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Abstract
A growing demand is witnessed in both industry and academia for employing Deep 
Learning (DL) in various domains to solve real-world problems. Deep reinforcement 
learning (DRL) is the application of DL in the domain of Reinforcement Learning. 
Like any software system, DRL applications can fail because of faults in their pro-
grams. In this paper, we present the first attempt to categorize faults occurring in 
DRL programs. We manually analyzed 761 artifacts of DRL programs (from Stack 
Overflow posts and GitHub issues) developed using well-known DRL frameworks 
(OpenAI Gym, Dopamine, Keras-rl, Tensorforce) and identified faults reported by 
developers/users. We labeled and taxonomized the identified faults through several 
rounds of discussions. The resulting taxonomy is validated using an online survey 
with 19 developers/researchers. To allow for the automatic detection of faults in 
DRL programs, we have defined a meta-model of DRL programs and developed 
DRLinter, a model-based fault detection approach that leverages static analysis and 
graph transformations. The execution flow of DRLinter consists in parsing a DRL 
program to generate a model conforming to our meta-model and applying detec-
tion rules on the model to identify faults occurrences. The effectiveness of DRLinter 
is evaluated using 21 synthetic and real faulty DRL programs. For synthetic sam-
ples, we injected faults observed in the analyzed artifacts from Stack Overflow and 
GitHub. The results show that DRLinter can successfully detect faults in both syn-
thesized and real-world examples with a recall of 75% and a precision of 100%.
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1 Introduction

Applications of Deep Learning (DL) are growing in a variety of domains in both 
academia and industry. We are now seeing DL-based technologies being imple-
mented in critical systems such as autonomous driving cars and medical diagno-
sis systems. Deep Reinforcement Learning (DRL) which is the application of DL 
in Reinforcement Learning (RL) is an active field of Machine Learning (ML), 
that exploits the capabilities of DL architectures to address previously unsolvable 
problems in RL. The importance of DRL is that it allows agents to infer decisions 
directly from unstructured input data (e.g., every pixel in the screen of a video 
game). DRL algorithms can deal with very large input spaces (in contrast to tra-
ditional RL) and indicate actions that optimize the reward (e.g., maximizing the 
game score). DRL has been widely applied to games (Schrittwieser et al. 2020; 
Silver et al. 2016), robotics (Levine et al. 2016; Akkaya et al. 2019), healthcare 
(Yu et al. 2019), finance (Fischer 2018), autonomous driving (Sallab et al. 2017) 
and navigation of high-altitude balloons (Bellemare et  al. 2020). While DRL-
based systems are employed in various domains, their reliability is still a major 
source of concern. Compared to traditional software systems, the notion of faults 
in DRL-based software systems is more complex since: (1) they use complex DL 
architectures, (2) they employ RL algorithms that can be complex due to diffi-
cult hyperparameter tuning (Zhang et al. 2021) and sequential decision making, 
i.e., each agent’s decision can affect its future actions, and (3) DRL programs are 
interacting with non-deterministic environments.

In this paper, we aim to investigate the types of real faults occurring in DRL 
programs to construct a taxonomy of such faults and then, propose a model-based 
detection approach to find those faults in DRL programs. We study faults that 
could be encountered when implementing a DRL algorithm, i.e., a RL algorithm 
that benefits from Deep Neural Networks (DNN). Although other researchers 
have worked on categories of faults in DL programs (Humbatova et  al. 2020; 
Islam et al. 2019) focusing basically on faults occurring in building and training 
a DNN, to the best of our knowledge, this paper is the first research work to study 
and categorize (in the form of a taxonomy) the types of faults that occur in DRL 
programs. Such taxonomy would help developers and researchers to improve their 
understanding of the root cause and symptoms of DRL faults. This would allow 
them to prevent common faults during the development of DRL systems, prepare 
test cases, and improve DRL frameworks for facilitating development and testing.

As a motivating example, Fig. 1 shows a faulty example extracted from Stack 
Overflow post #47750291. In this example, the developer has employed Deep 
Q-Network (DQN), a well-known DRL algorithm to solve the CartPole problem, 
a widely used benchmark problem in RL. The symptom is expressed as bad per-
formance in terms of low reward by the developer. Actually, the agent got stuck at 
a suboptimal reward level without further improvement. However, lack of enough 
exploration was determined to be the root cause in the accepted answer. The 
developer forgot to consider an exploration strategy for the agent, so the agent 
always selects the action based on the output of Q-network (a DNN). In this way, 
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the agent fails to perform random actions to gather information from the envi-
ronment. Environment exploration is necessary for the success of RL agents and 
so this sample is identified as “Missing exploration” in our study. The location 
of fault and recommended modification is indicated in the code by (1) and (2), 
respectively, according to the accepted answer of the post.

Our methodology for building the taxonomy consists in the manual analysis 
of faulty software artifacts. First, we have mined software repositories and Q&A 
forums, i.e., GitHub1 and Stack Overflow2 (SO), to find relevant artifacts. In these 
artifacts, developers/researchers discussed and–or fixed issues that occurred while 
they were using popular DRL frameworks. We have manually analyzed the artifacts 
and identified 761 issues. Next, we have categorized the relevant issues through a 
multi-round labelling process. At the end, 11 distinctive types of faults have been 
obtained that contain 27 faulty artifacts. We have validated the obtained taxonomy 
through a survey with 19 participants who have various backgrounds and levels 
of expertise. Then, we present an approach to detect such faults in DRL programs 
using static analysis which is called DRLinter. In this first attempt, we consider 
DQN which is a well-known DRL algorithm. A model-based approach using graph 
transformations is proposed to detect categorized types of faults occurring in DRL 
programs. A meta-model for DRL programs is proposed as a type graph, captur-
ing the base skeleton and fundamental properties of DRL programs independent 

Fig. 1  Example of “Missing exploration” fault from SO#47750291

1 https:// www. github. com.
2 https:// stack overfl ow. com.

https://www.github.com
https://stackoverflow.com
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of available development frameworks. Considering the proposed meta-model, we 
specify for each fault type, a graph transformation rule to detect fault occurrences. 
DRL code is analyzed to extract its model conforming to the meta-model. Finally, a 
checking process is performed to verify models of DRL programs using graph trans-
formations. We have successfully evaluated our approach by finding faults in 15 syn-
thetic and 6 real faulty DRL programs. The results show that DRLinter effectively 
detects bugs in faulty codes. Briefly, this paper makes the following contributions:

– We propose an initial taxonomy of faults in DRL programs;
– We describe 11 common errors of DRL programs according to real faulty sam-

ples;
– We propose a model-based fault detection approach for DRL programs, using 

meta-modelling and graph transformation rules.
– We provide a concrete implementation of the approach as a tool.

The rest of the paper is organized as follows. In Sect.  2, we briefly review DRL 
and its approaches. We present a full description of our proposed taxonomy and the 
methodology followed to construct and validate it in Sect. 3. In Sect. 4, the proposed 
model-based fault detection approach is reported including the meta-model, the 
graph transformation rules, and the implementation details of DRLinter. Evaluation 
results of DRLinter are reported in Sect. 5. A discussion with mentioning threats to 
validity is presented in Sect. 6. Related works are reviewed in Sect. 7 and finally, we 
conclude the paper in Sect. 8.

2  Deep reinforcement learning

ML is classified into three main branches: Supervised Learning, Unsupervised 
Learning and Reinforcement Learning (Morales 2019). Supervised learning is 
mainly about inferring a classification/regression from labeled training data. The 
main goal of unsupervised learning is to draw inference from unlabeled input data. 
In RL, an agent interacts with an environment and the task consists in learning how 
to perform sequences of actions in the environment to maximize cumulative return-
ing rewards. The agent aims to learn good behavior; meaning that it modifies its 
behaviour incrementally or attempts new ones. Moreover, agent uses trial-and-error 
experience, i.e., frequent interactions with the environment and information collec-
tion (François-Lavet et al. 2018). In other words, RL basically aims to handle the 
automatic learning of optimal decisions over time (Lapan 2018; Morales 2019).

Formally, the RL problem is formulated as a discrete-time stochastic control pro-
cess in the following way: at each time step t, the agent has to select and perform an 
action at from the set of actions A. Upon taking the action, (1) the agent is rewarded 
by rt ∈ R where R is the set of rewards, (2) the state of environment is changed to 
st+1 ∈ S where S is the set of states, and (3) the agent perceives the next observa-
tion of �t+1 from the set of observations � . Fig. 2 illustrates such agent-environment 
interaction. An RL agent is defined to find a policy � from the set of all policies � 
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that maximizes the expected cumulative reward (a discount factor � ∈ [0, 1] applies 
to the future rewards) (François-Lavet et al. 2018).

