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Abstract
Android framework-specific app crashes are hard to debug. Indeed, the callback-
based event-driven mechanism of Android challenges crash localization techniques 
that are developed for traditional Java programs. The key challenge stems from 
the fact that the buggy code location may not even be listed within the stack trace. 
For example, our empirical study on 500 framework-specific crashes from an open 
benchmark has revealed that 37 percent of the crash types are related to bugs that 
are outside the stack traces. Moreover, Android programs are a mixture of code 
and extra-code artifacts such as the Manifest file. The fact that any artifact can lead 
to failures in the app execution creates the need to position the localization target 
beyond the code realm. In this paper, we propose Anchor , a two-phase suspicious 
bug location suggestion tool. Anchor specializes in finding crash-inducing bugs out-
side the stack trace. Anchor is lightweight and source code independent since it only 
requires the crash message and the apk file to locate the fault. Experimental results, 
collected via cross-validation and in-the-wild dataset evaluation, show that Anchor 
is effective in locating Android framework-specific crashing faults. Finally, we put 
our empirical study results openly accessible at https://​github.​com/​anchor-​locat​or/​
anchor.

Keywords  Android crash · Crashing fault · Fault localization

1  Introduction

App crashes are a recurrent phenomenon in the Android ecosystem (Wei et  al. 
2016). They generally cause damages to the app reputation and beyond that to the 
provider’s brand (https://​devel​oper.​andro​id.​com/​topic/​perfo​rmance/​vitals/​crash). 
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Apps with too many crashes can even be simply uninstalled by annoyed users. 
They could also receive bad reviews which limit their adoption by new users. Too 
many apps crashes could also be detrimental to specific app markets that do not 
provide mechanisms to filter out low-quality apps concerning proneness to crash. 
The challenges of addressing Android app crashes have attracted attention in the 
research community.

Fan et al. (2018b) have recently presented insights on their large-scale study on 
framework-specific exceptions raised by open source apps. In more recent work, 
Kong et  al. (2019) have proposed an automated approach to mine fix patterns 
from the evolution of closed-source apps (despite the lack of change tracking sys-
tems). Tan et  al. (2018) further presented an approach to repair Android crash-
ing apps. A common trait of all these crash-related studies is that the underlying 
approaches heavily rely on the generated stack traces to identify the fault loca-
tions. Although the state of the art is effective for many bugs, they are gener-
ally tailored to the generic cases where the stack traces provide relevant informa-
tion for locating the bug. Unfortunately, there is a fair share of faults whose root 
causes may remain invisible outside the stack trace. Wu et al. (2014) have already 
reported this issue when locating crashing faults for general-purpose software. In 
the realm of Android, the phenomenon where the stack trace may be irrelevant for 
fault localization is exacerbated by two specificities of Android:

The Android system is supported by a callback-based and event-driven mecha-
nism Each component in Android has its lifecycle and is managed by a set of 
callbacks. Every callback serves as a standalone entry point and root to a separate 
call graph. Yet, existing crash-inducing bug localization techniques for Java such 
as CrashLocator (Wu et al. 2014) assume a single entry point to compute certain 
metrics for the suspiciousness score of different methods. Additionally, since the 
Android system is event-driven, the invocation sequence to functions and call-
backs is affected by non-deterministic user inputs or system events, making the 
stack trace unreliable for quick analyses.

The Android app package includes both code and resources that together form 
the program Android apps are more than just code. They are combinations of 
Java/Kotlin code, XML files, and resources (such as images and databases). The 
different component classes in an Android app are loosely coupled. They follow 
design principles like IoC (Inversion of Control) to receive the flow of control 
from a generic framework, herein, the Android framework. The Android frame-
work analyzes metadata such as component layout information in XML files, and 
switches control by invoking the corresponding callback method of any compo-
nent. In this way, the Android framework orchestrates functionalities in the apps. 
Therefore, an error by developers within an XML document can eventually lead 
to a runtime crash. Similarly, it is important to note that crashes can occur due to 
other concerns such as the arrangements of app resources, use of deprecated APIs 
[e.g., due to version incompatibility (Li et  al. 2018)], omissions in permission 
requests, etc. Typical such errors, which occur outside of code pointed to by stack 
traces, will cause either developers or Automatic Program Repair (APR) tools 
(e.g., Tan et al. (2018)) to pointlessly devote time in attempting to fix the code.
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This paper Our work aims at informing the research community on the acute 
challenges of debugging framework-specific crashes. To that end, we propose 
to perform an empirical study that investigates the share of crashes that cannot 
be located by current localization approaches. Following this study, we present 
a new approach to locate faults, aiming at covering different categories of root 
cause locations. Overall, we make the following contributions:

•	 We present the results of an empirical study performed on a set of 500 app 
crashes retrieved from the ReCBench dataset (Kong et al. 2019). A key find-
ing in this study is that we were able to identify that 37% crash root causes are 
associated with crash cases where the stack trace is not directly relevant for 
fault localization.

•	 We propose Anchor, a tool-supported approach for locating crashing faults. 
Anchor unfolds in two phases and eventually yields a ranked list of location 
candidates. The first phase applies a classification algorithm to categorize 
each new crash into a specific category. Depending on this category, a dedi-
cated localization algorithm is developed in the second phase. Anchor cur-
rently implements 3 localization algorithms that eventually generate a ranked 
list of buggy methods (when the bug is in the code) or resource types (when it 
is outside of code).

•	 We performed 5-fold cross-validation on the 500 crash cases to assess the 
effectiveness of Anchor in placing the crashing fault location in the top of its 
ranked list of suggestions. Anchor exhibited an overall MRR (Mean Recipro-
cal Rank) metric value of 0.85. An analysis of the open dataset of crashed 
open-source Android apps further shows that our method scales to new app 
crashes.

The rest of this paper is organized as follows. Section  2 introduces background 
details on Android app crashes and callback-based event-driven mechanisms. Sec-
tion 3 revisits the motivating example by the previous work (Tan et al. 2018) and 
demonstrates why research in crash localization has standing challenges. Section 4 
discusses the findings of our empirical study and explores the insights that can be 
leveraged for a new approach. Section 5 presents Anchor . We describe experimen-
tal setup in Sect. 6 and approach evaluation in Sect. 7. We bring further discussion 
in Sect. 8. Threats to validity are acknowledged in Sect. 9 and related work is pre-
sented in Sect. 10. Finally, Sect. 11 concludes the paper.

2 � Background

In this section, we introduce the important concepts related to this paper.
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2.1 � Android App crash stack trace

Like all Java1 based software, when Android apps crash, they can dump execution 
traces which include the exception being thrown, a crash message, and most impor-
tantly, a stack trace of a callee-caller chain starting from the Signaler, i.e., the method 
that initially constructed and threw the exception object. Figure 1 is an example of stack 
trace for the crash of the app Sailer’s Log Book. This app helps sailors to keep their 
logbook accurate and up-to-date. On the first line, the exception IllegalArgumentEx-
ception is thrown. On the second line, the log system reports message ”recursive entry 
to executePendingTransactions”. Starting from the third line, the Signaler of the stack 
trace is listed: it is this framework method that instantiates the exception type, com-
poses the log message and throws it to its caller to handle. On Lines 4-5 that are also 
marked in grey, there are other two methods that continue to pass on the exception. 
Line 5 holds the API, which is the only framework method in this stack trace that is 
visible to the developer. Since the crash happens directly due to invocation to it, we call 
it the Crash API. Line 6 is the developer method that invoked this API. Line 7 is the 
developer implementation of the callback, inherited from the superclass of the Android 
framework. Android framework decides, based on certain conditions and system/user 
events, when to invoke this method, and what parameter values to pass in. Lines 8-9 are 
part of the Android framework core that is, again, not accessible to developers.

