
Vol.:(0123456789)

Automated Software Engineering (2021) 28:1
https://doi.org/10.1007/s10515-020-00279-2

1 3

Considering dependencies between bug reports
to improve bugs triage

Rafi Almhana1 · Marouane Kessentini1

Received: 18 January 2020 / Accepted: 7 November 2020 / Published online: 7 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Software development teams need to deal with several open reports of critical bugs
to be addressed urgently and simultaneously. The management of these bugs is a
complex problem due to the limited resources and the deadlines-pressure. Most of
the existing studies treated bug reports in isolation when assigning them to devel-
opers. Thus, developers may spend considerable cognitive efforts moving between
completely unrelated bug reports thus not sharing any common files to be inspected.
In this paper, we propose an automated bugs triage approach based on the dependen-
cies between the open bug reports. Our approach starts by localizing the files to be
inspected for each of the pending bug reports. We defined the dependency between
two bug reports as the number of common files to be inspected to localize the bugs.
Then, we adopted multi-objective search to rank the bug reports for programmers
based on both their priorities and the dependency between them. We evaluated
our approach on a set of open source programs and compared it to the traditional
approach of considering bug reports in isolation based mainly on their priority. The
results show a significant time reduction of over 30% in localizing the bugs simul-
taneously comparing to the traditional bugs prioritization technique based on only
priorities.

Keywords Bugs management · Bug triage · Bug localization · Bug prioritization ·
Search-based software engineering · Software quality assurance

 * Marouane Kessentini
 marouane@umich.edu

 Rafi Almhana
 ralmhana@umich.edu

1 University of Michigan, Dearborn, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00279-2&domain=pdf

 Automated Software Engineering (2021) 28:1

1 3

1 Page 2 of 26

1 Introduction

Software maintenance involves, typically, localizing and fixing a large number
of defects that arise during development and evolution of systems (Zhang et al.
2016). Localizing these software defects is expensive and time-consuming pro-
cess which typically requires highly skilled and knowledgeable developers of the
system. The localization process includes a manual search through the source
code of the project in order to localize a single bug at a time (Jones 2008). The
number of these bug reports can be large. For example, MOZILLA had received
more than 420,000 bug reports (Bettenburg et al. 2008). These reports are impor-
tant for managers and developers during their daily development and mainte-
nance activities including bug localization (Fischer et al. 2003). Due to the large
number of reported bugs in successful projects, it is critical to efficiently manage
them to improve developers productivity and quickly localize and fix these bugs
(Zou et al. 2018).

Each bug report has a set of attributes such as the bug’s summary, description,
reported date, reporter’s information, bug’s severity, and bug’s priority. Accord-
ing to the Bugzilla’s definition about severity and priority, severity indicates
how severe the problem is, and it ranges from blocker (‘application unusable’) to
trivial (‘minor cosmetic issue’). Priority options ranges from P1 (the highest) to
P5 (the lowest) whereas severity could be any of the following options: blocker,
critical, enhancement, major, minor, normal, and trivial.

In general, bug triage process consists of two phases. The first phase involves
mainly the project managers and project owners, the goal of this step is to under-
stand the business needs and/or the urgency of some of the bugs, the outcome
would be to assign severity values on the bugs. The second phase involves the
project managers and the developers (scrum planning meeting) in which manag-
ers and developers review the backlog of bugs, understand the technical tasks,
improve the bug’s description, and eventually prioritize them and assign them
to developers. This bug triage process plays an important role in software main-
tenance since the timely localization and correction of bugs are critical for the
reputation of the organization and customers’ satisfaction.

Once a bug report is assigned to a team, one of the developers uses it to repro-
duce the abnormal behavior to find the origin of the bug. However, the poor
quality of bug reports can make this process tedious and time-consuming due to
missing information. An efficient automated approach for locating and ranking
important code fragments for a specific bug report may lead to improve the pro-
ductivity of developers by reducing the time to find the cause of a bug (Fischer
et al. 2003).

Although several techniques have been proposed to localize bugs (Wong et al.
2016; Almhana et al. 2016) and predict the severity of bugs (Uddin et al. 2017;
Chaturvedi and Singh 2012; Zhang et al. 2016), the existing studies related to the
management of bugs report are mainly based on the priority scores to rank and
assign bug reports without looking to the possible dependencies between them
(Zheng et al. 2006; Canfora et al. 2011; Li et al. 2006). Thus, developers may get

1 3

Automated Software Engineering (2021) 28:1 Page 3 of 26 1

assigned bug reports related to completely different files to be inspected which
may increase the cognitive effort of the developers navigating between these
independent bug reports. For instance, a developer may spend time understand-
ing files A and B for Bug report B1 then he needs to check again these same files
for bug report after working on three other independent bugs reports. We start,
in this paper, from the hypothesis that a better way to manage bugs reports is to
group together those with a similar level of priorities and also sharing a common
number of files to be inspected and fixed. In fact, several empirical studies show
that the majority of bugs may not appear in isolation and they are related to each
other (Zheng et al. 2006; Canfora et al. 2011; Li et al. 2006). These dependent
bug reports have several common files to inspect to localize the bugs.

To the best of our knowledge, we propose one of the first studies that consider
the dependencies between bug reports in order to rank and group them while still
considering their priorities. The proposed approach is mainly to validate the hypoth-
esis that ranking and grouping bug reports based on the dependencies between them
(classes to be inspected) besides the bugs priority can improve the productivity of
developers and help them to localize bugs faster and more efficiently than consider-
ing them in isolation based only on the priority scores of the bug.

Our approach aims to find a trade-off between ranking the bug reports based on
(1) their dependency and (2) their priority. The dependencies are extracted based on
the list of files to be inspected from the bug report description using our previous
bugs localization work (Almhana et al. 2016) using a combination of lexical and
history based measures. We selected that technique due to its high accuracy in local-
izing relevant files with over 80% in precision and recall. After extracting the list of
files to inspect for each bug report, we adopted a multi-objective search, based on
NSGA-II (Deb et al. 2002), to find a trade-off between bugs priority and depend-
encies to rank the bug reports when assigned to developers. Thus, the manager or
developer can select the best schedule of the bugs based on his/her preferences from
the list of non-dominated ranking solutions generated by NSGA-II. For instance,
a solution with high priority score and low dependency can be selected when the
goal is to mainly focus on localizing the most severe bugs independently from the
required effort.

To the best of our knowledge, this paper represents the first study to formulate
the bug prioritization problem as multi-objective search and consider the depend-
ency between bugs in terms of classes related to the resolution. Thus, our goal is
to evaluate the formulation of the problem as a multi-objective search to deal with
the conflicting objectives. Thus, we compared with a mono-objective formulation to
confirm that the objectives are actually conflicting and the out-performance of the
proposed search algorithm. Based on our previous Search Based Software Engineer-
ing (SBSE) work and existing studies, most search algorithms will perform similarly
when the formulation is the same (fitness functions, solution representation, etc.)
thus we selected NSGA-II algorithm since it is widely used in similar software engi-
neering problems such as the next release problem (Geng et al. 2018).

An experiment has been conducted to compare our approach with the only use of
bugs priority to rank bug reports (Yu et al. 2010; Goyal et al. 2015; Xuan et al. 2012;
Alenezi and Banitaan 2013; Lamkanfi et al. 2011; Kanwal and Maqbool 2010). We

 Automated Software Engineering (2021) 28:1

1 3

1 Page 4 of 26

conducted a pre-study and post-study survey to evaluate the performance of our tool
with participants based on 6 open source projects. Our multi-objective approach
uses multiple conflicting objectives. In our case, we have two fitness functions F1 &
F2 to represent our objectives. On the other hand, a mono-objective approach uses
only one objective/fitness function aggregating all the objectives. Thus, we have also
compared our approach to mono-objective search. The results show significant time
reduction of over 30% in correctly localizing the bugs simultaneously comparing to
the traditional bugs prioritization technique based on priority.

