to sA′ and psA′ is the probability of sA′ satisfies Ψ.
 (7) Coni =

(
verifier, s, P≥p

(
Ψ1 ∧ Ψ2

)
,Ω

)
 , player refuter chooses Ψj, j ∈ {0, 1} , and

Coni+1 = (refuter, s, P≥pj
(
Ψj

)
), and p0 + p1 − 1 < p.

 (8) Coni =
(
verifier, s, P≥p

(
Ψ0 ∨ Ψ1

)
,Ω

)
 , player verifier chooses Ψj , and

Coni+1 =
(
verifier, s, P≥pj

(
Ψj

))
 , and p0 + p1 ≥ p.

 (9) Coni =
(
verifier, s, P≥p

(
Ψ0UΨ1

)
,Ω

)
:Coni+1 =

(
verifier, s, P≥p

(
Ψ1 ∨

(
Ψ0 ∧ X

(
Ψ0U Ψ1

))))
.

 Automated Software Engineering (2022) 29:29

1 3

29 Page 22 of 46

 (10) Coni =
(
verifier, s,P≥p

(
Ψ0RΨ1

)
,Ω

)
:Coni+1 =

(
verifier, s, P≥p

(
Ψ1 ∧

(
Ψ0 ∨ X

(
Ψ0RΨ1

))))
.

 (11) Coni = (player, s,Φ, {P≥p(Ψ)} ∪ Ω) ∶ Coni+1 = (player, s,Φ,Ω).
 (12) Coni = (player, s,Φ, {true∕false∕a∕¬a} ∪ Ω) ∶ Coni+1 = (player, s,Φ,Ω).
 (13) Coni =

(
verifier, s,Φ0,

{
Φ1

}
∪ Ω

)
 , p l aye r refuter c h o o s e s , a n d

Coni+1 =
(
verifier, s,Φ1,

{
Φ0

}
∪ Ω

)
.

 (14) Coni =
(
refuter, s,Φ0,

{
Φ1

}
∪ Ω

)
 , p l aye r verifier c h o o s e s , a n d

Coni+1 =
(
refuter, s,Φ1,

{
Φ0

}
∪ Ω

)
.

For Coni =
(
verifier, s, P≤p(XΨ),Ω

)
 , the move rule can be defined analogously.

Intuitively speaking, each player can use both lower and upper bound of transi-
tion, and the players use lower bond of transition in order to win, while they use
upper bound of transition in order to prevent the other player from wining. There-
fore, the new winning criteria are:

(1) The verifier wins the play if and only if one of the following conditions holds:
(a) the play ends with rule (0); (b) the play ends with rule (1), and the configu-
ration is (player, s, true∕P≥p(true),Ω) , or (player, s, a∕¬a∕P≥p(a∕¬a),Ω) and
a∕¬a ∈ L(s) ; (c) the play iterates infinitely with rule (10); (d) the rule (13) is
used for second time.

(2) The refuter wins the play if and only if one of the following conditions holds:
(a) the play ends with rule (0); (b) the play ends with rule 1), and the configu-
ration is (player, s, false∕P≥p(false),Ω) , or (player, s, a∕¬a∕P≥p(a∕¬a),Ω) and
a∕¬a ∉ L(s) ; (c) the play infinitely with rule (9); (d) the rule (14) is used for
second time.

(3) Either verifier or refuter cannot win the play, and the play ends with a tie.

With the winning criteria in GΦ
MA

 , we can capture the operational semantics for
three-valued PCTL* stochastic model checking.

Theorem 4 Let MA be a three-valued abstract model (LGIPPN), Φ a PCTL* for-
mula Φ in release-PNF and sA ∈ SA. Then, for ∀s:

[(
MA, sA

)
⊧3Φ

]
= true if and

only if verifier has a winning strategy for game GΦ
MA

 with start configuration
(player, sA,Φ,Ω);

[(
MA, sA

)
⊧3Φ

]
= false if and only if refuter has a winning strat-

egy for game GΦ
MA

 with start configuration (player, sA,Φ,Ω);
[(
MA, sA

)
⊧3Φ

]
= ?

if and only if either of the players has a winning strategy with start configuration
(player, sA,Φ,Ω). In addition, it is independent of initial player which is verifier or
refuter.

Proof The “if” part is obvious, it is sufficient to prove the “only if” part which
can be done by constructing the winning strategy of player verifier or refuter for [(
MA, sA

)
⊧3Φ

]
= true or

[(
MA, sA

)
⊧3Φ

]
= false , as for

[(
MA, sA

)
⊧ Φ

]
= true or [(

MA, sA
)
⊧ Φ

]
= false in game for stochastic model checking. So, we just show the

result for the truth value “?”.

1 3

Automated Software Engineering (2022) 29:29 Page 23 of 46 29

(1) Φ = true∕false∕a∕¬a∕P≥p(true∕false∕a∕¬a) : if
[(
MA, sA

)
⊧3Φ0 ∧ Φ1

]
= ? , every

play ends with a tie, and either of them has a winning strategy.
(2) Φ = Φ0 ∧ Φ1 : if

[(
MA, sA

)
⊧3Φ0 ∧ Φ1

]
= ? , then, according to the denotational

semantics,
[(
MA, sA

)
⊨3 Φj

]
= ? or false at least for one of j ∈ {0, 1} . So, by the

induction hypothesis, whatever strategies verifier (or refuter) chooses, refuter (or
verifier) can always choose to proceed to (player, sA, Φj, Ω) in which verifier
(or refuter) has no winning strategy.

(3) Φ = Φ0 ∨ Φ1 : if
[(
MA, sA

)
⊧3Φ0 ∨ Φ1

]
= ? , according to the denota-

tional semantics,
[(
MA, sA

)
⊧3Φj

]
= ? at least for one of j ∈ {0, 1} , and [(

MA, sA
)
⊨3 Φj

]
= ? or false for the one k ∈ {0, 1} k ≠ j . So, by the induction

hypothesis, whatever strategies verifier (or refuter) chooses, refuter (or verifier)
can always choose to proceed to (player, sA,Φj,Ω) in which verifier (or refuter)
has no winning strategy.

(4) Φ = P≥p(XΨ) : if
[(
MA, sA

)
⊧3P≥p(XΨ)

]
= ? , according to the denotational seman-

tics, the value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ XΨ} ≥ p is ? or false, i.e., the value
of PrsA{𝜋 ∈ Path

(
sA
)|𝜋 ⊨ XΨ} ≥ p is ? or false, where P(sA, sA�) is the lowest

probability from the place sA to sA′ , sA
tA

→ sA′ and psA′ is the probability of sA′
satisfying Ψ , and the value of PrsA

{
𝜋 ∈ Path

(
sA
)|𝜋⊭XΨ

}
> 1 − p is ? or false,

i.e., the value of
∑

P
�
sA, sA

���
⋅ psA

��

> 1 − p is ? or false, where P(sA, sA��) is the
lowest probability from the place sA to sA′′ , sA

tA
′

→ sA
′′ and psA′′ is the probabil-

ity of sA′′ satisfying ¬Ψ . So, by the induction hypothesis, whatever strategies
verifier (or refuter) chooses, refuter (or verifier) can always choose to proceed
to (player, sA,P≥p(XΨ),Ω) in which verifier (or refuter) has no winning strategy.

(5) Φ = P≥p(Ψ0 ∧ Ψ1) : if
[(
MA, sA

)
⊧3P≥p(Ψ0 ∧ Ψ1)

]
= ? , according to the denota-

tional semantics, the value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ Ψ0 ∧ Ψ1} ≥ p is ? under
the lowest probability, and value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ XΨ} ≥ p is true or ?
under the upperest probability. So, by the induction hypothesis, whatever strate-
gies verifier (or refuter) chooses, refuter (or verifier) can always choose to pro-
ceed to (player, sA,P≥p(Ψ0 ∧ Ψ1),Ω) in which verifier (or refuter) has no winning
strategy.

(6) Φ = P≥p(Ψ0 ∨ Ψ1) : if
[(
MA, sA

)
⊧3P≥p(Ψ0 ∨ Ψ1)

]
= ? , according to the denota-

tional semantics, the value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ Ψ0 ∨ Ψ1} ≥ p is ? under
the lowest probability, and value of PrsA{𝜋 ∈ Path(sA)|𝜋 ⊧ XΨ} ≥ p is true or ?
under the upperest probability. So, by the induction hypothesis, whatever strate-
gies verifier (or refuter) chooses, refuter (or verifier) can always choose to pro-
ceed to (player, sA,P≥p(Ψ0 ∨ Ψ1),Ω) in which verifier (or refuter) has no winning
strategy.

(7) Φ = P≥p(Ψ0 U Ψ1) : if
[(
MA, sA

)
⊧3P≥p(Ψ0UΨ1)

]
= ? , according to the denota-

tional semantics, the value of PrsA{𝜋 ∈ Path (sA)|𝜋⊨ Ψ0 U Ψ1} ≥ p is ? under
the lowest probability, and value of PrsA{𝜋 ∈ Path (sA)|𝜋⊨ X Ψ} ≥ p is true
or ? under the upperest probability. So, by the induction hypothesis, whatever
strategies verifier (or refuter) chooses, refuter (or verifier) can always choose
to proceed to (player, sA, P≥p(Ψ0U Ψ1),Ω) in which verifier (or refuter) has no
winning strategy.