The crash stack trace is often the first thing that developers want to examine when 
a crash is reported (Kim et al. 2011). Even when it is not given, developers would 
reproduce and retrieve them. Intuitively, the crash arises from mistakes in the devel-
oper methods, e.g., Lines 6–7 in Fig. 1. Particularly, the Crash method that directly 
invoked the Crash API. Our empirical study in Sect.  4 shows that this intuition is 

com.android.internal.os.ZygoteInit.main

com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run

com.poterion.logbook.fragments.SettingsFragment.
onSharedPreferenceChanged

com.poterion.logbook.activities.MainActivity.show

android.app.FragmentManagerImpl.executePendingTransactions

android.app.FragmentManagerImpl.popBackStackImmediate

android.app.FragmentManagerImpl.executePendingActions

Callback

Crash API
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Fig. 1   Crash stack trace of app Sailer’s log book

1  Kotlin has also been widely used in recent years as an alternative for Android app development, it is 
designed to fully interoperate with Java.
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correct, that 63% of the total crash types are in the stack trace. However, in the rest of 
this section, we will introduce the specialty of Android that may lead to the rest 37%.

2.2 � Callback‑based and event‑driven mechanism

Unlike most Java programs, Android apps do not have the main method from which 
the programs start their execution (Arzt et al. 2014). Android apps comprise 4 basic 
component types: Activity, Broadcast Receiver, Service, and Content Provider. 
Each basic component instance can be started on their own. The lifecycle of such 
components are managed by callback methods (e.g., Line 7 in Fig. 1). The callback 
methods are declared in the component’s base class (as part of the Android frame-
work), inherited by the developer-defined subclass, and maybe overridden by the 
developers. The Android framework core, based on the user inputs and system envi-
ronments, decides when to invoke the callbacks and what parameter values to pass 
in. Each callback is standalone, and in general Android does not encourage develop-
ers to invoke those callbacks from their self-defined methods, unless these methods 
are callbacks overriding and invoking their super. As a result, existing static call 
graph based fault localization techniques (Wu et  al. 2014) for Java programs can 
not be simply reused, since they assume a single main method and need to com-
pute weighing scores based on the graph. There are, however, works (Yang et  al. 
2015; Octeau et al. 2015) that have invented methods to track the control flows or 
data flows and tried to build the callback connections. These proposed approaches 
are either computationally expensive or confined in limited number of component 
classes, and does not scale to all scenarios. Other approaches like (Li et al. 2016a; 
Arzt et al. 2014) create a dummy main to invoke all callbacks in order to reuse Java 
based analysis tools, but this method discarded the relation among callbacks, which 
is crucial to estimate the possibility of a method containing the real bug.

Figure 2 examplifies the difference of call graphs between general Java program 
(left) and Android app (right). The filled circles represent the developer methods in 
the stack trace, while the non-filled circles represent developer methods outside the 
stack trace. The partially filled circles represent the Crash method that invokes the 
Crash API. Generally, the buggy method is the Crash method. However, as shown 

?

?

Android Framework Core
A developer method 
in the stack trace

A developer method 
outside the stack trace

The crash method in the 
stack trace that invokes 
the Crash API

? The buggy method

Fig. 2   Call graph comparison between general java program (left) and android app (right), inspired from 
Wu et al. (2014)
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in our empirical study, it appears that the buggy method (the circle filled with ques-
tion mark in Fig. 2) is not connected to the Crash method. A traditional Java pro-
gram static call graph based approach such as CrashLocator (Wu et al. 2014) will 
be able to locate this buggy method only if the buggy method is ”close enough” 
to the generated call graph (roughly speaking they generate an extended call graph 
leveraging the stack trace). However, on the right, in the case of Android apps, the 
buggy method could be in a separate call graph because of callback methods that are 
invoked by the Android framework. Such cases will be missed by approaches such 
as CrashLocator (Wu et al. 2014) that only detects buggy methods captured by its 
extended call graph, but does not consider callback methods.

2.3 � Android APK file format

Android apps are distributed in a package file format with extension ”.apk”. It is a 
compressed folder containing code, resources, assets, certificates, and manifest file. 
All of these files are crucial to the expected good functioning of the apps. Therefore, 
some crashes may be induced when there are problems with these files.

2.3.1 � Android manifest file

Every app project needs to have an AndroidManifest.xml file at the root of the pro-
ject source set (LLC 2020a). Along with the package name and components of the 
app, this file also declares the permissions that the apps needs, as well as the hard-
ware and software features that the app requires.

2.3.2 � Android component layout description file

Android component layout description files are also crucial to the execution of the 
app. E.g., Listing 1 is the layout file of the main Activity of an Android app Transis-
tor. In this file, a child fragment is defined and described. The attribute android:id 
defines the layout file name to be inflated for the fragment, the attribute android:name 
gives the full name of the user defined Fragment class. When the main Activity is 
being created, the Android framework scans this layout file, and invokes a series of 
relevant callbacks on this Fragment to draw it along with the main Activity.

Listing 1: Main Activity Layout File of app Transistor.
<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/fragment_main"
android:name="org.y20k.transistor.MainActivityFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:layout="@layout/fragment_main" />
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3 � Motivating example

We further illustrate the challenges of locating faults outside Android app stack 
traces by revisiting an example that was used to motivate a previous work on 
Android app crash automatic repairing by Tan et al. (2018). Transistor2 is a popular 
online radio streaming app. We showed its partial resources in Sect. 2.3.2. However, 
it was reported that following the input sequence in Fig. 3, the app will crash.

The crash message filtered out from logcat is shown in Listing 2. It appears that 
invoking the startActivityForResult API on the MainActivityFragment (line 
3) throws an unhandled IllegalStateException (line 1), and the Android system 
reports that the fragment is not attached to the hosting activity (line 2). By inspect-
ing the source code of Android framework of the Crashed API (line 3), we see that 
the startActivityForResult method of the fragment instance attempts to invoke its 
context’s (i.e., its host Activity’s) API with the same name startActivityForRe-
sult. This invocation is guarded by an if-clause, which checks whether the fragment 
is still attached to the host Activity. If not, however, the IllegalStateException 
will be thrown.

Listing 3: Fix from Tan et al.
new BroadcastReceiver(){

onReceive(...){ ...
+ if(getActivity()!=null)

startActivityForResult(pickImageIntent,REQUEST_LOAD_IMAGE);}}

Biased by the assumption that the fault should only be in the developer meth-
ods in the stack trace (lines 4–6), Tan et  al. (2018) proposed to amend the Crash 
method (line 4). Listing 3 shows their fix. Their fix applies a checker on invocation 

Crash

(1) Open the app (2) Exit app by 
clicking back 

button 

(3) Open the app again (4) Click on image 
change icon

Fig. 3   Crash of transistor

2  https://​github.​com/​y20k/​trans​istor/​issues/​21.

https://github.com/y20k/transistor/issues/21
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to startActivityForResult, which will not be executed if value of getActivity is null 
(i.e., when the fragment is no longer attached to its hosting Activity). As a result, 
the app avoids crashing. This fix indeed prevents the exception. However, it is not 
explainable: applying the checker not only prevents the crash, but it should also pre-
vent opening the SelectImageActivity as designed for. Due to this paradox, we have a 
good reason to suspect that the true bug location is still hidden.

Transistor’s developer, who is also dedicated in debugging in the stack trace, pro-
posed a fix on her/his own in Listing 4. Realizing that the Fragment lost its ref-
erence to the host Activity. The developer declared a variable mActivity to 
hold the reference. Then in the Crash method (line 4 in Listing 2), she/he switched 
the invocation of the startActivityForResult API from Fragment to mActivity.

