
Vol.:(0123456789)

Automated Software Engineering (2020) 27:329–367
https://doi.org/10.1007/s10515-020-00276-5

1 3

Analyzing system software components using API model
guided symbolic execution

Tuba Yavuz1  · Ken (Yihang) Bai2

Received: 11 January 2020 / Accepted: 5 September 2020 / Published online: 19 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Analyzing real-world software is challenging due to complexity of the software
frameworks or APIs they depend on. In this paper, we present a tool, PROMPT,
that facilitates the analysis of software components using API model guided sym-
bolic execution. PROMPT has a specification component, PROSE, that lets users
define an API model, which consists of a set of data constraints and life-cycle rules
that define control-flow constraints among sequentially composed API functions.
Given a PROSE model and a software component, PROMPT symbolically executes
the component while enforcing the specified API model. PROMPT has been imple-
mented on top of the KLEE symbolic execution engine and has been applied to
Linux device drivers from the video, sound, and network subsystems and to some
vulnerable components of BlueZ, the implementation of the Bluetooth protocol
stack for the Linux kernel. PROMPT detected two new and four known memory
vulnerabilities in some of the analyzed system software components.

Keywords  Symbolic execution · API modeling · Specification

1  Introduction

Analyzing real-world applications requires modeling of the environment including
the application programming interface (API) of the underlying software framework.
While software frameworks are designed to enable faster development, modular-
ity, and extensibility, incorrect use of their APIs creates reliability issues. Recent
studies on API usability (Amann et al. 2017; Myers and Stylos 2016; Indela et al.
2016; Nadi et al. 2016; Fahl et al. 2013; Georgiev et al. 2012) report various dif-
ficulties faced by the developers when using APIs and how API misuses may lead to

 *	 Tuba Yavuz
	 tuba@ece.ufl.edu

1	 Benton 321, ECE Department, University of Florida, Gainesville, FL 32611, USA
2	 Larsen 234, ECE Department, University of Florida, Gainesville, FL 32611, USA

http://orcid.org/0000-0002-5542-2142
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00276-5&domain=pdf

330	 Automated Software Engineering (2020) 27:329–367

1 3

vulnerabilities. Although the focus in these studies has been mostly on the misuse of
cryptographic APIs, API misuse is a potential problem for any complex framework.

Due to the complexity of software frameworks, precise analysis of software com-
ponents along with the framework code is not feasible. A typical solution is to ana-
lyze components using an environment model. However, manually generating envi-
ronment models is error-prone. Depending on the goal of the analysis, it may require
an extensive engineering effort. This challenge has recently inspired researchers to
automatically synthesize API models in the form of implementations or usage rules
(Qi et al. 2012; Heule et al. 2015; Park et al. 2019; Shi et al. 2019). Although the
results of these studies are promising, they rely on the existence of run-time data or
sample user-space applications that can be executed to exercise the APIs of interest.
However, setting up the right execution environment is challenging for systems that
interact with hardware, e.g. device drivers, and those that involve complex API, e.g.,
cryptographic libraries.

Symbolic execution (King 1976) has emerged as a test generation technique and
has also become an important program analysis technique for finding bugs and vul-
nerabilities. Dynamic symbolic execution (Cadar and Sen 2013) can mix concrete
and symbolic execution. Therefore, it provides a precise memory model and is effec-
tive in detecting memory related errors. However, symbolic execution is not scalable
due to the well-known path explosion problem and so it cannot be applied to the
analysis of a software framework. Therefore, effective symbolic execution of appli-
cation components requires a precise model of the software framework.

In this paper, we present a modeling language, PROSE, for specifying API mod-
els and a symbolic execution based tool, PROMPT, that performs symbolic execu-
tion on a software component while enforcing the specified PROSE API model.
Users can also implement API function models in the C language and leverage the
metadata handling interface provided by PROMPT. Additionally, PROSE enables
modeling of programming idioms, e.g., container_of macro in the Linux ker-
nel, that are common in systems code, which can be used to guide PROMPT for a
more precise analysis at the component level. Our approach facilitates analysis of
system software components by avoiding the need for developing a test harness or
changing and recompiling the underlying code base.

