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Abstract
Automatic recovery of traceability between software artifacts may promote early 
detection of issues and better calculate change impact. Information Retrieval (IR) 
techniques have been proposed for the task, but they differ considerably in input 
parameters and results. It is difficult to assess results when those techniques are 
applied in isolation, usually in small or medium-sized software projects. Recently, 
multilayered approaches to machine learning, in special Deep Learning (DL), have 
achieved success in text classification through their capacity to model complex rela-
tionships among data. In this article, we apply several IR and DL techniques for 
investing automatic traceability between bug reports and manual test cases, using 
historical data from the Mozilla Firefox’s Quality Assurance (QA) team. In this case 
study, we assess the following IR techniques: LSI, LDA, and BM25, in addition to 
a DL architecture called Convolutional Neural Networks (CNNs), through the use 
of Word Embeddings. In this context of traceability, we observe poor performances 
from three out of the four studied techniques. Only the LSI technique presented 
acceptable results, standing out even over the state-of-the-art BM25 technique. The 
obtained results suggest that the semi-automatic application of the LSI technique 
– with an appropriate combination of thresholds – may be feasible for real-world 
software projects.
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1  Introduction

Software development and testing involve, as sub-products, textual artifacts, such 
as bug reports, test cases, requirements documents, besides the source code itself. 
The produced artifacts are interrelated, and tracking those relationships may bring 
benefits to software teams. This is especially important for requirements, to which 
several artifacts at different levels of abstraction are closely related. Requirements 
traceability is “the ability to describe and follow the life of a requirement, in both 
a forward and backward direction” (Gotel and Finkelstein 1994).

An effective traceability recovery process has significant repercussions over 
software development activities (Guo et  al. 2017). In such a scenario, bugs 
reported by developers, testers, final users, or stakeholders could be automati-
cally selected and prioritized for bug fixing and testing tasks. Also, development 
teams could precisely estimate the impact of stakeholders’ changes if information 
about the affected artifacts is available for decision-makers, reducing the involved 
risks for the project. The same information could be used for budget prediction 
once more data are available to estimate the teams’ sizes and the number of hours 
required for bug fixing. Another benefit is the reduction of the learning curve 
required from new team members. Usually, the projects do not have up-to-date 
documentation about the decisions made during the process, so new team mem-
bers must learn in practice the localization of artifacts and the architecture of the 
software; such learning takes time and effort from all the involved team members. 
Traceability recovery tools may reduce this learning process and speed up inte-
grating these new members for more critical activities into the project.

Scalable traceability requires automation; if manually maintained, it becomes 
an error-prone and expensive task (Hayes et  al. 2007; Dekhtyar et  al. 2007). 
Traceability tools and techniques emerged in response to that demand, allowing 
traceability links between any textual artifacts to be quickly recovered and ana-
lyzed. Nevertheless, the tool’s effectiveness for application in real projects is an 
open challenge yet. Information Retrieval (IR) techniques are the basis of most 
of the proposed techniques for traceability recovery. Antoniol et al. were pio-
neers in using IR techniques for traceability between source code and documen-
tation artifacts in a seminal paper (Antoniol et al. 2002), using the Vector Space 
Model (VSM) technique. Ensuing, many other studies were developed using other 
techniques, such as Latent Semantic Indexing (LSI), Latent Dirichlet Allocation 
(LDA), and Best Match 25 (BM25). Borg et  al. (2014) verified in a systematic 
literature review the most common techniques are LSI and VSM, although the 
BM25 is the state-of-the-art technology in the field.

IR techniques differ considerably in terms of input parameters and results. 
Solutions proposed by previous research (Hayes et al. 2007; Canfora and Cerulo 
2006; Oliveto et  al. 2010; Lormans and Van Deursen 2006) for traceability 
recovering between software artifacts explore a specific technique, gain from 
its benefits, but are exposed to its limitations; it is then hard to judge what are 
the most efficient IR techniques for establishing a sound basis for requirements 
traceability, which is even more complex as the most cited studies focus on small 
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and medium-sized software projects (see discussion regarding related work in 
Sect.  8). Furthermore, studies using Machine Learning (ML) and Deep Learn-
ing (DL) techniques/models for requirements traceability have been carried out, 
focusing on either requirements identification (Dekhtyar and Fong 2017), num-
ber of remaining traceability links estimation (Falessi et al. 2017), or traceability 
links prediction (Guo et  al. 2017). However, they should be compared with IR 
techniques for assessing their effectiveness.

Previous studies address traceability recovery between many types of software 
artifacts. Still, we have noticed only a few studies tracing bug reports to manual test 
cases (Borg et al. 2014), even though manual test cases often are the most up-to-date 
documentation of the system and the only available source of system requirements 
(Bjarnason et al. 2016), especially in agile development teams that do not shift their 
focus to automated tests (Sabev and Grigorova 2015), being naturally referred to by 
bug reports. In fact, a few studies have shown that software repositories often lack 
automatic test cases (Minelli and Lanza 2013). One previous related study addresses 
traceability between requirements and bug reports (Yadla et al. 2005); Hemmati et 
al. (Hemmati and Sharifi 2018) investigate IR techniques for predicting manual test 
case failure; Merten et al. (Merten et al. 2016) analyzed variations of five IR tech-
niques for traceability recovery between bug reports. Still, only one study deals with 
traceability between manual test cases and bug reports (Kaushik et  al. 2011). See 
Sect. 8 for more details on these two last studies.

In summary, to the best of our knowledge, there are no clear indications about the 
most effective technique to use for traceability recovery between bug reports and test 
cases. Also, we did not find studies providing satisfactory results for large and real-
world projects to adopt a traceability recovery process between these two kinds of 
artifacts. So far, the few approaches relating bug reports and test cases have limita-
tions on the variety of studied techniques and the evaluation’s depth.

To fill that knowledge gap, in this article we ran a case study that applies a set of 
IR and DL techniques to recover traceability links between bug reports and man-
ual test cases (often known as test scripts), using publicly-available historical data 
from the Mozilla Firefox’s development team1. Despite the comprehensiveness of 
this dataset, bug reports are not explicitly linked to manual test cases; for establish-
ing a ground truth to evaluate the recovery techniques, we used system features as 
intermediate artifacts. These system features allowed us to group test cases, help-
ing us generate a ground truth to evaluate each technique. We applied the follow-
ing techniques: Latent Semantic Indexing (LSI), Latent Dirichlet Allocation (LDA), 
Best Match 25 (BM25), and two different versions of the Word Vector technique. 
The analysis and discussion about the effectiveness of a varied group of IR and DL 
techniques through the reporting of different metrics should grant the community 
a deeper understanding of the studied techniques when using them for traceability 
recovery of artifacts used in genuine and open source projects such as the Mozilla 
Firefox.

1  https://​www.​mozil​la.​org/

https://www.mozilla.org/
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We have observed that LSI presents the most competitive results compared with 
other IR or DL techniques for traceability recovery between bug reports and test 
cases. Comparative analysis suggests LSI is superior to a baseline classifier (VSM), 
achieving an acceptable level of Goodness, considering the obtained scores of Pre-
cision, Recall, and F2-Score , for some specific combinations of Top Values and 
Similarity Thresholds.

This article is organized as follows: Sect.  2 defines important concepts to bet-
ter understand our work and the applied techniques; Sect. 3 describes the approach 
developed for linking the analyzed artifacts; whereas Sect.  4 explains the oracle 
building process; and Sect. 5 exposes the case study and achieved results. The valid-
ity threats to our conclusions are explained in Sect. 7, while the related work is dis-
cussed in Sect. 8. Conclusions are summarized in Sect. 9.

2 � Background

In this section, we introduce concepts related to bug reports, test cases and system 
features, which are the software artifacts used in the case study. Also, we define the 
selected IR and DL techniques.

2.1 � Bug reports

A Bug Report describes any system failure, either identified by a user or automati-
cally reported by the system (in the case of crashing bugs) (Fazzini et al. 2018). A 
bug report offers details about a failure identified in order to help developers investi-
gate and fix the bug reported if its presence is confirmed (Lee 2016). Bugs occur due 
to either implementation faults or specification nonconformances that are detected 
by end-users during the system’s operation. Several fields may be added to the 
reports, including title, reproduction steps, stack traces, failing test cases, expected 

Fig. 1   Example of Firefox bug 
report
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behavior, among other data (Davies and Roper 2014). Figure 1 shows an example of 
a bug report from the Mozilla Firefox repository2.

A properly-reported bug includes a clear and detailed problem description. Also, 
the procedure taken to reproduce the bug has to be accurate and include precise 
information about inputs and outputs. Complete information about observed and 
expected behavior is associated with bug acceptance by developers, and its success-
ful resolution (Zimmermann et al. 2010).

In Fig. 1, we identify attributes which qualify a bug report and contribute to its 
acceptance by the Mozilla’s development team: (i) it has a unique ID number; (ii) 
the steps to reproduce—STR—are clearly described; (iii) the expected results are 
detailed; and (iv) the problem is summarized and very specific, as we observe in the 
Title field.

2.2 � System features

A System Feature is defined as a set of requirements highly bonded to each other 
(Kun Chen et al. 2005). System features improve communication efficacy offering 
a common vocabulary, which demands less cognitive effort for understanding, in 
comparison to individual requirements (Passos et al. 2013). The definition of system 
features creates a common ground so that every stakeholder can quickly understand 
the system operations.

A feature is commonly described by its Name and Description, but other fields 
such as Software Version, which favors the features traceability, can also be used 
depending on the model of representation adopted by the system’s managers. An 
example of system feature can be observed in Fig. 23 that shows the APZ—Async 
Pan/Zoom – system feature from Mozilla Firefox. This feature is related to the bug 

Fig. 2   Example of system fea-
ture from Mozilla Firefox

2  https://​bugzi​lla.​mozil​la.​org
3  https://​wiki.​mozil​la.​org/​Platf​orm/​GFX/​APZ

https://bugzilla.mozilla.org
https://wiki.mozilla.org/Platform/GFX/APZ
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report exemplified in the previous section. The APZ feature is responsible for the 
performance improvement in the panning and zooming actions within the Fire-
fox browser, separated from the main javascript thread. The following fields were 
extracted to characterize a system feature: ID, Short Name, Firefox Version, Firefox 
Feature (Feature Name), and Feature Description.

2.3 � Manual test cases

A Manual Test Case is a sequence of steps defined according to the stakeholder’s 
requirements. The sequence of steps are executed manually into the produced soft-
ware and the specified results are checked with the produced software outputs, so 
the tester can sign the test state as failed or successful (Sommerville 2010). Figure 3 
shows an example of test case from the Mozilla Firefox, which is related with the 
previously presented Bug Report and System Feature. Besides the test case Title, 
Steps to Reproduce and Expected Results, the related TestDay, TC Number, Generic 
Title, Preconditions, and Crt Nr (Control Number) are also detailed.