The remainder of this paper is as follows: Sect. 2 is dedicated to describing the
problem and our motivation to find a solution for it. Section 3 describes the proposed
approach to localize bugs and then prioritize them. The evaluation of our approach
and its results on several research questions with the answers and the discussions on
those research questions are explained in Sect. 4. Section 5 describes the threats to
validity related to our experiments. Section 6 is dedicated to related studies. Finally,
concluding remarks and future work is provided in Section 7.

2 Related work and motivating example

2.1 Related work

A survey on bug prioritization was proposed in Uddin et al. (2017). The authors
collected 84 papers about bug prioritization or related topics from 2000 to 2015,
they eliminated 32 papers after 2 steps review process. The majority of those papers
used information retrieval technique such as Naive Bayes, Support Vector Machine
(SVM) and Neural Networks for bugs prioritization. The survey focused mainly on
predicting bugs priority and to estimate the severity of the bugs.

Table 1 summarizes the main studies related to bugs management and
prioritization.

Kanwal and Maqbool (2012) proposed a classification based approach to develop
a tool which uses the Naive Bayes and Support Vector Machine (SVM) classifiers.
This tool mines the bug data from a bug repository so that it builds a piece of knowl-
edge about the software to be inspected and its bugs repository and eventually rank
or classify bugs.

The authors in Alenezi and Banitaan (2013) proposed an approach to predict the
priority of bug report using different machine learning algorithms like Naive Bayes,
Decision Trees, and Random Forest.

Xuan et al. (2012) proposed a new way to prioritize bugs based on 3 different
stages from mining the social interactions between developers.

Search-Based Software Engineering (SBSE) uses a computational search
approach to solve optimization problems in software engineering (Harman and
Jones 2001). Once a software engineering task is framed as a search problem, by
defining it in terms of solution representation, fitness function, and solution change
operators, there is a multitude of search algorithms that can be applied to solve
that problem. Many search-based software testing techniques have been proposed
for test cases generation (Núñez et al. 2013), mutation testing (Henard et al. 2014),

1 3

Automated Software Engineering (2021) 28:1 Page 5 of 26 1

Ta
bl

e
1

 O
ve

rv
ie

w
 o

f b
ug

 p
rio

rit
iz

at
io

n
re

la
te

d
w

or
k

St
ud

y
In

pu
t

O
ut

pu
t

Te
ch

ni
qu

e
Pu

bl
is

he
d

Y
u

et
 a

l.
(2

01
0)

B
ug

 re
po

rts
Pr

ed
ic

t b
ug

 p
rio

rit
y

N
eu

ra
l n

et
w

or
ks

20
10

K
an

w
al

 a
nd

 M
aq

bo
ol

 (2
01

0)
B

ug
 re

po
rts

Re
co

m
m

en
d

bu
g

pr
io

rit
y

SV
M

20
10

La
m

ka
nfi

 e
t a

l.
(2

01
1)

B
ug

 re
po

rts
Pr

ed
ic

t t
he

 se
ve

rit
y

of
 b

ug
N

ai
ve

 B
ay

es
20

10
C

ha
tu

rv
ed

i a
nd

 S
in

gh
 (2

01
2)

B
ug

 re
po

rts
D

et
er

m
in

e
bu

g
se

ve
rit

y
N

ai
ve

 B
ay

es
20

12
A

bd
el

m
oe

z
et

 a
l.

(2
01

2)
B

ug
 re

po
rts

Pr
ed

ic
t b

ug
 fi

x-
tim

e
N

ai
ve

 B
ay

es
20

12
D

om
m

at
i e

t a
l.

(2
01

3)
B

ug
 re

po
rts

C
la

ss
ify

 b
ug

 re
po

rts
N

ai
ve

 B
ay

es
20

12
K

an
w

al
 a

nd
 M

aq
bo

ol
 (2

01
2)

B
ug

 re
po

rts
Pr

io
rit

iz
e

bu
g

re
po

rts
SV

M
20

12
Sh

ar
m

a
et

 a
l.

(2
01

2)
B

ug
 re

po
rts

Pr
ed

ic
t b

ug
 p

rio
rit

y
SV

M
20

12
Th

un
g

et
 a

l.
(2

01
2)

B
ug

 re
po

rts
Pr

ed
ic

t b
ug

 p
rio

rit
y

SV
M

20
12

Ti
an

 e
t a

l.
(2

01
2)

B
ug

 re
po

rts
Pr

ed
ic

t t
he

 se
ve

rit
y

of
 b

ug
N

ea
re

st
ne

ig
hb

or
s

20
12

X
ua

n
et

 a
l.

(2
01

2)
D

ev
el

op
er

 p
rio

rit
iz

at
io

n
Pr

ed
ic

t t
he

 se
ve

rit
y

of
 b

ug
N

B
, S

V
M

20
12

A
le

ne
zi

 a
nd

 B
an

ita
an

 (2
01

3)
B

ug
 re

po
rts

Pr
ed

ic
t b

ug
 p

rio
rit

y
D

ec
is

io
n

tre
e,

 ra
nd

om
 fo

re
sts

20
13

Za
ne

tti
 e

t a
l.

(2
01

3)
B

ug
 re

po
rts

C
la

ss
ify

 b
ug

 re
po

rts
SV

M
20

13
B

eh
l e

t a
l.

(2
01

4)
B

ug
 re

po
rts

Pr
ed

ic
t t

he
 se

ve
rit

y
of

 b
ug

TF
-I

D
F

20
14

G
ar

ci
a

an
d

Sh
ih

ab
 (2

01
4)

B
ug

 re
po

rts
pr

ed
ic

tin
g

bl
oc

ki
ng

 b
ug

s
D

ec
is

io
n

tre
es

20
14

G
oy

al
 e

t a
l.

(2
01

5)
B

ug
 re

po
rts

Pr
ed

ic
t b

ug
 p

rio
rit

y
B

ay
es

 n
et

, r
an

do
m

 fo
re

st,
20

15

 Automated Software Engineering (2021) 28:1

1 3

1 Page 6 of 26

regression testing (Shelburg et al. 2013) and testability transformation. However,
the problem of bugs localization was not addressed before using SBSE. The clos-
est problem addressed using SBSE techniques is the bugs prioritization problem
(Dreyton et al. 2015). A mono-objective genetic algorithm was proposed to find the
best sequence of bugs resolution that maximizes the relevance and importance of the
bugs to fix while minimizing the cost. The main limitation of this work is the use
of a mono-objective technique that aggregates two conflicting objectives. To over-
come the limitation of aggregating two attributes that may experience conflicts, they
extended their work (Dreyton et al. 2016) to better find the trade-off between bugs
with low relevance and the bugs that may have high severity scores.

The problem of bug localization can be considered as searching the source for a
bug given its description. To address this problem, the majority of existing studies
is based on the use of Information-Retrieval (IR) techniques through the detection
of textual and semantic similarities between a newly given report and source code
entities (Sun et al. 2010). Several IR techniques have been investigated, namely the
Latent Semantic Indexing (LSI) (Dumais 2004), Latent Dirichlet Allocation (LDA)
(Blei et al. 2003) and the Vector Space Model (VSM) (Salton et al. 1975). Also,
hybrid models extracted from these IRs techniques to tackle the problem of bug
localization were proposed (Ye et al. 2014).