(8) Φ = P≥p(Ψ1 R Ψ2) : if
[(
MA, sA

)
⊨3 P≥p(Ψ0 R Ψ1)

]
= ? , according to the denota-

tional semantics, the value of PrsA{𝜋 ∈ Path (sA)|𝜋 ⊨ Ψ0 R Ψ1} ≥ p is ? under

 Automated Software Engineering (2022) 29:29

1 3

29 Page 24 of 46

the lowest probability, and value of PrsA{𝜋 ∈ Path (sA)|𝜋 ⊨ Ψ0R Ψ1} ≥ p is true
or ? under the upperest probability. So, by the induction hypothesis, whatever
strategies verifier (or refuter) chooses, refuter (or verifier) can always choose
to proceed to (player, sA, P≥p(Ψ0R Ψ1), Ω) in which verifier (or refuter) has no
winning strategy.

The Theorem 4 states three-valued PCTL* stochastic model checking is equiva-
lent to two-player stochastic game GΦ

MA
(player, board, rule) . If the player verifier has

a winning strategy from the initial place sA
init

 of MA , then MA satisfies Φ , i.e., MA⊧3Φ ,
and the winning strategy can be served as the evidence for MA⊧3Φ . If the player
refuter has a winning strategy from the initial place sA

init
 of MA , then MA does not

satisfy Φ , i.e., MA⊭3Φ , and the winning strategy can be served as the evidence for
MA⊭3Φ , i.e., the counterexample. If either of them has the winning strategy, then
the result is indefinite, which means the abstract model should be refined.

6.2 Strategy solving in three‑valued stochastic game

A two-player game process GΦ
MA

 for three-valued PCTL* stochastic model checking
can be presented by the game-graph Gg(N,E,w) . It can be constructed from initial
configuration as the initial node in a BFS (breadth first search) or DFS (depth first
search) manner, and owns the same characteristics (Liu et al. 2016): game-graph can
be partitioned into some MSCCs (maximal strongly connected components), and
every play never leaves a MSCCm into a MSCCn with m < n.

The game GΦ
MA

 for three-valued PCTL* stochastic model checking is a three-val-
ued stochastic game, essentially. We implement a three-valued coloring method for
strategy solving, which can alter the coloring process (Liu et al. 2016; Shoham and
Grumberg 2007) of traditional PCTL* stochastic model checking game and CTL
model checking game. It colors each node in the MSCCs of game-graph Gg(N,E,w) ,
and processes MSCCi according to i bottom-up. Let MSCCi be the smallest MSCC
at present, i.e., the other MSCCm with m < i have all been colored, the three-valued
coloring rules of a node in MSCCi is as follows: for a node with a current Φ� of sub-
formula Φ , (1) if player verifier can win for current Φ� , the corresponding node is
colored white; (2) if player refuter can win for current Φ� , the corresponding node is
colored black; (3) if either of the players can win for current Φ� , the corresponding
node is colored gray.

We color all the nodes of the game-graph Gg(N,E,w) according to the coloring
rules. If the initial node is colored white, player verifier wins the game, and all the
white nodes compose the winning strategy of verifier . This means MA⊧3Φ accord-
ing to Theorem 4, and M ⊧ Φ according to Theorem 3. If the initial node is colored
black, player refuter wins the game, and all the black nodes compose the winning
strategy of refuter . This means MA⊭3Φ according to Theorem 4, and M⊭Φ accord-
ing to Theorem 3. If the initial node is colored gray, either of players wins the game.
This means the result of three-valued PCTL* stochastic model checking MA is indef-
inite, according to Theorem 4; and the result of PCTL* stochastic model checking

1 3

Automated Software Engineering (2022) 29:29 Page 25 of 46 29

M is also indefinite, according to Theorem 3. The gray nodes need to be refined,
which is presented in Sect. 6.

Strategy solving algorithm for three-valued PCTL* stochastic model checking
game can be summarized into three steps: (1) construct the game-graph Gg(N,E,w)
for MA and Φ ; (2) find the MSCCs and sort them bottom-up, (3) three-valued color
the nodes of game-graph with the MSCCs’ order, according to the three-valued col-
oring rules; (4) determine the color of the initial node and return the corresponding
winning strategy in DFS manner. It is the combination of searching MSCCs with
order algorithm and three-valued coloring process, and the complexity of which is
PSPACE. It can be proved similarly with stochastic model checking game (Liu et al.
2016; Kwiatkowska et al. 2021; Shoham and Grumberg 2007).

The winning strategy of verifier or refuter is the evidence whether PCTL* Φ is
satisfied or not, respectively. An evidence of refuter , i.e., the black nodes of the
three-valued colored game-graph, can be served as a kind of counterexample. It
should be noted that the ideal counterexample(Abraham et al. 2014) just contains
the smallest set of necessary nodes from the winning strategy of refuter.

7 Refinement

If the three-valued stochastic model checking returns an indefinite result, i.e., “?”,
it means the abstract place is so coarse that we can say nothing from it and have to
refine the abstract place. Roughly, refining an invalid abstract place is to split it into
the smaller abstract places until the three-valued stochastic model checking result is
definite on it. We can exploit information of the colored three-valued game-graph in
refinement process.

7.1 Identifying and analyzing failure nodes

Definition 10 Failure node. A node in colored three-valued game-graph is the failure
node, if it is colored gray, and none of its sons was colored gray when it is colored.

Intuitively speaking, a failure node is responsible for the loss of information in
abstraction. Thus, it should be refined. If the initial node is colored gray, a failure
node can be found by the identifying failure nodes algorithm. For each node, it is
colored gray and is not a failure node, the coloring algorithm is adapted to remem-
ber that a son was colored gray when n is colored, denoted as go(n). Identifying

FNIdentify (n){

If n satisfies the definition of failure node, return n
Else FNIdentify(go(n))

}

Fig. 4 Identifying failure nodes algorithm

 Automated Software Engineering (2022) 29:29

1 3

29 Page 26 of 46

failure nodes algorithm in Fig. 4 can identify the failure node from go(n), which
starts from the initial node.

Theorem 5 The identifying failure nodes algorithm can terminate.

Proof If the current node n is not a failure node, the algorithm continues to identify
at go(n). According to Definition 10 (failure node), there is a node that was colored
gray before n. Thus, each recursive call is applied on the node colored gray earlier.
So, the number of recursive calls is not bigger than the run time of the coloring
algorithm that is finite. □

Failure nodes identifying (FNIdentify) algorithm is a DFS-like greedy algorithm.
It proceeds from node to node of colored three-valued game-graph recursively, until
it finds a failure node. Moreover, the failure node fulfils Theorem 6.

Identifying failure nodes algorithm is a recursive algorithm, which needs a recur-
sive stack, so its space complexity is O(|S|) . It takes time complexity O(|S|) to find
the adjacent points of each node in the adjacency matrix. To get the whole matrix,
the total time complexity is O(|S|2) , where |S| is the number of nodes.

Theorem 6 A failure node returned by Identifying failure nodes algorithm is one
of the following: (1) the terminal node (verifier, sA, a∕P≥p(a)) colored gray, where
a ∈ AP; (2) the node in form of (verifier, sA,P≥p(XΨ),Ω) colored gray, where ∑

P(sA, sA�) ⋅ psA� > 1 − p, P(sA, sA�) is the upper probability from the place sA to sA′,
sA

tA

→ sA′ and psA′ is the probability of sA′ satisfying ¬Ψ.

Proof According to coloring algorithm, Φ is Φ0 ∧ Φ1 , Φ0 ∨ Φ1 , P≥p(Ψ0 ∧ Ψ1) ,
or P≥p(Ψ0 ∨ Ψ1) , the node of which is colored gray only if it has at least one son
that is colored gray. Thus, these nodes do not satisfy Definition 10 (failure node).
For P≥p(Ψ1U Ψ2) or P≥p(Ψ1 RΨ2) , the node of which is colored gray depends
on the witness of operator ∧ , ∨ or X , so, it also does not satisfy Definition (fail-
ure node). If the node is a terminal node, it has to be (verifier, sA, a∕P≥p(a)) ,
since (verifier, sA, true∕false∕P≥p(true)∕P≥p(false)) is colored by black or
white, definitely. If the node is the form of (verifier, sA,P≥p(XΨ),Ω) , the value of ∑

P(sA, sA�) ⋅ psA� > 1 − p has to be true, where P(sA, sA�) is the upper probability
from the place sA to sA′ , sA

tA

→ sA′ and psA′ is the probability of sA′ satisfying ¬Ψ .
Otherwise, it will be colored by black. □

7.2 Refining failure nodes

For returning the definite result of three-valued stochastic model checking, it is
enough to refine the failure node not all the indefinite nodes. The type of failure
node in Theorem 6 provides the criteria for the refinement.

(1) The failure node is a terminal node (verifier, sA, a∕P≥p(a)) . The reason for its gray
color is the fact that one or some concrete places abstracted by sA are labeled a ,

1 3

Automated Software Engineering (2022) 29:29 Page 27 of 46 29

meanwhile one or some concrete places abstracted by sA are labeled ¬a . In order
to avoid the indefinite result returned at sA , sA is refined by two abstract places
sA1 and sA2 , where the concrete place set FPt abstracted by sA1 are labeled a and
the concrete place set FPf abstracted by sA2 are labeled ¬a.