Listing 4: Fix from Developer.
+ mActivity = getActivity(); ...
new BroadcastReceiver(){

onReceive(...){ ...
- startActivityForResult(pickImageIntent,REQUEST_LOAD_IMAGE);
+ mActivity.startActivityForResult(pickImageIntent,REQUEST_LOAD_IMAGE);}}

This fix also bypassed the crash, but it causes regression. After the final step in 
Fig. 3, if the user clicks on the back button two more times, the app should have 
first returned to the MainActivity, then back to the home screen. Instead, it 
opens another SelectImageActivity. In the issue tracking, the developer admits 
that she/he had no idea of how to fix it. While after several months, the bug 
”fixed” itself, which she/he described as ”scary”. Even Tan et al. failed to explain 
the cause of this regression.

Based on the understanding of Android’ callback-based mechanism introduced 
in Sect.  2.2, we suspect that the bug may not exist in the stack trace. We con-
firmed our fix shown in Listing 5. This fix is reported to the developer and we 
received positive feedback in the issue tracking, as can be verified in Transistor’s 
respository given above.

Listing 5: Fix Inspired by this Article.
MainActivityFragment extends Fragment{

onDestroy(){
+ super.onDestroy();
+ LocalBroadcastManager.getInstance(mApplication).unregisterReceiver(

imageChangeRequestReceiver,imageChangeRequesIntentFilter);}}

We broaden the search for the bug outside the stack trace. Noticing the crash 
originated from the onReceive callback (cf. line 6 in Listing 2), we examine the 
lifecycle of this BroadcastReceiver object. We found that it is registered 
in the onCreate callback of MainActivityFragment, but never unregistered 
in its counterpart callback onDestroy. As a result, after Step 2 (cf. Fig.  3), the 
registered BroadcastReceiver and its host MainActivityFragment are 
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leaked in the memory. In Step 4, the callbacks of the leaked objects are stealthily 
invoked by the Android framework and eventually caused the IllegalStateExcep-
tion. Knowing the true cause of the crash, it is not difficult to explain the para-
dox of Tan et al.’s fix and the regression caused by the developer’s fix. However, 
given the page limit, we put detailed reasoning online at https://​anchor-​locat​or.​
github.​io.

Hint The fault locations in Android apps may: (1) Be outside the stack trace; 
(2) Be even outside the call graph extended from the stack trace; (3) Not even 
“exist” in the code, i.e., they are inherited methods without visible code snippets. 
Locating such faults may require tremendous efforts. Fixes based on incorrect 
localization may even cause regression.

4 � Empirical study on fault locations

In this section, we present the results of an empirical study that we performed on a 
set of 500 app crashes retrieved from the ReCBench dataset (Kong et al. 2019). This 
study aims at assessing to what extent the locations of crashing faults reside outside 
the stack trace.

4.1 � Dataset construction

We extract our dataset from ReCBench, an open dataset proposed by Kong et  al. 
(2019) in 2019. ReCBench has been built by running hundreds of thousands of 
Android apps downloaded from various well-known Android markets (Allix et al. 
2016; Li et al. 2017b). In addition to a collection of crashed Android apps focus-
ing on framework-specific crashes3, ReCBench offers the possibility to collect crash 
log messages and scripts to reproduce the crashes. Today, ReCBench contains more 
than 1000 crashed apps (still growing). For our empirical study, we focus on crashed 
apps for which:

•	 First, the stack trace of the crash contains at least one developer method. This 
is a requirement to be able to start an exploration process to find the crash root 
cause.

•	 Second, since we specifically target the crashes induced by Android APIs, the 
Signaler must be Android-specific.

The reason why we only choose bug reports with higher priority are two-fold. First, 
we want to target bugs that are most difficult for developers to locate. Second, we 
need to limit the number of crashing cases for manual validation. After applying 

3  Android framework methods are not visible or understandable to general developers, hence greater 
challenge is acknowledged for locating framework-specific crashes compared to developer-written meth-
ods. Fan et al. (2018b), Kong et al. (2019).

https://anchor-locator.github.io
https://anchor-locator.github.io
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these two rules, we randomly selected 500 crashed apps from the remaining apps. 
The dataset is publicly accessible at:

https://​github.​com/​anchor-​locat​or/​anchor.

4.2 � Ground truth and results

We manually inspect all the 500 crashed apps to understand the reason behind the 
crashes and to create our ground truth. We perform this manual inspection follow-
ing a similar protocol discussed in the large scale analysis of Android framework-
specific app crashes (Fan et al. 2018b). First, we group crashes into buckets. Specifi-
cally, if two crash cases have identical framework crash sub-trace, they will be put 
into the same bucket. Second, for each bucket, we turn to the Android official API 
reference 4 as well as online discussion forums like StackOverflow 5 and GitHub 6 
to understand the root cause. Third, we analyze the code of each crashed apk com-
bining the root cause to locate the true bug locations. Note that unlike (Fan et al. 
2018b), source code is not available for the crashed apks in our dataset. We there-
fore leverage the CodeInspect (Fraunhofer 2020) tool. CodeInspect is an Integrated 
Development Environment (IDE) that transforms the app apk’s Dalvik bytecode into 
the Jimple (Bartel et al. 2012) format and better visualize for human comprehension.

Each of the crashed apps has been categorized into one of the following 
categories:

•	 Category A groups the crashed apps for which the buggy method (i.e., the root 
cause) is one of the developer methods present in the stack trace;

•	 Category B groups the crashed apps for which the buggy method is not present 
in the stack trace, but still in the code.

•	 Category C groups the crashed apps for which the crash arises from non-code 
reasons.

The above partition is one out of many alternatives, e.g., one can also separate bugs 
based on whether they are concurrent (Wang et al. 2018; Bielik et al. 2015; Li et al. 
2016b; Tang et  al. 2016; Maiya et  al. 2014). We later show in Sect. 5.2 how this 
partition helps with building our localization tool. Table 1 summarizes the outcome 
of the empirical study. It appears that for 89 (49+40) crashed apps (representing 
18% of the total cases), the crashing fault location is not in any of the developer 
methods present in the stack trace. The respective numbers of Categories B and C 
are close, with 49 cases in Category B and 40 cases in Category C. The last two col-
umns in Table 1 present the number of buckets per category. Overall, there are 105 
types of crashes (i.e., buckets) in the dataset. The percentage of types of crashes in 
Categories B and C are 16% and 21%, respectively. In total, there are 37% of buck-
ets whose buggy reasons are not shown in the stack traces. Each unique framework 

4  https://​devel​oper.​andro​id.​com/​refer​ence.
5  https://​stack​overf​low.​com.
6  https://​github.​com.

https://github.com/anchor-locator/anchor
https://developer.android.com/reference
https://stackoverflow.com
https://github.com
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crash sub-trace suggests a unique type of crash-inducing bug. Therefore, consider-
ing crash types encountered per the same number of cases (buckets#/case#) in each 
category, more debugging effort will be needed for Categories B and C than in Cat-
egory A.

Hint 18% of the crashes are due to bugs for which the location is outside the stack 
trace. A significant number of root causes (buckets), i.e., 37% (16%+21%), are asso-
ciated with cases where the stack trace is not directly relevant for localization. In 
even 21% of the cases, the root causes are not located in the code.

We now detail each category in the rest of this Section.