2.2 Motivating example

The bug triage process involves intensive time and resources in order to manage
and analyze all reported bugs on a daily basis. Typically, project managers need to
understand the reported bug, tweak the bug description and check for duplication,
then assign priority or severity of a bug and finally assign it to a developer.

As of May 2019, the Mozilla bug database contains over 172,000 bug reports
for Firefox project; the Eclipse bug database reports over 210,000 bug reports for
Eclipse project. On average, Mozilla received 212 and Eclipse 224 new bug reports
on each week. Thus, clearly, the manual management of defects for large software
projects is not practical to prioritize and rank a large load of reported bugs. Further-
more, it is important to efficiently assign these bugs to reduce potential delays in
localizing and fixing them.

Most of the existing work on the bugs prioritizing mainly focus on the assigned
priority or severity to a bug either manually or automatically using static/dynamic
analysis and the history of changes/bugs (Yu et al. 2010; Goyal et al. 2015; Xuan
et al. 2012; Alenezi and Banitaan 2013; Lamkanfi et al. 2011; Kanwal and Maqbool
2010). They treated bug reports in isolation despite that recent empirical stud-
ies show that a large number of simultaneous bugs were located on the same files
(Zheng et al. 2006; Canfora et al. 2011; Li et al. 2006). To the best of our knowl-
edge, none of those techniques considered finding the dependencies among several
bugs when ranking and grouping them to assign to developers. Recommending a list
of bugs that share some common potential files to be inspected would be helpful to
minimize the cognitive effort spent by a developer to jump from package to pack-
age or from file to file that are not related. Recent studies show that reducing such

1 3

Automated Software Engineering (2021) 28:1 Page 7 of 26 1

cognitive effort is a key to improve the productivity of developers working on multi-
ple tasks (Zheng et al. 2006; Canfora et al. 2011; Li et al. 2006).

Table 2 shows a list of 4 bug reports from the Eclipse Birt project that were
reported on Bugzilla within two days. By looking at the bugs description and their
resolution on Github, we found that all of them are related to the core component/
module of the software and require inspecting almost the same files and/or direc-
tory to localize and fix them. Typically, developers prefer to work on defects that
are dependent on each other so that they can focus on one set of files rather getting
disrupted with multiple not related bugs. Our hypothesis that the bug triage process
will significantly save time and resources if we consider the dependencies between
bugs as an additional criterion to the bugs severity.

3 Approach

3.1 Approach overview

Our approach aims at exploring a large number of possible combination to find the
best ranking of bug reports based on the dependency between them and their prior-
ity. The search space is determined not only by the number of possible dependen-
cies between bug reports but also by the order in which they are proposed to the
developer.

In fact, bug reports may require the inspection of more than one class to identify
and fix bugs (Zheng et al. 2006). Our previous work for bugs localization (Almhana
et al. 2016) is executed to identify relevant files/classes to inspect for all the pending
bug reports. The identified common files between the bug reports will represent the
dependencies of all reported bugs we want to prioritize. Then, our bug prioritization
component takes as input these dependencies along with the bug priority that has
been assigned to each bug report. Our multi-objective search algorithm generates
the best possible scheduling solutions to inspect the bugs to find a balance between
priorities and dependencies of bugs. We represented the solution as a graph to guide
developers to which bug needs to be resolved first, taking into consideration the two
objectives of maximizing the number of files to inspect (maximize the intersection
between consecutive bug reports in terms of files to inspect) and the bugs priority/
severity that has been assigned manually by the project’s stakeholders (e.g. develop-
ers or project managers). Since the bugs localization is performed at the files level
based on our previous work (Almhana et al. 2016); thus, the clustering of our rec-
ommended solution is actually performed at the files level and not at the package or
directory level.

The general structure of our approach is sketched in Fig. 1. It takes two inputs, the
bug priority assigned by the user and recommended classes generated by the bugs
localization tool (dependencies). The output is a set of non-dominated solutions of
ranked bugs to inspect by the developer. Our heuristic-based optimization steps are for-
mulated based on two main conflicting objectives. The first objective is to minimize
the number of new classes to inspect between each pair of consecutively reported bugs.
The second objective is to maximize the number of high priority bugs to be ranked first

 Automated Software Engineering (2021) 28:1

1 3

1 Page 8 of 26

Ta
bl

e
2

 L
ist

 o
f 4

 b
ug

s i
n

Ec
lip

se
 B

irt
 p

ro
je

ct

B
ug

 ID
B

ug
 su

m
m

ar
y

B
ug

 re
po

rte
d

In
sp

ec
te

d
fil

es

B
ug

 4
56

73
0

M
is

si
ng

 d
ef

au
lt

va
lu

e
in

 in
iti

al
iz

in
g

sc
rip

tC
on

te
xt

20
15

-0
1-

05
co

re
/o

rg
.e

cl
ip

se
.b

irt
.c

or
e/

sr
c/

or
g/

ec
lip

se
/b

irt
/c

or
e/

..
/S

cr
ip

tC
on

te
xt

.ja
va

B
ug

 4
56

72
5

O
pt

im
iz

e
th

e
pe

rfo
rm

an
ce

 o
f U

Lo
ca

le
.fo

rL
oc

al
e

20
15

-0
1-

05
co

re
/o

rg
.e

cl
ip

se
.b

irt
.c

or
e/

sr
c/

or
g/

ec
lip

se
/b

irt
/c

or
e/

..
/L

oc
al

eU
til

.ja
va

B
ug

 4
56

72
3

or
g.

ec
lip

se
.b

irt
.c

or
e.

ut
il.

IO
U

til
 d

oe
sn

’t
ch

ec
k

EO
F

20
15

-0
1-

05
co

re
/o

rg
.e

cl
ip

se
.b

irt
.c

or
e/

sr
c/

or
g/

ec
lip

se
/b

irt
/c

or
e/

..
/IO

U
til

.ja
va

B
ug

 4
56

84
7

B
irt

D
at

eT
im

e
fu

nc
tio

n
in

 c
ha

rt’
s o

nR
en

de
r f

un
ct

io
n

ca
us

es
 re

nd
er

 fa
ilu

re
20

15
-0

1-
06

co
re

/o
rg

.e
cl

ip
se

.b
irt

.c
or

e/
sr

c/
or

g/
ec

lip
se

/b
irt

/c
or

e/
..

/C
at

eg
or

yW
ra

pp
er

.ja
va

1 3

Automated Software Engineering (2021) 28:1 Page 9 of 26 1

in the sequence of reported bugs. Thus, we consider, in this paper, the task of prioritiz-
ing bugs as a multi-objective optimization problem using the non-dominated sorting
genetic algorithm (NSGAII) (Deb et al. 2002).

3.2 NSGA‑II

In this paper, we adapted one of the widely used multi-objective algorithms called
NSGA-II (Deb et al. 2002). NSGA-II is a powerful global search method stimulated
by natural selection that is inspired by the theory of Darwin. We selected this multi-
objective search algorithm since it was used for similar problems in software engineer-
ing (Almhana et al. 2016; Geng et al. 2018; Ramirez et al. 2019; Ghannem et al. 2016;
Amal et al. 2014; Kessentini et al. 2014; Ghannem et al. 2014, 2011).