The test case’s Title is a short description of the test purpose, which should be 
executed after the Preconditions be attended and following the Steps to Reproduce. 
Then, for each step, an Expected Result is defined, and the agreement with it must be 
checked by the tester. If they match with the program outputs, then the test passes; 
otherwise, it fails. The TC Number is a unique ID for the test case. Especially in 
Mozilla Firefox, a test case is always associated with a system feature (Generic 
Title) and with at least one TestDay, which is the day the test was executed. We have 
not identified the semantic of the Crt Nr field. We estimate it is a unique identifier 
for the test in the TestDay. In this case, the manual test scripts are essential for soft-
ware evolution and maintenance, allowing the detection of bugs before software is 
released to the final users. Also, scripts for manual test cases are easy to automate 
and facilitate the tests and bugs reproducibility. Besides that, manual scripts for test 
cases are the most up-to-date documentation of many systems in the industry, espe-
cially in agile contexts Bjarnason et al. (2016).

Fig. 3   Example of a manual test 
case for Mozilla Firefox
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2.4 � IR and DL techniques for traceability recovery

Information Retrieval techniques recover and rank a set of documents from a cor-
pus, for a given query. Their output, in the context of traceability recovery, is 
a similarity matrix (Antoniol et  al. 2002) between documents and queries. This 
matrix holds the similarity scores for each pair (document, query); scores are 
calculated according to the technique’s core algorithm – assuming a similarity 
scale from zero to one (where one would denote two identical documents). In our 
work, bug reports are queries, while test cases are the documents. An example 
of a similarity matrix between bug reports and test cases is shown in Fig. 4. The 
green scale is correspondent to the level of similarity between the Bug Report 
row and the Test Case column; for example, the similarity score between Bug 
Report 1248268 and Test Case 5 is 0.441724.

To improve IR performance, techniques require one to preprocess both corpus 
and the set of queries, through the following stages: (i) tokenization of each docu-
ment, removing blank spaces and punctuation; (ii) removal of stop words to dis-
card articles, adverbs, and prepositions; (iii) application of stemming in each token, 
removing words suffixes (information, informatics, and informatization would e 
treated as one token); and (iv) lemmatization, changing all verbs to the first person 
and present tense.

Deep Learning techniques also can be used for calculating similarity scores. 
Based on recent research (Dekhtyar and Fong 2017; Guo et al. 2017), we employ 
two versions of a Deep Learning technique as traceability recovery techniques 
(Sect. 2.4.4).

Fig. 4   Similarity matrix 
example
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In the sequel, we detail each technique used in this work. We chose them based 
on the analysis of a systematic literature review (Borg et  al. 2014) and literature 
(Blei et al. 2003; Oliveto et al. 2010; Robertson and Zaragoza 2009; Dekhtyar and 
Fong 2017; Guo et al. 2017).

One technique identified but not used in our study is the Jensen-Shannon model. 
We have not found either available source code with the model’s implementation 
in our literature review nor existing implementation of it in available open-source 
libraries or frameworks. Additionally, a previous work demonstrated some equiva-
lence between the LSI, VSM and Jensen-Shannon traceability results (Oliveto et al. 
2010).

2.4.1 � Latent Semantic Indexing

Latent Semantic Indexing (LSI) (Deerwester et al. 1990) is based on a vector space 
model (Borg et al. 2014; De Lucia et al. 2006; Dekhtyar et al. 2007). Each docu-
ment in the corpus and each query are both vectorized. For this, it applies a specific 
weighting scheme, assigning the most relevant words of each document and query 
appropriate weights, in the searching and ranking process. LSI commonly applies 
the weighting scheme known as tf-idf – term frequency-inverse document frequency. 
The tf-idf formula is detailed in Eq. 1. Function tf(t, d) yields the frequency of term t 
in document d, so the more the term appears in the document, the higher is tf. On the 
other hand, idf(t, D) is the number of documents term t appears in the entire corpus 
D, so the rarer the term is, the higher its value.

The Eq. 2 details the smoothed idf formula, where N is the size of the corpus, and nt 
is the number of documents in which term t appears. Since nt value can be zero, the 
equation is corrected by summing 1 to the denominator.

Using the term-by-document matrix, whose content is tf -idf  , as input, a mathemati-
cal dimensionality reduction method known as SVD (Singular Value Decomposi-
tion (Deerwester et  al. 1990)) is applied, yielding new vectors representing docu-
ments and queries. This method optimizes LSI’s effectiveness, speeding up search. 
The similarity score between each pair (document, query) is then determined by the 
cosine of the angle between the document and query vectors.

To illustrate LSI, we present an example with the bug report from Sect. 2.1. We 
relate it with three test cases – one from Sect. 2.3, and additional two that are dis-
played in Fig. 5.

We refer to the bug report and test cases used through their identifiers. The acro-
nyms SRC and TRG stand for source and target, meaning the direction of the trace-
ability recovery, from the bug report (source) to the test cases (targets). The recover-
ing process starts with preprocessing test cases and the bug report. LSI’s application 
for traceability recovering is presented in Fig. 6.

(1)tfIdf (t, d,D) = tf (t, d).idf (t,D)

(2)idf (t,D) = ln(
N

1 + nt
)
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The Term-by-Document Matrix on the left-hand side of Fig. 6 is created with the 
terms presented in the test cases. The green scale indicates the most frequent terms 
in each document. Similarly, the query vector –based on the bug report —is depicted 
on the right-hand side. Weights are calculated using the tf -idf  scheme; for this bug 
report, which contains 200 words, the word “apz” appears 5 times, thus receiving 
tf = 5∕200 = 0.025 . Now, assuming there is a corpus of 300 test cases, and “apz” 
appears in 35 of these, idf = ln(300∕35) = 8.57 . Thus, tf -idf  is the product of these 
quantities: 0.025 ∗ 8.57 = 0.2142 (Manning et al. 2009).

Next, SVD is applied over the matrices created, generating two matrices: SVD 
3x3 Matrix from the Term-by-Document Matrix and another one from the Query 
Vector with dimensions 1x3. Then, cosine similarity is calculated between the line 

Fig. 5   Test cases 13 and 60 used in our example

Fig. 6   LSI example
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in the SVD matrix and the reduced query vector, resulting in the vector depicted at 
the center of Fig. 6. For this example, LSI was able to correctly recover Test Case 37 
from the analysis of the bug report with a similarity score of 0.9483. Contrarily, low 
similarity scores (lighter green) assigned to the other two test cases, denoting a weak 
relationship.

2.4.2 � Latent Dirichlet Allocation

The LDA technique (Blei et  al. 2003) is a generative statistical model4, in which 
each textual document is modeled as a set of topics. A Topic is characterized by a 
distribution over words, where each word has a distinct weight in that distribution 
allowing a human, through the analysis of the most relevant words, to attribute a 
semantic to each topic modeled by the technique. The estimated probabilities are 
relative to the following question: What is the probability of a query q to retrieve a 
document d?.

A topic model estimates which topics—created based on the content of the docu-
ments—are the most representative for a given document, assigning it a specific dis-
tribution of topics. With the topics of a given query, the similarity scores between 
the query and the documents can be estimated. Several metrics can be used to calcu-
late the similarity scores, such as the cosine of the angle between the vectors of each 
pair (document, query), as LSI. The difference is that the vectors here are vectors of 
probabilities (Dekhtyar et al. 2007).

An example of LDA, using the same test cases and bug report from the LSI exam-
ple, is shown in Fig. 7. The left-hand side table shows tokens of each test case after 
tf -idf  application; the result is a Term-by-Document Matrix (a subset is depicted in 
Fig. 7). Next, LDA’s topic word distributions are created (Step 1). In this example, 

Fig. 7   LDA example

4  Given an observable variable X and a target variable Y, a generative model is a statistical model of the 
joint probability distribution on X × Y  , P(X, Y) (Y. Ng and Jordan 2002)
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we set up the LDA to have three topics—other values can be chosen, which impacts 
the technique’s effectiveness—considering the technique will be capable of distin-
guishing the test cases origins—each test case is related to three different system 
features from Mozilla Firefox.

Through the analysis of the topics distributions, the technique successfully iden-
tifies the test cases associated with the system features: the first topic (Topic #0) 
is referring to the browser customization feature, whereas the second topic (Topic 
#1) indicates scrolling in the APZ system feature, and the third topic (Topic #2) is 
related with the New Awesome Bar feature. The ten most relevant words for each 
topic are detailed in Fig. 8, highlighting the core words.

After the topic word distribution calculation, a dimensionality reduction opera-
tion is applied, and a Corpus Matrix with dimensions 3x3 is generated (Step 2). A 
similar operation (Step 3) is applied over the bug report (query) vector, generating 
a reduced query vector with dimensions 3x1. Finally, the cosine similarity is deter-
mined for each line of the Corpus Matrix (test case) and the reduced query vector 
(bug report) (Step 4). The technique correctly recovers the related test case (37), 
with a high similarity score 0.9953, while assigning lower similarity scores to the 
other test cases. Figure 7 shows only subsets of the Term-by-Document Matrix, the 
Topic Word Distribution Matrix, and the Query Vector.

2.4.3 � Best Match 25

Also known as BM25, the Best Match 25 is a probabilistic model which is based on 
the Okapi-BM25 scoring function for ranking the retrieved documents (Robertson 
and Zaragoza 2009). Probabilistic models in the context of information retrieval try 
to answer the question: What is the probability of a given document be relevant to a 
given query? For that, scoring functions are used to rank the set of documents con-
cerning each query.

The scoring function of the BM25 model can be generally described by Eqs. 3 
and 4 (Canfora and Cerulo 2006). A document’s score (d) concerning query q is 
calculated by Equation 3, in which t is each term in q and W(t) is the weight of a 
specific term t for d. In Eq. 4, TFt is the term frequency in document d, DL is the 
document length, AVGDL is the average document length, N is the corpus size, and 
NDt is the amount of documents in the corpus that have the term t. Variables k1 and 
b are parameters, calibrating the effect of term frequency and of document length, 
respectively.

(3)Sd(q) =
∑

t∈q

W(t)

Fig. 8   LDA topics
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We use the same bug report and test cases for illustrating BM25. Figure 9 shows the 
technique application. Each document in the corpus of test cases is preprocessed, 
having its tokens extracted into the Terms Matrix Subset, on the left-hand side. The 
same process is applied to the query (bug report), on the right-hand side. Then, the 
BM25-Okapi similarity score is calculated for each combination of a test case and 
bug report, resulting in a vector of similarity scores greater than zero. To compare 
the BM25’s similarity scores with other techniques, we apply the normalization of 
the scores for the scale [0,1], so the smallest score becomes 0, the higher becomes 1, 
and different values are calculated with these two reference values in the scale [0,1]. 
BM25 was able to recover the correct trace of the bug report with test case 37, while 
it assigns low values of similarity for the other test cases.

2.4.4 � Word Vector

Deep Learning (DL) is a family of methods between the Machine Learning meth-
ods based on Artificial Neural Networks (Goodfellow et al. 2016). These networks 
characterize themselves for having a large number of hidden layers so that they are 
able of capturing many different patterns present in images, text corpora, and audio 
records data sets. Once the deep neural network is trained, it can recognize objects 
in images, translate texts between languages, and do speech recognition between 
many other applications.