Recently, researchers have successfully integrated DL methods in RL to solve 
some challenging sequential decision-making problems (Goodfellow et  al. 2016). 
This combination of RL and DL is known as deepRL or DRL. DRL benefits from 
the advantages of DL in learning multiple levels of representation among data to 
handle large state-action spaces with low prior knowledge. For example, a DRL 
agent has successfully learned how to play video games from raw visual percep-
tual inputs including thousands of pixels (Mnih et al. 2015). DRL algorithms, unlike 
traditional RL, are capable of dealing with very large input spaces, and indicating 
actions that optimize the reward (e.g., maximizing the game score). As a conse-
quence, imitating some human-level problem solving capabilities becomes possible 
(Gandhi et al. 2017; Moravčík et al. 2017). However, DRL is considered as a sub-
field of DL-based techniques, so it is not yet as popular as DL in general.

2.1  Value‑based approaches

The value-based algorithms in RL aim to build a value function, which subse-
quently makes it possible to define a policy. The value function for a state is defined 
as the total amount of discounted reward that an agent expect to accumulate over 
the future, starting from that state. Q-learning algorithm (Watkins and Dayan 1992) 
is the simplest and most popular value-based algorithm. In the basic version of 
Q-learning, a lookup table of Q-values, Q(s, a), with one entry for every state-action 
pair is used to approximate the value function. To learn the optimal Q-value func-
tion, the Q-learning algorithm uses an incremental approach by updating Q-values 
with an update rule after taking an action.

The idea of value-based deep reinforcement learning is approximating the value 
function by a DNN. Mnih et al. (Mnih et al. 2015) introduced the DQN algorithm 
that obtained human-level performance in an online playing of ATARI games. They 
have defined the state as the stack of four consecutive frames and actions as vari-
ous joystick positions. The deep network consists of multiple convolutional and 
fully-connected layers. DQN uses two heuristics to address its instabilities: (1) using 
target network: instantiating fitted Q-network for some iterations and applying net-
work’s parameters update only periodically, and (2) replay memory (buffer): keep-
ing all information of several previous steps and replaying them (as mini-batch) to 
reduce variance.

Fig. 2  Agent interacting with 
its environment (François-Lavet 
et al. 2018)
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2.2  Policy gradient approaches

Policy gradient methods maximize a performance objective (typically the expected 
cumulative reward) by discovering a good policy. Basically, the policy function is 
directly approximated by a DNN meaning that the network output would be (proba-
bility of) actions instead of action values (say estimated rewards). It is acknowledged 
that policy-based approaches converge and train much faster specially for prob-
lems with high-dimensional or continuous action spaces (Agostinelli et  al. 2018). 
The direct representation of a policy to extend DQN algorithms for addressing the 
restriction of discrete actions was introduced by Deep Deterministic Policy Gradient 
(DDPG) (Lillicrap et al. 2015). This algorithm updates the policy in the direction of 
the gradient of Q which is a computationally efficient idea.

Another approach is using an actor-critic architecture which benefits from two 
neural network function approximators: an actor and a critic. The actor denote 
the policy and the critic is estimating a value function (e.g., the Q-value func-
tion). Asynchronous advantage actor-critic (A3C) algorithm (Mnih et al. 2016) can 
employ both feed-forward and recurrent neural approximators to learn tasks in con-
tinuous action spaces, working both on 2D and 3D games.

2.3  Review of frameworks for developing DRL programs

In this study, we consider four popular frameworks for developing DRL programs: 
OpenAI Gym, Dopamine, keras-RL, and Tensorforce. It should be noted that we 
only study currently active frameworks over GitHub. We consider a framework as 
active if its repository is supported to resolve issues which are submitted to that 
repository. To compare these frameworks, we have gathered some information about 
them from their GitHub repositories. Table 1 presents detailed information about the 
studied frameworks. The number of stars of a repository is considered as one of the 
most important metrics for identifying repository popularity (Borges et  al. 2016). 
The number of stars identifies the number of users who used and find the reposi-
tory interesting. OpenAI Gym, the most popular repository in our list, is a toolkit 
that provides a set of standardized environments for developing RL algorithms.3 It 
is supported by OpenAI and was first released in 2016. Dopamine is another popular 

Table 1  Detailed information of 
selected frameworks

Project name Stars k Commits Issues Contributors

OpenAI Gym 22 1217 1179 248
Dopamine 9.1 197 118 8
keras-rl 4.8 308 214 39
Tensorforce 2.7 1979 512 60

3 Openai gym. https:// github. com/ openai/ gym (2016).

https://github.com/openai/gym
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repository. It is a framework for prototyping RL algorithms which is developed by 
Google and released since 2018 (Castro et al. 2018). Keras-rl is also a framework 
providing RL algorithms for keras. It was launched in 2016 (Plappert 2016). Last 
but not least, Tensorforce is a TensorFlow library for applied RL algorithms (Kuhnle 
et al. 2017).

3  The taxonomy of faults in DRL programs

We have prepared a replication package that includes the materials used in this study 
and anonymized data collected during our survey.4

3.1  Methodology

In this subsection, we describe the adopted methodology in this paper to construct 
and validate the proposed taxonomy of faults in DRL programs. Figure 3 presents 
the main steps of our methodology.

3.1.1  Manual analysis of DRL programs

We considered four popular DRL frameworks: OpenAI Gym, Tensorforce, Dopa-
mine, keras-rl and two main sources of information: GitHub and StackOverFlow. 
According to GitHub information released in 2019, GitHub has more than 50 mil-
lion users and about 100 million software repositories.5 Thus it can be considered 
as the most important source of open source software artifacts. On the other hand, 
Stack Overflow is the largest Q&A website for developers in the stackExchange net-
work. To construct our initial taxonomy, we manually analyzed issues from GitHub 
and SO discussions related to the four selected frameworks.

Mining Samples from GitHub and SO SO posts are our main source of infor-
mation for bugs/issues related to DRL. We searched SO questions with five tags: 
four tags for our targeted frameworks (one tag for each one) and one general tag 

Selecting 
appropriate
repositories

Labeling artifacts
Creating 
taxonomy

Creating 
survey

Validating 
taxonomy

Fig. 3  The main steps of our methodology

4 Taxonomy of real faults in deep reinforcement learning: Replication package. https:// github. com/ 
deepR Ltaxo nomy/ drl- taxon omy (2020).
5 Github official website. (2020)  https:// github. com/ about. Accessed: 2020-8-25.

https://github.com/deepRLtaxonomy/drl-taxonomy
https://github.com/deepRLtaxonomy/drl-taxonomy
https://github.com/about
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of reinforcement-learning. This search returned a total of 2072 posts. 
Next, we excluded questions without at least one “accepted” answer. This filtering 
step is important to ensure that only questions with a verified answer are analyzed 
in our study. This process left us with 329 SO posts with at least one accepted 
answer. We found a total of 1743 SO questions about DRL without an accepted 
answer. Since this number is large in comparison to questions covering other top-
ics on SO, we manually inspected them to understand the reasons behind the low 
number of questions with an accepted answer. We made the following observa-
tions by analyzing 207 random samples leading to a 95% confidence level. We 
categorized such questions into six groups (number in parentheses show relative 
frequency of each group): 

1. Basic concepts (20%),
2. Without acknowledgment (32%),
3. Implementation issues (27%),
4. Answered by the owner (2%),
5. Irrelevant questions (7%),
6. Others (12%).

Some questions were related to basic concepts of DRL (e.g., SO#60930232) 
so they did not receive any answer. Without acknowledgment questions (e.g., 
SO#29574444) are those that mentioned relevant issues and received some 
responses. Although these answers were not accepted, we identified at least 
one of them as correct that pointed out promising hints but remained without 
acknowledgment. It seems that users could not recognize the correct answer to 
assign the accepted answer flag to it. Implementation issues category represents 
questions that mentioned the possibility of providing DRL using DL frameworks 
from scratch or applying DRL to some specific problems such as seeking a tar-
get by a vehicle (e.g., SO#4256948 and SO#56986663). For such questions, there 
is not an absolute response, so the questions remained unanswered. In some 
cases, the user who had asked the question answered her own question, but did 
not assign the accepted answer flag accordingly (e.g., SO#45364837). We also 
observed irrelevant questions that have received negative scores from experts and 
remained unanswered (e.g., SO#50544568 and SO#56954306). Finally, if the 
question could not fall in any of the mentioned categories, we classified them as 
“Others” (e.g., SO#63419780).