(2) The failure node is the form of (verifier, sA,P≥p(XΨ),Ω) , where ∑
P(sA, sA�) ⋅ psA� > 1 − p , P(sA, sA�) is the upper probability from the place sA

to sA′ , sA
tA

→ sA′ and psA′ is the probability of sA′ satisfying ¬Ψ . In order to avoid
the indefinite result returned at sA , sA is refined by two abstract places sA1 and
sA2 , where the concrete place set FPt abstracted by sA1 refute P≥p(XΨ) definitely
and the concrete place set FPf abstracted by sA2 = sA�sA1.

From the above analysis, it can be seen that the key for refining failure nodes is to
split the abstract places in a way that eliminates the failure cause. Actually, a place
is a family of valuations for all variables in V. We usesA

→v
 to denote the valuation of

a place sA for the variablev . Given an abstract place in the failure node, they cannot
be distinguished in the abstract model with the visible variables. Formally, ∀v ∈ VSA ,
sA1
→v

= sA2
→v

 , but sA1 and sA2 should be distinguished in the refinement model. This is a
state separation problem (SSP), and the minimal state separation problem (MSSP) is
the NP-hard problem (Clarke et al. 2002). Moreover, the place at a failure node may
abstract many concrete places, especially for large concrete model, which makes
time complexity of refining is high. For dealing with this, we take the approximate
solution of SSP as a tradeoff between the precision and time complexity. We infer
the separation set on sample place set selected by sample learning (He et al. 2016,
2010; Clarke et al. 2002), instead of the entire concrete place set abstracted by the
failure node, then, we use BPSO (binary particle swarm optimization) algorithm to
solve the separation set for refinement.

7.2.1 Formalizing refinement as the MSSP

The place sA at a failure node is denoted as a vector of length n with sA[i] = sA
→v

 ,
where v is the i th invisible variable in VN . sA cannot be separated by any present vis-
ible variable, so, we only consider its invisible variables. For simplicity, we use pj to
denote a pair of places in FPt × FPf , i.e., FPt × FPf = {p1, p2,… , pm} , 1 ≤ j ≤ m .
Assume pj =< (s)pj , (s�)pj > , pj can be separated by certain variable in the separation
set Λ , i.e., ∃vi ∈ Λ , (s)pj [i] ≠ (s�)pj [i] , where (s)pj =< (s)pj [1], (s)pj [2],… , (s)pj [n] >
and (s�)pj =< (s

�

)
pj [1], (s

�

)
pj[2],… , (s

�

)
pj [n] > . If vi ∈ Λ , we define the decision vari-

able xi = 1 , else xi = 0 , which is equivalent to
∑n

i=1
((s)pj[i]⊕ (s

�

)
pj
[i]) ∙ xi , where

⊕ is the exclusive or operator, xi is the decision variable of vi . Let A = {aij}m×n
be a coefficient matrix where aij = (s)pj [i]⊕ (s

�

)
pj
[i] , 1 ≤ i ≤ n, 1 ≤ j ≤ m .

aij = 1 iff the state pair pj is separated by the variable vi . The refinement is
the MSSP with n invisible variables and m state pairs: min

∑n

i=1
xi , where ∑n

i=1
aijxi ≥ 1, j = 1,… ,m;xi = {0, 1}, i = 1,… , n.

 Automated Software Engineering (2022) 29:29

1 3

29 Page 28 of 46

7.2.2 Sample learning

We adopt sample learning (Clarke et al. 2002) algorithm to get the smaller place set
SFPt

 and SFPf
 from SFPt

 and SFPf
 , respectively, where SFPt

⊆ FPt and SFPf
⊆ FPf .

Then, the minimal separation set is computed on SFPt
 and SFPf

 , which equals to be
computed on FPt and FPf . In the process of selecting the sample, places that contain
more information will be selected, instead of random selecting places.

The iterative sample learning algorithm is shown in Fig. 5. MAXSAM denotes the
maximal number of samples picked in the iteration. At each iteration, MAXSAM sam-
ples are selected from FPt × FPf which cannot be separated by the present separation
set. Then separation set is computed, and FPt × FPf is updated, until FPt × FPf = ∅.

According to the formula
∑n

i=1
(s)pj [i]⊕ (s

�

)
pj
[i]) ∙ xi , if

∑n

i=1
aijxi ≥ 1 , i.e., Ajxi ≥ 1 ,

the place pair pj can be separated. The effective approach of checking the validity of
samples is based on

∑n

i=1
aijxi ≥ 1 . This is easy to be performed and can always be

accomplished in a constant time. Note that the order of selecting the sample is also
important. In each iteration process, if there are not place pairs separated by the exist-
ing separation set, it will be selected, as can be separated by less variables in a greater
probability as a sample. The sample learning algorithm is a recursive process, and its
time complexity is O

(|||FPt × FPf
||| ∗ MAXSAM

)
.

7.2.3 BPSO algorithm

PSO (Particle swarm optimization) algorithm (Kennedy and Eberhart 1995; Wang
et al. 2020) is a kind of EA (evolutionary algorithm), which originally was put forward
by Eberhart and Kennedy in 1995. PSO algorithm is modified in binary form to obtain
the invisible variables which should be visible in the refined model.

(1) Objective function

Fig. 5 Sample learning algorithm

1 3

Automated Software Engineering (2022) 29:29 Page 29 of 46 29

The MSSP problem that we are solving is a constraint optimi-
zation problem, which can be described as: min

∑n

i=1
xi , where ∑n

i=1
aijxi ≥ 1, j = 1,… ,m; xi = {0, 1}, i = 1,… , n.

The particle in PSO algorithm has a strong ability to search generally at the first
time, then it has to convergence. We adopt a non-stationary multi-stage assignment
penalty to gain more accurate results and improve the convergence. The penalty factor
is modified dynamically, according to the constraint function. Then, the optimization
problem turns into:

where h(k) is a penalty factor, the value of which is sup(
√
k) , k is the current itera-

tion, f (∙) is a penalty function which has a strong influence on the performance of
the algorithm. A simple and efficient penalty function is employed as follows:

f (x) =

{
0, if x is true

BIGVALUE, otherwise
.

(2) Probabilistic initialization of particles

We use a n-bit vector ⇀

xx as a particle, i.e., ⇀

xx =
(
v1, v2,… , vn

)
 , where n is the num-

ber of invisible variables. If the value of the i th bit is 1, the variable vi is selected into
the separation set. The number of populations is Pop-size. We generate particles ran-
domly in order to get wide guidance particles. The initialization process of particles is
shown in Fig. 6.

(3) Velocity and position evolution

The update formulae of velocity and position in the classical PSO algorithm is not
suitable for discrete constraint optimization problem, we need to reconstruct the formu-
lae. We adopt the method proposed in Nguyen et al. (2021) with some modifications to
update the velocity and position of a particle, which is named as BPSO (binary particle
swarm optimization algorithm).

Two vectors for each particle are introduced as ��⃗V
0

i
 and ��⃗V

1

i
.��⃗V

0

i
 is the probability of the

bits of the i th particle to change to zero, while ��⃗V
1

i
 is the probability that bits of the i th

particle to change to one. Since the inertia term is used in the process of update equa-
tion, these velocities are not complementing. Then, we give the definition of the prob-
ability of change in the j th bit of the i th particle:

(1)Minimize

n∑
i=1

xi + h(k)

m∑
j=1

f

(
n∑
i=1

aijxi ≥ 1

)

Produce the size of the separation set randomly, i.e., an integer 0 ≤ ≤ .

Select variables randomly into the separation set, and the probability to be selected is proportional to

the number of place pairs it separated.

Fig. 6 Initializing a particle

 Automated Software Engineering (2022) 29:29

1 3

29 Page 30 of 46

Assume that the j th bit of the i th best particle is one. The velocity of particle is cal-
culated in this way. The j th bit of the i th particle is guided to its best position. The
velocity of change to one (��⃗V

1

ij
) for that particle increase and the velocity of change to

zero (��⃗V
0

ij
) is decreased. We get the following rules: (1)

If p
j

ibest
= 1 then d1

ij,1
= c1r1 and d0

ij,1
= −c1r1 , (2)

If p
j

ibest
= 0 then d0

ij,1
= c1r1 and d1

ij,1
= −c1r1 , (3)

If p
j

gbest
= 1 then d1

ij,2
= c2r2 and d0

ij,2
= −c2r2 , (4)

If p
j

gbest
= 0 then d0

ij,2
= c2r2 and d1

ij,2
= −c2r2 , where d1

ij
 , d0

ij
 are two temporary val-

ues, r1 and r2 . are two random variable in the range of (0,1) which are updated at each
iteration, c1 and c2 are two fixed constants which are determined by user. Then:
V1
ij
(t + 1) = wV1

ij
(t) + d1

ij,1
+ d1

ij,2
 , V0

ij
(t + 1) = wV0

ij
(t) + d0

ij,1
+ d0

ij,2
 , where w is the

inertia term.
Due to the velocities of the particles must be restricted within the range between

0 and 1 (Nguyen et al. 2017) the normalization function used here is a sigmoid func-
tion: vel�

ij
= sig

(
velij

)
=

1

1+e
−velij

 . So, the new position of the particle is obtained with
the below equation:

where xxij is the 2’s complement of xxij . i.e., if xxij = 0 , then xxij = 1 ; if xxij = 1 , then
xxij = 0.rij is a uniform random number between 0 and 1. The value is proportional
to the number of place pairs it separated. The BPSO algorithm shown in Fig. 7.