Word Vector is a Deep Learning technique inspired by recently developed stud-
ies in the field (Dekhtyar and Fong 2017; Guo et al. 2017). A Word Embedding is 
a deep neural network trained based on large data sets of texts and which is capable 
of capture syntactic and semantic relations between the represented words. The use 
of word embeddings has become successful with the advancements of Deep Learn-
ing, combined with the availability of large amounts of data for training models 

(4)W(t) =
TFt(k1 + 1)

k1((1 − b) + b.
DL

AVGDL
)
log(

N

NDt

)

Fig. 9   BM25 example
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and increasing computing capabilities to give support to these advancements. The 
release and dissemination of open-source libraries such as Google’s word2vec5 
(Mikolov et al. 2013) facilitate their use as pre-trained models – trained on available 
data sets – or for training new word embeddings.

The word2vec library receives as input a large amount of text, such as the Com-
mon Crawl Dataset6, which is a corpus of collected news, comments, and blogs on 
the web, and produces as output a vector space model, commonly with hundreds 
of dimensions. A vector represents each unique word (token) in this space with the 
same amount of dimensions, and each dimension of this vector is learned during the 
training of a Convolutional Neural Network (CNN) or another type of Deep Neural 
Network. In the context of traceability, the trained neural network is available, pos-
sibly retrained with the source and target artifacts, so nuances from the domain of 
these textual documents can be captured and appropriately represented in the vector 
space model. For example, the context of the word “bug” used to appear in software 
engineering texts is different from the used in biology texts, and this impacts the 
representation of the word into the word embedding. Word Embeddings can capture 
the syntactic and semantic relations between words in the text, differently from the 
previously presented IR techniques. Therefore, the trained model is capable of mak-
ing semantic inferences. For example, presenting the relationship (Man,Woman) for 
the model, and asking to the corresponding relationship for the word King (King,?), 
the model is capable of correctly answering (King,Queen) (Mikolov et al. 2013).

For traceability recovery, word vectors can be used to measure the similarity 
between single words, but also between documents and queries like IR techniques. 
The example in Fig. 10, reusing the same bug report and test cases, is divided into 
five steps: 

Fig. 10   Word vector example

5  https://​github.​com/​svn2g​ithub/​word2​vec
6  https://​commo​ncrawl.​org/

https://github.com/svn2github/word2vec
https://commoncrawl.org/
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1.	 a word embedding with 300 dimensions and more than 1 million unique words 
is trained based on the Common Crawl Dataset;

2.	 tokens are extracted, without any preprocessing;
3.	 tokens are grouped in a matrix of word vectors representing each document; those 

vectors are a subset of the ones presented in the word embedding – for example, 
the test case 60 (TC_60_TRG​) has the words each, theme, and installation and 
its 300-dimension vector represents each one of them;

4.	 the average of grouped vectors is calculated for each document, generating smaller 
matrices;

5.	 cosine similarity is calculated for each paired test case-bug report.

Observe that the Word Vector technique correctly ranks the test cases, identifying 
test case 37 as the most relevant for the bug report, although the difference of the 
attribute similarity scores is not so precise, considering the scale (cosine similarity) 
between −1 and 1.

3 � Approach

The case study applies IR and DL techniques as an external/pluggable module, in 
order to recover traceability links between bug reports (source artifacts) and test 
cases (target artifacts). During the analysis of Mozilla Firefox’s data (Sect.  4), 
we used system features as intermediate artifacts, since most traceability links 
between bug reports and test cases cannot be recovered using only the informa-
tion provided directly by the testers, as links between test cases and bug reports 
are not required during test-days by the Mozilla’s leading teams. In particular, 
system features make the communication between the test and development teams 
easier, enforcing a common vocabulary. Analyzing the artifact organization, we 
noticed that if a bug report could be related to one specific feature, then it would 
be linked to the test cases of this feature. Figure 11 shows how these artifacts are 

Fig. 11   Bug reports, system fea-
tures and test cases relationships

Fig. 12   BR-TC traces builder 
module
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related to each other, where BR_X are bug reports, Feat_Y are system features, 
and TC_YW are test cases. We discuss this threat to validity in Sect. 7.

As seen in Fig. 12, the module BR-TC Traces Builder is responsible for recov-
ering the trace links between bug reports and test cases using the selected tech-
niques. The module receives a set of bug reports and maps them to a subset of the 
provided test cases by applying each IR and DL technique. As a result, we have a 
Recovered BR-TC Trace Links Matrix for each applied technique. Figure 13 sche-
matizes a Traces Builder in detail. As can be seen, it is composed of other two 
modules named Traceability Engine and Trace Links Generator.

The Traceability Engine creates, for each applied technique, a similarity matrix 
from the input, where each column corresponds to a source artifact (bug report) 
and each line to a target artifact (test case). In this matrix, each cell holds a simi-
larity score, calculated according to the applied technique (LSI, LDA, BM25 
or Word Vector (WV)). The LSI similarity score sim(dj, q) , for example, can 
be calculated with a document vector dj = (w1,w2,… ,wN) and a query vector 
q = (q1, q2,… , qN) as presented by Eq. 5 (Yadla et al. 2005; Buttcher et al. 2010).

where wi = qi = tfi ∗ idfi , tfi is the frequency of a term i in a document ( wi ) or 
query ( qi ) and idfi is the inverse document frequency of i. The Trace Links Genera-
tor receives three inputs: the set of similarity matrices generated by the Traceability 
Engine, a set of Top Values, and a set of Similarity Thresholds. A function combin-
ing the values of these two sets limits the number of documents returned to a query, 
in order to control the behavior of each technique when multiple sets of documents 
are recovered for each query, so the ranking capabilities of each technique can be 
evaluated (Antoniol et  al. 2002; De Lucia et  al. 2006; Dekhtyar et  al. 2007; Guo 
et al. 2017).

Top Values define absolute values of documents to be recovered; for instance, 
TOP-1 only returns the document with the highest similarity score, whereas 

(5)sim(dj, q) = cos(dj, q) =

∑N

i=1
wi.qi

�∑N

i=1
w2

i
.
∑N

i=1
q2
i

Fig. 13   Traces builder submodule
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TOP-3 returns the first three documents with the highest similarity scores. In 
addition, Similarity thresholds designate a minimum similarity score between a 
document and a query that must be reached by a technique. For example, (TOP-3, 
0.85) states that only the three documents with the highest similarity values must 
be recovered, all of them with a similarity value higher than or equals to 0.85. 
Therefore, each similarity matrix cell will be set as a positive trace link (1) or 
not (0). Consequently, as we see in Fig. 13, for each combination of Top Value 
and Similarity Threshold an output matrix called Recovered Trace Links Matrix 
is created. Figure 14 shows an example of the recovering of trace links from the 
LSI’s similarity matrix for (Top-2, 0.0) input. On the right side of the figure, you 
can note that only 2 test cases are returned for each bug report, corresponding to 
the highest similarity scores. The positive (returned) traces are depicted with the 
value 1, while the remaining ones are depicted with the value 0.

4 � Building an oracle matrix

We describe in this section how the ground truth (oracle matrix) was created for the 
analysis in our case study (Sect. 5). The oracle matrix maps bug reports to Firefox’s 
system features, with the help of a crowdsourcing application to gather the answers 
from volunteers and a researcher.

Fig. 14   Traces recovering process example

Fig. 15   Mozilla firefox’s rapid release
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4.1 � Context

The Mozilla Firefox internet browser7 is a real, extensive and active open-source 
project developed by the Mozilla Corporation. The Mozilla’s development team uses 
the Rapid Release (RR) development model (Mäntylä et  al. 2013), in which they 
select a set of features for testing during a test-day at the end of each sprint (Each 
Firefox release has at least one test-day.) After all test cases for the features under 
test are executed, the set of bug reports is recorded. Figure 15 details the RR devel-
opment model with three released versions of Mozilla Firefox, highlighting the test-
days (TDx), the features tested in each test-day (Feat_Y) and the test cases of each 
feature (TC_W).

Core members of the Mozilla’s QA team organize test-day data into an open-
access Etherpad8 online document, containing the specification of features to test, 
test cases associated with each feature, and the set of bug reports fixed by devel-
opers during the sprint and needed to be checked in that test-day. By the end of a 
test-day, each test case in the document is specified with keywords PASS or FAIL. 
When a test case fails, the tester is advised to create a bug report in Bugzilla9 and 
create a link in the etherpad document as the result of the failed test case for later 
traceability.

However, testers often neither create the links as required nor create the bug 
report. Then, several test cases marked as failed have no associated bug reports. 
Most traceability links between bug reports and test cases cannot be recovered using 
the information provided directly by the testers. Seeking to solve this problem, we 
saw the possibility of using system features as an intermediate artifact to link bug 
reports and test cases. If a bug report is related to one specific feature, then it links to 
the test case of this feature.

4.2 � Participants

Since the task of building traceability links between bug reports and manual test 
cases requires in-depth knowledge about the system, recruiting volunteers fully 
engaged and immersed in this context would constitute a difficult and probably inef-
fective task. On the other hand, electing an expert and leaving the judgment and 
decision to build these links in his/her hands certainly could bring its cons, mainly 
decreasing the reliability of the generated oracle.

Therefore, in order to build the traceability links, we resort to the role of an 
expert, fully immersed in this task, with an adequate level of understanding of 
all the aforementioned artifacts. We completely rely on the expert answers (trace-
ability links). However, to preserve the reliability of this task, we also recruited 
volunteers to add redundancy. The ground truth was produced by only consider-
ing links indicated by the expert that have also been indicated by the volunteers, 

7  https://​www.​mozil​la.​org
8  https://​public.​ether​pad-​mozil​la.​org/
9  http://​bugzi​lla.​mozil​la.​org

https://www.mozilla.org
https://public.etherpad-mozilla.org/
http://bugzilla.mozilla.org
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i.e. the final oracle is constituted by the intersection between expert’s and volun-
teers’ answers. We recruited volunteers to, based on the reading of the Mozilla’s 
documentation, point out which Firefox features they think a given bug report is 
related. As a result, they produced a matrix of traceability links between features 
and bug reports, as a first step to relate bug reports to test cases. This step was 
needed for scalability since there are many more test cases (195) than features 
(19), and relating bug reports directly to the test cases would require a unfeasible 
amount of manual work.

A total of nine volunteers were recruited by e-mail invitation; they all have a 
Bachelor’s degree in Computer Science—while one holds a Ph.D., another one is 
a full-time software developer, and seven are master students. They all have profes-
sional experience in software development, including knowledge about key concepts 
on the tasks, such as system features, test cases, and bug reports. Previously to the 
volunteers‘ participation, the researcher (also named expert)—who had previous 
knowledge of the Firefox features, test cases, bug reports, and the traceability pro-
cess – carried out the same tasks of volunteers, and another matrix of traceability 
links was generated from his answers.

As previously mentioned, the ground truth was produced by only considering 
links indicated as by the expert as by the volunteers, i.e. the final oracle is consti-
tuted by the intersection between expert’s and volunteers’ answers. All answers pro-
vided as by the expert as by the volunteers are available at the study website.