On the other hand, for questions with at least one accepted answer, we observed 
that the median time to receive a correct answer is about 13 hours (the average is 
2.07 days). This time is quite long compared to DL questions that are reported to 
receive a correct answer in less than 5 hours (on average for difficult questions 
about performance) (Zhang et al. 2019). It is acknowledged in the literature that 
the more time it takes for a post to receive an accepted answer, the more difficult 
the post is (Bagherzadeh and Khatchadourian 2019). We believe the main rea-
sons for the high number of questions without answers and long time to answer 
for DRL questions are 1) complexity of DRL-based systems in comparison to 
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DL-based systems and other ML branches and 2) lack of knowledgeable experts 
to answer questions since DRL is not as popular as DL.

We have used GitHub issue tracker to investigate issues of the four DRL 
frameworks targeted in this study. Usually, bugs and faults related to the devel-
opment of a framework are mentioned over the repository’s issue tracker. But in 
some cases, developers post bugs found while using a framework over the GitHub 
issue tracker of the framework. This is why we also referred to GitHub reposito-
ries. For each framework, issues likely related to fixing problems were collected. 
Finally, we identified 761 issues from GitHub issue tracker of four repositories: 
151 for OpenAI-gym, 300 for tensorforce, 200 for keras-rl and 110 for dopamine. 
We extracted all issues but we used only the ones labeled as “closed” in our study. 
This decision aimed to ensure that we analyze only issues that were solved. So, 
we were left with 432 issues after this filtering.

Notably, DRL is an application of DL and consequently the number of reported 
issues about DRL over GitHub and SO is still less than what one may observe for 
DL. However, in this study, we have inspected 329 SO posts and 432 issues from 
GitHub: 761 artifacts have been analyzed totally. Compared to similar studies our 
dataset is still considerable: a recent taxonomy of faults in DNNs studied programs 
developed with Tensorflow, PyTorch and Keras by analyzing 1356 artifacts and end-
ing up with 375 relevant artifacts (Humbatova et  al. 2020) for all types of bug in 
DNNs. Another study on bug fix patterns in DNNs inspected 667 samples (Islam 
et al. 2020).

Manual labeling We manually analyzed all collected data from SO and GitHub. 
Similar to Humbatova et. al (Humbatova et al. 2020), we have used an open coding 
procedure (Seaman 1999). A shared document including the link to all artifacts have 
been used to make it possible for all authors to work together during the labeling 
process. Each artifact was inspected by reading specific parts of its document (code 
snippet, comment, description) and all related discussion provided by the owner 
or other users. We removed the underlying artifact from our analysis if: (1) it was 
not related to a bug-fixing activity, (2) it was related to an issue in the framework 
itself, not the DRL program, (3) it was related to a common programming error not 
a DRL-specific bug, and (4) the root cause of the fault was not clear for the authors, 
based on the associated information of artifact or authors’ analysis. We performed 
the labeling process in three rounds. For the first round, two authors labelled all the 
documents by their own defined descriptive label. In this round, we considered only 
leaf groups by defining a descriptive label without proposing a hierarchical tax-
onomy. Then, other authors commented on the labelling by proposing a new label 
where applicable. In this second round, a hierarchical taxonomy was developed by 
grouping similar leaves. We kept all the labels on our shared document for further 
discussion and reuse. For the final round, all the labelled documents and the taxon-
omy were investigated in a team meeting. Conflict resolution was performed in this 
round. Overall, we found 47 bugs/issues reported by users working with DRL while 
about 86% of them were found from SO posts. We ended up with 27 real labelled 
faults in DRL programs in 11 distinctive categories.
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3.1.2  Building and validating the taxonomy

We have used a bottom-up approach (Vijayaraghavan and Kaner 2003) to catego-
rize the faults and construct the taxonomy. First, similar labels are grouped into 
categories. For each category, we did a double-check by investigating all artefacts 
in the category to make sure that they are classified correctly similar to label-
ling rounds. Afterward, parent categories are built based on the “is-a” relation-
ship between each category and its subcategories. During the process, we have 
discussed each modified version of the taxonomy in virtual meetings with all 
authors. At last, the taxonomy was finalized in a meeting by exploring all catego-
ries, subcategories and leaf nodes.

A validation process is required to ensure that the taxonomy is well-organized 
and covers real faults in the DRL program. We conducted a survey to validate the 
taxonomy involving DRL practitioners/researchers. We targeted practitioners or 
researchers with a good experience in RL and DRL. Similar to our method for 
building the taxonomy, we used GitHub and Stack OverFlow to extract informa-
tion about suitable survey participants. To find participants with a good under-
standing of RL, we first identified the most popular repositories that focused on 
RL. Next, we filtered out the ones that do not have software artifacts. After this 
filtering, we extracted and sorted repositories’ contributors based on their activ-
ity in the selected repositories. Next, we selected contributors who have been 
active in updating selected GitHub repositories during the last year. Finally, this 
process left us with 131 repositories. To find participants from SO, we used the 
posts extracted during the mining phase, i.e., the posts that have reinforce-
ment-learning tag and at least one accepted answer. Next, we identify the 
users who posted accepted answers on the selected posts and sort them based 
on their up-vote and down-vote. Since we could not access the email address of 
SO users, we carried out a search for each identified user in the web to find their 
profile and emails from other sources such as GitHub and Google Scholar. In the 
end, we obtained a list of 210 users; 170 from GitHub and 40 from SO. We sent 
out the survey by email to all of them and 19 persons participated in our sur-
vey which corresponds to a participation rate of 9%. We received responses from 
8 researchers and 11 developers. The minimum coding experience for ML/DL 
and DRL were “1-3 years” and “less than 1 year”, respectively. The most experi-
enced participant had more than 5 years of experience in both ML/DL and DRL 
fields while the median for ML/DL and DRL was “3-5 years” and “1-3 years”, 
respectively.

Our survey was created using Google Forms,6 a well-known online tool for 
creating and sharing online surveys and quizzes. The survey started by some 
background questions about job title, DL/DRL-specific programming experi-
ence and familiar languages/frameworks. Then, particular questions about our 
taxonomy were asked. We put distinctive multiple-choice questions for each of 
our 11 leaf nodes including a description of the corresponding type of fault. In 

6 Google forms. https:// www. google. ca/ forms/ about/ (2020).

https://www.google.ca/forms/about/
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each question, the participants are asked to answer whether they have seen such 
fault in their own experience or not. The positive answer option asked them to 
also select a severity level for the fault (minor/major) and the required amount of 
effort to detect/fix the fault (easy/hard). This allowed us to assess the observed 
occurrence and the perceived severity of faults provided in our taxonomy, by 
developers/researchers, at the same time. At the end, we asked if the participant 
has observed any problems related to DRL that have not been considered in the 
survey and her availability for an interview to discuss the subject in detail. By 
these final questions we aimed to find out missing bugs/issues in our presented 
taxonomy and identify possibilities of further investigation.

3.2  The taxonomy

In general, three types of faults could happen in DRL programs: 

1. Generic programming faults: Generic programming faults: these faults are natu-
rally excluded in our study and similar studies on DL faults (Humbatova et al. 
2020; Zhang et al. 2018; Islam et al. 2019),

2. DNN-specific faults: faults related to constructing and training a DNN (Hum-
batova et al. 2020; Zhang et al. 2018; Islam et al. 2019),

3. DRL-specific faults: these faults occur during the development of a DRL algo-
rithm, i.e, using DNNs in a RL algorithm.

In our study, we did not investigate generic programming faults as explained in 
Sect. 3.1.1 Since DNN faults have already been studied in some previous works 
(Humbatova et al. 2020; Zhang et al. 2018; Islam et al. 2019) and may happen in 
any application of DNNs, we did not investigate them as well. Thanks to a recent 
interesting research that categorizes observed faults in three popular DL frame-
works (Tensorflow, PyTorch and Keras) (Humbatova et al. 2020), we can discuss 
these faults systematically. This recent taxonomy has five categories: Model (type 
of layers and architecture of DNNs), Tensors and Inputs (size and type of input 
data), GPU Usage, Training (training process of DNNs like loss and optimizer) 
and API (usage of framework APIs). In fact, the taxonomized faults could hap-
pen when constructing, training and using a DNN regardless of the application 
domain. For example, selecting a wrong architecture for a network, missing a 
specific layer, wrong initialization of network’s parameters or wrong loss defini-
tion. Instead, in our proposed taxonomy, we have categorized DRL-specific faults 
which are related to using DRL algorithms, i.e., employing DNNs in RL, and can 
only happen in DRL programs. The focus of this study is then on DRL-specific 
faults since to the best of our knowledge, “faults related to developing a DRL 
algorithm” have not been reported in the literature previously. Moreover, accord-
ing to the manual analysis of buggy programs and the feedback we received in 
our survey for validating the taxonomy, we believe that DRL-specific faults are 
important to study. The application of DRL in various domains is growing, so 
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developers of DRL programs should be aware of various types of fault occurring 
in these programs.