The time complexity of BPSO algorithm is linear with the number of iterations m
and dimension n, its time complexity is O(m ∗ n).

7.3 Incremental refinement

We refine the abstract model via splitting its places belong to failure node. There
is no reason to split places for which the three-valued stochastic model check-
ing results are definite. Although, the refinement process is decided locally, it has
a global effect, since the refinement leads to the change of whole abstract model.

(2)Vc
ij
=

{
V1
ij
if xxij = 0

V0
ij
if xxij = 1

(3)xxij(t + 1) =

{
xxij(t), if rij < Vel’

ij

xxij(t), otherwise

Generate an initial population according to algorithm in Figure 6;

While not (terminal condition) do
 Computing the fitness of each particle according to the object functi on equality (1) in section 6.2;

 Update the local best position for each particle according to classical PSO algorithm;

 Update the global best position for all particles according to classical PSO algorithm;
 Substitute the velocity and position according to equality (2) (3) in section 6.2;

End while.

Fig. 7 BPSO algorithm

1 3

Automated Software Engineering (2022) 29:29 Page 31 of 46 29

The results of game-based three-valued stochastic model checking provide the valu-
able information for avoiding unnecessary refinement. At the end of the ith itera-
tion of three-valued abstraction-refinement, the nodes that were colored gray are
remembered. During the construction of a new refined three-valued game-graph in
the (i + 1)th iteration, we prune the game-graph according to the remembered infor-
mation. As a result of this, only the places of gray nodes are refined. The iterative
abstraction-refinement process give rise to an incremental three-valued abstrac-
tion-based stochastic model checking framework. Moreover, the termination of the
abstraction-refinement is given by the following theorem.

Theorem 7 For a finite concrete LNPPN model, the iterative three-valued abstrac-
tion-refinement process can guarantee to terminate with a definite result.

Proof The refinement is done by means of splitting the indefinite places, which leads
to a refined abstract LGIPPN model. So, every place sA

r
 in the refined model has

some corresponding super-place sA
s
 in the less refined model, in the sense that the set

of concrete places that sA
r
 abstracts is a subset of those abstracted by sA

s
 . Moreover,

there is at least one abstract place is splited in the refinement, which ensures that at
least one of the refined places abstracts strictly fewer concrete places than its super-
place. Thus, the number of concrete places is the bound of iterations of abstraction-
refinement. Therefore, the abstraction-refinement process is guaranteed to terminate
if the place space is finite, and when there are not the indefinite places which leads
to the indefinite result. □

The termination of the three-valued abstraction-refinement process means the
three-valued abstraction-based PCTL* stochastic model checking returns a definite
result.

Fig. 8 Prototype tool TVAR

Abstraction-

Refinement:

abstracting with

interval + game

Coloring 3-valed game-

graph

Refining with

BPSO+sample

PAT: model construction and representation

PAT: verification results and representation

LNPPN+PCTL*

 Automated Software Engineering (2022) 29:29

1 3

29 Page 32 of 46

8 Case study

8.1 Experiments

Based on our open-source model checker PAT(Liu et al. 2011; Liu 2019), we imple-
ment three-valued abstraction-refinement framework in a prototype tool TVAR
(three-valued abstraction-refinement), as shown in Fig. 8. It is developed in Java
language with explicit-state data structures (sparse matrices, bit-sets, etc.). A sym-
bolic (MTBDD-based) implementation of TVAR with implicit-state data structures
(MTBDD), is being developed to offer more scalability on models with regularity.
It will be released as the open-source software at PAT website (http:// pat. comp. nus.
edu. sg).

In order to demonstrate the feasibility and efficiency of three-valued abstraction-
refinement framework in this paper, we compare it with the current approximate
abstraction techniques of stochastic model checking (game-based abstraction and
probabilistic CEGAR). The cases are the popular protocol algorithms in software-
driven autonomous systems, and belong to the PRISM Benchmark Suite. All exper-
iments are run on a PC with CPU Intel Core i7-3632QM (2.20 GHz) and RAM
8.00 GB.

The first case is the IPv4 Zeroconf protocol, which is a dynamic IP addresses
configuration protocol for some software-driven autonomous systems connect-
ing the network(Ejaz et al. 2019). It is a distributed "plug-and-play" manner for IP
address configuration, which is automatically executed when an autonomous system
is connected to the network. The process of IP addresses configuration is as fol-
lows: (1) When an autonomous system is being connected to the network, it firstly
chooses a random IP address from the 65,024 available addresses (from 169.254.1.0
to 169.254.254.255) which are allocated by the Internet Assigned Number Authority
for the purpose of such link-local networks. (2) Then the autonomous system will
send messages to the other autonomous systems that have been connected to the net-
work, and ask whether any of them are currently using the chosen IP address. (3) If
no reply is received by the system, even after such messages were resent three more
times, it starts to use the chosen IP address, and sends two more messages to claim
that the IP address is occupied. (4) If the chosen IP address is being used, which
will be replied by the corresponding system, the configuration process will return
to 1) and the new system will choose another random IP address. Note that it sends
the message repeatedly to avoid the message loss in the network. This IP address
configuration process is both probabilistic and timed. Probability is used to charac-
terize the random in initial selection of an IP address, or the message loss. Whereas,
timing aspect is used to define the time periods that elapse between repeated retrans-
missions of the same message. In this case, the model to be verified is Zeroconf net-
work configuration protocol for configured hosts K and IP addresses J, the property
to be verified is minimum probability that the host configures successfully.

The second case is the IEEE 802.11 WLAN (Wireless Local Area Networks) pro-
tocol for network composed with the autonomous systems, which is used for a lim-
ited geographical area, e.g., stations, homes, offices, campuses(Chi and Chen 2019).

http://pat.comp.nus.edu.sg
http://pat.comp.nus.edu.sg

1 3

Automated Software Engineering (2022) 29:29 Page 33 of 46 29

The international standard IEEE 802.11 is developed for the interoperability of het-
erogeneous communication devices of autonomous systems in WLAN. It is part
of the IEEE 802 technical standards, and specifies the set of MAC (Media Access
Control) and PHY (Physical Layer) protocols for implementing wireless devices
communication of autonomous systems. It is not the same as wired devices, the sta-
tions of a WLAN cannot employ medium access control schemes, e.g., CSMA/CD
(Carrier Sense Multiple Access with Collision Detection), to prevent simultaneous
transmission on the channel, as they are unable to listen to their own transmission.
IEEE 802.11 standard describes a CSMA/CA (Carrier Sense Multiple Access with
Collision Avoidance) mechanism, which uses a randomized exponential backoff rule
to minimize the likelihood of transmission collision. In this case, the model to be
verified is IEEE 802.11 WLAN protocols with a backoff counter maximum of bc
and a maximum packet send time of 500 μs, and the property to be analyzed is the
minimum probability that a station’s backoff counter reaches bc.

The third case is the IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with
Collision Detection) protocol for autonomous systems network, which is also part of
the IEEE 802 technical standards (Dey et al. 2020). It is designed for networks with
a single channel and specifies the behaviors of stations with the aim of minimizing
simultaneous use of the channel (data collision). The basic structure of the protocol
is as follows: (1) When a station tries to send data, it will listen to the medium; (2) If
the medium was free (no one transmitting), the station starts to send its data; (3) If
the medium is busy, the station waits a random amount of time and then repeats this
process. In this case, the model to be verified is IEEE 802.3 CSMA/CD protocols
with a backoff counter maximum of bc and a maximum packet send time of 500 μs,
the property to be analyzed is minimum probability that a station’s backoff counter
reaches bc.

The experimental results are shown in Tables 2 and 3. The “actual value” col-
umns in Tables 2 and 3 are the exact probability value obtained by monolithic sto-
chastic model checking tool PRISM. The model statistics are shown in Tables 4
and 5. We will compare them further and analyse the reasons for them in the next
section.