4.3 � Category A: in stack trace

Category A includes all crash cases whose bugs reside in one of the developer meth-
ods present in the stack trace. Most crashes in our dataset fall into this category. It is 
expected that by default, developers start their debugging process with the methods 
present in the stack trace (Jiang et al. 2010; Schroter et al. 2010; Sinha et al. 2009; 
Indi et  al. 2016). The automatic crash-inducing bug repairing tool named Droix 
(Tan et  al. 2018) implements a locater, by assuming that the Crash method is the 
bug location in all scenarios. However, we also notice that the true crashing fault 
may reside in other developer methods, in particular when moving downward in the 
stack trace. An example of such a case is when the caller methods pass an incorrect 
instance to the crashed developer methods. Generally, much less effort is needed in 
locating faults in this category. Since the number of suspected methods is limited 
and their names are already known. Therefore they are not the focus of this paper.

4.4 � Category B: out of stack trace, in the code

It has drawn attention to researchers that Java program crashes can be caused by 
methods that are not listed in stack traces. Approaches like CrashLocator (Wu et al. 
2014) broadens the search for such faulty methods in extended call graphs from stack 
traces. We demonstrate in the rest of this section why this broadened search is not 
enough for Android apps. There are in total 49 cases in this category, each crashed 
from wrongly handling a framework API. Based on the type of the framework API 

Table 1   Categories of fault locations in android apps

Bold indicates the percentage of crash cases where the stack traces are not directly relevant for localiza-
tion

Category Stack trace Code Case# Percent (%) Bucket# Percent (%)

A In Yes 411 82 66 63
B Out Yes 49 10 17 16
C Out No 40 8 22 21
Total – – 500 100 105 100
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(call-in or callback), we further categorize them into two sub-categories: (1) Mis-
used Call-In APIs and (2) Non-Overridden Callback APIs.

4.4.1 � Type 1: misused call‑in APIs (44 cases out of 49)

This first type groups crashing faults caused by the misuse of call-in APIs. This 
means that the bug leading to a crash is due to a buggy explicit invocation of an API 
from a developer method. Moreover, this invocation is often performed from another 
implemented callback, other than the callback in the stack trace. Since both callback 
methods are triggered by the framework, it is unlikely that an extended call graph 
can cover such methods (cf. Fig. 2).

Listing 6: Bug Explanation to app Geography Learning.
public class MainActivity extends Activity{

onCreate(...){
try{bindService(intent,serviceConnection,integer);/*Bug Location*/
}...}...
onDestroy(){unbindService(serviceConnection);/*Crash location*/}}

Listing 6 gives a concrete example. This example is extracted from an app named 
Geography Learning which helps users to remember geography knowledge in a quiz 
game format. When the MainActivity7 of this app is launched, the callback method 
onCreate is automatically triggered by the Android framework. Then, this 
onCreate method invokes the bindService API to bind to Service. Service 
is one of the four basic components of Android, and wrongly handling of Service is 
not uncommon (Song et al. 2019) in Android app development. When the user exits 
the MainActivity, the Android Framework invokes the onDestroy callback method 
and tries to unbind the Service bound in the onCreate method. Thereafter, the 
app crashes with the exception type IllegalArgumentException. Analysing the mes-
sage which says: “Service not registered: com.yamlearning. geographylearning.e.
a.e@29f6021”, we understand that the Service has not been bound. In the method 
body of the overridden onCreate callback, we found that the invocation to API bind-
Service was misused. Indeed, bindService is surrounded by a try-catch clause, and 
another statement preceding this API invocation threw an exception which redirects 
the execution flow to the catch block, skipping the invocation to bindService.

Out of a total of 49 cases in Category B, 44 falls into this sub-category.

4.4.2 � Type 2: non‑overridden callback APIs (5 cases out of 49)

This second type includes crashes caused by the non-overridden callback APIs. 
Callbacks, or call-afters, are APIs that are invoked when the Android framework 
decides so, based on certain system environment change and/or user actions. 

7  The Main Activity of an app is the first screen shown to the user when launched.
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Callbacks are inherited, when developers define classes that are subclassing Android 
base component classes. Developers are often required to override certain, although 
not all, callback APIs. Forgetting to handle these callbacks may cause apps to crash 
immediately. Moreover, these crashes may often seem flaky, since its reproduction 
requires re-establishing the same system environments and/or repeating user action 
sequences. Existing Java crash locators fail to spot such bugs with two reasons: (1) 
These callback APIs are not in the extended call graphs of stack traces; (2) The 
method snippets in developer-defined codes do not exist, so are easily missed.

Listing  7 shows an example of this crash type. The app Fengshui Master is a 
Chinese fortune teller app. The app crashes when trying to get a reference to the 
writable database. However, when the app crashes, the exception SQLiteDatabase-
Exception is triggered with a message claiming ”not able to downgrade database 
from version 19 to 17”.

Listing 7: Bug Explanation to Android app Fenshui Master.
public class com.divination1518.f.s{

a(..){sqliteOpenHelper.getWritableDatabase();/*Crash location*/}}
public class com.divination1518.g.p extends SQLiteOpenHelper{ ...
+ onDowngrade(..){...}/*Bug Location*/}

According to the Android documentation, the app developer needs to implement 
the callback method onDowngrade in the self-defined subclass of SQLiteOpen-
Helper. This callback method will be invoked when the database in storage has a 
higher version than that of the system distribution. Failing to override this callback 
API immediately crashes the app. Note that the motivating example (cf. Sect. 3) also 
falls into this sub-category. Given the stealthiness of this fault type, it is particu-
larly difficult, even for a human developer, to spot the bug reason without being very 
familiar with the Android official documentation. Out of a total of 49 cases in Cat-
egory B, 5 falls into this sub-category.

Note that we use apih to denote the wrongly handled API (call-in API or callback 
API) for cases of Category B. This denotation is later needed for Sect. 5.2.2.

4.5 � Category C: out of stack trace, out of code

As introduced in Sect.  2.3, except code, an Android apk also contains resources, 
assets, certificate, and manifest. They are critical to the functioning of the app. As 
a result, mistakes in those files may also cause crashes. Table 2 gives a summary 
of the buggy locations outside of code. As illustrated, eleven cases of crashes orig-
inate from the Manifest.xml file. Most cases in this type are because the permis-
sions are not properly declared in the manifest. Resources include specifically files 
with ”.xml” extension (excluding the Manifest.xml file). An Android app uses these 
resource files to store the layout and pieces of information like string values. If the 
required resource is missing or wrong, then the app will crash. Assets are the large 
files, like fonts, images, bitmaps. Assets should be put in the correct directory. If the 
Android framework is not able to find them and it will crash the app.
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Aside from the files inside the apk, some constraints put forward by the device’s 
hardware and firmware, i.e., the framework may also cause the app to crash. For 
example, the Android billing service can only be tested on real devices, if, however, 
tested on emulators, the app crashes (LLC 2020b). Also, since Android is quickly 
updated with new features and designs, old apps may crash on newly distributed 
devices, due to reasons like deprecated APIs and new security protocols established 
by the framework. Developers should generally redesign the relevant functionalities, 
therefore no single buggy location can be decided.

5 � Ranking suspicious locations

To help developers identify the true fault locations when debugging app crashes, 
including faults that reside outside the stack traces, we propose Anchor . Anchor is 
a fault location recommendation system based on a two-phase approach. In the first 
phase, Anchor categorizes a given crash in one of the three categories (A, B, or C) 
with a classification system. Then, in the second phase, according to the decided cat-
egory, Anchor each adopts a unique algorithm to suggest a rank of locations that are 
suspected to contain the true faults. The rest of this section describes Phase 1 and 
Phase 2 in more detail.