However, we have blended our proposed taxonomy of DRL faults with the tax-
onomy of DNN faults (Humbatova et  al. 2020) to 1) make the taxonomy self-
contained in terms of faults that may happen in DRL programs and 2) help the 
reader to understand the significance and hierarchy of various faults. It should 
be noted that there is an exception for faults related to training data. Since in 
RL, an agent is interacting with an environment and the learning process is based 
on information gathered through interactions, traditional “training data” which 
has been used in classification tasks is not relevant to DRL programs. Hence, we 
removed categories related to “training data” including preprocessing and quality 
issues. Fig. 4 illustrates the final taxonomy. Colored boxes are newly added fault 
types while existing categories are shown in light gray. The DRL-specific sub-
taxonomy includes 4 categories and 11 leaves. The numbers after each title rep-
resent the number of posts assigned to that title during manual labelling. In the 
following, we first briefly describe DL faults reported in (Humbatova et al. 2020). 
Then, our proposed categories of DRL faults will be discussed.

3.2.1  DL faults

According to Humbatova et  al. (2020), there are five main categories of faults in 
DL programs: Model, Tensors and Inputs, GPU Usage, Training and API. Any fault 
related to the structure and properties of the DL model is classified as Model. It has 
two subcategories of Model type and properties and Layers. Faults related to the 
model as a whole not its components are categorized as Model type and properties. 
For example, wrongly selected model for a task, too few or too many layers in a 
model which is identified as suboptimal network structure, or wrong initialization of 
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weights in the network. Layers covers faults related to a particular layer as a compo-
nent of a model, e.g., missing average pooling layer after convolution layer(s), miss-
ing activation function or mismatch of layers’ dimensions.

Tensors and Inputs gathers issues related to a wrong dimension, type or for-
mat of data processed by the network and has two subcategories: Wrong tensor 
shape and Wrong input. The former covers bugs raised by operation on tensors with 
incompatible or incorrectly defined shape, e.g., using a transposed tensor instead of 
the normal one. Incompatible format, type or dimension of input data to a layer or 
methods result in faults of Wrong input.

All faults that are encountered during the training process of DL programs are 
categorized as Training. Hyperparameters covers problems due to tuning the hyper-
parameters of the DL model including learning rate, number of epochs and batch 
size. Wrong calculation, wrong selection or missing a loss function leads to faults 
from the subcategory of Loss function, which affect the effectiveness of learning 
algorithms. Optimizer includes faults like wrong selection or bad parameter setting 
of the model training optimizer. Faults such as attempting to fit a too big model into 
memory or to refer to non-existing checkpoint during model restoration fall in the 
subcategory Training model.

Usually, DL frameworks employ GPU devices to run the code, so the GPU Usage 
subcategory includes faults that occur while using such devices. For instance, wrong 
reference to a GPU device or faulty data transfer to a GPU device. Finally, failures 
related to the wrong usage of framework APIs (i.e., using an API in a way that does 
not comply with its definition) fall into the API subcategory. It should be noted that 
none of the extracted faults in this paper could fall into categories of the mentioned 
taxonomy of DL faults.

3.2.2  Interacting with the environment

In a DRL program, an agent must interact with an environment to learn. Usually 
in each DRL program, there are some parts for initializing, retrieving current state, 
submitting action and receiving next state and the reward. DRL frameworks sup-
port some well-known environments with the possibility of defining new environ-
ments. They provide developers with APIs to work with the environments. This 
category considers faults that occur when a DRL program tries to interact with the 
environment.

Type 1: Missing stepping the environment Failure to timely push the environment 
to a new state and get the associated reward lead to problems in learning. During 
each episode of interaction between an agent and its environment, the environment 
must be moved to a new state getting the reward associated with the transition. Oth-
erwise, the agent would lose the track of reward or sequence of the environments’ 
states.

Terminating the environment: This subcategory includes faults related to the 
ending of an episode of interaction with the environment or restarting the environ-
ment for the next episode.
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Type 2: Missing terminal state This category contains problems related to miss-
ing or wrongly detected terminal state of the environment. Finally, each episode of 
agent interaction with its environment should be terminated normally by reaching 
the terminal state. Missing this state may lead to inefficient learning. For example, 
using default definitions of the framework’s API for detecting the terminal state 
leads to such fault.

Type 3: Missing reset/close environment It includes problems related to missing 
or bad termination (and restarting) of each round of agent interaction with its envi-
ronment. At the end of each episode, the environment must be properly closed or 
reset to its default configurations for the next episodes. Actually, execution of the 
next episode and correctness of state sequences depend on the successful termina-
tion of the previous episode. Wrongly positioned API call for resetting environment 
is an example of this type of faults.

3.2.3  Exploring the environment

A RL agent must prefer high-reward actions that have been tried previously to obtain 
more reward. On the other hand, to detect such actions, the agent must investigate 
actions that have not been taken before. The agent not only has to exploit its experi-
ence of actions with higher reward, but also has to explore to improve action selec-
tion in the future. The dilemma is that neither exploration nor exploitation can be 
successful exclusively without failure. A variety of actions has to be attempted by 
the agent, gradually favoring those that appear to be best. Although there are vari-
ous methods to perform exploration in DRL, enough exploration of the environment 
is crucial for an effective performance. Faults in this category fall into two groups: 
missing the exploration phase in the code and choosing suboptimal exploration rate.

Type 4: Missing exploration This tag is identified as the failure to explore the 
environment in the case that it is necessary according to the algorithm. Lack of 
exploration leads to poor performance of the algorithm in terms of mean reward. 
Sometimes developers rely on the output of the neural network (e.g., DQN) to have 
enough flexibility to cause sufficient exploration but using explicit methods like 
epsilon greedy is more effective.

Type 5: Suboptimal exploration rate It is widely acknowledged in the RL com-
munity that balancing exploration and exploitation is crucial to achieving good per-
formance (Sutton and Barto 2018). This tag covers problems related to suboptimal 
exploration parameters (e.g., epsilon in epsilon-greedy method) or suboptimal decay 
rate that leads to poor performance of the algorithm.

3.2.4  Updating networks

This is the largest category in our taxonomy. It includes faults related to updating 
DNNs in DRL programs. According to the adopted DRL architecture/algorithm, 
various updating or training procedures should take place in DRL programs, e.g., 
training Q-network and updating target network in DQN, policy and value networks 
in policy gradient algorithms, and updating replay buffer.
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Type 6: Wrong update rule A new experience from the environment should be 
incorporated into the existing experiences by an update rule. This leaf covers issues 
related to using an incorrect update rule for value or policy function including sub-
optimal learning rate and wrong implementation of the update rule.

Type 7: Suboptimal network update frequency Problems related to suboptimal 
update frequency of networks’ parameters (including the target network) leading to 
unstable learning and increasing loss value are categorized in this group. For exam-
ple, in DQN, the target network must be updated frequently, so choosing a too high 
update rate can lead to unstable learning process.

Type 8: Wrong network update This tag covers faults related to the wrong update 
of networks or its parameters. Each network or set of parameters (like Q and tar-
get network in DQN or policy and value networks in policy gradient algorithms) 
must be properly updated based on new values or recent observations. Examples 
are update the wrong network, wrong update statement and missing the update 
statement(s).

Type 9: Wrong calculation of gradients Problems related to wrong calculation 
of gradients for learning, including computation of one network’s gradients with 
respect to another network’s are categorized in this tag. Since in some compli-
cated DRL methods, different networks must be trained according to the output 
of other networks or returning reward from the environment, it is a quite frequent 
fault in such methods.

Table 2  Results of validating 
survey for the proposed 
taxonomy

Faults type Responses

No (%) Yes, Yes, Yes, Yes,

minor 
and easy 
(%)

minor but 
hard (%)

major but 
easy(%)

major and 
hard (%)

Type 1 63 16 5 11 5
Type 2 42 16 16 21 5
Type 3 37 53 0 11 0
Type 4 11 5 5 16 63
Type 5 11 16 16 16 42
Type 6 11 21 11 26 32
Type 7 16 0 26 21 37
Type 8 16 0 26 21 37
Type 9 32 32 5 16 16
Type 10 53 32 0 11 5
Type 11 42 32 5 21 0
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3.2.5  Output layer

When DL is applied to typical ML problems like classification, the output of 
the network is much more familiar in comparison to RL problems. A particular 
action, a vector of state-action values or a probability distribution over possible 
actions could be the output of DNNs in DRL programs. Due to this diversity, 
faults related to the output layer of the network are observed in our study. We 
have categorized these faults in two leaves.