The basic idea of NSGA-II is to make a population of candidate solutions evolve
toward the near-optimal solution in order to solve a multi-objective optimization prob-
lem. NSGA-II is designed to find a set of optimal solutions, called non-dominated solu-
tions, also Pareto set. A non-dominated solution is the one which provides a suitable
compromise between all objectives without degrading any of them. As described in
Algorithm 1, the first step in NSGA-II is to create randomly a population P0 of indi-
viduals encoded using a specific representation (line 1). Then, a child population Q0 is
generated from the population of parents P0 using genetic operators such as crossover
and mutation (line 2). Both populations are merged into an initial population R0 of size
N (line 5). As a consequence, NSGA-II starts by generating an initial population based
on a specific representation that will be discussed later, using the exhaustive list of bugs
from the bug reports to resolve given as input. Thus, this population stands for a set of
solutions represented as sequences of defects to resolve, which are randomly selected
and ordered (Almhana et al. 2016).

Fig. 1 Approach overview

 Automated Software Engineering (2021) 28:1

1 3

1 Page 10 of 26

Algorithm 1 High level pseudo code for NSGA-II
1: Create an initial population P0
2: Create an offspring population Q0
3: t = 0
4: while stopping criteria not reached do
5: Rt = Pt ∪Qt

6: F = fast-non-dominated-sort(Rt)
7: Pt+1 = ∅ and i = 1
8: while | Pt+1 | + | Fi |� N do
9: Apply crowding-distance-assignment(Fi)
10: Pt+1 = Pt+1 ∪ Fi

11: i = i+ 1
12: end while
13: Sort(Fi,≺ n)
14: Pt+1 = Pt+1 ∪ Fi[N− | Pt+1 |]
15: Qt+1 = create-new-pop(Pt+1)
16: t = t+1
17: end while

The whole population that contains N individuals (solutions) is sorted using the
dominance principle into several fronts (line 6). The dominance level becomes the basis
of a selection of individual solutions for the next generation. Fronts are added succes-
sively until the parent population Pt+1 is filled with N solutions (line 8). When NSGA-
II has to cut off a front Fi and select a subset of individual solutions with the same
dominance level, it relies on the crowding distance to make the selection (line 9). This
front Fi to be split, is sorted in descending order (line 13), and the first (N − |Pt+1|) ele-
ments of Fi are chosen (line 14). Then a new population Qt+1 is created using selection,
crossover, and mutation (line 15). This process will be repeated until reaching the last
iteration according to stop criteria (line 4) (Almhana et al. 2016). The following sub-
sections describe more precisely our adaption of NSGA-II to the bugs triage problem.

3.3 Solution approach

3.3.1 Solution representation

Figure 2 shows a simplified representation of a solution (recommended schedule of
bugs to resolve) generated by our web-based tool for bugs selected randomly from the
bug repository (Bugzilla website) of Eclipse Birt project. This solution represents a
possible sequence to resolve the reported bugs in Table 2 for Eclipse Birt project. The
recommended classes of those defects share the same package or directory (core/ org.
eclipse.birt.core/ src/ org/ eclipse/ birt/ core) that needs to be inspected by programmer.

Fig. 2 A simplified example of solution representation

1 3

Automated Software Engineering (2021) 28:1 Page 11 of 26 1

Thus, we group those defects together and recommend this cluster of bugs to one devel-
oper to resolve as a sequence. This simplified representation may not be sufficient to
show the dependencies between the bug reports thus we adopted a graph-based repre-
sentation that can be visualized by the project’s stakeholders (e.g. developers or project
managers).

Figure 3 shows the sequence of bugs recommended for 10 pending bugs selected
randomly from the bug repository (Bugzilla website) of Eclipse Birt project. The
different bugs scheduling solutions that can be explored by the developers or manag-
ers are represented in Fig. 4 balancing the two objectives of severity and dependen-
cies. The purpose of Fig. 3 is to show all possible routes presented in Table 3 of the
paper, the nodes on the graph represent the bugs and the directed edges represent

Fig. 3 Four different routes that shows the order of each recommended solutions generated by our web-
based software for particular set of pending bugs in Eclipse Birt Project

Fig. 4 The Pareto Front of recommended solutions generated by our web-based software for pending
bugs in Eclipse Birt Project to balance both severity (X-Axis) and dependencies (Y-Axis)

 Automated Software Engineering (2021) 28:1

1 3

1 Page 12 of 26

the order of the bugs in which it minimizes the trade-off between our objectives. An
example of one possible route starts from first node (bug 28974) directed to next
node (bug 29186) then bug 29665 → bug 28919 → bug 29684 → bug 29662 → bug
29693 → bug 20689 → bug 29691 → bug 29669 which is the last node in this route
(recommended solution)

Figure 4 presents the Pareto Front line of the recommended solutions presented
in Table 3 as 4 different recommendations, each one has a different route to examine
the bugs with its value for objective 1 and objective 2 which are illustrated in this
figure as 4 points correspond to the values of fitness function F1 & F2.

3.3.2 Fitness functions

There are two fitness functions used in our multi-objective search based algo-
rithm. The first fitness function measure encourages keeping high priority bugs
first in a sequence and low priority bugs last in a sequence. The first fitness func-
tion is to maintain low cognitive effort between each pair of consecutively reported
bugs. Our goal is to minimize as much as possible the number of new classes to
inspect when the developer moves from one bug to the next consecutive bug in the
sequence. Equation 1 preserves the level of dependencies between each pair of con-
secutive bugs, a higher value represents high similarity in dependencies (recom-
mended classes) among bug reports. The objective of the formula is to maximize
the intersection (in number of inspected files) between two consecutive bug reports.
NumFilesi,i+1 represents the total number of distinct files to inspect for bug(i) and
bug(i+1). Bug(i) represents the set of classes that are related to bug (i) and similarly
Bug(i+1) represents the set of classes that are related to bug (i+1), where (n) repre-
sents the number of bugs.

The objective of the second fitness function is to minimize the differences between
the priority of bug reports and the order of recommendations to solve the reported
bug reports. Equation 2 calculates the difference in priority for a bug between the

(1)f1 =

i=n∑

i=1

Bugi ∩ Bugi+1

NumFilesi,i+1

Table 3 Pareto front results

No. Solution Objective 1 Objective 2

1 28974, 29186, 29665, 28919, 29684, 29662, 29693, 29689, 29691,
29699

0.84 0.22

2 28974, 29693, 29689, 29662, 29665, 29691, 29699, 29684, 28919,
29186

0.85 0.16

3 29699, 29684, 28974, 29689, 28919, 29665, 29691, 29693, 29662,
29186

0.87 0.10

4 29699, 29186, 29662, 29689, 28919, 29684, 29693, 29665, 29691,
28974

0.90 0.095

1 3

Automated Software Engineering (2021) 28:1 Page 13 of 26 1

bug report and the recommended solution. We build a vector of reported bugs and
sort them based on the priority value reported in the bug report. Then, we compare
the position of a reported bug Bi in recommended solution with the position of the
same bug Bi in the original order of reported bugs which is based on priority value
reported on bug reports. Equation 2 calculates the difference between the priority
value in bug report and the priority value in the recommended solution which is the
position of the bug in the solution vector. Equation 2 calculates the sum of differ-
ences in priority between bug report and the recommended solution for each of the
bugs where (n) represents the number of bugs.

The above two objectives are conflicting since minimizing the number of new
classes to inspect between each pair of consecutively reported bugs may lead to
resolving some low priority bugs however the scheduling solution may improve the
overall productivity.

Table 3 shows the Pareto Front sketched by our web-based tool for 10 bugs
selected randomly from bug repository (Bugzilla website) of Eclipse Birt project.
This is an example of Pareto Front results (the recommended solutions) generated
by our web-based software for particular set of bugs in Eclipse Birt Project.