8.2 Analysis

The experimental results are very encouraging. In 14 cases of Tables 2 and 3, three-
valued abstraction of this paper and game-based abstraction successfully generate
tighter results than Probabilistic CEGAR. The three-valued abstraction framework
gets the tightest results of them. The upper bounds produced by our framework is
in coincidence with the actual value, and yields the exact values in some cases (for
instance, IPv4 Zeroconf protocol with parameters J = 32, K = 4; J = 32, K = 5; and
J = 64, K = 4). The reasons for this are that in three-valued abstraction and game-
based abstraction, the additional nondeterministic behaviors of player 1 place are
kept, and the transitions are equipped with interval in three-valued abstraction. In
order to present the significance of our framework on the lower bound and upper
bound, we make the statistical tests, as shown in Figs. 9 and 10. It can be seen that

 Automated Software Engineering (2022) 29:29

1 3

29 Page 34 of 46

Ta
bl

e
2

 M
in

im
um

 p
ro

ba
bi

lit
y

th
at

 th
e

ne
w

 h
os

t e
ve

nt
ua

lly
 su

cc
ee

ds
 in

 se
le

ct
in

g
a

fr
es

h
IP

 a
dd

re
ss

Ze
ro

co
nf

 p
ro

to
-

co
l (

pa
ra

m
et

er
)

A
ct

ua
l v

al
ue

Pr
ob

ab
ili

sti
c

C
EG

A
R

(L

N
PP

N
)

G
am

e-
ba

se
 a

bs
tra

ct
io

n
(L

G
PP

N
)

Th
re

e-
va

lu
ed

 a
bs

tra
ct

io
n

(L
G

IP
PN

)
C

as
e

nu
m

be
r

J
K

Lo
w

er
 b

ou
nd

U
pp

er
 b

ou
nd

Lo
w

er
 b

ou
nd

U
pp

er
 b

ou
nd

Lo
w

er
 b

ou
nd

U
pp

er
 b

ou
nd

32
4

0.
99

99
78

66
0.

98
64

53
12

0.
99

99
99

98
0.

99
99

37
61

0.
99

99
78

66
0.

99
99

78
66

0.
99

99
78

66
1

5
0.

99
99

75
75

0.
98

47
85

24
0.

99
99

99
99

0.
99

99
19

22
0.

99
99

75
75

0.
99

99
14

23
0.

99
99

75
75

2
6

0.
99

99
72

48
0.

97
45

96
18

0.
99

99
99

86
0.

99
98

99
16

0.
99

99
99

73
0.

99
98

98
69

0.
99

99
99

82
3

7
0.

99
99

70
97

0.
95

87
93

65
0.

99
99

99
85

0.
99

98
77

37
0.

99
99

99
69

0.
99

98
77

54
0.

99
99

99
73

4
8

0.
99

99
68

96
0.

95
08

76
99

0.
99

99
99

78
0.

99
98

54
21

0.
99

99
99

48
0.

99
98

54
37

0.
99

99
99

68
5

64
4

0.
99

99
90

23
0.

92
00

17
63

0.
99

99
99

89
0.

99
99

90
23

0.
99

99
90

23
0.

99
99

90
23

0.
99

99
90

23
6

5
0.

99
99

88
94

0.
90

89
93

73
0.

99
99

99
90

0.
99

99
63

11
0.

99
99

99
89

0.
99

99
58

13
0.

99
99

99
95

7
6

0.
99

99
87

76
0.

90
98

78
21

0.
99

99
99

99
0.

99
99

54
99

0.
99

99
99

94
0.

99
99

54
40

0.
99

99
99

90
8

7
0.

99
99

87
51

0.
89

88
93

79
0.

99
99

99
91

0.
99

99
46

58
0.

99
99

99
86

0.
99

99
46

50
0.

99
99

99
89

9
8

0.
99

99
87

22
0.

87
76

16
51

0.
99

99
99

92
0.

99
99

37
77

0.
99

99
99

84
0.

99
99

37
80

0.
99

99
99

89
10

1 3

Automated Software Engineering (2022) 29:29 Page 35 of 46 29

Ta
bl

e
3

 M
in

im
um

 p
ro

ba
bi

lit
y

th
at

 a
 st

at
io

n’
s b

ac
ko

ff
co

un
te

r r
ea

ch
es

 b
c

C
as

e
(p

ar
am

et
er

)
A

ct
ua

l V
al

ue
Pr

ob
ab

ili
sti

c
C

EG
A

R

(L
N

PP
N

)
G

am
e-

ba
se

 a
bs

tra
ct

io
n

(L
G

PP
N

)
Th

re
e-

va
lu

ed
 a

bs
tra

ct
io

n
(L

G
IP

PN
)

C
as

e
nu

m
be

r

Lo
w

er
 b

ou
nd

U
pp

er
 b

ou
nd

Lo
w

er
 b

ou
nd

U
pp

er
 b

ou
nd

Lo
w

er
 b

ou
nd

U
pp

er
 b

ou
nd

W
LA

N
(b

c)
4

0.
84

38
21

73
2

0.
76

42
43

34
0.

94
21

42
58

0.
80

35
36

24
0.

87
74

35
24

0.
79

45
45

63
0.

89
46

37
38

11
5

0.
67

85
46

65
3

0.
54

32
36

42
0.

73
24

43
52

0.
66

73
45

32
0.

70
15

64
53

0.
58

98
39

68
0.

73
59

44
50

12
C

SM
A

(b
c)

6
0.

86
97

91
27

4
0.

63
34

22
25

0.
89

94
23

47
0.

74
52

56
72

0.
89

37
35

43
3

0.
68

33
49

06
0.

89
63

45
74

13
7

0.
58

33
32

54
7

0.
24

36
24

37
0.

84
35

42
73

0.
56

34
67

63
0.

59
43

54
57

0.
48

89
05

61
0.

67
67

69
80

7
14

 Automated Software Engineering (2022) 29:29

1 3

29 Page 36 of 46

Ta
bl

e
4

 M
od

el
 st

at
ist

ic
s (

pl
ac

es
, t

ra
ns

iti
on

s)

Ze
ro

co
nf

 p
ro

to
co

l
(p

ar
am

et
er

)
C

on
cr

et
e

m
od

el
(L

N
PP

N
)

Pr
ob

ab
ili

sti
c

C
EG

A
R

(L

N
PP

N
)

G
am

e-
ba

se
 a

bs
tra

ct
io

n
(L

G
PP

N
)

Th
re

e-
va

lu
ed

 a
bs

tra
ct

io
n

(L
G

IP
PN

)
C

as
e

nu
m

be
r

J
K

pl
ac

es
tra

ns
iti

on
s

pl
ac

es
tra

ns
iti

on
s

pl
ac

es
tra

ns
iti

on
s

pl
ac

es
tra

ns
iti

on
s

32
4

76
,7

60
50

,6
39

23
26

16
19

23
38

16
01

19
98

13
86

1
5

19
7,

69
8

13
9,

20
1

25
18

17
02

24
66

16
81

21
26

14
67

2
6

57
8,

78
0

43
2,

97
9

26
98

18
26

26
04

17
71

23
11

15
98

3
7

83
5,

53
6

61
5,

02
3

27
14

19
79

26
70

18
13

23
75

16
26

4
8

1,
68

6,
67

2
1,

25
4,

48
7

29
68

20
02

27
38

18
57

24
72

16
89

5
64

4
14

8,
46

8
98

,0
91

25
98

18
90

25
36

17
99

20
98

14
08

6
5

38
3,

49
8

27
0,

28
1

26
94

19
92

26
83

18
98

22
38

14
99

7
6

1,
12

2,
01

1
83

9,
82

6
28

21
21

74
27

65
19

32
23

87
16

01
8

7
1,

61
6,

32
7

1,
18

9,
79

8
30

08
22

21
28

03
19

46
25

35
16

78
9

8
3,

27
8,

51
8

2,
43

9,
61

3
30

19
23

12
28

20
19

79
26

43
17

31
10

1 3

Automated Software Engineering (2022) 29:29 Page 37 of 46 29

Ta
bl

e
5

 M
od

el
 st

at
ist

ic
s (

pl
ac

es
, t

ra
ns

iti
on

s)

C
as

e
(p

ar
am

et
er

)
C

on
cr

et
e

m
od

el
(L

N
PP

N
)

Pr
ob

ab
ili

sti
c

C
EG

A
R

(L

N
PP

N
)

G
am

e-
ba

se
 a

bs
tra

ct
io

n
(L

G
PP

N
)

Th
re

e-
va

lu
ed

 a
bs

tra
ct

io
n

(L
G

IP
PN

)
C

as
e

nu
m

be
r

pl
ac

es
tra

ns
iti

on
s

pl
ac

es
tra

ns
iti

on
s

pl
ac

es
tra

ns
iti

on
s

pl
ac

es
tra

ns
iti

on
s

W
LA

N
(b

c)
4

1,
04

8,
29

1
70

8,
96

9
51

68
22

96
50

93
58

9
47

68
67

11
5

4,
06

1,
83

1
3,

71
8,

25
6

11
,8

35
80

98
11

,5
92

48
98

10
,8

52
23

1
12

C
SM

A
(b

c)
6

2,
09

9,
54

6
1,

12
1,

65
9

5,
40

8
19

78
53

47
69

4
50

06
10

9
13

7
6,

68
0,

61
1

4,
98

6,
81

7
10

,2
94

43
92

10
,2

12
3,

66
3

95
61

34
8

14

 Automated Software Engineering (2022) 29:29

1 3

29 Page 38 of 46

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
ro

b
ab

il
it

y

Case number

Lower bound

LNPPN LGPPN LGIPPN

Fig. 9 Comparison of lower bound

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
ro

b
ab

il
it

y

Case number

Upper bound

LNPPN LGPPN LGIPPN

Fig. 10 Comparison of upper bound

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
ta

te
 s

p
ac

e
in

 b
y
te

s

Case number

Concrete model LNPPN

Fig. 11 State space of concrete model

1 3

Automated Software Engineering (2022) 29:29 Page 39 of 46 29

LNPPN, LGPPN and LGIPPN get very similar results in solving their upper bound
probability for IPv4 Zeroconf protocol. The results of LGPPN and LGIPPN are bet-
ter than LNPPN in solving the lower bound probability. For WLAN and CSMA pro-
tocols, the compactness of the solutions by LGIPPN, LGPPN and LNPPN decreases
in turn. The reasons for which are the nondeterminism modeled by LGPPN can be
closer to the real probability value than LNPPN as an abstract model, and LGIPPN
introduces a third kind of nondeterministic interval value, which preserves more
information of transition probability and can simultaneously approximate the upper
bound and lower bound.