Table 1   Identified Firefox 
features

Feature name Firefox Version Num-
ber of 
TCs

New Awesome Bar 48 and 50 13
Windows child mode 48 11
APZ - Async scrolling 48 22
Browser customization 49 6
PDF viewer 49 8
Context menu 49 31
Windows 10 compatibility 49 6
Text to speech on desktop 49 2
Text to speech in reader mode 49 8
WebGL compatibility 49 3
Video and canvas renderization 49 2
Pointer lock API 50 11
WebM EME support for widevine 50 6
Zoom indicator 51 21
Downloads dropmaker 51 18
WebGL2 51 3
FLAC support 51 6
Indicator for device permissions 51 16
Flash support 51 2
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4.3 � Datasets

The used dataset of test cases and system features was extracted from Firefox test-
days from 2016/06/03 to 2017/01/06. Test cases were frozen in this period, which is 
appropriate for our analysis, once the test cases do not evolve in this time interval. A 
total of 195 test cases were manually collected from this period—12 test-days. We 
identified a set of 19 different Firefox features tested during this period. Each test 
case is associated with one specific Firefox feature and is explicitly indicated by the 
Mozilla’s QA Team in the test-day available documents. Table 1 shows the Firefox 
Features used, the particular Firefox versions as well as the number of test cases 
associated with each feature.

Furthermore, we employed the following criteria to select a total of 93 bug reports 
from a set of +35000 bugs collected from Bugzilla updated between 2016/06/01 and 
2018/12/31:

–	 Firefox version must be between 48 to 51, which were the most up-to-date ver-
sions available at the time;

–	 Status must be RESOLVED or VERIFIED — other status levels potentially 
resulted in lower-quality bug reports;

–	 Priority must be P1, P2, or P3, the highest priority levels – considering the 
resources available for manual analysis, we chose to analyze the three most rel-
evant types of bugs. We assume that bugs with lower priority could lead develop-
ers to be less concerned in organizing and writing a detailed report.;

–	 Resolution field must be FIXED, which means the bug was already fixed when 
collected for our study;

–	 Severity must be “major,” “normal,” “blocker,” or “critical,” ruling out “enhance-
ments.”, which tend to encompass bug reports left for subsequent sprints.

The Status10 field indicates the current state of a bug. The Resolution field indicates 
if a bug was fixed or not. These filters reduced the number of bugs to be analyzed by 

Fig. 16   Oracle creation process

10  Bug Fields: https://​bugs.​docum​entfo​undat​ion.​org/​page.​cgi?​id=​fields.​html

https://bugs.documentfoundation.org/page.cgi?id=fields.html
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the volunteers in the study and they also allow selecting a subset of bug reports that 
are the most relevant in the entire data set.

4.4 � Procedure

Our methodology was freely inspired by the one adopted in previous studies (De 
Lucia et al. 2006, 2009). The oracle creation was carried out following the process 
depicted in Fig.  16. As the input of the scheme, two datasets of System Features 
and Bug Reports feed the PyBossa Platform11, which hosts the web applications to 
support firstly the participation of the expert, and secondly the participation of the 
volunteers. In a second moment, the intersection of volunteer’s and expert’s answers 
is produced generating a matrix of links between system features and bug reports. 
Finally, we derive by transitivity the matrix between test cases and bug reports (once 
we already possess the traces between test cases and system features) generating a 
final traceability matrix. For ground truth, we then consider each bug report manu-
ally associated with a feature linked to all manual test scripts for that feature.

After an extensive search, the Firefox team’s text artifacts are the most com-
plete documentation available for an open-source software process to the best of 
our knowledge. Its manual test scripts are explicitly linked to the artifacts they call 
features, although their bug reports do not point to the manual scripts that could 
reproduce the bug. Manually creating those links would be infeasible for experimen-
tal purposes as the number of manual test cases and bug reports combinations is 
considerable. Also, we did not have access to Firefox developers, and even if we 
had, they might not retain the information from artifacts dating from several months 
before. Our choice is inspired by a related work (Kaushik et al. 2011) which deals 
with the lack of previously-linked artifacts by using packages as a proxy for test 
cases, when mapping from bug reports.

We used the PyBossa crowdsourcing platform to coordinate the participation of 
each volunteer and aggregate his/her contributions; in this environment, it is defined 
an application or project which hosts a set of tasks. We created a set of 93 tasks, 
one for each bug report and two identical versions of these tasks were deployed to 
the volunteers’ and the expert’s applications. The workspace included the bug report 
information, including the first comment made by the bug reporter, generally detail-
ing the steps for reproduction, along with a checklist with the 19 features targeted. 
We decided to consider only the first comment, once the presence of noisy text—
from the discussions between the many involved people in the Bugzilla—can dif-
ficult the technique’s effectiveness into doing the traceability later.

The task of the participants consisted of reading the bug report and the features 
descriptions, and thus decide which ones, if any, were related to that bug report. 
Additionally, we provided a tutorial made for the application as well as links to the 
original description of the bug report in the Bugzilla and additional information 

11  PyBossa Platform: https://​pybos​sa.​com/

https://pybossa.com/
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about the features12, in case of the participants having doubts. Figure 17 shows a 
screenshot of the volunteers’ application in the PyBossa platform.

All volunteers watched a 10-minute presentation about the targeted Firefox fea-
tures and the PyBossa workspace. They had access to the training material during 
the execution of the tasks. The study was carried out with each volunteer individ-
ually, during a scheduled session of 20 minutes, when each volunteer contributed 
with around ten tasks. We considered a feature to be related or associated with a 
given bug report if at least one of the following conditions is satisfied:

Fig. 17   Volunteers’s application in PyBossa platform

Table 2   Number of traces in oracle grouped by system features

System feature num_BRs num_TCs num_Traces

New awesome bar 20 13 260
Browser customization 2 6 12
PDF viewer 1 8 8
Context menu 3 31 93
Zoom indicator 1 21 21
Downloads dropmaker 4 18 72
Indicator for Device permissions 3 16 48

12  https://​suppo​rt.​mozil​la.​orghttps://​wiki.​mozil​la.​org/​QA/https://​www.​paess​ler.​com/​manua​lshttps://​
addons.​mozil​la.​orghttps://​devel​oper.​mozil​la.​org

https://support.mozilla.org
https://wiki.mozilla.org/QA/
https://www.paessler.com/manuals
https://addons.mozilla.org
https://addons.mozilla.org
https://developer.mozilla.org
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–	 the bug report summary (title) or the bug report first comment (steps to repro-
duce) directly cites the feature(s);

–	 the bug report directly impacts any of the listed features.

If a participant detected any of these conditions, he/she should indicate the existing 
(positive) relationship in the application’s task submission, indicating thus an exist-
ing trace link between a bug report and a system feature.

4.5 � Results

The volunteers’ answers indicated the existence of 93 links between bug reports and 
system features, while the expert’s answers indicated 58. Their intersection yielded 
34 traces in total, resulting in a Kappa index of 0.46. By investigating the traces 
they do not agree on, some volunteers provided positive answers to visibly unrelated 
features; for instance, one bug report related to user data synchronization with the 
Firefox cloud system was linked, by more than one volunteer, to a scrolling feature. 
It is reasonable to assume the lack of expertise or experience is the main reason 
for differences in answers, by volunteers who are not part of Mozilla’s development 
team. This threat is further discussed in Sect. 7.

The intersection oracle traces (positive links between bug reports and system fea-
tures) are distributed as indicated in Table 2, where only seven features appear. Col-
umn num_TCs refers to the number of test cases from each Firefox feature, while 
num_BRs refers to the number of bug reports related to that feature as well as num_
Traces refers to the number of traces (num_BRs * num_TCs).

5 � Case study methodology

The case study that evaluates IR and DL techniques over Firefox data is reported in 
this section, using as input the links between bug reports and manual test cases pro-
duced as reported in the previous section.

5.1 � Study definition

We aim to evaluate traceability between bug reports and test cases in the context of 
the Mozilla Firefox, using our approach as a basis. This study discusses answers to 
the following research questions:

RQ1 Which is the most effective IR/DL technique?
For the purpose of this evaluation, effectiveness is given by Precision, Recall, and 

F2-Score . We used as baseline the Vector Space Model (VSM), which is broadly 
used in the field of Information Retrieval.

RQ2 How does effectiveness vary based on variable cuts?
This research question explores the impact of variations over combinations of 

similarity thresholds and top values over techniques’ performance.
RQ3 Which technique presents the best Goodness?
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The Goodness scale allows us to estimate the feasibility of a technique for appli-
cation into a traceability recovery process.

RQ4 Which is the best combination of cut values of each technique?
This research question explores the multiple combinations of similarity thresh-

olds and top values and allows us to estimate the best ones.
RQ5 Which technique presents the lowest Recovery Effort Index (REI) coefficient?
This question allows us to compare techniques in terms of effort saving in a trace-

ability recovery process, from the perspective of a human analyst, in terms of the 
well-known REI coefficient.

RQ6 Which technique presents the best run-time performance?
This last research question allows us to explore the performance of each tech-

nique in relation to the time of traceability recovery, in seconds.

5.2 � Context

The objects are bug reports and features from Firefox mapped in the full oracle, 
built in Sect. 4, along with test cases from which the features were extracted. As IR 
techniques, LSI, LDA, and BM25 were applied; also, two versions of Word Vector, 
as the DL techniques, based on different word embeddings. The values of Similarity 
Thresholds are in the range [0.0, 0.1,..., 0.9], considering each cut value based on the 
achieved similarity between bug reports and manual test cases. Also, we have used 
10, 20 and 40 as Top Values, once the average number of test cases linked with bug 
reports is not larger than 40, varying the parameters of each technique accordingly. 
We used just three distinct Top Values for optimization purposes of the designed 
study, so it could be executed multiple times with the available resources.

5.3 � Procedure

We did not use the system features content in the techniques application to establish 
trace links at this point, just the content of bug reports and test scripts. Each IR and 
DL technique and its preprocessing steps has its parameters defined according to the 
literature’s recommendations. For preprocessing, we used Python’s NLTK13 (Natu-
ral Language Toolkit), a well-established framework for natural language processing 
applications, applying tokenization, stop-word removal and stemming/lemmatization 
to the artifacts’ content. Additionally, the LSI’s vectorizer uses smoothing as indi-
cated in (Lucia et al. 2011, 2013) that its use can improve the traceability results. 
The same way we used in LDA’s vectorizer. We also defined a maximum number of 
features in LSI (200 features) and in LDA (400 features) which tells the technique 
to only consider the top max features ordered by term frequency across the corpus, 
improving the performance in the traceability recovery process.

13  NLTK: https://​www.​nltk.​org

https://www.nltk.org
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Next, we executed open-source implementations of the chosen IR and DL tech-
niques – Scikit-Learn Data Analysis Toolkit14 (LSI, LDA), the Gensim Library15 
(BM25), and the SpaCy Library16 (Word Vectors). All scripts we implemented are 
available online17. SciKit Learn’s LSI and LDA techniques require a vectorizer for 
manipulating tokens; the TfidfVectorizer implementation, provided by the 
framework, was used, along with NLTK’s English stopwords. Furthermore, defini-
tions for the number of components in dimensionality reduction (LSI) and the num-
ber of topics (LDA) are required; after testing several values, the best results for the 
algorithms were observed with 20 for both parameters.