3.3.3 Change operators

In a search algorithm, the variation operators play the key role of moving within
the search space with the aim of driving the search towards better solutions. We
randomly select individuals for mutation and crossover. The probability to select an
individual for crossover and mutation is directly proportional to its relative fitness
in the population. In each iteration, we select half of the population in iteration i.
These selected individuals will give birth to another half of the population of new
individuals in iteration i + 1 using a crossover operator. Therefore, new two-parent
individuals are selected for next iteration/generation.

The one point crossover operator allows creating two offspring P1 and P2 from
the two selected parents P1 and P2 . It is defined as follows: a random position, k, is
selected. The first k bugs of P1 become the first k elements of P1 . Similarly, the first
k bugs of P2 become the first k elements of P2 . Our crossover operator could create
a child that contains redundant recommended bugs. In order to resolve this problem,
for each obtained child, we verify whether there are redundant bugs or not. In the
case of redundancy, we do not apply crossover operation on this particular bug.

An example of crossover operation, consider there are (2) vectors of recom-
mended solutions as follows:

Solution 1 → (bug A, bug B, bug C, bug D, bug E)
Solution 2 → (bug F, bug G, bug H, bug I, bug J)
After applying crossover operator on both solutions, the outcome will be as

follows:
Solution 1 → (bug A, bug B, bug H, bug I, bug J)

(2)f2 =

i=n∑

i=1

|IndexOfBugi,solution − IndexOfBugi,report|

 Automated Software Engineering (2021) 28:1

1 3

1 Page 14 of 26

Solution 2 → (bug F, bug G, bug C, bug D, bug E)

4 Evaluation

In order to evaluate our approach for prioritizing multiple defects for developers,
we conducted a human validation to evaluate the benefits of our work. The experi-
ments included a pre-study survey to gather some personal information and techni-
cal background of the participants then a post-study survey to gather developer’s
feedback about our tool with some insights about future improvements to the tool.
The obtained results are subsequently statistically analyzed with the aim to compare
our multi-objective approach with three other approaches. The first approach is a
traditional bug priority based approach and the second one is based on the depend-
encies between bug reports without considering the score of the priority reported
in the bug report. The third approach is based on a first come first served resolu-
tion based approach. In this section, we present our research questions followed by
experimental settings and parameters. Then, we discuss our results for each of the
research questions. The data related to our experiments can be found in the follow-
ing link (Bug reports data 2020)

4.1 Research questions

In our study, we wanted to assess the performance of our approach by finding out
whether it could identify the most appropriate sequence of bugs to resolve by devel-
opers. In order to examine our web-based software prioritization tool, we explored
two primary research questions outlined below. The goal of this experiment is to
check whether our proposed approach can propose a meaningful sequence of defects
in which developers can localize and fix related bugs quickly and therefore compa-
nies can save some efforts in terms of time, resource and cost to make their systems
more responsive to most recent bug reports. To this end, we defined the following
research questions:

– RQ1: (Effectiveness) To what extend can the proposed approach recommend an
appropriate sequence of bugs to resolve by developer?

– RQ2: (Comparison to other techniques) How does our approach perform com-
pared to typical bugs management techniques?

The goal of RQ1 is to measure the effectiveness of our approach by calculating
three different metrics mentioned in this paper whereas the RQ2 aims to compare
our approach with other approaches to measure the effectiveness compared to three
other approaches (FCFS, 2 mono-objectives approaches).

To answer RQ1, we evaluate the effectiveness of the recommended order of bugs
to resolve by programmers. The effectiveness is evaluated by measuring the follow-
ing metrics:

1 3

Automated Software Engineering (2021) 28:1 Page 15 of 26 1

– Number of Bugs denotes the number of bugs that one individual developer can
resolve within a time frame. The goal for this measure is to maximize the number
of bugs that developer can finalize in order to have better productivity.

– Resolution Time denotes the time spent by developer to understand, identify,
and resolve a single particular bug. Our goal is to minimize this measure in order
to save resource cost.

– Disruption Cost measures the cost of transition time that developer may spend
between each pair of bugs. Our approach aims to minimize this cost by recom-
mending most related sequence of bugs.

To answer RQ2, we compared, using the above metrics, the performance of our
multi-objective approach with first come first serve approach. Furthermore, we
implemented two mono-objective formulations. The first one is a mono-objective
algorithm with the only objective of bug priority score and a second one is a mono-
objective algorithm with the only objective of bug dependency. Disruption cost
means the time in which a developer spends to make the transition between one bug
to another unrelated bug. This transition involves the time to change the developer’s
focus to understand the information given to the developer in the new bug and the
time to examine the files related to the new bugs. This disruption cost is important
because it can show the cognitive effort required by developers to move from one
bug to the other when they are not related. Equation 3 formulates the distribution
cost where n is the number of bugs to resolve. To best of our knowledge, there is
no similar prior work to compare with that uses currently similar objectives of our
approach.

One way to show if the two objectives are conflicting is to compare the performance
of the multi-objective search with a mono-objective formulation (aggregation of all
the objectives). The comparison between a multi-objective technique with a mono-
objective one is not straightforward. The multi-objective technique returns a set of
non-dominated solutions while the mono-objective technique one returns a single
optimal solution. To this end, we choose the nearest solution to the Knee point (Deb
et al. 2002) (i.e., the vector composed of the best objective values among the pop-
ulation members) as a candidate solution to be compared with the single solution
returned by the mono-objective algorithm.

The knee point represents the maximum trade-off between the objectives thus it
is reasonable to compare it with a mono-objective solution with equal weights of
the different objectives aggregated in one fitness function. The fact that we are com-
paring a mono-objective formulation with equal weights to a knee point (represent-
ing the maximum possible trade-off) ensures a fair comparison. We used the knee
point method as recommended by the current literature (Keller 2019; Emmerich and
Deutz 2018; Deb and Gupta 2011)

Both surveys (pre-study and post-study questionnaire) were conducted on twenty-
nine developers who have a variety of skills and expertise. Table 4 shows a list of

(3)DisruptionCost =

i=n∑

i=1

(|EndTimeBugi − StartTimeBugi+1|)

 Automated Software Engineering (2021) 28:1

1 3

1 Page 16 of 26

six open source systems that developers use in the experiment. The survey tells us
whether our approach was successful to save cost and time in resolving bugs.

4.2 Software projects and experimental setting

Multiple bugs are assigned randomly to multiple developers while making sure that
(1) they all received a similar number of bugs to fix per system; and (2) they did not
evaluate the same system with multiple tools. Developers are asked to resolve bugs
that are already fixed in production without telling them they are already fixed in the
next releases and they work on the versions before the bugs get fixed. The develop-
ers worked on multiple systems using the different approaches since we wanted to
address the training threat if they just focus on one system. Developers are asked to
evaluate different tools (not evaluated before) when they are asked to evaluate differ-
ent systems.

We asked our participants to report on the bug reports they worked on, the start
time and end time of each bug report. By analyzing this data, we are able to know
the number of bugs they worked on, the number of resolved bugs, the resolution
time of each bug report, and the disruption cost by looking at the end time of one
bug and the start time of another bug.

As described in Table 4, we used six open-source systems:

– Eclipse UI is the user interface of the Eclipse development framework.
– Eclipse Jetty is a Java HTTP server and Java Servlet container.
– Eclipse AspectJ is an aspect-oriented programming (AOP) extension created for

the Java programming language.
– Eclipse Birt provides reporting and business intelligence capabilities.
– Eclipse SWT is a graphical widget toolkit.
– Eclipse JDT provides a set of tool plug-ins for Eclipse.