Type 10: Wrong output This tag includes issues related to failure to define a 
correct output layer for the network with respect to the environment and algo-
rithm. This type of faults leads to issues in determination of actions and poor 
learning.

Type 11: Wrong activation for output Failure to define a correct activation 
function for the output layer leading to incorrect action determination is labelled 
in this group. As a real example, if sigmoid activation function is used when the 
output is expected to be a reward value, the activated output range will be differ-
ent from the original reward.

3.3  Validation results

Table 2 shows the results of the validation survey for the proposed taxonomy. The 
ratios of answers for each category are reported. The answers reveal whether or not 
the participants ever faced the related faults, their perceived severity for each type of 
fault (as “minor/major”), and their estimation of the effort required to fix the faults 
(as “easy/hard to fix”). The results confirm the relevance of all categories in the 
taxonomy since all of them have been encountered by at least 37% of participants. 
Exploring the environment is the most popular category; it has been experienced by 
89% of participants. Participants have determined Missing exploration (Type 4) as 
the most critical faults by 63% of answers (highest rate for “Yes, major and hard”). 
The least popular type is Missing stepping the environment (Type 1) experienced by 
37% of all the survey participants which is a non negligible fraction. The average of 
answers that included “yes” is 71%. This result shows that the taxonomy covers rel-
evant types of faults that have been experienced by most of the participants as DRL 
developers/researchers. However, two types of faults received more than 50% “no” 
answers as the least observed type of faults in DRL. Consequently, participants vali-
dated 9 categories out of 11 on average, the ratio of categories that received more 
than 50% of responses that included “yes”.

In response to our question about the completeness of our taxonomy, some par-
ticipants mentioned examples of faults they thought we missed in the reported 
taxonomy: 

1. Generic coding problems were commented by two participants (an example is: 
“Wrong data type when storing the environment state somewhere”),
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2. The effect of the fault was described in two others rather than the root cause of 
symptom (for example, “diverging behaviour and instability” and “not converg-
ing entropy/gradients”)

3. One reported faults related to DL which are not specific to DRL (such as “neural 
network initialization”).

4. Three participants commented on the definition and formulation of a DRL prob-
lem including evaluation metrics and reward function which are not directly 
related to faults in DRL programs (e.g. “Problems related to defining reward 
systems for new environments for efficient learning.”).

3.4  Discussion

The number of research works in software engineering that use SO as a source of 
information is growing which raises some concerns about quality (Meldrum et al. 
2017). The problem is the validity of its utility and reliability which has not been 
investigated yet. Humbatova et al. (2020) also reported the views of some of their 
SO interviewees stating that Q&A over SO does not reflect the problems developers/
researchers faced when developing DL programs. To compensate for this issue, we 
have excluded non-relevant artifacts during our manual analysis, have investigated 
each artifact by participation of more than one evaluator and have conducted a sur-
vey to validate the results. Participants in our online survey have provided us with 
some comments. We present and discuss common problems among these comments: 

1. Reproducibility of result : Stochastic nature of RL problems make it difficult to 
reproduce the results and investigate the correctness of implementation. One of 
them mentioned that: “finding a good random seed is annoying, even worse is the 
high sensitivity to different seeds: performance may greatly vary from one seed 
to another”. Another participant stated that sometimes one would not get good 
results just because of bad luck in a run.

2. Complexity of DRL frameworks: some participants complained that DRL frame-
works are quite complicated due to the modular design. So, they prefer to to 
write all the code from scratch, one participants noted that “Writing all code 
from scratch seems to be the only way to have full control of what’s going on. 
I believe we can do better”. This makes it difficult to develop, debug and test 
DRL algorithms. They stated the advantages of single-file implementations to 
be their easy development and debugging. Moreover, they expected to see new 
frameworks including such features (e.g., “I am a huge advocate for single-file 
implementations. Easier to debug, inspect, and develop new algorithms.”).

3. Scalability challenge: based on participant views, it seems that scalable experi-
ment is a challenge in DRL programs. More effort is required to address this issue, 
for example to handle a reasonable number of agents in multi-agent problems.
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4  Model‑based fault detection in DRL programs

In this section, on the top of the proposed taxonomy, we aim to automatically detect 
bugs in models of DRL programs by model-based static analysis. To do so, a meta-
model for DRL programs is proposed. In this first attempt, we consider DQN which 
is a well-known DRL algorithm. This meta-model captures the base skeleton and 
fundamental properties of DRL programs independent of available libraries. Then, a 
detection mechanism is proposed using graph transformations.

4.1  A meta‑model for DRL programs

In this subsection, we want to address the following questions: is there any generic 
representation of DRL programs that is independent from employed development 
libraries? or, can we define a meta-model of DRL programs and how can we model 
a DRL program? In Hartmann et  al. (2019), researchers proposed a meta-model 
for meta-learning. They presented an overview of the meta-learning concepts -on 
a meta-modelling level- with possible variabilities and discussed how their meta-
model could be integrated into existing modelling frameworks and tools. However, 
while their meta-model includes “Learning Block”, “Learning Algorithm”, and 
“Hyperparameters”, no further details were presented and they did not explore the 
possibility of identifying faults in ML models. In this section, we present a particu-
lar meta-model for DRL programs and an approach for modeling such programs. 
Afterward, one could perform static analysis of models of DRL program for detect-
ing faults in them. We believe that a generic meta-model for DRL programs would 
be helpful for understanding DRL programs written by developers using third-party 
libraries.

A DRL program is basically an RL program that adopts DNNs. A typical RL pro-
gram has two main components: a component to interact with the environment and 
a component to learn the optimal policy and make decisions upon the environment. 
In a DRL program, one or multiple DNNs are used for learning policy and selecting 
actions. Normally, a feedforward multilayer perceptron (MLP) architecture is used 
for DNN in DRL programs. Like other computational models, DNN attempts to find 
a mathematical mapping from the input into the output during a learning phase. Usu-
ally, a set of inputs and desired outputs (or targets) is provided for learning which is 
called Dataset. In the case of DRL, input is agent’s observations (including state of 
the environment, reward and agent’s actions) and the output could be agent’s action, 
estimated reward or its policy. We have briefly reviewed various DRL approaches in 
Sect. 2. For the sake of simplicity, in this section we consider the DQN algorithm 
for our meta-modeling approach, since it is a well-known approach in DRL. The 
DQN is a value-based DRL that employs a DNN, namely Q-network, to perform a 
nonlinear approximation which maps the environment state into an action value.

Since we have used a graph-based approach for modelling and detecting faults 
in DRL programs, here we briefly review its important concepts. Graph transfor-
mation system (GTS) (Heckel 2006) (also called graph grammar) is a formal lan-
guage for the specification of software systems, in particular those with dynamic 
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structures. The definition of an attributed GTS consists of a triplet (TG, HG, R) 
in which TG is a type graph, HG is a host graph, and R is a set of rules for graph 
transformation. TG is defined by four components, TG = (TGN , TGE, src, trg) . 
TGN and TGE includes all node types and edge types respectively. src and trg 
are two functions src ∶ TGE → TGN and trg ∶ TGE → TGN , that determine the 
source/destination nodes of an edge, respectively. The initial configuration of 
a system specified by GTS is presented by the host graph which is an instance 
of the type graph. Therefore, each component of the host graph, node or edge, 
must have a component type in the type graph. A host graph HG may instanti-
ate from a type graph TG using a graph morphism function typeG ∶ HG → TG , 
in which the components of HG are instantiated from TG. Other configurations 
or states of a system are generated by successive applications of transforma-
tion rules on the host graph. A transformation rule r in R is defined by a triplet 
(LHSr,RHSr,NACr) in which LHSr (left-hand side) represents the preconditions 
of the rule whereas RHSr (right-hand side) describes the postconditions. Moreo-
ver, there may be a Negative Application Condition (NAC) for the rule r, mean-
ing that the rule r can be applied only when NACr does not exist in the host 
graph. By applying the rule r to the host graph HG, which is an instance model 
of the meta-model or type graph, a matching of the LHSr in HG is replaced by 
RHSr . Formally, a graph morphism exists between LHSr and the instance model 
HG. The application of a rule is performed in four steps: (1) find a matching of 
LHSr in HG, (2) check NACr that forbid the presence of certain nodes and edges, 
(3) remove a part of the host graph that can be mapped to LHSr but not to RHSr , 
and (4) add new nodes and edges that can be mapped to the RHSr but not to the 
LHSr.