Besides the number of topics ( � ), the LDA requires others hyperparameters 
(Hoffman et al. 2012), namely the � , � and � parameters. The � parameter influences 
the topic distribution per document, the � parameter influences the term’s distribu-
tion per topic, while the � parameter is the number of iterations required to the learn-
ing process to converge (Panichella et al. 2013). The � and � parameters we adopted 
is the SciKit-Learn framework’s default value: 1∕� = 1/20, such as the number of 
iterations which is � = 100.

In its turn, BM25’s implementation was executed with the recommended val-
ues for English texts  (Robertson and Zaragoza 2009; Canfora and Cerulo 2006); 
k1 = 1.2 – the effect of term frequency – and b = 0.75 the effect of document length. 
Its scoring function’s output values are outside the scale [0,1] and need to be nor-
malized, so we used the SciKit Learn’s MinMaxScaler to fit values into [0,1].

Finally, for the first version of Word Vector implementation, we used a pre-
trained neural network (word embedding) called GloVe (Global Vectors for Word 
Representation)18 (Pennington et al. 2014) based on a vector space representation of 
more than 1 million tokens with 300 dimensions19 extracted from blogs, news, and 
comments on the web in general (Common Crawl Dataset); for the second version, 
we used a word embedding trained only with the more than 35,000 bug reports col-
lected from the Mozilla’s Firefox bug tracking system, except the ones considered 
for the traceability recovery. We used two different word embeddings to evaluate the 
difference in the context of the texts for training the neural network may have over 
the traceability recovery capabilities in each version of Word Vector.

Following the preprocessing phase, the techniques are executed with tokenized 
bug reports and test cases. This process generated similarity matrices, yielding dif-
ferent BR-TC Recovered Trace Links Matrices according to multiple combinations 
of top values and similarity thresholds. As top values, we used 10, 20, and 40 – so a 
technique could recover all test cases linked with a bug report –, and a range of simi-
larity threshold values between 0.0 and 0.9 (included) with a step size of 0.1 (0.0, 
0.1,..., 0.9), which is compatible with the range of the values of interest – the ones 

14  SciKit: https://​scikit-​learn.​org/​stable/
15  Gensim: https://​radim​rehur​ek.​com/​gensim/
16  SpaCy: https://​spacy.​io/
17  https://​github.​com/​guilh​ermemg/​trace-​links-​tc-​br
18  https://​nlp.​stanf​ord.​edu/​proje​cts/​glove/
19  https://​spacy.​io/​models/​en

https://scikit-learn.org/stable/
https://radimrehurek.com/gensim/
https://spacy.io/
https://github.com/guilhermemg/trace-links-tc-br
https://nlp.stanford.edu/projects/glove/
https://spacy.io/models/en
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with similarity greater than zero, meaning closer similarity between the documents. 
Finally, the Recovered Traceability Evaluator assessed each technique using selected 
metrics and the participant’s trace links matrices (oracles).

5.4 � Metrics

Precision, Recall and F2-Score are very common metrics used in traceability recov-
ery research (Hayes et  al. 2006), and are defined in Eqs.  6, 7 and 8. TP denotes 
True Positives, FP False Positives and FN False Negatives. The F�-Score is a gen-
eral version of F-Score , and F2-Score ( � = 2 ) is an unbalanced version of F1-Score . 
( F1-Score ) assigns equal importance to Precision and Recall, while ( F2-Score ) 
assigns more importance to Recall over Precision (Berry 2017).

The Recovery Traceability Evaluator takes each BR-TC Recovered Trace Links 
Matrix ( RTMi ) from the set of recovered matrices (RTM), and compares with the 
BR-TC Participants Trace Links Matrix (Oracle) producing a triple with the Preci-
sion, Recall, and F2-Score (PRTMi

,RRTMi
,FRTMi

) measures for each one of them. For 
each different technique, it is calculated the mean value of each metric.

The Recovery Effort Index (REI) was proposed by Antoniol et al. (2002) in order 
to estimate the amount of effort required to manually analyze the results of a trace-
ability recovery technique, discarding the false positives, when comparing to a com-
pletely manual analysis. Inspired by their work, we used a free adaptation of their 
metric focusing on the multiple combinations of top values and similarity thresholds 
employed in our study; in our version, we calculated REI for each technique and 
compared the obtained Precision with the Precision obtained by the oracle created 
only by the volunteers in relation to the oracle created by the expert. The REI value 
associated with a technique is the mean of all calculated REI’s, as defined in Eq. 9. 
OrcVolPrec is the oracle Precision, Ti,jPrec is the Precision of a technique with top 

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F�-Score =(1 + �2).
Precision ∗ Recall

(�2 ∗ Precision) + Recall

Table 3   Goodness level Measure Acceptable Good Excellent

Recall >60% >70% >80%
Precision >20% >30% >50%
F
2
-Score >42.85% >55.26% >66.66%
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value i and similarity threshold j, and |Si,j| is the cardinality of the set of combina-
tions of top values and similarity thresholds.

Additionally, we discuss the obtained results of Precision and Recall based on a 
scale of Goodness defined by Hayes et al. (2005), which establish some boundaries 

(9)REIT =

∑
i,j

OrcVolPrec

Ti,jPrec

�Si,j�

Fig. 18   Vector space model (VSM) example

Fig. 19   BR-TC traceability recovery results
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for classifying the level of traceability recovery as Acceptable, Good or Excellent 
(Table  3). Additionally, we used the reference values in the scale to estimate the 
level of Goodness in relation to the F2-Score metric, identically to Merten et  al. 
(2016).

In order to have a baseline of comparison, we implemented a version of Vec-
tor Space Model (VSM) which is broadly used as baseline in field (Capobianco 
et al. 2009b, a; Oliveto et al. 2010) to classify a candidate trace between a bug 
report and test case as existent (1) or not existent (0).

The Vector Space Model (VSM) is one of the earliest and well-known mod-
els applied to Information Retrieval. It was developed by Gerald Salton in the 
1970’s and has been adapted to different applications like ranked retrieval, doc-
ument clustering and classification (Salton et  al. 1975; Buttcher et  al. 2010). 
Many models and techniques were developed after the VSM model, such as 
the LSI model, which uses the same weighting scheme (Tf-IDF) and calculates 
the similarities between a document and a query using the same cosine func-
tion between the vectorized versions of these artifacts. The difference between 
the two techniques is essentially the Singular Value Decomposition opera-
tion applied in the LSI model. Figure 18 shows the VSM traceability recovery 
scheme. The bug reports and test case used in the example are the same used in 
Sect. 2 to explain the other techniques.

In our study we employ the same preprocessing operations used in the LSI 
technique, as described previously in the Subsect.  5.3. Also, we use the same 
implementation of Tf-IDF to vectorize and calculate the scores of each term in 
the documents (bug reports and test cases.

6 � Results and discussion

We present and discuss the results from the study based on the research 
questions.

Fig. 20   PR-curves of all techniques—BR-TC context
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6.1 � RQ1–Which is the most effective IR/DL technique?

Figure 19 presents the average of the results for precision, recall and F2-Score for 
each applied IR and DL technique. LSI presented the best effectiveness for all met-
rics. Surprisingly, LDA performed better than BM25 in terms of Recall (34.9% for 
LDA and 29.4% for BM25) and F2-Score (23.4% for LDA and 20.8% for BM25) 
– we expected the state-of-the-art BM25 would achieve better performance. On 
the other hand, the Word Vector technique presented the poorest effectiveness 

Table 4   Performance of 
techniques by top values

Model Top Precision Recall F
2
-Score

LSI 10 30.89 34.39 31.31
LSI 20 28.67 50.77 37.85
LSI 40 25.72 60.72 36.37
LDA 10 14.19 20.27 18.09
LDA 20 13.89 37.02 26.19
LDA 40 11.53 46.98 25.61
BM25 10 15.58 20.41 18.61
BM25 20 13.69 29.76 22.08
BM25 40 11.67 38.03 21.72
WordVec 10 3.77 6.61 5.74
WordVec 20 3.55 12.45 8.29
WordVec 40 3.04 21.36 9.70
Cust. WV 10 11.06 8.15 7.52
Cust. WV 20 11.57 14.45 10.76
Cust. WV 40 11.00 22.21 12.25
VSM 10 15.66 10.97 10.47
VSM 20 15.18 15.71 12.62
VSM 40 14.50 19.68 12.91

Fig. 21   Topics generated by LDA technique
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concerning all metrics with Precision of only 3.5%, Recall of 13.5% and F2-Score 
of 7.9%. The Customized Word Vector, trained with the own corpora of bug reports 
from the Mozilla, achieved slightly better results when we compare it with the first 
Word Vector implementation.

When analyze in the average, all techniques — except LSI — presented lower 
precision than the baseline, which presents precision of 15.1%. However, the recall 
of LDA (34.8%) e BM25 (29.4%) is higher than VSM’s recall (15.5%). Analyzing 
through the use of F2-Score metric, the best technique is LSI. Figure  20 depicts 
curves for all techniques, along with the reference curve of the VSM model (in red). 
LSI’s values of precision and recall for almost every combination of top value and 
similarity threshold are the highest.

By aggregating the results by Top Value (10, 20, 40) (Table  4), LSI obtains 
higher precision and recall values for the highest Top Values when compared to 
VSM—this indicates the fixed cut is influencing results. Additionally, for Top 40, 
the LSI obtained in average an Acceptable level of Goodness ( Precision > 20 % and 
Recall > 60% ), suggesting its feasibility for semi-automatic traceability recovery in 
projects such as the Mozilla Firefox.

The LDA technique was able to reproduce with trustworthiness the topics as 
system features, so the technique could split the test cases into groups that were 
very close to the features. Nevertheless, the technique was not able to achieve bet-
ter results of Precision and Recall due to the low similarity characterized for those 
groups, and also due to some system features keywords that end up into the same 
topics. For example, bug report 1357458, which refers to the New Awesome Bar 
feature, was correctly linked to the feature’s test cases, but also to the Text to Speech 
in Reader Mode test cases, because the tokens awesom, reader, speech, and bar all 
belong to the same topic in the technique’s internal data structure, as illustrated by 
the highlighted tokens in Fig. 21.

Results from Word Vector were the lowest. The technique attributed high values 
of similarity for any pair bug report-test case, with a mean value of 0.91 and a stand-
ard deviation of 0.035. The technique was not able to capture the nuances between 
documents and assign diverse weights for the most relevant words in the text, not 
distinguishing relevant from irrelevant test cases for a given bug report. Therefore, 
new strategies still need to be elaborated for this kind of technique. As future work, 
we intend to explore variations of weighting schemes for specific targeted words 
in the vocabulary or make use of enhancement strategies (Borg et al. 2014) which 
better characterize the system features, so higher scoring values could be attributed 
to them. Also, strategies of preprocessing such as the one applied by Merten et al. 
(Merten et al. 2016) could be replicated into our context of traceability (see Sect. 8).