Table 4 shows the different statistics of the analyzed systems including the time
range of the bug reports, the number of bug reports, the number of closed and
resolved bugs in a project, the number of developers involved with project and the
average of time spent to resolve a bug and close its corresponding bug report. The

Table 4 Studied projects

Project # Bugs # Resolved bugs # Developers Average
resolution
time

Time frame

Eclipse UI 84,136 57,251 778 89 days Oct-2001 to May-2019
Eclipse Birt 23,218 19,452 154 40 days Jan-2005 to May-2019
Eclipse JDT 58,822 34,050 272 52 days Oct-2001 to May-2019
Eclipse AspectJ 3021 2270 22 38 days Sep-2002 to May-2019
Eclipse Jetty 3813 1184 14 43 days Mar-2009 to May-2019
Eclipse SWT 24,049 19,559 184 61 days Oct-2001 to May-2019

1 3

Automated Software Engineering (2021) 28:1 Page 17 of 26 1

total number of collected unresolved bug reports is about 63,000 bug reports for the
six open source systems. All these projects are using BugZilla tracking system and
GIT as a version control system.

4.3 Pre‑study survey

The goal of the pre-study survey is to understand our participants, their background
in software engineering and related experience. The list of questions were asked are:

– What is your highest level of education?
– What is your current occupation?
– How many years have you worked in software engineering?
– Choose the level (very low, low, normal, high, very high) of expertise in: (1)

Software Development, (2) Software Management, (3) Software Testing, (4)
JAVA, (5) Software Quality Assurance

4.3.1 Post‑study survey

The goal of the post-study survey is to gather our participants’ feedback about the
importance of bug prioritization and the usefulness of our tool to prioritize bug
reports. The list of questions were asked are:

– Q1: How difficult was it to resolve bugs in the order that was presented?
– Q2: How difficult is it for bug prioritization tools to save developer’s time to

resolve multiple bugs in a particular period of time?
– Q3: How difficult was it to resolve bugs as first come first serve compared to bug

prioritization tools?

4.4 Meta‑heuristic parameters tuning

An often-omitted aspect in meta-heuristic search is the tuning of algorithm param-
eters. In fact, parameter setting influences significantly the performance of a search
algorithm on a particular problem. For this reason, for each search algorithm and
each system, we performed a set of experiments using several population sizes: 10,
20, 30, 40 and 50. The stopping criterion was set to 100,000 fitness evaluations for
all search algorithms in order to ensure fairness of comparison. We used a high
number of evaluations as a stopping criterion since our approach requires multiple
objectives. Each algorithm was executed 30 times with each configuration and then
the comparison between the configurations was performed based on different met-
rics described previously using the Friedman test. The other parameters values were
fixed by trial and error and are as follows: (1) crossover probability = 0.4; mutation
probability = 0.3 where the probability of gene modification is 0.1 (Almhana et al.
2016).

The Friedman test is the non-parametric alternative to the one-way ANOVA with
repeated measures. The Friedman statistical tests show that all the comparisons

 Automated Software Engineering (2021) 28:1

1 3

1 Page 18 of 26

performed between our approach and existing ones are statistically significant based
on all the metrics and the systems considered in our experiments. We used a 95%
confidence level (alpha = 5%) to find out whether our sample results of different
approaches are significantly different.

4.5 Results

4.5.1 Results for RQ1

For this research question, we examined the number of bugs that the developers were
able to resolve within the 2-hour window. Figure 5 shows the difference in perfor-
mance between our multi-objective approach and the first come first serve approach.
Furthermore, we measured the effectiveness of the mono-objective approaches by
considering separately the score of bug priority or bug dependency. The results show
that the multi-objective combining the benefits of both mono-objective approaches
are presenting better results in terms of fixing bugs.

Figure 6 describes the average time spent by the developer to resolve one single
defect in a certain project. This figure shows the difference in the number of minutes
between our multi-objective approach and other three different approaches such as
first come first serve, bug priority, and bug dependency approach. We found that the
familiarity with the associated files to a bug play an important factor in the time that
the developer may spend on one individual bug which explains the significant effec-
tiveness of our approach.

Figure 7 presents the disruption cost or cognitive efforts needed to completely
shift from one bug to another. We found that this cost is too high in FCFS and
medium in Bug Priority but it drops significantly in Bug Dependency or multi-
objective approach which shows the benefit of considering bugs dependency to
improve the productivity of the developers. Cognitive effort is the time spent by
the developer to make the transition between one bug to another unrelated bug.
This transition involves the time to change the developer’s focus to understand the
information given to the developer in the new bug and the time to examine the files
related to the new bugs.

To conclude, it is clear that the multi-objective approach significantly reduce the
efforts spent by the developers to fix bugs when they are ranked based on a combi-
nation of their dependency and priority.

4.5.2 Results for RQ2

Figures 5 and 6 confirm the efficiency of our multi-objective approach over other
techniques used to prioritize bug reports based on severity or first come first served.
In Fig. 5, our approach shows an average of 3 defects in 2-hour window for all evalu-
ated projects whereas first come first serve (FCFS) and Bug Priority approach shows
an average of 1 defect in a given time window. Bug Dependency technique produces
a promising result with an average of 2.5 which is very close to multi-objective
approach’s outcome and that is due to the importance of recommending the bugs

1 3

Automated Software Engineering (2021) 28:1 Page 19 of 26 1

that share the same set of files/classes to inspect. The complexity of the project plays
an important role in localizing and fixing bugs, developers localized and fixed 2 to 3
bugs in Eclipse UI or JDT projects as opposed to 5 bugs in Jetty.

In Fig. 6, the multi-objective approach has as low as 21 min and as high as 78
min on average to resolve a single defect. Bug dependency comes next in efficiency
after the multi-objective approach with a low of 28 and high of 67 min. The third
approach is Bug Priority with unremarkable results of 78 min on average. FCFS
result is considered the worst with an average of 123 min since it does not follow any
dynamic strategy in choosing the next bug in line to resolve. We noticed a big gap
between FCFS and others as FCFS does not consider the complexity, size, severity,
and urgency of the bug but rather goes from one bug to another. Our approach helps
to reduce the resolution time even in the large and complicated systems, 187, 176,
and 154 min were recorded for FCFS in Birt, Eclipse UI, and JDT respectively and
66, 44, and 78 min were recorded in multi-objective approach for those same pro-
jects. As a result, using a multi-objective approach saves significant time in fixing
bugs compared to the FCFS approach.

Figure 7 shows an average of 6 min in multi-objective and 8 min in Bug Depend-
ency approach. One of the reasons that make the localization and fixing time too
high in FCFS is the high disruption time of 39 min on average. Bug Priority does
slightly better than FCFS with 22 min but Bug Priority is still far away from Bug
Dependency or multi-objective approach. Furthermore, we noticed that the disrup-
tion cost increases when the size of the project becomes larger. Birt is an example of
a large project which required 10 min of disruption cost whereas it is around 5 min
for other smaller projects like Jetty.

To conclude, the proposed multi-objective approach outperforms mono-objective
ones which confirm the need to consider bugs dependencies when scheduling them
to be repaired by developers.

4.5.3 Post‑study survey

The goal of the post-study survey is to gather our participants’ feedback about the
importance of bug prioritization and the usefulness of our tool to prioritize bug
reports. The list of questions were asked are:

– Q1: How difficult was it to resolve bugs in the order that was presented?
– Q2: How difficult is it for bug prioritization tools to save developer’s time to

resolve multiple bugs in a particular period of time?
– Q3: How difficult was it to resolve bugs as first come first serve compared to bug

prioritization tools?