5.1 � Phase 1: categorization

The first phase aims at assigning a new crash to one of the three categories (A, B, or 
C). We start by trying to develop a rule-based algorithm that summarizes rules from 
augmenting the stack traces. However, as Fan et al. (2018a)’s experiments suggest, 
there are at least thousands of unique stack traces which the crash log may contain. 
Summarizing rules from such a great number of stack traces is extremely effort-
consuming and error-prone. Even if such a rule-based algorithm can be developed, it 
requires constant manual updates when new stack traces are reported. Therefore, we 
consider using machine learning algorithms to achieve the goal. We use the Naïve 
Bayes algorithm (Rish et al. 2001) for the categorization. Naïve Bayes is one of the 
most effective and competitive algorithms in text-based classification. It is widely 
used for spam detection (Metsis et al. 2006; Yang et al. 2006), weather forecasting 
(Walton et al. 2010), etc. It is especially suitable in the scenario when the training 
set does not contain a large number of records (Huang and Li 2011), e.g., our empir-
ical dataset contains merely 500 manually constructed records.

Table 2   Crash causes of 
categorie C

Sub-category Manifest Hardware Asset Resource Firmware

Cases 11 5 4 2 18
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To construct a vector for each crash record, we feature words extracted from the 
crash message. The value of each feature dimension is binary, indicating whether a 
word exists or not in the message. More specifically, we extract three parts from the 
crash message: (1) The exception type, which is a Java class (e.g., IllegalArgu-
mentException); (2) The exception message, which briefly describes the reason 
of the crash, e.g., line 2 in Fig. 1; (3) The top framework stack frames, each being a 
Java method, e.g., lines 3–5 in Fig. 1. For (1) and (3), we use “.” as the word separa-
tor, for (2), we use space as the separator. To avoid overfitting and to save comput-
ing resources, we do not need the entirety of the vocabulary to build the vector. In 
Sect. 6.4, we further discuss how many words are necessary.

With this categorization system, each new crash will firstly be categorized as a 
type of ”A”, ”B” or ”C” before being processed in Phase 2.

5.2 � Phase 2: localization

The goal of this phase is to provide a rank of potential bug locations (in descend-
ing order of suspiciousness), in the form of developer methods when the bug is in 
the code (i.e., Categories A and B) and of sub-categories when the bug is not in the 
code (i.e., Category C). Before presenting in the following sub-sections 3 standalone 
algorithms, one for each category, we explain how we compute a similarity score 
between two crashes. This similarity score is used in both Categories B and C locali-
zation algorithms.

Similarity between two Crashes We quantify the similarity between two crashes 
C1 and C2 by computing the edit similarity between their crash messages as pre-
sented in Equation 1:

In this equation, SimC1,C2
 represents the similarity between two crashes C1 and C2 . 

seqCi
 is the sequence of framework stack frames in a crash message Ci , e.g., lines 

3–5 in Fig. 1. SimC1,C2
 is computed by considering the Edit Similarity between the 

sequences seqC1
 and seqC1

 . Lev(seqC1
, seqC2

) is the Levenshtein distance (Qin et al. 
2011) of the two sequences. It equals the minimum number of single stack frame 
edits required to change seqC1

 to seqC2
 . The intuition here is that when two crashes 

share similar bug reasons, they tend to share framework stack frames, although not 
necessarily in identical sequence. Equation 1 then normalizes the distance and takes 
one’s complement to quantify such similarity.

5.2.1 � Category A: in stack trace

Since the crash is assigned to Category A, it indicates that the buggy method is one 
of the developer methods in the stack trace. We inherit the intuition from Tan et al. 
(2018), that if the developer method is closer to the Crash API in the stack trace, 
there is a higher chance that it contains the true fault. Therefore, we can obtain the 

(1)SimC1,C2
= Edit_Sim(seqC1

, seqC2
) = 1 −

Lev(seqC1
, seqC2

)

max(len(seqC1
), len(seqC2

))
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rank without changing the order of the developer methods in the stack trace. For 
example, in Fig. 1, methods on line 6 and line 7 are respectively ranked first and 
second.

5.2.2 � Category B: out of stack trace, in the code

When the crash is classified into Category B, it indicates that the buggy developer 
method is not in the stack trace, but still in the code. As discussed in Sect. 4.4, the 
buggy method should either be a developer method that misused a call-in API, or a 
callback API that has not been overridden. In the remainder of this section, we will 
note apih this API (call-in API or callback API) that has been wrongly handled (cf. 
Sect.  4.4). To infer a ranked list of potentially buggy methods, we propose Algo-
rithm 1. The overall idea is, starting from each developer method in the stack trace, 
in addition to examining the developer methods (1) in the extend call graph, we also 
examine those that either (2) control the Android components’ lifecycles, or (3) are 
involved in the data flow of the crash. The computation of the suspiciousness score 
follows the same intuition as explained in Sect. 5.2.1.

First of all, Algorithm  1 requires three input data: (1) crash, the crash under 
study; (2) ST, which is the list of developer methods contained in the stack trace, e.g. 
lines 6-7 in Fig. 1; (3) apih , the wrongly handled API, which is approximated as the 
associated wrongly handled API of the most similar crash present in Category B of 
our empirical dataset. More formally, let be CrashB the set of all the crashes in Cat-
egory B. We identify the most similar crash crashsim by following Equation 2. Since 
their crash reasons are the most similar, it is with the highest possibility that both 
have wrongly handled the same API.

The algorithm starts with retrieving a set of developer methods S from the entire apk 
that has invoked the apih (line 1). The outmost for-loop (lines 2–19) loops over each 
stack frame sf in the stack trace ST. Then based on the type of the apih , there are two 
sub-routines: (a) when apih type is “call-in” (lines 4–11); (b) when apih type is “call-
back” (lines 13-17). Next we discuss both sub-routines in detail.

(2)Simcrash,crashsim
= max(Simcrash,crashb

), crashb ∈ CrashB
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Data: crash: the crash to resolve
Data: ST : List of developer methods in stack trace of crash
Data: apih: Wrongly handled API
Result: R: Rank of suspicious developer methods
1: S ← Developer methods that invoke apih;
2: for sf ∈ ST do
3: if apih type “call-in” then
4: for s ∈ S do
5: for am ∈ AM do
6: if s links am then
7: s.score+ = 1

d
8: end if
9: end for
10: end for
11: R ← S.sort()
12: else if apih type “callback” then
13: for nc ∈ NC do
14: if nc inherits apih then
15: R.put(nc)
16: end if
17: end for
18: end if
19: end for

Algorithm 1: Localization Algorithm for Category B

Sub-routine for type “call-in” is a for-loop (lines 4–11) that loops over each 
method s in S. We then loop over (lines 5-9) all Active Methods (AM) declared in 
the same class as sf, where Active Methods are methods having actual code snippets 
in the Java class files, not including the inherited ones. The function links (line 6) 
checks 3 sub-conditions: (1) if s is invoked by am, or (2) if s and am are declared in 
the same Java class or (3) if an instance of the declaring class of s has been passed to 
am as a parameter. Sub-condition (1) checks if s is in the extended call graph of am, 
same as locators like (Wu et al. 2014). Sub-condition (2) implies that s is a callback 
method that involves controling the component lifecycle as am does. Sub-condition 
(3) implies potential data flow between s and am. When the condition holds true in 
line 6, a score is added for s (line 7). Here d is the distance between sf and Crashed 
API in the stack trace. It reflects on the same intuition in Sect. 5.2.1.

Sub-routine for type “callback” is implemented with a for-loop (lines 13–17) that 
loops over all the inherited Non-overridden Callback (NC) of the class where sf is 
declared. If nc inherits from apih (line 14), it implies that overriding it may fix the 
problem, therefore nc will be added to the rank R (line 15). With the same intuition 
in Sect. 5.2.1, this sub-routine is designed so that when sf is closer to Crashed API 
in the stack trace, nc is in the higher location in the rank.