Table 5   Missed and captured 
traces: scenario I

Top Missed traces Captured Traces

10 196/514 = 38.13% 5/514 = 0.97%
20 99/514 = 19.26% 19/514 = 3.69%
40 31/514 = 6.03% 55/514 = 10.7%
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A recommended strategy to improve the Word Vector effectiveness is training a 
new word embedding with the texts from the context the model/technique is applied. 
This was made and the result is that, for the Customized Word Vector technique, the 
metrics improved. We noticed the mean similarity value in the Customized Word 
Vector technique is 0.41 and the standard deviation is 0.16, which means the tech-
nique did better in differentiating similarities in nearly all pairs of a bug report and 
test case. However, the Customized Word Vector was not successful in recovering 
the traces as the Word Vector, in a way that complementary strategies still need to be 
adopted.

6.2 � RQ2–How does effectiveness vary based on variable cuts?

For this research question, we analyzed two different scenarios considering the range 
of similarity thresholds and top values. Due to the high number of combinations for 
the above parameters, we only select two scenarios to discuss: recall promoted over 
precision (similarity threshold as 0.0) and precision promoted over recall (similarity 
threshold as 0.9).

6.2.1 � Scenario I: recall first

Table 5 shows the missed and captured traces on this scenario, for each top value. 
31 traces (6.03%) were missed for the largest cut (40); they are related to three sys-
tem features: Context Menu, Downloads Dropmaker, and New Awesome Bar, This 
phenomenon is also verified in the other Top Values, for which the missed traces are 
mostly related to the New Awesome Bar feature (nearly 51% for Top 10 and 63.3% 
for Top 20). These results are coherent with the number of traces related to these 
features in the oracle, as detailed previously in Table  2, where more than half of 
the traces (260 out of 514 or 50.5%) are linked to the New Awesome Bar, 93 (18%) 
to the Context Menu, and 72 (14%) to the Downloads Dropmaker. We estimate the 
larger number of missed traces is mainly due to the fixed cuts; the number of missed 
captured traces drops significantly with the increasing of the Top Value (only 6.03% 
in Top 40).

To better understand the missed traces, we analyzed six bug reports linked to 
those traces:

–	 BR_1276120 (New Awesome Bar): it presents no relevant keywords. The 
reporter used technical words that are distant to the vocabulary of test cases, such 
as “searchbar” and “urlbar”;

–	 BR_1279143 (New Awesome Bar): the description contains the word “awesome-
bar” written incorrectly;

–	 BR_1296366 (New Awesome Bar): the bug description is very brief and the title 
contains the word “awesomebar”, also written incorrectly;

–	 BR_1293308 (New Awesome Bar): contains technical words, such as “urlbar”, 
and a synonym “location bar”, both not used in the test cases descriptions;
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–	 BR_1270983 (Context Menu): this bug was probably reported automatically as a 
result of automatic test failure. Despite the presence of the word “contextmenu” 
(incorrectly written) in the title, the technique was not able to link it with the test 
cases of this system feature;

–	 BR_1432915 (Downloads Dropmaker): this bug report lacks important fields, 
such as the steps to reproduce and expected results. The reporter provided a very 
short description of a technical issue while downloading files. Despite the pres-
ence of the keyword “downloading”, the techniques were not able to link this bug 
report with the test cases relative to this feature that have shorter descriptions.

Regarding the captured traces, less than 15% were captured by all techniques, even 
for the largest cut. 26∕55 = 47.27% of the traces linked with the features Context 
Menu, 11∕55 = 20% of Indicator for Device Permissions, and 8∕55 = 14.54% of 
New Awesome Bar were captured in Top 40.

Test cases related to system features such as Context Menu, Indicator for Device 
Permissions, and New Awesome Bar, present more words than the average, improv-
ing the inference to related bug reports. Additionally, their test cases commonly 
employ keywords that are very specific to the feature itself, often cited in the bug 
reports. In those cases, developers seemed to be more integrated, using similar 
vocabulary.

Also for Scenario I, True Positives (TP), False Positives (FP), and False Nega-
tives (FN) brought up interesting discussion points. These results are depicted in 
Table 6.

The number of true positives of the LSI technique is considerably higher than 
the other techniques; for top 40, the technique was able to recover 88.33% of the 

Table 6   Traceability recovery results for scenario I

TP FP FN Precision Recall FScore
Top Model

10 BM25 133 778 381 14.6 25.88 22.41
Customized Wordvector 55 855 459 6.04 10.7 9.27
LDA 117 793 397 12.86 22.76 19.72
LSI 221 689 293 24.29 43 37.26
Wordvector 34 876 480 3.74 6.61 5.73

20 BM25 213 1609 301 11.69 41.44 27.46
Customized Wordvector 103 1717 411 5.66 20.04 13.29
LDA 222 1598 292 12.2 43.19 28.64
LSI 356 1464 158 19.56 69.26 45.92
Wordvector 64 1756 450 3.52 12.45 8.26

40 BM25 303 3339 211 8.32 58.95 26.59
Customized Wordvector 166 3474 348 4.56 32.3 14.57
LDA 302 3338 212 8.3 58.75 26.51
LSI 454 3186 60 12.47 88.33 39.85
Wordvector 110 3530 404 3.02 21.4 9.66
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relevant links. The LSI correctly found 75 traces exclusively, which happened, for 
LDA, BM25 and WordVector, only 7, 6, 2 times, respectively. Through a qualita-
tive analysis, we noticed LSI surpassed common difficulties, such as vocabulary 
differences between test cases and bug reports, as well as misspelled words, such 
as “awesomebar”, which is referred to as “awesome bar” in the test cases. On 
the other hand, the other techniques were able to hit some hard-to-trace links. 
For example, LDA correctly identified a link between the bug report 1276120, 
which has two “incorrect” words (“urlbar” and “searchbar”) and no other indica-
tion from the related feature (New Awesome Bar).

LSI presented less False Positives (FP) than any other technique, while Word 
Vector is the first in FPs. Although the number of FPs is similar for all tech-
niques – the number of FP grows identically with the increasing of the Top Value 
–, they incorrectly indicated traces relative to distinct system features. There 
are some illustrative examples of false positives by LSI, with top value 40. Bug 
report “Show last sync date tooltip on Synced Tabs sidebar device names” is not 
related to feature Indicator for device permissions. However, a link was reported 
to nearly every test case from this feature. Probably the technique was misguided 
by the presence of the word “device”, understood differently in the test cases 
and bug report contexts. Also, bug report 1430603, briefly describing a techni-
cal issue involving implementation, presents blank recommended fields (steps to 
reproduce, expected results, etc.), is linked to test cases from eight features. We 
estimate this is due to the large size of the cut.

Regarding False Negatives (FNs), numbers are considerable. In a detailed 
analysis, we detected a large overlap among the techniques. For instance, LSI and 
BM25 yielded no exclusive false negatives in Top 10. By analyzing LDA’s exclu-
sive FNs, for top 40, we observe that 13 out of 21 of its omissions involved a 
single bug report, while 8 out of 26 involved a single test case. This bug report 
– “Telemetry data from Search bar is not properly collected when searching in 
new tab from context menu” – derives all FNs related to feature Context Menu. 
Our analysis shows this bug report is also related to the New Awesome Bar feature 
– the issue mainly relates problems in recording the search bar telemetry data –, 
which may have misguided the LDA technique in recovering the traces. Besides, 
it was difficult for LDA to trace links to Test Case “Search State - Drop down”, 
from feature New Awesome Bar. We believe the assigned topics were insufficient 
to grant a minimum similarity score between each of the eight bug reports and 
the test case, so the links could be traced into the top 40 cut. A probable cause for 
that maybe the longer text in this test case, if compared to other test cases from 
this feature.

Table 7   Missed and captured 
traces: scenario II

Top Missed traces Captured traces

10 414/514 = 80.54% 0/514 = 0.0%
20 382/514 = 74.32% 0/514 = 0.0%
40 344/514 = 66.93% 0/514 = 0.0%
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On the other hand, the Word Vector technique exclusively missed traces concern-
ing all the seven relevant features, except Context Menu. However, the majority of 
missed traces is split between two features: Downloads Dropmaker (14) and Indica-
tor for device permissions (11), being four bug reports for the former and two bug 
reports to the latter. Some of these bug reports may be considered easy to trace, such 
as bug report “Search with default search engine stops working”, which is correctly 
traced by all other techniques. The Word Vector technique seems not to be able to 
distinguish the relevant and irrelevant artifacts, even for major cut values. The algo-
rithm to calculate the similarity between two documents is very naive and ignores 
the distinct weights the words may present.

BM25 uses the bm25 weighting scheme for estimating the weight of each word 
considering its source document and the entire corpus, achieving better Recall, hav-
ing four exclusive FNs traces for top 40. All these traces were related to the Context 

Table 8   Traceability recovery results for scenario II

TP FP FN Precision Recall FScore
Top Model

10 BM25 39 150 475 20.63 7.59 8.69
Customized Wordvector 0 1 514 0 0 0
LDA 31 127 483 19.62 6.03 7
LSI 23 26 491 46.94 4.47 5.46
Wordvector 34 802 480 4.07 6.61 5.88

20 BM25 39 150 475 20.63 7.59 8.69
Customized Wordvector 0 1 514 0 0 0
LDA 37 159 477 18.88 7.2 8.21
LSI 23 26 491 46.94 4.47 5.46
Wordvector 64 1602 450 3.84 12.45 8.6

40 BM25 39 150 475 20.63 7.59 8.69
Customized Wordvector 0 1 514 0 0 0
LDA 37 168 477 18.05 7.2 8.18
LSI 23 26 491 46.94 4.47 5.46
Wordvector 109 3204 405 3.29 21.21 10.15

Fig. 22   Comparison of exclusive true positives – top 10 (left) and top 40 (right)
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Menu system feature and originated from only two bug reports. One of them has 
also derived all exclusively missed traces of the LDA technique related to the Con-
text Menu feature. This suggests this bug report may be especially hard to track, per-
haps because it is related to two different system features. In this context, it is more 
difficult for the techniques to recover all the links.

6.2.2 � Scenario II: precision first

Table  7 shows the missed and captured traces on Scenario II, for each top value. 
By setting the similarity threshold to 0.9, we enforce a high level of similarity for a 
reported link, so Precision scores tend to be higher than in Scenario I. As a conse-
quence, there was an increase in the number of missed traces by the techniques; in 
general, test cases are made up of short texts, presenting insufficient words to grant 
high levels of similarity with bug reports.

Regarding the empty set of captured traces, we raise the hypothesis we need var-
iable similarity thresholds for the traceability recovery tasks between bug reports 
and test cases and they need to be adjusted for each technique individually. This 
hypothesis was already verified and experimented by other authors with works in the 
field (Antoniol et al. 2002; De Lucia et al. 2006, 2009), despite the difference in the 
traced artifacts. The overall results for Scenario II are detailed in Table 8, with the 
selected top values. The overall results for Scenario II are detailed in Table 7, with 
the selected top values.