The state space of abstract model LGIPPN in our framework is significantly
reduced, compared with LNPPN and LGPPN. The state space of concrete model
for 14 cases is shown in Fig. 11, and the state space of abstract model is compared
in Fig. 12. The abscissa represents 14 cases, and the ordinate represents the size of

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
ta

te
 s

p
ac

e
in

 b
y
te

s

Case number

Abstract model

LNPPN LGPPN LGIPPN

Fig. 12 State space of abstract model

Three-valued abstraction (LGIPPN)

Run time in seconds

C
as

e
n
am

e

CSMA(7)

CSMA(6)

WLAN(5)

WLAN(4)

Zeroconf(8,128)

Zeroconf(8,64)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Three-valued abstraction (LGIPPN)
without sample

Game-base abstraction (LGPPN) Probabilistic CEGAR (LNPPN)

Fig. 13 Run time

 Automated Software Engineering (2022) 29:29

1 3

29 Page 40 of 46

state space in bytes. Figure 12 shows that the abstract state space of our framework
is smaller than probabilistic CEGAR or game-based abstraction, and the state space
of probabilistic CEGAR and game-based abstraction are almost the same. This is
because: (1) the places and transitions of abstract model is constructed by nearly
the same method in all abstraction techniques, but in three-valued abstraction, the
transitions are equipped by interval; (2) the dependent relation of variables is very
strong, or the domain of some a variable is too big. It hides all logical relation which
is defined on these variables. When some invisible variables are made visible in the
refinement, the corresponding predicates variables are added, which may also lead
to search more place space. It can be concluded that different transition methods
have great influence on the state space.

We also compare the time efficiency of our framework with others. As shown in
Fig. 13, we compare our framework with probabilistic CEGAR (LNPPN), game-
base abstraction (LGPPN), and our framework without sample learning + BPSO.
The run time (in seconds) contains the time spent on all stages, including abstract
model construction, model checking abstract model and refinement. The run time
of three-valued abstraction in this paper is distinctly less than probabilistic CEGAR
and game-based abstraction, because the refinement in it is accelerated by sample
learning and BPSO algorithm. When our framework integrates the sample learn-
ing + BPSO, it takes obvious less time, which makes the advantage of time con-
sumption more apparent. BPSO has a trade-off between the solution precision
and cost, which gives a suboptimal but sufficiently good set separation and makes
refinement iterations less. It plays an important role to reduce the running time
of LGIPPN. Moreover, the bigger of concrete model, the more preponderance of
three-valued abstraction emerges. But, if the three-valued abstraction do not use the
sample learning and BPSO algorithm for refining, it will be the worst among the
abstraction techniques. Because refining the transitions with interval and places of
player 1 in iteration is very time-consuming. The run time of probabilistic CEGAR
is less than game-based abstraction, because refining the places of player 1 in itera-
tion is very time-consuming.

9 Conclusion

In this paper, we focus on approximate model abstraction techniques for dealing
with state space explosion problem in stochastic model checking. We propose the
first three-valued abstraction-refinement framework for stochastic model checking,
which is also the first abstraction framework for preserving full PCTL* proper-
ties. We present a good balance between the state space and preserved properties
of abstract model. The key components of the framework are a new abstract model
which orthogonally integrates interval probability of transition and game for nonde-
terminism, and the refinement process which combines sample learning and BPSO
algorithm. Some popular protocols in software-drived autonomous systems are used
to demonstrate the efficiency of the framework, which are the best among the cur-
rent approximate model abstraction techniques. This framework takes LNPPN as

1 3

Automated Software Engineering (2022) 29:29 Page 41 of 46 29

the concrete model, but it is applicable to other formal system models as well, such
as probabilistic automaton and MDP. However, this framework can just abstract the
autonomous system with discrete time stochastic behaviors, and just can be applied
at the level of system model. In the future work, we will (1) generalize the three-
valued abstraction framework to software-driven autonomous system in continuous
time style or hybrid system, (2) generate models from the runtime autonomous sys-
tem by L* or reinforcement learning algorithms(Zhang et al. 2020), and (3) develop
the symbolic (MTBDD-based) implementation of this abstraction framework to
offer improved scalability on models exhibiting regularity.

Acknowledgements The work was supported by Singapore-UK Cyber Security of EPSRC under Grant
Nos. EP/N020170/1, MOE Humanities and Social Sciences Foundation of China under Grant Nos.
20YJCZH102. We would like to extend our deepest respects to Professor Edmund M. Clarke at Carnegie
Mellon University, USA, who received ACM Turing Award for his pioneering work of model checking
and passed away on December 22, 2020. He inspired us a lot through his books and papers, especially
the direct discussion about abstraction for stochastic model checking. Thanks to Professor Marta Kwiat-
kowska at University of Oxford, UK, for discussion with her about the game semantics for three-valued
stochastic model checking.

References

Abraham, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.P., Wimmer, R.: Counterexample generation
for discrete-time Markov models: an introductory survey. In: Proceedings of the 14th International
School on Formal Methods for the Design of Computer, Communication and Software Systems:
Executable Software Models (SFM-14:ESM), Springer, vol. 8483 of LNCS, pp. 65–121 (2014)

Albanese, M., Chellappa, R., Moscato, V., Picariello, A., et al.: A Constrained probabilistic petri net
framework for human activity detection in video. IEEE Trans. Multimedia 10(8), 1429–1443
(2008)

Alfaro, L., Roy, P.: Magnifying-lens abstraction for Markov decision processes. In: Proceedings of the
19th International Conference on Computer Aided Verification (CAV’07). Springer, vol. 4590 of
LNCS, pp. 325–338 (2007)

Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Proceedings of the 9th

International Conference on Computer Aided Verification. Springer-Verlag, Berlin, Heidelberg, pp.
119–130 (1997)

Baier, C., Groser, M., Ciesinski, F.: Partial order reduction for probabilistic systems. In: Proceedings of
the 1st International Conference on Quantitative Evaluation of Systems. IEEE Computer Society
Press, Washington, pp. 230–239 (2004)

Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov
chains. Inf. Comput. 200(2), 149–214 (2005a)

Baier, C., D’Argenio, P., Groesser, M.: Partial order reduction for probabilistic branching time. Electron.
Notes Theor. Comput. Sci. 153(2), 97–116 (2005b)

Belardinelli, F., Lomuscio, A., Malvone, V.: An abstraction-based method for verifying strategic proper-
ties in multi-agent systems with imperfect information. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, no. 01, pp. 6030–6037 (2019)

Bernemann, R., Cabrera, B., Heckel, R., König, B.: Uncertainty reasoning for probabilistic petri nets via
Bayesian networks, pp. 1–26 (2020) available: https:// arxiv. org/ abs/ 2009. 14817

Buchholz, P.: Exact and ordinary lumpability infinite Markov chains. J. Appl. Probab. 31(1), 59–75
(1994)

Chadha, R., Viswanathan, M.: A counterexample guided abstraction-refinement framework for Markov
decision processes. ACM Trans. Comput. Logic 12(1), 1–49 (2010)

https://arxiv.org/abs/2009.14817

 Automated Software Engineering (2022) 29:29

1 3

29 Page 42 of 46

Chi, T., Chen, M.: A frequency hopping method for spatial RFID/WiFi/Bluetooth scheduling in agricul-
tural IoT. Wirel. Netw. 25, 805–817 (2019)

Christian, D., Katoen, J.P., Parker, D.: SMT-based bisimulation minimization of Markov models. In:
Proceedings of the 14th International Conference on Verification, Model Checking, and Abstract
Interpretation. Springer-Verlag, Berlin, Heidelberg, pp. 28–47 (2013)

Christopher P.: Probabilistic symmetry reduction [Ph.D. Thesis]. University of Glasgow, Scotland (2012)
Ciesinski, F.: High-Level modelling and efficient analysis of randomized protocols [Ph.D. Thesis]. Dres-

den University of Technology, Dresden (2011)
Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang.

Syst. 16(5), 1512–1542 (1994a)
Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang.

Syst. 16(5), 1512–1542 (1994b)
Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal logic model checking.