Algorithm 1 addresses the concerns in the empirical study (cf. Sect. 4.4). It can 
further locate faulty methods that are not in the extended call graphs, or even meth-
ods without actual code snippets.
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5.2.3 � Category C: out of stack trace, out of code

Figure 4 describes the localization process for crashes that have been classified into 
Category C. To infer a ranked list of potentially buggy locations, this process com-
putes a suspiciousness score for each location. Since the true fault locations in Cat-
egory C are not in the code, the locations in this ranked list are sub-categories (e.g. 
manifest, asset, etc.).

With any new crash, we start the process by computing the similarity score 
Simcrash,crashc

, crashc ∈ CrashC . Here CrashC is the set of all the crashes of Category 
C in the empirical dataset. In Fig. 4, the similarity scores are denoted as SimcaseID 
for short. We then take an average of SimcaseID over the same sub-categories. Sub-
categories with higher similarity scores take higher positions in the Rank.

6 � Experimental setup

This section clarifies the research questions, the metrics used to assess Anchor, and 
the parameter values involved.

6.1 � Research questions

We empirically validate the performance of Anchor by investigating the following 
research questions:

•	 RQ1 To what extent is the categorization strategy effective?
•	 RQ2 To what extent are the localization algorithms reliable?
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•	 RQ3 What is the overall performance of Anchor ?
•	 RQ4 How does Anchor perform on crashes in the wild?

6.2 � Metrics

Crash localization is a recommendation problem. To measure the performance 
of Anchor, we rely on rank-aware metrics, which are widely used in information 
retrieval communities and have been previously used to evaluate crash localization 
techniques (Wu et al. 2014).

Recall@k The percentage of crash cases whose buggy functions appear in top k 
locations. A higher score indicates better performance of Anchor .

MRR (Mean Reciprocal Rank): The mean of the multiplicative inverse of the rank 
of the first correct location. As defined in Equation 3, Ranki is the rank for the ith 
crash case, in a set of crash cases E. A high value of MRR means developers on 
average need to examine fewer locations in the rank, and therefore, a better perfor-
mance (Shi et al. 2012).

6.3 � Cross‑validation

We perform 5-fold cross-validation over the empirical dataset of 500 sample crashes. 
The dataset is randomly divided into 5 subsets of 100 sample crashes: 5 experiments 
are then carried where every time a specific subset of 100 is used as “test” data 
while the remaining subsets containing the rest 400 cases are merged to form “train-
ing” dataset. The computed performance metrics are then summed over the 5 folds.

6.4 � Feature selection

In the empirical dataset, the vocabulary contains 1108 unique words. To avoid over-
fitting, we select only a portion of them for Phase 1. We use the �2 test for each word 
(Miller and Siegmund 1982). A higher value of �2 indicates a stronger correlation 
between the word and the category. Figure 5 shows the relation between the F Meas-
ure of Phase 1 and the percentage of words chosen (ranked in descending order by 
�
2 values). We can see that with the top 50% of the features, the overall performance 

already stabilizes. We then always use top 50% of the words in the vocabulary.

(3)MRR =
1

|E|

|E|∑

i=1

1

Ranki
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7 � Experimental results

7.1 � RQ1: effectiveness of categorization

We use our ground truth of 500 crashes to assess the performance of Anchor in 
the first phase of the approach, namely the categorization. We provide in Table 3 
the confusion matrix as well as the precision and recall of our experimental results. 
Anchor yields a very high precision for predicting crashes in Category A, reaching 
0.96. The precision for crashes in Categories B and C are comparably lower, at 0.65 
and 0.60, respectively. In terms of recall, the approach is effective for Category A 
(0.91), Category B (0.82), and Category C (0.75). Overall, Anchor is successful in 
categorizing 444 out of 500 crash samples (88.8%).

Answer to RQ1 Anchor is overall effective in categorizing new crash samples. 
However, there is still room of improving the precision when predicting samples in 
Categories B and C.

7.2 � RQ2: effectiveness of localization

Since the two phases of Anchor are loosely coupled (i.e., each phase is an independ-
ent module that can be improved or replaced individually, as long as the in/output 
format is maintained), it may be insightful to investigate the performance of Phase 
II when crashes are previously perfectly categorized. In this way, the evaluation of 
Phase II is not affected by the performance of Phase I.

Table 3   Effectiveness of categorization (phase 1)

Actual

A B C Total

Predicted as category A 374 6 8 388
Predicted as category B 20 40 2 62
Predicted as category C 17 3 30 50
Total 411 49 40 500

Precision Recall

Category A 0.96 0.91
Category B 0.65 0.82
Category C 0.60 0.75

Fig. 5   F measure versus selected 
features
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To evaluate the localization phase of Anchor, we consider sample crashes for 
each category and assess the rank localization yielded by the specific algorithm 
developed for that category. Table 4 summarizes the Recall@k (with k ∈ {1, 5, 10} 
and MRR.

To make sure the evaluation of Phase 2 is not affected by the outcome of Phase 1, 
we propose to assess the performance of localization with the assumption of perfect 
categorization.

For cases in Category A, the true fault location can almost always be found 
at the top of the rank. The high value of MRR at 0.98 confirms the intuition in 
Sect. 5.2.1 that it takes much less effort in finding fault location for Category A. 
For cases in Category B, the recall@1 starts at 0.39 and increased substantially 
for recall@5 at 0.61. One more case is successfully located with recall@10 at 
0.63. The overall MRR is 0.48. Given the fact that the search space is vast (there 
can be tens of thousands of developer methods in the apk), Algorithm 1 demon-
strates decent performance. For most cases in Category C, the true sub-category 
of the fault location can be found topmost, with the MRR at 0.85.

Answer to RQ2 The localization algorithms (Phase 2) of Anchor are reason-
ably effective for suggesting the correct fault location. Anchor shows descent 
performance even when challenged by the vast search space for crashes in Cat-
egory B.

7.3 � RQ3: overall performance of Anchor

Table  5 summarizes the overall performance of Anchor combining Phase 1 
and 2. The MRR of all 3 categories slightly dropped, since some cases are mis-
categorized in Phase 1. Clearly, the overall performance is affected by Phase 
1. However, since the two phases in Anchor are loosely coupled, we envisage 
improvements of overall performance in the future when better classifiers are 
proposed.

Table 4   Localization 
performance

Category Recall@1 Recall@5 Recall@10 MRR

A 0.97 (400/411) 0.99 (406/411) 0.99 (407/411) 0.98
B 0.39 (19/49) 0.61 (30/49) 0.63 (31/49) 0.48
C 0.78 (31/40) 1.00 (40/40) 1.00 (40/40) 0.85
Total 0.90 (450/500) 0.95 (476/500) 0.96 (478/500) 0.92

Table 5   Overall performance of 
Anchor 

Category Recall@1 Recall@5 Recall@10 MRR

A 0.90 (370/411) 0.91 (373/411) 0.91 (373/411) 0.90
B 0.37 (18/49) 0.59 (29/49) 0.61 (30/49) 0.46
C 0.72 (29/40) 0.75 (30/40) 0.75 (30/40) 0.73
Total 0.83 (417/500) 0.86 (432/500) 0.87 (433/500) 0.85
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Answer to RQ3 Anchor is an effective approach for locating crashing faults 
when they are in/outside stack traces, even outside code. Better performance is 
guaranteed when categorization (Phase 1) is further improved.

7.4 � RQ4: performance in the wild

The heuristics based on which Anchor is built may be biased by the empirical data-
set. To mitigate this threat, we assess the effectiveness of Anchor with a dataset 
selected in the wild. We want to verify to what extent Anchor can be generalized. 
We leverage the independent dataset prepared by Fan et al. (2018b) who thoroughly 
(by crawling the entire GitHub) and systematically (by applying strict criteria) col-
lected 194 crashed apks from open-source Android repositories. Before evaluation, 
we apply the constraint rules of Sect. 4.1, and focus on the 69 relevant crash cases 
that could be identified. Note that this dataset contains true fault locations already 
verified by the app developers. Since the cases in the dataset are from a wide time 
span (2011–2017), the partition is randomly decided on normal distribution over the 
year of app release.