Our meta-model for DQN-based DRL programs includes two main parts: Envi-
ronment and DQN as decision making component. The proposed meta-model is 
represented by a type graph. This type graph is illustrated in Fig.  5. The node 

Fig. 5  The proposed meta-model (type graph) for DQN-based DRL programs
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representing the DRL-program has two edges to Environment and DQN indi-
cating its main components. It should be noted that our aim of meta-modeling is 
the detection of faults in DRL programs; therefore the most relevant components 
have been incorporated into the meta-model. Since we focus on DRL-specific 
bugs in this paper, structure and parameters of DNNs are not presented in our 
meta-model explicitly.

4.1.1  Environment

A DRL program interacts with an environment. Environment contains variables 
for number of actions and number of states. The program should start with initial-
izing the environment. Then, it continues to Step the environment. After initiali-
zation, the agent starts interacting with the environment by perceiving the current 
state of the environment, making decisions to perform an action and executing 
the action in the environment. Afterward, the agent might receive a reward and 
the environment updates its state. We call this “stepping the environment” which 
could be repeated during an episode. Finally, an episode of agent-environment 
interactions should terminate by detecting a terminal state. The agent may reset 
the environment for starting another episode or close it at the end.

4.1.2  DQN

A DQN-based DRL program normally employs a DNN which is called Q-network 
to approximate a vector of state-action values by receiving environment’s state as 
input. It may benefit from another DNN, namely Target-network, to instantiate fit-
ted Q-network for some iterations and applying network’s parameters update only 
periodically not in every iteration. Q-network receives the current state and reward 
of the environment from Step, calculates the best possible action and sends it back 
to Step. Meanwhile, Target-network provides Q-network with Q-values for train-
ing and Q-network updates parameters of Target-network periodically. On the 
other hand, Exploration is crucial for a successful DQN algorithm. For example, 
epsilon-greedy simply balances exploration (selecting a random action) and exploi-
tation (selecting actions according to Q-networks) by choosing between these two 
randomly. In this algorithm, where epsilon refers to the probability of choosing to 
explore, exploitation occurs most of the time with a small chance of exploring. As 
time goes by, epsilon decreases by a decay factor. Hyperparameters include param-
eters like batch size, epoch count, and size of replay buffer.

4.2  Modeling DRL programs

A model of a DRL program includes components that form its source code. There 
are two ways to build a model of DRL programs: configure an arbitrary model 
directly or transform a DRL program to a model. Practically, a model could be 
configured according to a DRL program that has already been developed by a 
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programmer. To do so, the source code of a DRL program should be parsed and 
converted to a model, which is an attributed graph. Due to the complexity of devel-
oping DRL programs and various components which must be identified to build the 
model, analyzing DRL codes to extract the model is not straight-forward and easy. 
Hence, as a preliminary approach, we have developed a dedicated converter to trans-
form a sample DRL program to its model in this paper.

The meta-model is generic enough to be independent of any specific DRL library 
or framework. Hence, once we can have a model of a DRL program that conforms 
to the meta-model, further investigations on the model become possible, such as bug 
detection. Apart from the work and analysis that are presented in the rest of this 
paper, we believe that this meta-model can be very useful to understand DRL pro-
grams written by third parties. It will be also helpful in understanding the develop-
ment activities of DRL practitioners; the way they develop DRL programs and the 
type of faults that they experience.

4.3  Detecting faults by graph transformations

In this paper, the meta-model is presented as a type graph and each model, instan-
tiating the type graph, is a graph extracted from a DRL program. As a straightfor-
ward approach, graph transformations are chosen to detect faults in models of DRL 
programs. For each type of fault, one graph transformation rule is implemented to 
detect the fault. In fact, graph transformations are used to detect possible faults in 
a model acting as graph checking operators. A transformation is applicable where 
the corresponding fault occurred in the model. A fault in the graph (model) could 
be detected as a missing node, edge or wrong value of a variable. While detecting a 
fault in a model, some specific conditions would be checked by finding a match of 

Fig. 6  An example of graph transformation rules: detecting “Missing stepping the environment”
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LHS of the rule in the graph and/or the absence of NAC. Once a graph operation is 
applied, i.e., detecting a fault in a part of the graph, a specific fault code is added to 
the node or edge in which the violation occurred. This action is represented by the 
RHS of the rule. For example, Fig. 6 illustrates a transformation rule for detecting 
“Missing stepping the environment” fault showing LHS, RHS, and NAC. This fault 
occurs when the developer forgets to push the environment to a new state and to 
get the associated reward. LHS shows DRL-program with its initialized Environ-
ment. The fault is detected if there is not a Step node just after Initialize. So, NAC 
forbids the existence of Step right after Initialize. If the fault is detected, RHS adds 
a Faults node with relevant fault code to the DRL-program. Because of space limi-
tation, we cannot present in the paper all the graph transformations implemented for 
fault detection. We refer interested readers to the source code of DRLinter which is 
available online.7

4.4  Implementation

The pseudocode of DRLinter is presented in Algorithm  1. The inputs are DRL 
program and a set of graph transformations rules. At first, the DRL program is 
modeled as a graph that conforms to the proposed meta-model, i.e., type graph. 
Then, a checking process runs to find potential faults in the model. This process 
attempts to apply rules to the graph and stops when no further rule application is 
possible. Finally, DRLinter traverses this graph to generate a report for the user, 
containing a description of the faults found for each component of the program. 
We discuss each step in detail in the rest of this subsection.

In convertDRLProgram, the source code of a program is parsed to extract rel-
evant information that is necessary to build the model. In the first step, we use the 
Abstract Syntax Tree (AST) to parse the DRL program script. AST represents the 
abstract synthetic structure of the scripts as a tree. Due to the fact that AST pro-
vides the abstract information regarding the scripts and omits very detailed infor-
mation of code, we used this tool to generate graphs of DRL codes. To cope with 
generating readable graphs by graph checker, we extract the required abstract 
information from the DRL script using AST and after that, we start to add the 
relevant nodes and edges based on the extracted data by AST. The current version 
of DRLinter works for synthetic DRL programs developed using OpenAI Gym 
and TensorFlow libraries. Therefore, the API of these frameworks is the main 
source to detect key parts of a DRL program. In each DRL framework, there are 
specific APIs for initializing the environment, receiving the current state of the 
environment, sending the action and working with DNNs including feeding input, 
calculating output, and training. In this way, the most important parts in the DRL 
program like Q-networks, target network, exploration rate, and update equation 
could be identified by the parser. The current version can be extended to work for 
DRL programs developed by other DRL frameworks.

7 The source code of DRLinter. https:// github. com/ drlin ter/ drlin ter (2020).

https://github.com/drlinter/drlinter
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Once DRL source code is modeled as a graph and we have the transformation 
rules, the detection rules can be used by a graph transformation tool that executes 
the sequence of graph transformations over a model of the DRL program by call-
ing graphChecker. In this paper, we have used the GROOVE toolset (Rensink 2003) 
to perform graph operations. GROOVE is a tool for implementing, simulating, 
and conducting analysis of graph transformation systems. It is capable of explor-
ing recursively and collecting all possible rule applications over a start graph. Fur-
thermore, it has a graphical interface for editing graphs and rules, and for explor-
ing and visualising the graph transformation which could be called via command 
line, as well. The output of GROOVE is called the final graph on which no further 
rule application is possible. The detection rules are implemented as graph transfor-
mations using GROOVE. Each graph transformation could be applied to a graph if 
there is a fault in the graph. The rules are implemented in such a way that start from 
the DRL-program node and proceed to the parts of the model. At first, the gen-
eral structure and connectivity of nodes is tested to ensure that they are well-formed 
and connected. These transformation rules mark the graph components (nodes and 
edges) with relevant flags to indicate the performed tests. Then, each graph operation 
checks specific conditions that are asserted in its rule using the information provided 
in the graph. A transformation should be fired if a fault is detected in the model of a 
DRL program. If there are multiple faults or various instances of a fault in the con-
sidered model, all of them will be detected by applying multiple enabled rules.