Form. Methods Syst. Des. 9(1–2), 77–104 (1996)
Clarke, E., Gupta, A., Kukula, J., Strichman, O.: SAT based abstraction-refinement using ILP and

machine learning techniques. In: Proceedings of Conference on Computer-Aided Verification,
Copenhagen, Denmark (2002)

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refine-
ment. J. ACM 50(5), 752–794 (2003)

Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and debugging.
Commun. ACM 52(11), 74–84 (2009)

Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of Model Checking. Springer,
Heidelberg (2018)

D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic programs. In: Pro-
ceedings of the 1st International Conference on Quantitative Evaluation of Systems. IEEE
Computer Society Press, Washington, pp. 240–249 (2004)

Dams, D., Grumberg, O.: Abstraction and abstraction refinement. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

Dehnert C.: The probabilistic model checker storm: symbolic methods for probabilistic model check-
ing. PhD Thesis at RWTH Aachen University (2018)

Derisavi, S.: A symbolic algorithm for optimal Markov chain lumping. In: Proceedings of the 13th
International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. Springer, Berlin, Heidelberg, pp. 139–154 (2007)

Dey, D., Dansana, J., Behura, A.: A survey of datalink layer protocol for IoT. In: Smys, S., Senjyu, T.,
Lafata, P. (eds) Second International Conference on Computer Networks and Communication
Technologies, pp. 459–466 (2020)

Didier, F., Henzinger, T., Mateescu, M., Wolf, V.: Sabre: a tool for stochastic analysis of biochemi-
cal reaction networks. In: Proceedings of the 7th International Conference on the Quantitative
Evaluation of Systems (QEST’10), pp. 193–194. IEEE CS Press (2010)

Donaldson, A., Miller, A.: Symmetry reduction for probabilistic model checking using generic repre-
sentatives. In: Proceedings of the 4th International Conference on Automated Technology for
Verification and Analysis. Springer-Verlag, Berlin, Heidelberg, pp. 9–23 (2006)

Donaldson, A., Miller, A., Parker, D.: Language-level symmetry reduction for probabilistic model
checking. In: Proceedings of the 6th International Conference on Quantitative Evaluation of
Systems. IEEE Computer Science Press, Washington, pp. 289–298 (2009)

Ebert, C., Weyrich, M.: Validation of autonomous systems. IEEE Softw. 36(5), 15–23 (2019)
Ejaz, S., Iqbal, Z., Azmat Shah, P., Bukhari, B.H., Ali, A., Aadil, F.: Traffic load balancing using

software defined networking (SDN) controller as virtualized network function. IEEE Access 7,
46646–46658 (2019)

Emerson, E.A., Wahl, T.: On combining symmetry reduction and symbolic representation for efficient
model checking. In: Proceedings of the 12th IFIP WG Advanced Research Working Conference
on Correct Hardware Design and Verification Methods. Springer-Verlag, Berlin, Heidelberg, pp.
216–230 (2003)

Emerson, E.A., Sistla, A.: Symmetry and model checking. Form. Methods Syst. Des. 9(1–2), 105–131
(1996)

Emerson, E.A., Wahl, T.: Efficient reduction techniques for systems with many components. Electron.
Notes Theor. Comput. Sci. 130, 379–399 (2005a)

1 3

Automated Software Engineering (2022) 29:29 Page 43 of 46 29

Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer-
Verlag, Berlin, Heidelberg, pp. 382–396 (2005b)

Evangelidis A.: Verified control and estimation for cloud computing. Ph.D. thesis, School of Com-
puter Science, University of Birmingham (2020)

Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Proceedings of the 13th
International Conference on Model Checking Software. Springer-Verlag, Berlin, Heidelberg,
pp. 71–88 (2006)

Fernandez-Diaz, A., Baier, C., Benac-Earle, C., Fredlund, L.A.: Static partial order reduction for
probabilistic concurrent systems. In: Proceedings of the 9th International Conference on Quan-
titative Evaluation of Systems. IEEE Computer Science Press, Washington, pp. 104–113 (2012)

Ferrer, F.L.M., Hashemi, V., Hermanns, H., Turrini, A.: Deciding probabilistic automata weak bisim-
ulation: theory and practice. Form. Asp. Comput. 28, 109–143 (2016)

Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In: Proceed-
ings of the 33rd ACM/IEEE International Conference on Software Engineering. Honolulu, HI,
USA, pp. 341–350 (2011)

Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal analysis and redesign of
a neural network-based aircraft taxiing system with VerifAI. In: 32nd International Conference on
Computer Aided Verification (CAV), July (2020)

Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching time logic model
checking. In: Proceedings of the 3rd Israel Symposium on the Theory of Computing Systems.
IEEE Computer Society Press, Washington, pp. 130–139 (1995)

Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.J.: PASS: abstraction refinement for infinite probabil-
istic models. In: Proceedings of the 16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer-Verlag, Berlin, Heidelberg, pp. 353–357 (2010)

Hansen, H., Wang, X.: Compositional analysis for weak stubborn sets. In: Proceedings of the Interna-
tional Conference on Application of Concurrency to System Design. IEEE Computer Science
Press, Washington, pp. 36–43 (2011)

Hansen, H., Kwiatkowska, M., Qu, H.: Partial order reduction for model checking Markov decision pro-
cesses under unconditional fairness. In: Proceedings of the 8th International Conference on Quan-
titative Evaluation of SysTems. IEEE Computer Science Press, Washington, pp. 203–212 (2011)

Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.P.: Aiming low is harder: induction for lower bounds in
probabilistic program verification. In: Proceedings of the ACM Programming Language, POPL,
Article 37, vol. 4, pp. 1–28 (2020)

Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded reachability in MDPs. In:
Proceedings of the of TACAS, vol 10805 of LNCS (2018)

Hashemi, V., Hermanns, H., Turrini, A.: On the efficiency of deciding probabilistic automata weak bisim-
ulation. Electron. Commun. EASST (2013). https:// doi. org/ 10. 14279/ tuj. eceas st. 66. 895

He, F., Song, X., Hung, W.N.N., et al.: Integrating evolutionary computation with abstraction refinement
for model checking. IEEE Trans. Comput. 59(1), 116–126 (2010)

He, F., Gao, X., Wang, M., Wang, B.Y., Zhang, L.J.: Learning weighted assumptions for compositional
verification of Markov decision processes. ACM Trans. Softw. Eng. Methodol. 25(3), 39 (2016)

Hermanns, H., Katoen, J.: Automated compositional Markov chain generation for a plain-old telephone
system. Sci. Comput. Program. 36(1), 97–127 (2000)

Hermanns, H., Turrini, A.: Deciding probabilistic automata weak bisimulation in polynomial time. In:
Proceedings of the 32nd International Conference on Foundations of Software Technology and
Theoretical Computer Science. Saarbrücken/Wadern: Dagstuhl Publishing, pp. 435–447 (2012)

Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Proceedings of 2008 the 20th Inter-
national Conference on Computer Aided Verification. Springer-Verlag, Berlin, Heidelberg, pp.
162–175 (2007)

Huang, M., Fu, H., Katoen, J.P.: Deciding probabilistic simulation between probabilistic pushdown
automata and finite-state systems. Inf. Comput. 268, 104431 (2019)

Huynh, T., Tian, L.: On some equivalence relations for probabilistic processes. Fundam. Inform. 17(3),
211–234 (1992)

Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: Proceedings of
the 6th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press,
Washington, pp. 266–277 (1991)

https://doi.org/10.14279/tuj.eceasst.66.895

 Automated Software Engineering (2022) 29:29

1 3

29 Page 44 of 46

Kamaleson, N.: Model reduction techniques for probabilistic verification of Markov chains. Ph.D. thesis,
University of Birmingham (2018)

Katoen, J.P., Sher, F.: Modal stochastic games: abstraction-refinement of probabilistic automata. In: Mod-
els, Algorithms, Logics and Tools (Essays Dedicated to Kim Guldstrand Larsen on the Occasion of
His 60th Birthday). LNCS, Springer, vol. 10460, pp. 426–448 (2017)

Katoen, J.P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for probabilistic systems. J.
Logic Algebraic Program. 81(4), 356–389 (2012)

Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based abstraction refinement frame-
work for Markov decision processes. Form. Methods Syst. Des. 36(3), 246–280 (2010)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE International Conference
on Neural Networks, pp. 1942–1948 (1995)

Kwiatkowska, M.: Safety verification for deep neural networks with provable guarantees. In: Proceedings
of the 30th International Conference on Concurrency Theory, pp. 1–5 (2019)

Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In:
Proceedings of the 18th International Conference on Computer Aided Verification. Springer-Ver-
lag, Berlin, Heidelberg, pp. 234–248 (2006a)

Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov decision processes. In:
Proceedings of the 3rd International Conference on Quantitative Evaluation of Systems. IEEE
Computer Science Press, Washington, pp. 157–166 (2006b)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems.
In: Proceedings of the 23rd International Conference on Computer Aided Verification. Springer-
Verlag, Berlin, Heidelberg, pp. 585–591 (2011)

Kwiatkowska, M., Norman, G., Parker, D.: Symbolic verification and strategy synthesis for linearly-
priced probabilistic timed automata. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay,
A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools, vol. 10460, pp. 289–309. Springer,
Cham (2017)

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: stochastic game verification
with concurrency, equilibria and time. In: Proceedings of the 32nd International Conference on
Computer Aided Verification (CAV’20), Springer, vol. 12225 of LNCS, pp. 475–487 (2020)

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automatic verification of concurrent stochastic
systems. Form. Methods Syst. Des. (2021). https:// doi. org/ 10. 1007/ s10703- 020- 00356-y

Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking and autonomy. Annu. Rev. Con-
trol Robot. Auton. Syst. 5, 1–26 (2022)

Lacerda, B., Faruq, F., Parker, D., Hawes, N.: Probabilistic planning with formal performance guarantees
for mobile service robots. Int. J. Robot. Res. 38(9), 1098–1123 (2019)

Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)
Liu, Y.: Secure deep learning engineering: a road towards quality assurance of intelligent systems. In:

The 21st International Conference on Formal Engineering Methods, November 5th–9th (2019)
Liu, Y., Sun, J., Dong, J.S.: PAT 3: an extensible architecture for building multi-domain model checkers.