Table 6 shows the confusion matrix, as well as the precision and recall of Phase 1 
(categorization) on this independent dataset. The precision for all categories is high, 
reaching 0.98 (54/55), 0.67 (6/9), and 0.80 (4/5) respectively. The recalls are also 
high, at 0.93 (54/58) for A, 0.86 (6/7) for B, and a perfect 1.00 (4/4) for C.

Table 7 provides measures for the overall performance. To compute the similar-
ity scores which are required to locate the bug related to crashes from Categories B 

Table 6   Categorization on an independent dataset

Actual

A B C Total

Predicted as category A 54 1 0 55
Predicted as category B 3 6 0 9
Predicted as category C 1 0 4 5
Total 58 7 4 69

Precision Recall

Category A 0.98 0.93
Category B 0.67 0.86
Category C 0.80 1.00

Table 7   Recall@k and MRR on 
an independent dataset

Category Recall@1 Recall@5 Recall@10 MRR

A 0.72 (42/58) 0.93 (54/58) 0.93 (54/58) 0.81
B 0.43 (3/7) 0.43 (3/7) 0.43 (3/7) 0.43
C 0.25 (1/4) 1.00 (4/4) 1.00 (4/4) 0.40
Total 0.67 (46/69) 0.88 (61/69) 0.88 (61/69) 0.74
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and C, we use the crash records from the empirical dataset. The recalls and MRR in 
Category A remain high. As for Category B, Anchor is able to yield recall@k val-
ues and MRR of 0.43 when suggesting fault locations. As for Category C, the total 
MRR is at 0.43, suggesting more stack traces in Category C might be the key for 
better performance.

Answer to RQ4 The evaluation on an independent dataset shows that Anchor can 
be generalized. Anchor is a milestone in this respect that it considers various crash-
ing location cases. However, a community effort is still required to construct a rep-
resentative dataset of crashes to push forward the state of the art in crashing fault 
localization.

8 � Disscussion

8.1 � Comparing Anchor with other locators

Along with their empirical analysis of Android app crashes, Fan et al. (2018b); Su 
et al. (2020) mentioned a prototype crashing fault locator: ExLocator. Unfortunately, 
since the tool has not been publicly released, we could not directly compare it against 
Anchor . We note, based on its description, however, that ExLocator has a limited 
usage scenario since it focuses on only 5 exception types. Fan et  al. (2018a) also 
studied one specific type of exception locating. CrashLocator (Wu et al. 2014) can 
also locate faults outside the stack trace. However, CrashLocator needs to abstract 
patterns from a great number of repeated crashes of the same project. Unfortunately, 
for both datasets presented in this paper, this requirement is not satisfied. Moreover, 
CrashLocator requires source code and change tracking of the projects, unavailable 
for our empirical dataset. Therefore, we are not able to apply CrashLocator.

Although direct comparison in terms of effectiveness is not possible in this sce-
nario, we can compare the applicability. Anchor is considered to have a wider appli-
cation range compared to ExLocator, i.e., it can be applied to all exception types, 
and considered to be more lightweight and source code independent compared to 
CrashLocator, i.e., it requires only the crash message and the apk.

8.2 � Developer effort for locating bugs

In the motivating example, we demonstrated why locating buggy methods outside 
the stack trace can be challenging. We also want to measure the effort that develop-
ers put in locating such bugs. In Fan et al.’s dataset, each crash is documented with 
its duration, i.e., the time between the issue creation and its official closure by the 
developers. For bugs in the stack trace, it takes developers 26 days on average to 
close the issues. For bugs outside the stack trace, it drastically increases to 41 days. 
The ratio is 41/26=158%. Although it may not always be precise to measure effort in 
terms of issue duration, this would confirm our observation to some extent.
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8.3 � Improving locating for category B

In RQ3, we see that Anchor has the lowest performance for locating crashes in Cat-
egory B. This is because Android apks may contain thousands of developer meth-
ods. CrashLocator (Wu et al. 2014) also reports similar overall MRR for large Java 
projects. Despite this challenge, we revisited some unsatisfying rankings and con-
cluded two things that can be done to improve for Category B. First, the apih (c.f 
Sect. 5.2.2) inferred could be incorrect. As a result, the rank never contains the true 
bug location. Computing apih correctly calls for a larger and more sophisticated set 
of crash samples with ground truth. Because there’s a higher possibility that such 
a set may contain samples sharing a similar root cause with the crash-under-study. 
Second, the true buggy location may appear low in the rank. This may be because 
the weight assigned to them is comparatively low. Refining the weight computation 
(c.f Line 7, Algorithm 1) may result in better performance.

8.4 � Locating ICC‑ and IPC‑related crashes

The Android framework adopts the Intent objects to facilitate ICC (Inter-Compo-
nent Communication) and IPC (Inter-Process Communication) in order to provide a 
message passing mechanism for data exchange among components and even among 
apps (Arzt et  al. 2014; Li et  al. 2015). However, apps may also crash because of 
malformed Intent objects (Maji et  al. 2012). When the crash arises from IPC, the 
true fault location may reside in other apps. In such a scenario, Anchor is not appro-
priate, since it only looks for fault locations inside the current apk. When the crash 
arises from the ICC, Anchor may be able to find the fault location. For example, one 
common exception in many crashes in our empirical dataset is ActivityNotFound-
Exception. There are often two scenarios. First, the Intent is implicit, but there is no 
Activity in the current device/emulator that matches the Intent’s filter. Second, the 
Intent is explicit, but the specified destination Activity of the Intent is not available 
in the device/emulator. In both scenarios, Anchor tends to categorize the crash in 
Category A and effectively finds the true location. When other fields of the Intent is 
malformed and the true bug location is outside the stack trace, it is also possible that 
Anchor finds the buggy method by following Algorithm 1, i.e., by correctly com-
puting apih and putting the buggy method which misused apih in the rank.

8.5 � Generalization of Anchor

Android Remote Method Invocation (RMI) (Kang et al. 2016) allows Android apps 
to invoke methods from other devices running Android. Since Anchor only searches 
for bug locations inside Android apk files, if an app crashes from remotely invoked 
methods, Anchor will not be able to locate them. Apps running on other mobile 
platforms like iOS also suffer from app crashes, even those with billions of down-
loads (https://​www.​theve​rge.​com/​21319​817/​faceb​ook-​ios-​sdk-​bug-​fix-​spoti​fy-​pinte​
rest-​tinder-​crash-​iphone-​ios). Similarly, a crash log containing the stack trace is also 

https://www.theverge.com/21319817/facebook-ios-sdk-bug-fix-spotify-pinterest-tinder-crash-iphone-ios
https://www.theverge.com/21319817/facebook-ios-sdk-bug-fix-spotify-pinterest-tinder-crash-iphone-ios
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available for crashed iOS apps. However, locating for such crashes is also challenged 
by bugs outside the stack trace (https://​devel​oper.​apple.​com/​docum​entat​ion/​xcode/​
diagn​osing_​and_​resol​ving_​bugs_​in_​your_​runni​ng_​app). Therefore, it is possible to 
apply ANCHOR to locate crash-inducing bugs for iOS apps. Although some details 
of the algorithm need to be reconsidered, e.g., the core development language that 
iOS apps use is Swift, instead of Java or Kotlin for Android apps.