Finally, by calling extractReport, a report is extracted from the output of graph-
Checker. A simple parser is developed to process the final graph and extract infor-
mation about detected issues to generate a report for the user. For more details, we 
refer interested readers to the source code of DRLinter which is available online.8

4.5  Application scope

RL, and consequently DRL, basically aims to handle the automatic learning of 
optimal decisions over time. Agents aim to learn good behavior by modifying their 

8 The source code of DRLinter. https:// github. com/ drlin ter/ drlin ter (2020).

https://github.com/drlinter/drlinter
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current behaviour incrementally or attempting new ones. Trial-and-error experiences 
are employed leading to frequent interactions with the environment and informa-
tion collection. Hence, RL algorithms usually should be designed and tuned depend-
ing on the environment, prior knowledge and particular learning objectives for each 
domain. Therefore, there is not a universal principle for RL and DRL algorithms 
that can be applied to all problems. In this paper, we investigated real faults in DRL 
programs. According to our findings, we then proposed a taxonomy of faults in DRL 
programs. Finally, we proposed an approach to detect these faults in the DQN algo-
rithm, which is a well-known approach in DRL. Therefore, the applicability of the 
detection approach is limited to DQN while the taxonomy covers faults that might 
occur in other DRL approaches, not only DQN.

DRLinter detects potential faults in DRL programs which is, to the best of our 
knowledge, the first attempt in this field. The developers provided with information 
about the detected faults will be able to manually correct them considering the con-
text and the domain of the problem. For example, when DRLinter reports a fault 
on exploration rate, it draws the developer’s attention to a potential issue in explor-
ing the environment that should be investigated. The developer should do inspec-
tion accordingly and revise the mechanism or rate of exploration. To automatically 
suggest repairs for the identified faults, we anticipate that a dynamic analysis of the 
DRL program will be required in some cases, i.e., running the program and ana-
lyzing the training process during runtime, therefore, as future work, we plan to 
develop fault correction tools that are based on a dynamic analysis of the DRL pro-
gram. Such analysis will investigate each fault in its own context.

DRLinter is a model-based approach, so at first, a DRL program should be mod-
eled as a graph that conforms to the proposed meta-model. The detection rules are 
then applied on the extracted model to find potential faults. Our current meta-model 
is designed for the DQN algorithm, a well-known and widely used deep RL algo-
rithm. DRLinter can be easily extended to other deep RL algorithms by proposing 
a proper meta-model for each algorithm while the rules remain the same. On the 
other hand, fault detection happens on the model of the DRL program, not the pro-
gram itself. Therefore, by extending the converter (convertDRLProgram function in 
Sect. 4.4) to extract models from programs that use DQN algorithm but written by 
other frameworks, DRLinter will be able to detect faults in them using the same 
meta-model and the same rules.

5  Experimental evaluation

To evaluate the effectiveness and accuracy of DRLinter, we use a set of synthetic 
and real-world faulty DRL programs. We also need some real-world faulty samples 
to imitate the faults occurring in them for creating realistic synthetic examples. In 
fact, we need some buggy DRL codes that contain the types of faults we covered in 
DRLinter. Moreover, we need a full DRL program to construct a complete model 
of the program on which the fault detection could be performed. In the rest of this 
section, we describe our methodology to find real faulty DRL samples, preparing 
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synthetic faulty examples and the results of fault detection by DRLinter on these 
examples.

5.1  Faulty programs

We have used some of the real faulty DRL programs gathered from SO and GitHub 
that we manually analyzed for constructing the taxonomy to evaluate DRLinter. 

Table 3  Samples of real DRL faulty programs selected from SO and GitHub to reproduce synthetic 
buggy samples for evaluating DRLinter 

1https:// github. com/ tenso rforce/ tenso rforce/ issues/ 697

No. SO#(link) Symptom Recommended fix Fault type

1 57106676 Unstable learning, increasing loss Increase the update frequency of the 
target network

Type 7

2 56964657 Unstable learning, increasing loss Increase the update frequency of the 
target network

Type 7

3 47750291 Bad performance Use an exploration mechanism Type 4
4 54385568 Bad performance Decrease the exploration rate Type 5
5 51425688 Bad performance Decrease the exploration rate Type 5
6 49035549 Bad performance Decrease the exploration rate, Improve 

DNN design
Type 5

7 50308750 Compile-time error Add proper API to close environment Type 3
8 47643678 Bad performance Detect the terminal state properly Type 2
9 40896951 Bad performance Change the activation of the last layer Type 11
10 37524472 Bad performance Change Q-learning update equation Type 6
11 link

1 Compile-time error Detect state and action correctly Type 8

Fig. 7  Example of a faulty DRL program from SO#50308750. The developer missed env.close() at 
the end of the program

https://github.com/tensorforce/tensorforce/issues/697
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Anyway, finding faulty DRL programs from the SO posts or GitHub issues is quite 
difficult when a major part of the code is not provided in the post or issue. In the 
end, we have selected a set of 11 real-world faulty DRL programs that contain faults 
related to 8 of 11 types of faults in the taxonomy. Table 3 summarizes attributes of 
these real faulty DRL programs. Figure 7 shows a faulty DRL program extracted 
from SO post #50308750 (program No. 7 in Table 3). In this example, the devel-
oper failed to properly close the environment at the end of the program (indicated 
with 1 in the code snippet). This fault belongs to Type 3, so the correct execution of 
the program depends on the successful termination of the current episode while the 
symptom is expressed as a runtime error.

We have prepared synthetic buggy DRL programs by injecting faults into a clean 
DRL code as follows. First, one of the authors developed a clean DRL program 
using OpenAI Gym and TensorFlow which are two popular frameworks for DRL. 
We have implemented the DQN algorithm to solve the well-known CartPole-v0 
problem9 following two official tutorials.10,11 The code has been executed making 
sure that it can solve the problem properly by achieving a reasonable reward over 50 
consecutive trials. Then, another author (different from the person who developed 
the clean code) injected faults into the clean DRL code. We followed fault patterns 
observed in real-world samples to inject bugs and generate synthetic faulty sam-
ples. Hence, the injected bugs are realistic reproductions of faults. For each type of 
fault, at least one faulty example is constructed. We have constructed multiple faulty 
examples when there is more than one context in which the detection rule can be 
triggered. For instance, let’s consider Type 5: Suboptimal exploration rate. A sub-
optimal exploration rate may occur due to wrong/missing update equation of explo-
ration rate, suboptimal value of exploration rate, or suboptimal value of decay fac-
tor. Since we have collected some real-world DRL faulty programs, those examples 
have been manually analyzed to realize various contexts of faults. For more details, 
please see the source code of DRLinter containing all buggy examples.12 Finally, we 
have ended up with a total of 15 faulty synthetic programs.

While we have used all samples in Table  3 for preparing synthetic faulty pro-
grams, to select some of them for direct evaluation by DRLinter, first we have 
excluded those developed by libraries other than Tensorflow and OpenAI Gym 
which are out of scope of the current version of DRLinter. In the next round, pro-
grams written with older versions of libraries were discarded if the API related to 
the fault was not supported in later versions. Finally, we ended up with 6 buggy 
DRL programs, namely No. 3 to 8 in Table 3.

9 Train a deep q network with tf-agents. (2020) https:// www. tenso rflow. org/ agents/ tutor ials/1_ dqn_ tutor 
ial. Accessed: 2020-10-12.
10 Reinforcement learning (DQN) tutorial. (2020) https:// pytor ch. org/ tutor ials/ inter media te/ reinf orcem 
ent_q_ learn ing. html. Accessed: 2020-10-12.
11 Train a deep q network with tf-agents. (2020) https:// www. tenso rflow. org/ agents/ tutor ials/1_ dqn_ tutor 
ial. Accessed: 2020-10-12.
12 The source code of DRLinter. https:// github. com/ drlin ter/ drlin ter (2020).

https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial
https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial
https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial
https://github.com/drlinter/drlinter
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5.2  Results

DRLinter is first evaluated on 15 synthetic samples to investigate the correctness 
and preliminary effectiveness of the proposed approach. DRLinter has successfully 
detected the bugs in all synthetic examples. Our goal for using synthetic examples is 
mainly debugging, i.e., making sure of DRLinter’s accuracy and effectiveness prior 
to evaluating it on real-world examples. We have then tested DRLinter on 6 real-
world faulty DRL programs. The results show that DRLinter can achieve a recall of 
75% and a precision of 100% on these samples. We have evaluated the accuracy of 
DRLinter by checking the output of DRLinter, i.e., detected bug(s), and the bug(s) 
as they were acknowledged by SO users in the accepted answers. According to the 
recall value, DRLinter has not detected all existing faults in DRL programs. For 
example, program No. 6 in Table 3 suffers from two issues according to its accepted 
answer: suboptimal exploration rate and improper activation function in its DNN. 
While the former has been detected by DRLinter, the latter could not be detected 
since we have not considered the details of the employed DNNs in our meta-model 
of DRL programs. Moreover, the precision of 100% means that while the tool may 
miss some faults in the evaluated DRL programs (overall recall is 75%), it never 
detects bugs wrongly in the evaluated programs.