In: The 22nd annual International Symposium on Software Reliability Engineering (ISSRE 2011),
Hiroshima, Japan, pp. 190–199, Nov 29–Dec 2 (2011)

Liu, Y., Li, X.D., Ma, Y.: Model abstraction for stochastic model checking. Ruan Jian Xue Bao/J. Softw.
26(8), 1853–1870 (2015)

Liu, Y., Li, X.D., Ma, Y.: A game-based approach for PCTL* stochastic model checking with evidence. J.
Comput. Sci. Technol. 31(1), 198–216 (2016)

Luisa, V.L., Loreti, M., Nenzi, L., Hillston, J., Marion, G.: Three-valued spatio-temporal logic: a further
analysis on spatio-temporal properties of stochastic systems. In: Proceedings 14th International
Conference on Quantitative Evaluation of Systems, pp. 317–332 (2017)

Ma, Y., Cao, Z., Liu, Y.: A Probabilistic assume-guarantee reasoning framework based on genetic algo-
rithm. IEEE Access 7, 83839–83851 (2019a)

Ma, Y., Cao, Z., Liu, Y.: A PSO-based CEGAR framework for stochastic model checking. Int. J. Softw.
Eng. Knowl. Eng. 29(10), 1465–1495 (2019b)

Miller, A., Donaldson, A., Calder, M.: Symmetry in temporal logic model checking. ACM Comput. Surv.
38(3), 8 (2006)

Milner, R.: An algebraic definition of simulation between programs. In: Proceedings of the 2nd Interna-
tional Joint Conference on Artificial Intelligence. William Kaufmann Inc., London, pp. 481–489
(1971)

Milner, R.: A Calculus of Communicating Systems. Springer-Verlag, Berlin, Heidelberg (1980)

https://doi.org/10.1007/s10703-020-00356-y

1 3

Automated Software Engineering (2022) 29:29 Page 45 of 46 29

Nguyen, B.H., Xue, B., Andreae, P.: A novel binary particle swarm optimization algorithm and its appli-
cations on knapsack and feature selection problems. In: Leu, G., Singh, H., Elsayed, S. (eds.) Intel-
ligent and Evolutionary Systems. Proceedings in Adaptation, Learning and Optimization, vol. 8.
Springer, Cham (2017)

Nguyen, B.H., Xue, B., Andreae, P., Zhang, M.: A new binary particle swarm optimization approach:
momentum and dynamic balance between exploration and exploitation. IEEE Trans. Cybern.
51(2), 589–603 (2021)

Norris, I.P.C., Dill, D.L.: Better verification through symmetry. Form. Methods Syst. Des. 9(1–2), 41–75
(1996)

Oxford, M., Parker, D., Ryan, M.: Quantitative verification of certificate transparency gossip protocols.
In: Proceedings of the IEEE Conference on Communications and Network Security, France, June
29–July 1, pp. 1–9 (2020)

Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)
Paoli, F., Prabaldi, M.: Proof theory of paraconsistent weak Kleene logic. Stud. Logica 4(108), 779–802

(2020)
Park D.: Concurrency and automata on infinite sequences. In: Proceedings of the 5th GI-Conference on

Theoretical Computer Science. Springer-Verlag, Berlin, Heidelberg, pp. 167–183 (1981)
Peled, D.: All from one, one for all: on model checking using representatives. In: Proceedings of the 5th

International Conference on Computer Aided Verification. Springer-Verlag, Berlin, Heidelberg, pp.
409–423 (1993)

Peled, D.: Partial order reduction: linear and branching temporal logics and process algebras. In: Proceed-
ings of the DIMACS Workshop on Partial Order Methods in Verification. AMS Press, New York,
pp. 79–88 (1996)

Peled, D., Pratt, V., Holzmann, G.: Partial order methods in verification. In: DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. (1997)

Petri, C.A.: Introduction to general net theory. In: Brauer, W. (ed.) Lecture Notes in Computer Science
84, pp. 1–19. Springer-Verlag, Berlin, Heidelberg (1979)

Pfeffer, A., Wu, C., Fry, G., Lu, K., et al.: Software adaptation for an unmanned undersea vehicle. IEEE
Softw. 36(2), 91–96 (2019)

Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Proceedings of the
11th International Conference on Concurrency Theory. Springer-Verlag, Berlin, Heidelberg, pp.
334–349 (2000)

Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nord. J. Comput. 2(2), 250–
273 (1995)

Shivakumar, S., Torfah, H., Desai, A., Seshia, S.A.: SOTER on ROS: a run-time assurance framework
on the robot operating system. In: 20th International Conference on Runtime Verification (RV),
October (2020)

Shoham, S., Grumberg, O.: Game-based framework for CTL counterexamples and 3-valued abstraction-
refinement. ACM Trans. Comput. Logic (TOCL) 9(1), 1 (2007)

Valmari, A.: A stubborn attack on state explosion. Form. Methods Syst. Des. 1(4), 297–322 (1992)
Wachter, B., Zhang, L.J.: Best probabilistic transformers. In: Proceedings of the 11th International Con-

ference on Verification, Model Checking, and Abstract Interpretation. Springer-Verlag, Berlin, Hei-
delberg, pp. 362–379 (2010)

Wahl, T., Blanc, N., Emerson, E.A.: SVISS: symbolic verification of symmetric systems. In: Proceedings
of the 14th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer-Verlag, Berlin, Heidelberg, pp. 459–462 (2008)

Wang, J., Jiang, C., Zhang, H., Ren, Chen K C., Hanzo, L.: Thirty years of machine learning: the road to
pareto-optimal wireless networks. IEEE Commun. Surv. Tutor. 22(3), 1472–1514 (2020)

Winterer, L., Junges, S., Wimmer, R., Jansen, N., Topcu, U., Katoen, J.P., Becker, B.: Motion planning
under partial observability using game-based abstraction. In: IEEE 56th Annual Conference on
Decision and Control (CDC), pp. 2201–2208, IEEE (2017)

Winterer, L., Junges, S., Wimmer, R., Jansen, N., Topcu, U., Katoen, J.P., Becker, B.: Strategy synthesis
for POMDPs in robot planning via game-based abstractions. IEEE Trans. Autom. Control 66(3),
1040–1054 (2020)

Younes, H.: Ymer: a statistical model checker. In: Proceedings of the 17th International Conference on
Computer Aided Verification (CAV’05), Springer, vol. 3576 of LNCS, pp. 429–433 (2005)

Zhang, L.J.: Decision algorithms for probabilistic simulations [Ph.D. Thesis]. Saarland University, Saar-
brücken (2008)

 Automated Software Engineering (2022) 29:29

1 3

29 Page 46 of 46

Zhang, L.J., David, N.J.: A space-efficient simulation algorithm on probabilistic automata. Inf. Comput.
249, 138–159 (2016)

Zhang, L.J., Yang, P., Song, L., et al.: Probabilistic bisimulation for realistic schedulers. Acta Inform. 55,
461–488 (2018)

Zhang, X., Zhou, Y., Han, T., Chen, T.: Training deep code comment generation models via data augmen-
tation. In: Internetware, pp. 185–188 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Yang Liu1,3 · Yan Ma2,3 · Yongsheng Yang1

 Yang Liu
 yl.nus.sg@gmail.com

1 Institute of Logistics Science and Engineering, Shanghai Maritime University,
Shanghai 201306, China

2 School of Accounting, Nanjing University of Finance and Economics, Nanjing 210023, China
3 School of Computing, National University of Singapore, Singapore 117417, Singapore

	A three-valued model abstraction framework for PCTL* stochastic model checking
	Abstract
	1 Introduction
	1.1 Problem statement of model abstraction for stochastic model checking
	1.2 Our contributions
	1.3 Outline of the paper

	2 Related works
	2.1 Simulation relation-based model abstraction
	2.2 Symmetry reduction-based model abstraction
	2.3 Partial order reduction-based model abstraction
	2.4 Probabilistic counterexample-guided model abstraction
	2.5 Error-guided model abstraction
	2.6 Indefinite result-guided model abstraction

	3 Preliminaries
	3.1 LNPPN
	3.2 PCTL* in release-PNF
	3.3 Stochastic model checking LNPPN

	4 Three-valued abstraction for LNPPN
	5 Abstract model
	5.1 Simulation relation on LGIPPN
	5.2 Preservation of PCTL*

	6 Three-valued stochastic model checking
	6.1 Game semantics for three-valued stochastic model checking
	6.2 Strategy solving in three-valued stochastic game

	7 Refinement
	7.1 Identifying and analyzing failure nodes
	7.2 Refining failure nodes
	7.2.1 Formalizing refinement as the MSSP
	7.2.2 Sample learning
	7.2.3 BPSO algorithm

	7.3 Incremental refinement

	8 Case study
	8.1 Experiments
	8.2 Analysis

	9 Conclusion
	Acknowledgements
	References