9 � Threats to validity

9.1 � Internal threats

9.1.1 � Ground truth

In the empirical study presented in Sect. 4, we have manually built the ground truth 
of buggy locations that we made available to the community. Although we have 
tried our best to perform this manual inspection with the help of (1) the Android 
official documentation, (2) programmer information exchanging forums like Stack-
Overflow or GitHub, (3) tools such as Soot or CodeInspect, there is no guarantee 
that all buggy locations we retrieved are the true causes for the crashes. This might 
affect the conclusions we draw from this dataset and the answers to RQ1-RQ3.

9.1.2 � Taxonomy

By dividing bug locations into “code” and “non-code” (Category C), and by further 
dividing “code” into ”in stack trace” (Category A) and ”outside stack trace” (Cat-
egory B), we are confident that our taxonomy guarantees exhaustion. However, our 
taxonomy is not the only option. Also, more fine-grained divisions can be included 
in this taxonomy, e.g., if the Android framework supports new non-code features in 
future versions, there might be more sub-categories in Category C.

9.2 � External threats

9.2.1 � Datasets

We extracted our dataset from the open benchmark ReCBench built by Kong et al. 
(2019). Although the large dataset they propose contains diverse apks collected 
from various popular app markets such as Google Play (ensuring a good diversity 
of apps), the collected crash cases are retrieved by testing apks with only two testing 
tools. Therefore, the yielded crashes could not be representative of the whole spec-
trum of crashes present in the Android ecosystem. Similarly, the dataset proposed by 
Fan et al. (2018b) is extracted from open source Android app GitHub repositories 
only. Moreover, they have applied certain rules for collecting the crashed cases, e.g., 
they extract only crash bugs that have been closed by repository maintainers. The 

https://developer.apple.com/documentation/xcode/diagnosing_and_resolving_bugs_in_your_running_app
https://developer.apple.com/documentation/xcode/diagnosing_and_resolving_bugs_in_your_running_app
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potential limitations with both datasets may affect the effectiveness we have shown 
in RQ1-RQ4.

9.2.2 � Android framework evolution

Android framework is fast evolving (https://​source.​andro​id.​com/​setup/​start/​build-​
numbe​rs). New APIs are proposed in every version. Old APIs maybe deprecated or 
may have their logic renewed. This would result in new crashing faults previously 
unseen. However, Anchor is able to evolve with these new changes. First, for the cat-
egorization phase, we can include more crashing logs and the crashed apks retrieved 
from running apps on newer Android framework versions. Like all Machine Learn-
ing-based algorithms, our categorization phase suffers from concept drifting, there-
fore, it is necessary to retrain the model with new data. Second, such new crash logs 
also benefit the localization of crashes in Category B (e.g., new misused APIs and 
new non-overridden callbacks) and in Category C (e.g., new sub-categories).

10 � Related work

A recent survey by Wong et  al. (2016) marks the activity of identifying the loca-
tions of faults in a program to be most tedious, time-consuming, and expensive, 
yet equally critical. Therefore, lots of techniques have been proposed attempting 
to ease the work of finding the fault locations. Although we did not find a dedi-
cated tool for identifying locations in Android apps, there are some approaches pro-
posed for general software programs. For example, Wu et al. proposed CrashLocator 
(Wu et al. 2014) to score and rank suspicious locations that have caused program 
crashes. CrashLocator suggests that the buggy methods can be located in the static 
call graphs extended from the stack traces. However, it is not suitable to work on 
programs with multiple entry points and separate call graphs such as Android apps. 
Moreover, its scoring factors, which require source code and change histories, also 
limit its application scope to Android apps, for which most of them are released in 
a closed way (i.e., no change histories). Gu et al. (2019) proposed another approach 
called CraTer that adopts information retrieval techniques to predict whether the real 
fault resides inside the stack traces. However, CraTer is not able to suggest the actual 
buggy location. BugLocator (Zhou et  al. 2012) applies a revisited Vector Space 
Model (rSVM) to retrieve relevant files for fixing a bug on a large number of bug 
reports. However, its granularity falls in file level, which still requires human veri-
fication for more fine-grained location identification. Wong et al. (2014) build their 
work on top of BugLocator (Zhou et al. 2012) and leveraged stack trace to improve 
the approach and indeed achieved better performance. Fan et  al. (2018b) briefly 
describes a fault localization prototype ExLocator for Android apps. ExLcator only 
supports 5 exception types and has a limited usage scenario. APEChecker (Fan et al. 
2018a) manifests async programming errors and can statically spot faults for this 
specific crash inducing error. Furthermore, in the community of Automatic Program 
Repair (APR), statement-level fault localization is often among the first few steps. 

https://source.android.com/setup/start/build-numbers
https://source.android.com/setup/start/build-numbers
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Researchers have improved it in various aspects (Abreu et al. 2007; Koyuncu et al. 
2019; Abreu et al. 2009a; Jones and Harrold 2005; Abreu et al. 2009b; Wang et al. 
2015; Lal and Sureka 2012).

Many research works have been proposed to address Android app crashes in 
recent years. For example, Fan et  al. (2018b) performed a large scale analysis on 
framework-specific Android app crashes. They have invented the grouping tech-
niques to group the Android app crash cases into buckets to study similar root causes 
based on each bucket. Researchers have also spent efforts attempting to automati-
cally reproduce the reported crashes (Li et  al. 2017a; Martin et al. 2016). Indeed, 
to achieve this purpose, Zhao et  al. have proposed ReCDroid (Zhao et  al. 2019), 
which applies a combination of natural language processing (NLP) and dynamic 
GUI exploration to reproduce given crashes. Gómez et al. (2016) proposed another 
approach for reproducing crashes by providing sensitive contexts. Moran et  al. 
(2016) further presented a prototype tool called CrashScope, aiming at generating 
an augmented crash report to automatically reproduce crashes on target devices. 
Researchers have gone one step deeper to propose automated tools to automatically 
fix such identified crashes. Indeed, Tan et  al. (2018) have proposed an automatic 
repairing framework named Droix for crashed Android apps. Droix adopts 8 manu-
ally constructed fixing patterns on crashed Android apps to generate app mutants 
and suggest one that fixes the crash. Following this work, Kong et al. (2019) present 
to the community an automatic fix pattern generation approach named CraftDroid 
for fixing apps suffering from crashes.

The special Android callback-based mechanism and its effect have drawn the 
attention of many researchers with the ever-booming of Android devices. Yang et al. 
(2015) targets the even-driven and multi-entry point issue of Android apps, and pro-
posed a program representation that captures callback sequences by using context-
sensitive static analysis of callback methods. Flowdroid (Arzt et al. 2014) targets at 
exposing privacy leakages on Android phones. It establishes a precise model of the 
Android lifecycle, which allows the analysis to properly handle callbacks invoked by 
the Android framework. Relda2 (Wu et al. 2016) is a light-weight and precise static 
resource leak detection tool based on Function Call Graph (FCG) analysis, which 
handles the features of the callbacks defined in the Android framework. Together 
with other existing works like (Yang and Yang 2012; Li et al. 2016a), they all dealt 
with Android callback-based mechanism in various manners. Although these works 
are different from ours, their approach in handling lifecycle and callback methods 
could be borrowed to enhance our approach towards better dealing with Category B 
crashes.

11 � Conclusions

In this work, we performed an empirical study. This study shows that 37% crash 
types are related to bugs that are outside the stack traces, which imposes challenges 
to the localization problem. We then proposed Anchor , a two-phase categoriza-
tion and localization tool that is able to generate a ranked list of bug locations for 



	 Automated Software Engineering (2021) 28:10

1 3

10  Page 28 of 31

developers to examine. The effectiveness of Anchor is assessed with both this 
empirical dataset and an in-the-wild scenario on a third-party dataset. Our work 
brings inspiring insights into the crashing faults localization problem for Android 
apps and calls for more attention from both the developers and the research 
community.
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