However, DRLinter is based on static analysis: it has been designed and imple-
mented to detect faults that relate to structural (architectural) properties of DRL pro-
grams rather than their dynamic properties that need the programs to be executed. 
Based on the inspected faulty programs and the feedback we received in our sur-
vey, such faults are frequent in DRL programs and worth addressing. Indeed there 
are some bugs that could not be detected without dynamic analysis of the DRL 
programs, e.g., runtime bugs. In the future, we plan to expand our work through 
dynamic analysis to detect more faults (runtime faults and bugs in training of RL 
agents) and design issues (poor configuration or architectural choices) in DRL 
programs. So, lack of dynamic analysis is a limitation of the current version of 
DRLinter and is left for future work.

We have performed the experiments using a machine with Intel Core i5-3570 
CPU and 16 GB of main memory running Windows 10. The average and standard 
deviation of DRLinter runtime for 30 runs per each faulty sample are 1.732 and 
0.069 seconds, respectively. The graph checking (performed by GROOVE) con-
sumes the main portion of the execution time, about 99.8%, with an average of 
1.728 seconds and standard deviation of 0.067. In fact, the graph extraction phase 
is accomplished by single or multiple passes through the code. Hence, the execu-
tion time grows linearly with the size of the DRL program (measured in terms of 
lines of code). On the other hand, GROOVE supports priority-based rule appli-
cations as well as various search strategies to explore the full state space, i.e., 
checking and applying all applicable rules in each state (Ghamarian et al. 2012). 
We have used BFS and priority-based rule application, to improve the efficiency 
of the graph checking. The running time of DRLinter can be improved by revising 
the implementation of rules in GROOVE which is left for future work.
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6  Threats to validity

There are internal and external threats to the validity of this research. The tax-
onomy could be affected by biased when mining and labelling the artifacts. To 
address this issue, a clear systematic approach is followed in our study and min-
ing/labeling is performed and evaluated by at least two of the authors through 
various rounds. We have extracted only “closed” issues from GitHub and with “at 
least one accepted” answer from SO ensuring that we analyzed only issues that 
were solved. Moreover, we conducted a survey to validate the proposed taxonomy 
with participants who have not been involved in the process of constructing it. 
Although we constructed the taxonomy using artifacts produced when develop-
ing four frameworks, we kept the title and description of fault types as general as 
possible. Therefore, popular frameworks were selected and we kept the categories 
as framework-independent as possible during labelling. Participants with differ-
ent levels of expertise and background have validated the taxonomy as a means 
to address this threat. It is also possible that our questions and presented catego-
ries in the survey affected participant’s view directing them toward our proposed 
types of faults. To address this concern, we asked participants at the end of our 
survey to freely comment on our results and mention potential missing faults/
issues in our study.

Basically, model-based static analysis of DRL programs should be help-
ful for practitioners/researchers to find bugs with this kind of low-cost analy-
sis. However, the lack of behavioral analysis of DRL programs is a limitation 
of our approach, more faults could be discovered by such analysis. Some other 
bugs in DRL programs need further analysis, e.g. Wrong calculation of gradients 
which is not covered by DRLinter. Moreover, limited access to real DRL pro-
grams along with verified bugs and recommended fixes to evaluate DRL testing 
approaches accurately and effectively could be regarded as a barrier in this line of 
research. It should be noted that in DRLinter faulty DRL programs are converted 
to model (graph) and then fault detection is performed at the level of model not 
code. In this way, the bias toward making the faults detectable by DRLinter is 
decreased. Since the proposed fault detection approach is model-based, the pro-
cess of extracting models from DRL programs should be improved to increase the 
applicability of DRLinter.

7  Related work

Although the number of studies on RL, DRL and DRL-based software systems 
has increased dramatically over the past decade, far less research has focused on 
testing RL systems. To the best of our knowledge, Trujillo et  al. (2020) is the 
very first work in this field. They have used neuron coverage as a well-known 
whitebox testing technique to investigate the evolutionary coverage of deep net-
works for the specific case of DRL (Trujillo et al. 2020). Two different models of 
DQN have been tested for the Mountain Car Problem (MCP). Results revealed 
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that observing good neuron coverage does not necessarily mean success in a RL 
task in terms of reward. A negative correlation is observed in their results and 
this is in contrast to typical DNNs confirming that neuron coverage is not capable 
of properly assessing the design or structure of DRL networks. The best possible 
coverage is achieved by extensive exploration which is not efficient in DRLs and 
does not help to maximize the reward.

There are some other research works that considered fault specifically in DL-
based systems. A number of DL applications developed using TensorFlow have 
been studied by Zhang et al. (2018). In their empirical study, they explored SO 
and Github to select faulty applications. From the selected faulty applications 
they obtained 175 TensorFlow related bugs. They manually examined the bugs 
to understand the challenges and strategies followed by developers to detect and 
localize the faults in the TensorFlow-based applications. They have presented 
some insights for two aspects of these faults: the root causes of bugs and the bugs 
impact on the application behaviour. Finally, authors classified the root causes 
and symptoms into seven and four different types, respectively. In this study, DRL 
applications that use some popular DRL frameworks, including OpenAI Gym, 
TensorForce, Dopamine and Keras-rl, have been studied. The popularity of these 
frameworks makes them representative of the state-of-the-practice in this field. 
There is another methodological difference in the approach followed to mine 
SO posts: while Zhang et  al. considered SO posts with at least one answer, we 
consider posts with an accepted answer. This additional condition is important 
to ensure that the studied faults were successfully solved and their solution was 
accepted by a developer. Moreover, their 175 collected bugs include generic 
faults, while our taxonomy covers only DRL specific faults. Finally, we did not 
restrict this study to the authors’ analysis and have validated the presented tax-
onomy by conducting a survey with participation of DRL developers/researchers .

Another characterisation of DL bug was reported by Islam et  al. (2019). Their 
study aimed to discover the most frequent types of bugs in DL programs as well as 
their causes and symptoms. A common pattern among bugs and its dynamics over 
the time has been studied as well. Similar to us, they have investigated a number of 
SO and GitHub bugs related to five DL frameworks: Theano, Cafe, Keras, Tensor-
Flow, and PyTorch. They leveraged the list of root causes of bugs reported by Zhang 
et al. (2018) to categorize the causes of bugs in their study. In contrast to our study, 
they analyzed various fault patterns and the correlation/distribution of bugs in differ-
ent frameworks, and did not construct a taxonomy of faults.

The most recent and related research to this study is a validated taxonomy of real 
faults in DL systems presented in Humbatova et al. (2020). Humbatova et al. have 
constructed their taxonomy based on two sources of information: 1) manual analy-
sis of Github artifacts and SO posts; and 2) interviews with developers/researchers. 
Their introduced taxonomy consists of 5 main categories containing 375 instances 
of 92 unique types of faults. The taxonomy is validated by conducting a survey with 
a distinct group of developers/researchers who verified the completeness and useful-
ness of the identified categories.
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8  Conclusion

In this paper, a taxonomy of real faults in the DRL programs has been proposed. The 
methodology was manual analysis of faulty software artifacts from SO and GitHub 
developed using four selected DRL frameworks: OpenAI Gym, Dopamine, Keras-
rl, Tensorforce. We manually analyzed artifacts and identified 761 issues. Then, we 
categorized the relevant issues through a multi-round labelling process. Finally, we 
obtained 11 distinctive types of faults that contain 27 faulty artifacts. The validation 
of the taxonomy has been performed by conducting a survey with 19 participants 
who have various backgrounds and levels of expertise in RL. The results have con-
firmed the relevance of identified types of faults in DRL programs.

Then, we have introduced DRLinter, a model-based fault detection approach for 
DRL programs by presenting a meta-model for these programs. The meta-model is 
represented by a type graph and graph transformation rules are used to implement 
the detection rules. A model of each DRL program is constructed by parsing its 
code to extract relevant information. Then, a graph checking process is performed 
to detect faults in the model. DRLinter has been evaluated successfully using syn-
thetic and real faulty DRL programs. The results show that DRLinter can effectively 
detect faults with a recall of 75% and a precision of 100%. Currently, DRLinter 
could find faults in programs developed by TensorFlow and OpenAI Gym but the 
parser could be extended for other frameworks. Also, the proposed meta-model is 
designed for DQN-based DRL programs. However, it can be extended to support 
other approaches. Another direction of research for the future is expanding our set of 
fault detection rules to cover more types of faults and issues in DRL programs.

Funding This work is partly funded by the Natural Sciences and Engineering Research Council of Can-
ada (NSERC) and the Fonds de Recherche du Québec (FRQ).
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