4.5.4 Pre‑study survey results

All the participants have a job in industry as software engineer or technical lead.
87% of our participants hold a bachelor degree in computer science, Table 5 shows
the list of six (6) open source software used in the study along with the num-
ber of developers who participate in each of those projects with average years of

 Automated Software Engineering (2021) 28:1

1 3

1 Page 20 of 26

experience of those participants. Figure 8 shows the distribution of expertise for our
participants regarding the 5 different categories listed in the questionnaire. 16 partic-
ipants were working on software testing and bug repair tasks as part of their regular
duties, which was one of the main criteria used to solicit their participation, based
on our previous collaborations and contacts.

4.5.5 Post‑study survey results

Chart 9 shows the results we gathered from our participants about the three post-
study survey’s questions. For Q1, we found that 72% thought that the recommended
solution (the order of resolving the bugs) made the whole task easier than normal.
For Q2, the majority, over 50% found that the new approach tends to save develop-
ers’ time to localize bugs and resolve. For Q3, we found that our participants have
noticed the difference between First Come First Serve (FCFS) and our approach in

Table 5 List of developers
participated in the experiment
and their distribution among
several projects along with the
number of years of experience

Project # of Developers Avg. # of
experience
(years)

AspectJ 15 9.5
Birt 18 7
SWT 15 10
Jetty 14 10.5
Eclipse UI 24 6
JDT 21 6.5

Fig. 5 Comparison of number resolved bugs in 2-hour window using our prioritization tool versus FCFS
tool along with two of mono-objective approaches for each of the six projects

1 3

Automated Software Engineering (2021) 28:1 Page 21 of 26 1

Fig. 6 Comparison of average time spent to resolve a particular bug using our prioritization tool versus
FCFS tool along with two of mono-objective approaches for each of the six projects

Fig. 7 Comparison of disruption cost to transit from one bug to another using our prioritization tool ver-
sus FCFS tool along with two of mono-objective approaches for each of the six projects

 Automated Software Engineering (2021) 28:1

1 3

1 Page 22 of 26

which 12 developers reported that task was difficult, and 10 developers found it neu-
tral where they did not notice any improvements (Fig. 9).

5 Threats to validity

We want to acknowledge several threats to the validity of the paper such as the fac-
tors that can bias our empirical study. These factors can be classified into three cat-
egories: internal validity, construct internal, and external validity. Construct validity
concerns the relation between the theory and the observation. Internal validity con-
cerns possible bias with the results obtained by our proposal. Finally, external valid-
ity is related to the generalization of observed results outside the sample instances
used in the experiment.

Fig. 8 Distribution of Expertise for the participants in the pre-study survey

Fig. 9 Post-study survey results

1 3

Automated Software Engineering (2021) 28:1 Page 23 of 26 1

In our experiments, construct validity threats are related to the absence of similar
work that uses bug localization technique to generate a dependency graph among
several bug reports and therefore recommend those bugs in sequential order. For
that reason, we compared our proposal with different mono-objective formulations
that use one metric only like the score of bug priority. The developers were asked
to evaluate different systems using different tools. We did not allow developers to
evaluate different tools on the same system. The developers were distributed among
the systems and tools based on their background/expertise to ensure almost the same
level for all systems and tools. When each developer is asked to evaluate one differ-
ent tool per system, we reduce the potential bias in the experiments since they are
using the tools for the first time and they are exploring each time a new system. Our
results show that the productivity has gotten better for the majority of our developers
regardless of their experience and skills set.

External validity refers to the fact that our survey has been conducted by 29
developers with a variety of skills and number of experience. Thus, we can affirm
that our results will hold its accuracy with a different set of developers with dif-
ferent level of expertise or knowledge. Also, time collection was left to each indi-
vidual developer who manually noted the time they started and finished localizing a
defect. This could have resulted in introducing error as every developer performed
differently.

Finally, External validity could be related to the type of projects we used in the
survey in which we used six different widely-used open-source systems belonging
to the different domains and with different sizes. However, we cannot assert that our
results can be generalized to other applications, other programming languages, and
to other practitioners.

Conclusion validity is concerned with the statistical relationship between the
treatment and the outcome. the parameter tuning of the different optimization algo-
rithms used in our experiments creates another internal threat that we need to evalu-
ate in our future work. The parameters’ values used in our experiments are found by
trial-and-error, which is commonly used in the SBSE community. However, it would
be an interesting perspective to design an adaptive parameter tuning strategy for our
approach so that parameters are updated during the execution in order to provide the
best possible performance.

6 Conclusion and future work

We proposed an approach for bugs management by taking into consideration both
the severity and dependencies between reports. Our solution is based on the use of
multi-objective search to find a trade-off between these two conflicting objectives.
The validation of our work shows that there were significant time savings when
developers inspected bugs comparing to existing methods treating each bug indi-
vidually as first come first serve or relaying on priority scores only.

As part of our future work, we envision the extension of this approach to
improve the bugs management process by recommending developers to be
assigned for bugs based on their background and prior expertise. The users can

 Automated Software Engineering (2021) 28:1

1 3

1 Page 24 of 26

interact more with the suggested recommendations in order to update the assign-
ments. In addition, we are planning to extend our current work with multiple
other bug repository systems beyond Bugzilla. We also would like to validate the
proposed tool on proprietary software systems to generalize the obtained results.

References

Abdelmoez, W., Kholief, M., Elsalmy, F.M.: Bug fix-time prediction model using Naïve Bayes clas-
sifier. In: 2012 22nd International Conference on Computer Theory and Applications (ICCTA),
pp. 167–172. IEEE (2012)

Alenezi, M., Banitaan, S.: Bug reports prioritization: Which features and classifier to use? In: 2013
12th International Conference on Machine Learning and Applications, Vol. 2, pp. 112–116.
IEEE (2013)

Almhana, R., Mkaouer, W., Kessentini, M., Ouni, A.: Recommending relevant classes for bug reports
using multi-objective search. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pp. 286–295. ACM (2016)

Amal, B., Kessentini, M., Bechikh, S., Dea, J., Said, L.B.: On the use of machine learning and search-
based software engineering for ill-defined fitness function: a case study on software refactoring.
In: International Symposium on Search Based Software Engineering, pp. 31–45. Springer, Cham
(2014)

Behl, D., Handa, S., Arora, A.: A bug mining tool to identify and analyze security bugs using naive bayes
and tf-idf. In: 2014 International Conference on Reliability Optimization and Information Technol-
ogy (ICROIT), pp. 294–299. IEEE (2014)

Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.: Duplicate bug reports considered harmful...
really? In: 2008 IEEE International Conference on Software Maintenance, pp. 337–345. IEEE
(2008)

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Sirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022
(2003)

Bug reports data. http://bit.ly/2NUyi on. Accessed 20 Jan 2020
Canfora, G., Ceccarelli, M., Cerulo, L., Di Penta, M.: How long does a bug survive? An empirical study.