All techniques presented very low Recall, mostly below 10%. This is a critical 
issue since high Recall is a primary requirement for practical applications.

For the True Positives (TP), Customized Word Vector presented no true posi-
tives—zero—, while BM25 and Word Vector had the highest scores. For Top 10, 
BM25, LDA and Word Vector present a similar number of true positives; Word Vec-
tor was able to improve its performance with the increase in the Top Value, while 
the other techniques did not. The technique assigned high similarity scores to nearly 
all pairs of bug reports and test cases. The average similarity score is 0.907, with a 
standard deviation of 0.03, so it is expected that, as top values increase, the num-
ber of true positives also increases. On the other hand, Customized Word Vector, 
with average similarity score 0.41 and standard deviation 0.16, recovered no correct 
traces.

As long as Word Vector and LDA recover more trace links with the increasing of 
the Top Values, the number of exclusive traces recovered correctly by the other tech-
niques decreases, as shown in Fig. 22, where the traces are split by system feature 
(y-axis) and technique (x-axis). Note that LDA and BM25 “lose” traces from Top 10 
(left-hand side) to Top 40 (right-hand side). Also, distinct system features are related 
to the recovered traces by each technique, indicating their inclination in detecting 
particular traces. For instance, in Top 10, BM25 had nine exclusive traces related to 
feature Downloads Dropmaker, while LDA had the majority (19) of traces linked to 
New Awesome Bar, and nearly half of the Word Vector traces are linked to the Con-
text Menu feature. These results indicate the potential value of a technique combina-
tion to address the traceability problem. This hybrid technique in such a scenario 
and with a Top Value of 10 would hit 78 traces out of the 514 possible, for example.



1 3

Automated Software Engineering (2021) 28:8	 Page 35 of 46  8

Regarding False Positives (FP), while LSI had the lowest number of true 
positives, it presents the highest Precision scores. This number grows for every 
technique, except the LSI, which maintained the same 26 false positive recov-
ered traces, independently of Top Value (Table 8). Word Vector tends to assign 
high values of similarity between the test cases and bug reports even if they are 
not related, leading to many FPs, increasing along with top values. For instance, 
the bug report “Right click on bookmark item of ’Recently Bookmarked’ should 
show regular places context menu” is related with features New Awesome Bar 
and Context Menu, but the technique assigned high similarity scores (above 0.91) 
with feature Windows Child Mode. Differently from Scenario I, the FP results are 
not distinguishable for each technique, in terms of recovered system features.

For Scenario II, all techniques had poor False Negative (FN) results; Recall 
values were below 10% , except for Word Vector in Top 20 and 40, such as shown 
in Table  8. Also, all techniques had no exclusive false negative traces for any 
Top Value, which is mainly due to the fact the Customized Word Vector missed 
all traces. The results indicate the similarity threshold of 0.9 is not adequate for 
every technique, and an appropriate range must be carefully determined, in terms 
of the calculated results.

Table 9   Goodness scale for each 
technique

Model Precision Recall FScore Goodness

BM25 13.65 29.41 20.81 –
LSI 28.43 48.63 35.18 –
LDA 13.29 34.86 23.38 –
Wordvector 3.46 13.47 7.91 –
Customized Wordvector 11.22 14.94 10.18 –

Fig. 23   LSI and LDA similarity threshold variation



	 Automated Software Engineering (2021) 28:8

1 3

8  Page 36 of 46

6.3 � RQ3–Which technique presents the best goodness?

Adopting the Goodness scale, we calculated the levels of acceptance of each technique 
based on the values of Precision and Recall and the results are shown in Table 8. None 
of the studied techniques presented a satisfactory level of Goodness when we consider 
average Precision and Recall. Nevertheless, as explained in Sect. 6.4, some combina-
tions of Top Values and Similarity Thresholds grant an Acceptable level of Goodness 
for the LSI technique and one of them is identified as the most adequate one: Top Value 
40 and Similarity Threshold 0.5 (Table 9).

The results indicate that LSI—using the identified best combination—is suitable for 
application in real and large projects such as the Mozilla Firefox. The human analysts 
or engineers can recognize the correct and incorrect traces between a pair of a bug 
report and test case, as well as to recover a considerable part of the trace links when 
using a traceability recovery tool with the LSI technique in their daily tasks.

Fig. 24   BM25 and word vector similarity threshold variation

Fig. 25   Customized word vector similarity threshold variation



1 3

Automated Software Engineering (2021) 28:8	 Page 37 of 46  8

6.4 � RQ4–Which is the best combination of cut values of each technique?

In order to evaluate the hypothesis of existence of a best similarity threshold and 
to estimate it into the range of thresholds, we conducted an analysis whose results 
are shown in Figs.  23 and 24 and 25. Figure  23 depicts the effects of the varia-
tion of the similarity threshold in the LSI and LDA techniques, while Fig. 24 shows 
the effects over the BM25 and Word Vector, and Fig. 25 is relative to the Custom-
ized Word Vector. We can visualize in each plot the Precision (in blue), Recall (in 
green), F2-Score (in brown), and the reference value for F2-Score (in red), so we can 
determine the level of Goodness. F2-Score values below this reference can not be 
considered Acceptable; the other levels of Goodness were omitted once none of the 
techniques achieved them and to not pollute the charts with excess of information.

Analyzing the Figs. 23, 24, and 25, we can visualize a clear difference between 
the behavior of Precision and Recall scores in the evaluated techniques. In the IR 
ones, the Recall scores tend to fall below the Precision scores beyond some similar-
ity threshold independent of Top Value. For example, observe the turning point of 
the LDA technique for Top 10 near 20% for Precision and Recall and the similarity 
threshold of 0.8. Whereas the Word Vector technique practically suffers no influ-
ence from the similarity threshold, but from the Top Values and presented distinct, 
although constant, values of Precision and Recall for each Top Value (10,20,40) 
– note the straight lines in the Word Vector plots.

When we look at the F2-Score values, we see the most of them are below the 
minimum value of reference (red line). This value split Acceptable techniques 
from the not satisfactory ones. The F2-Score of all techniques is always below the 
reference value for every similarity threshold. However, the LSI technique pre-
sented some values which can be considered Acceptable: in Top 20, the similarity 

Table 10   REI values Model REI

BM25 2.06
LSI 0.90
LDA 2.19
Word Vector 11.51
Customized Word Vector –

Table 11   Performance times of 
each technique in seconds

Technique Time(s)

LSI 2.65
LDA 3.28
BM25 2.29
Word Vector 42.11
Cust. Word Vector 96.8
VSM 1.59
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thresholds 0.0 to 0.5; and in Top 40, the similarity thresholds 0.4 to 0.6. In all 
these cut values the technique is Acceptable, which the highest level of accept-
ance for the combination Top 40 and Similarity Threshold 0.5—this combination 
has a Recall around 70% and Precision near 23%.

6.5 � RQ5–Which technique presents the lowest recovery effort index (REI) 
coefficient?

The Precision of the volunteers’ oracle (produced only by the volunteers) in rela-
tion to the expert’s oracle - using it as a ground truth - is 42.66% . This score is 
used to calculate REI values. We summarize the obtained REI values in Table 10. 
Since REI is inversely proportional to Precision scores, and the LSI had the 
largest Precision in this study, it presented the lowest REI. The obtained results 
suggest LSI is the less time-consuming technique, regarding the analysis time 
required by traceability recovery tasks. LDA and BM25 require nearly as double 
time, whereas the Word Vector was eleven times slower. We did not calculate the 
REI coefficient for the Customized Word Vector once it is not defined for Preci-
sion values equal to zero, such as happens when the similarity threshold is 0.9. 
An important observation must be highlighted: we make a free association of REI 
values with the time required for analysis, such as did the authors of the original 
coefficient, but we cannot attribute statistical significance to it without further 
study.

6.6 � RQ6–Which technique presents the best run‑time performance?

Table  11 shows the execution times of each technique, in seconds. We executed 
all techniques using an AMD Ryzen 5 3600 6-core processor machine, with 23GB 
RAM memory and Ubuntu 20.04 LTS operational system. The most efficient tech-
nique is the baseline VSM model, which took 1.59 seconds to recover the trace-
ability links. Next, the BM25 model took 2.29 seconds to run, followed by the LSI 
model, with 2.65 seconds. As expected the VSM model took less time to recover the 
traceability links than the LSI model, since the latter is an improved version of the 
first, where the mathematical operation of Singular Value Decomposition (SDV) is 
applied to reduce the sparsity of the vectors used, although the operation requires 
an additional computational effort the final result is positive to the LSI model as 
discussed in the previous research questions. It is important to highlight the long 
time took by the Deep Learning techniques to recover the traceability links. This is 
a inherent phenomenon due to the huge amount of calculations made by the trained 
neural network to make a single inference, i.e. recover a trace link. A critical factor 
to this performance is the fact that the inferences were made in a CPU rather in a 
GPU as is very common in the use of such techniques. Additionally, they also have 
a bigger memory footprint, which is related to the size in memory of the trained 
models.
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6.7 � Discussion

In general, Recall levels from four out of five techniques were below 40% – when we 
considered the average of the combinations of Top Values and Similarity Thresholds 
for each technique—, while Precision levels remained below 30% for all techniques. 
In summary, when looking at the average values for the studied metrics, none of the 
techniques seem to have satisfactory levels. These results suggest the terms used by bug 
reporters do not seem to match the terms used by Mozilla’s QA team in test cases. Most 
bug reporters are not in Mozilla’s test teams, so the vocabulary used by the testers may 
not be present in most of the bug reports. The difference in vocabulary is a challenging 
problem that must be addressed and analyzed for the specific context of traceability 
between bug reports and test cases.

However, taking different combinations of top values and similarity thresholds, LSI 
presents an Acceptable Goodness level for some of them. The best result was for the 
combination Top Value 40 and Similarity Threshold 0.5, where the Recall was nearly 
70% and the Precision nearly 23%. The other four techniques had poor effectiveness 
in any combination. Nevertheless, the techniques probably complement each other, 
at least in terms of true positives, which suggests better effectiveness using a hybrid 
technique.

Regarding the application of DL techniques, none of the variations applied achieved 
a significant result, neither Word Vector—which used a generic word embedding—nor 
Customized Word Vector—which used a word embedding trained with texts from the 
software engineering context; they are outperformed by all IR techniques for all met-
rics. Further studies must be conducted to prove the efficiency of this kind of technique 
for traceability tasks and involving bug reports and test cases as textual artifacts.

Also, there is still a considerable gap in the traceability recovery task for this type of 
traced artifacts. The results did not achieve Excellent for Goodness, either for Precision, 
Recall, or F2-Score . The current level of Goodness grants an effective using of the LSI 
technique into a semi-automatized traceability recovery process, with human analysts 
or engineers working with the provided software tools for traceability recovery between 
bug reports and test cases. We estimate the effort required from the analyst using LSI 
is the smallest comparing with the other techniques and represents nearly half of the 
effort required when using the second best (BM25). However, this still needs further 
studies.