In: 2011 18th Working Conference on Reverse Engineering, pp. 191–200. IEEE (2011)
Chaturvedi, K., Singh, V.: Determining bug severity using machine learning techniques. In: 2012 CSI

Sixth International Conference on Software Engineering (CONSEG), pp. 1–6. IEEE (2012)
Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred

solution principles. Eng. Optim. 43(11), 1175–1204 (2011)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-

ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Dommati, S.J., Agrawal, R., Kamath, S.S., et al.: Bug classification: feature extraction and comparison of

event model using na∖ ” ive Bayes approach. arXiv preprint arXiv :1304.1677 (2013)
Dreyton, D., Araújo, A.A., Dantas, A., Freitas, Á., Souza, J.: Search-based bug report prioritization for

kate editor bugs repository. In: International Symposium on Search Based Software Engineering,
pp. 295–300. Springer (2015)

Dreyton, D., Araújo, A.A., Dantas, A., Saraiva, R., Souza, J.: A multi-objective approach to prioritize and
recommend bugs in open source repositories. In: International Symposium on Search Based Soft-
ware Engineering, pp. 143–158. Springer (2016)

Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004)
Emmerich, M.T., Deutz, A.H.: A tutorial on multiobjective optimization: fundamentals and evolutionary

methods. Nat. Comput. 17(3), 585–609 (2018)
Fischer, M., Pinzger, M., Gall, H.: Analyzing and relating bug report data for feature tracking. In: WCRE,

Vol. 3, 90 (2003)
Geng, J., Ying, S., Jia, X., Zhang, T., Liu, X., Guo, L., Xuan, J.: Supporting many-objective software

requirements decision: an exploratory study on the next release problem. IEEE Access 6, 60 547–60
558 (2018)

http://bit.ly/2NUyion
http://arxiv.org/abs/1304.1677

1 3

Automated Software Engineering (2021) 28:1 Page 25 of 26 1

Ghannem, A., Kessentini, M., El Boussaidi, G.: Detecting model refactoring opportunities using heuristic
search. In: Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative
Research, pp. 175–187 (2011)

Ghannem, A., El Boussaidi, G., Kessentini, M.: Model refactoring using examples: a search-based
approach. J. Softw. Evol. Process 26(7), 692–713 (2014)

Ghannem, A., El Boussaidi, G., Kessentini, M.: On the use of design defect examples to detect model
refactoring opportunities. Softw. Qual. J. 24(4), 947–965 (2016)

Goyal, N., Aggarwal, N., Dutta, M.: A novel way of assigning software bug priority using supervised
classification on clustered bugs data. In: Advances in Intelligent Informatics, pp. 493–501. Springer
(2015)

Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol. 43(14), 833–839
(2001)

Henard, C., Papadakis, M., Le Traon, Y.: Mutation-based generation of software product line test config-
urations. In: International Symposium on Search Based Software Engineering, pp. 92–106. Springer
(2014)

Jones, J.A.: Semi-automatic fault localization. Ph.D. dissertation, Georgia Institute of Technology (2008)
Kanwal, J., Maqbool, O.: Managing open bug repositories through bug report prioritization using svms.

In: Proceedings of the International Conference on Open-Source Systems and Technologies, pp.
22–24. Pakistan, Lahore (2010)

Kanwal, J., Maqbool, O.: Bug prioritization to facilitate bug report triage. J. Comput. Sci. Technol. 27(2),
397–412 (2012)

Keller, A.A.: Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms.
Bentham Science Publishers (2019)

Kessentini, M., Ouni, A., Langer, P., Wimmer, M., Bechikh, S.: Search-based metamodel matching with
structural and syntactic measures. J. Syst. Softw. 97, 1–14 (2014)

Lamkanfi, A., Demeyer, S., Soetens, Q.D., Verdonck, T.: Comparing mining algorithms for predicting the
severity of a reported bug. In: 2011 15th European Conference on Software Maintenance and Reen-
gineering, pp. 249–258. IEEE (2011)

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now? An empirical study of
bug characteristics in modern open source software. In: Proceedings of the 1st Workshop on Archi-
tectural and System Support for Improving Software Dependability, pp. 25–33. ACM (2006)

Núñez, A., Merayo, M.G., Hierons, R.M., Núñez, M.: Using genetic algorithms to generate test sequences
for complex timed systems. Soft. Comput. 17(2), 301–315 (2013)

Ramirez, A., Romero, J.R., Ventura, S.: A survey of many-objective optimisation in search-based soft-
ware engineering. J. Syst. Softw. 149, 382–395 (2019)

Salton, G., Wong, A., Yang, C.-S.: A vector space model for automatic indexing. Commun. ACM 18(11),
613–620 (1975)

Sharma, M., Bedi, P., Chaturvedi, K., Singh, V.: Predicting the priority of a reported bug using machine
learning techniques and cross project validation. In: 2012 12th International Conference on Intel-
ligent Systems Design and Applications (ISDA), pp. 539–545. IEEE (2012)

Shelburg, J., Kessentini, M., Tauritz, D.R.: Regression testing for model transformations: a multi-objec-
tive approach. In: International Symposium on Search Based Software Engineering, pp. 209–223.
Springer (2013)

Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.-C.: A discriminative model approach for accurate duplicate
bug report retrieval. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, Vol. 1, pp. 45–54. ACM (2010)

Thung, F., Lo, D., Jiang, L., Rahman, F., Devanbu, P.T., et al.: When would this bug get reported? In:
2012 28th IEEE International Conference on Software Maintenance (ICSM), pp. 420–429. IEEE
(2012)

Tian, Y., Lo, D., Sun, C.: Information retrieval based nearest neighbor classification for fine-grained bug
severity prediction. In: 2012 19th Working Conference on Reverse Engineering, pp. 215–224. IEEE
(2012)

Uddin, J., Ghazali, R., Deris, M.M., Naseem, R., Shah, H.: A survey on bug prioritization. Artif. Intell.
Rev. 47(2), 145–180 (2017)

Valdivia Garcia, H., Shihab, E.: Characterizing and predicting blocking bugs in open source projects. In:
Proceedings of the 11th Working Conference on Mining Software Repositories, pp. 72–81. ACM
(2014)

 Automated Software Engineering (2021) 28:1

1 3

1 Page 26 of 26

Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization. IEEE Trans.
Softw. Eng. 42(8), 707–740 (2016)

Xuan, J., Jiang, H., Ren, Z., Zou, W.: Developer prioritization in bug repositories. In: 2012 34th Interna-
tional Conference on Software Engineering (ICSE), pp. 25–35. IEEE (2012)

Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports using domain knowledge.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 689–699. ACM (2014)

Yu, L., Tsai, W.-T., Zhao, W., Wu, F.: Predicting defect priority based on neural networks. In: Interna-
tional Conference on Advanced Data Mining and Applications, pp. 356–367. Springer (2010)

Zanetti, M.S., Scholtes, I., Tessone, C.J., Schweitzer, F.: Categorizing bugs with social networks: a case
study on four open source software communities. In: Proceedings of the 2013 International Confer-
ence on Software Engineering, pp. 1032–1041. IEEE Press (2013)

Zhang, T., Chen, J., Yang, G., Lee, B., Luo, X.: Towards more accurate severity prediction and fixer rec-
ommendation of software bugs. J. Syst. Softw. 117, 166–184 (2016)

Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A.: Statistical debugging: simultaneous identifica-
tion of multiple bugs. In: Proceedings of the 23rd International Conference on Machine Learning,
pp. 1105–1112. ACM (2006)

Zou, W., Lo, D., Chen, Z., Xia, X., Feng, Y., Xu, B.: How practitioners perceive automated bug report
management techniques. IEEE Trans. Softw. Eng. (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Considering dependencies between bug reports to improve bugs triage
	Abstract
	1 Introduction
	2 Related work and motivating example
	2.1 Related work
	2.2 Motivating example

	3 Approach
	3.1 Approach overview
	3.2 NSGA-II
	3.3 Solution approach
	3.3.1 Solution representation
	3.3.2 Fitness functions
	3.3.3 Change operators

	4 Evaluation
	4.1 Research questions
	4.2 Software projects and experimental setting
	4.3 Pre-study survey
	4.3.1 Post-study survey

	4.4 Meta-heuristic parameters tuning
	4.5 Results
	4.5.1 Results for RQ1
	4.5.2 Results for RQ2
	4.5.3 Post-study survey
	4.5.4 Pre-study survey results
	4.5.5 Post-study survey results

	5 Threats to validity
	6 Conclusion and future work
	References