It is essential to highlight the relevance of traceability recovery between these two 
types of artifacts, especially in agile software development environments, where test 
cases are the most up-to-date documentation of the software, being fundamental for the 
software maintenance and evolution. Therefore, efforts should be continuous to reach 
the automatic and precise linking with the bug reports, thus increasing the robustness 
of software development process and quality of the final product.
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7 � Threats to validity

One external threat is that the volunteers of the empirical studies do not partici-
pate from the Mozilla’s testing and development teams so that they may classify 
some trace links incorrectly. However, this threat must be considered for deeper 
studies in the field, once errors in the creation of the oracle traceability matrix 
can exist even when it is created by developers and testers from the software pro-
ject itself.

Similarly to volunteers, the expert also had no participation in Mozilla’s devel-
opment and testing teams. Although, he had previous knowledge of information 
retrieval and deep learning techniques, and this could have caused some bias in 
his answers in the first empirical study. To eliminate this bias, we used the inter-
section of the volunteers’ answers and the expert’s ones, which implies in the 
need of agreement to accept an answer as right. Another threat is that were used 
only the Firefox artifacts to draw the conclusions, which limits the generalization 
of the conclusions. We intend in future work to extend the approach to other sys-
tems so that we can claim more generality for the conclusions.

Errors of implementation not detected in the script used in the empirical study 
for data processing and analysis are a threat to internal validity. However, we 
addressed this threat by double-checking the produced software and eliminating 
existing programming errors previously to the analysis phase. Additionally, we 
open-sourced our code which is available online. Furthermore, due to recording 
failures in the application used for the empirical study, two out of the 93 tasks 
needed to be discarded. Therefore, two bug reports were also discarded. We 
believe this represents a minor threat to our conclusions and does not impose a 
significant risk to it given the amount of remaining tasks/bug reports with correct 
answers.

Manual test scripts, especially for agile teams, are considered a basis for 
requirements (Bjarnason et al. 2016). In those scenarios, no requirement descrip-
tions are produced or maintained, except for user stories and backlogs, which 
are not detailed enough to encompass complex business upon which testers rely 
their validation efforts (Bjarnason et al. 2016; Sabev and Grigorova 2015) before 
sprint deliveries. In fact, despite the elevated cost of manual testing, automated 
system tests are rarely convenient due to the high rate of requirement change 
requests  (Eder et  al. 2014), as is the case of Firefox — in this case, regression 
system tests mostly follow manual scripts. In such a scenario, bug reports may 
not present a one-to-one correspondence with manual test scripts; those bugs 
often result from exploratory tests or automated unit/integration tests executed 
within a Continuous Integration (CI) context.

In this study, we argue that, although this formal link between bug reports and 
test cases is probably missing, the process could still benefit from a recommenda-
tion tool relating the bug report text with the text of a set of manual test scripts. 
By recommending this set to the testers, that tool would be essential to decrease 
the search scope for the required manual analysis of the bug’s (indirect) impact 
on the system requirements. In particular, we agree with Hayes et al. (Hayes et al. 
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2006), who observed that IR techniques do not replace the human-decision maker 
when linking the artifacts. Still, instead, they should be used as candidate list 
generators. We believe our study could extend the knowledge on how traditional 
and state-of-the-art techniques support this approach to system tests. We assume, 
nonetheless, that a precisely built ground truth, including one-to-one mapping 
between those artifacts, would bring a more accurate account of the techniques’ 
performance. We intend to keep a continuous effort to find publicly-available 
documentation from software teams, providing us with more complete artifacts 
and links.

Another problem that could be raised is related to the number of features shared 
between a bug report and a manual test case. In fact, in our study, a link between a 
bug report and a manual test case is traced whenever they share a system feature. 
So, it is possible to derive a sense of “strength” of a link between two artifacts based 
on the number of system features shared among them, but in our study we have not 
focused on this issue because there is no case of a bug report related to more than 
one system feature and each test case is exclusively related to a single system feature.

Despite the “strength” of the link between a bug report and a test case, we con-
sider that it is worth to execute the entire suite of tests related to that feature if a bug 
report is linked and the code was changed during bug fixing - so the software quality 
is assured and new failures are detected before the new release. It is important to 
notice also that the number of tests (Sect. 4 Table 2) and complexity to execute them 
is not inhibitive based on the data we analyzed on in our study.

8 � Related work

Comparisons between techniques in the traceability recovery context were car-
ried out in previous studies. Falessi et  al. (2010) characterize and compare differ-
ent IR techniques, with distinct parameters, for equivalent/redundant requirements 
identification. The focus is on requirements documents for an industrial system, in 
which five evaluation metrics (Precision, Recall, ROC area, Lag, and Credibility) 
were employed. They analyze algebraic models and vary term extraction strategies, 
weighting schemes, and similarity metrics (Cosine, Dice, and Jansen-Shannon); by 
testing many combinations of these variables, they propose the most efficient for the 
metrics they selected. Our proposal evaluates a larger amount of IR and DL tech-
niques, not only algebraic techniques comparing their effectiveness in terms of Pre-
cision, Recall and F2-Score , providing a broader perspective over the technique’s 
differences.

Similarly, Mills (2017) applies a set of popular machine learning models or tech-
niques – except Neural Networks, different from our study – for classifying pos-
sible trace links as positive (1) or negative (0), for a pair of textual software arti-
facts, which did not include bug reports to test cases. An extensive set of variables, 
extracted from historical data about the traced artifacts, was used for the training of 
the models/techniques, and a comparison between them is drawn in terms of Recall 
and False Positive Rate (FPR). The author uses several artifacts such as use cases, 
test cases, and source code, but not bug reports.
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Regarding bug reports and test cases, Kaushik et  al. (2011) study traceability 
recovery for a private industrial system using Precision, Recall, and F1-Score met-
rics. They select LSI and LDA as IR techniques – they did not use BM25 and DL 
techniques – and set up a constant similarity threshold of 0.7 for trace links, and 
a range of top values (2,5,10) – our study was performed in more diversified set-
tings and with a larger amount of bug reports. In their study, they have access to a 
tester who created the oracle, while ours was built with the aid of volunteers, as a 
superset of all answers. This difference grants them greater oracle reliability when 
compared to our approach, although it is not necessarily better, once relies only 
upon one person’s answers. Also, they discuss two scenarios for linking test cases 
to bug reports: one considering the test case’s folder name (as we did with system 
features) and another considering only the direct match between the recovered traces 
and the oracle traces. In their results, LSI performs better than LDA, corroborating 
with our results. Concluding their work, the authors observed the better effective-
ness of LSI over the LDA as we did, especially for the first scenario (using folder’s 
names). We can not directly compare our results with theirs, once their conclusions 
were expressed only in terms of F1-Score , while ours do not calculate this metric, 
but F2-Score.

Merten et al. (2016) analyze a set of five IR techniques for recovering of trace-
ability links from bug reports to bug reports in four different opensource projects. 
The selected techniques were VSM, LSI, BM25, BM25+ and BM25L with and 
without the application of preprocessing steps (stop words removal, stemming, 
etc.), and also evaluating different weighting values attributed for distinct parts 
of the bug report, for example, title, source code, stack trace, comments, etc. The 
authors pursued similar metrics to ours: Precision, Recall, and the Goodness scale. 
They also compared two versions of F-Score : a balanced version ( F1-Score ) and an 
unbalanced version ( F2-Score ), which gives more importance to Recall over Preci-
sion. The baseline for comparison between the techniques adopted by them was the 
BM25 technique, while we decided to use a ZeroR classifier. The conducted study 
verifies the superior effectiveness of the LSI technique over the BM25 when involv-
ing bug reports textual analysis. However, all techniques perform poorly as in our 
study. Although we make traceability between different types of artifacts, we may 
observe similar results, given the similar nature of the query artifacts (bug reports). 
They also highlight the difficulties to track bug reports, such as the presence of noise 
in the text, such as hyperlinks, source code, stack traces, and repetitive information.

9 � Conclusions

In this paper, we report a case study in automatically recovering traceability links 
between bug reports and manual test cases, through the use of system features to 
bridge the gap between those two types of artifacts. We compared the effective-
ness of these techniques and observed the effectiveness of a traditional technique 
(LSI) in terms of well-known metrics. We have also assessed the applicability 
of a DL technique (Word Vector) for traceability recovery, which presented the 
poorest results. Although the results may suggest the using of the available IR 
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and DL techniques for automatic traceability recovery, we checked that, in real 
and large software projects such the Mozilla Firefox, it is still unfeasible for com-
plete automation. Our proposal and studies reveal the strengths and weaknesses 
of each applied technique and identified the feasibility of the LSI technique using 
some combinations of Similarity Thresholds and Top Values. Once we set up the 
LSI technique with these combinations – preferably the best one –, into an appro-
priate tool, then it may aid human analysts and engineers in semi-automatized 
traceability recovery tasks.

We observed that the usage of a common vocabulary and the proposal of a guide 
for writing the bug reports and the test cases can greatly benefit the process of trace-
ability recovery. The best identified technique—LSI—has the potential to be adopted 
in various scenarios in a software development process. For instance, it could be 
used to aid human analysts to evaluate the impact of changes and to help testers to 
select and prioritize test cases related to a determined bug report. Currently, the only 
requirements for using it is to provide manual test cases and bug reports in a textual 
format.

The present work has some limitations concerning the ground truth definition, the 
technique’s parameters selected, and the statistical significance of the results. For the 
ground truth, we tried to minimize the errors of generation by taking the intersec-
tion between the answers of volunteers and an expert, but a more robust generation 
process must be pursued. Additionally, a deeper parameter searching process could 
have been carried out, so the applied techniques would adopt the most adequate 
parameters for the software artifacts in the data set. Besides that, the statistical sig-
nificance would give more robustness to the choice of the parameters, and also to the 
studies results, which would leverage the effectiveness comparison between the vari-
ous techniques. However, statistical tests were not used for consolidating the results 
obtained, so we have no indication of the difference between the techniques from a 
statistical standpoint. The use of confidence intervals, for example, could have sug-
gested a higher similarity between the effectiveness of the techniques.

The research work reported here opens a few investigation paths to follow in the 
future. One is to similarly compare with other techniques, in particular, DL tech-
niques using neural networks trained with software engineering domain data sets, 
extending the analysis for systems from both the open-source community and pri-
vate sector. It is essential to consider, as well, the traceability of other software pro-
cess artifacts, such as textual requirements, user stories, acceptance tests. It would 
thus provide evidence on the generalizability of the study’s result.

Another path is the application of “enhancements” strategies with the LSI tech-
nique, such as building a thesaurus to deal with synonyms, clustering of documents/
terms, phrasing, or query expansion techniques. Finally, another option is to evalu-
ate the effectiveness of a hybrid technique created from the answers (returned traces) 
of the adopted techniques. Hopefully, the number of mistakes (false positives and 
false negatives) may be diminished if compared with the individual effectiveness 
of each technique. As we observed during this case study, the techniques tend to hit 
and miss different sets of traces, so that we suppose a combined version of them can 
compensate the failures of each technique individually, and also boost the number of 
correct traces recovered.
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