We have modeled the registration, setup, and cleanup APIs of the video,
sound, and network subsystems of the Linux kernel. We have applied PROMPT
to 57 Linux device drivers and devised API models to enable precise symbolic exe-
cution of these drivers. We were able to cover success as well as failure paths of the
setup and teardown functions of the drivers in our evaluation set. We also analyzed
some of the vulnerable components in BlueZ, an implementation of the Bluetooth
protocol stack for the Linux kernel, and detected some vulnerabilities that require
considerable testing effort. We also detected several real memory bugs in some of
the device drivers.

Our contributions can be summarized as follows:

•	 We present a modeling language, PROSE, that can be used to specify API mod-
els, which incorporate the life-cycle of an event-based system and the data con-
straints.

331

1 3

Automated Software Engineering (2020) 27:329–367	

•	 We present an open-source analysis tool,1 PROMPT, that is developed on top of
the KLEE execution engine. PROMPT features model guided lazy initialization,
precise simulation of life-cycle models, and metadata tracking.

•	 We have modeled the registration, teardown, and setup API of three different
subsystems, video, sound, and network, in the Linux kernel and validated
them using PROMPT.

•	 We have applied PROMPT to various components in the Linux kernel. The first
case study reports on the analysis of 57 Linux device drivers using the PROSE
API models for the three subsystems. The second case study reproduces some
known vulnerabilities in BlueZ including one of the BlueBorne (2020) vulner-
abilities: CVE-2017-1000251. We detected a total of six memory related bugs,
two new and four known.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 provides an overview of PROSE and PROMPT on a real use-after-free
vulnerability. Section 4 introduces the PROSE API modeling language. Section 5
explains the API model guided symbolic execution as implemented in the PROMPT
tool. Section 6 presents the details of our case studies. Section 7 presents an evalua-
tion of our approach. Finally, Sect. 8 concludes with directions for future work.

2 � Related work

2.1 � Environment modeling

Analysis of real-world applications requires the existence of an environment model.
In the context of symbolic execution, modeling of low-level system call API (Cadar
et al. 2008) and modeling of POSIX API (Bucur et al. 2011) have been considered
to enable analysis of code that uses these API. However, these efforts provide prede-
fined models and do not provide the users with mechanisms to use custom defined
models. DART (Godefroid et al. 2005) analyzes the component under test to auto-
matically extract external function models that return random values of the correct
return type, which get combined with the component for concolic execution. In the
context of model checking, environment models of Windows Framework Drivers
(Ball et al. 2011), Linux device drivers (Witkowski et al. 2007), the Java Swing
Library (Mehlitz et al. 2011), and the Android OS (Bai et al. 2018) have been used.
In Ball et al. (2011) the API functions were modeled through stubs that nondeter-
ministically return possible return values or allocate memory and return the address.
However, semantics of the API functions were also specified using rules written
in the SLIC specification language (Ball and Rajamani 2020). In Witkowski et al.
(2007), the environment models are encoded in the C code and enriched with nonde-
terministic choice directives. In Mehlitz et al. (2011), event sequences are specified

1  PROMPT can be accessed at https​://githu​b.com/sysre​l/PROMP​T.

https://github.com/sysrel/PROMPT

332	 Automated Software Engineering (2020) 27:329–367

1 3

in a user script, which get simulated by model Java implementations of some of the
framework classes. In Bai et al. (2018), mock-ups of OS functionalities are imple-
mented in Java by leveraging the original Android implementation. The LDV toolset
(Zakharov et al. 2015) enables specification of environment models by weaving the
correctness rules and the API models expressed in the C language to the source code
of the component under analysis and uses a reachability checker under the hood such
as Beyer and Keremoglu (2011) to detect violations and memory errors. PROMPT
allows users to specify custom API models and enables symbolic execution of the
component under analysis within the context of these models while simulating the
custom data constraints and control-flow rules specified as part of the API model.

2.2 � Symbolic execution for system code

S2E (Chipounov et al. 2012) uses selective symbolic execution to analyze bina-
ries. S2E can be directed to restrict symbolic execution to the specific parts of the
code and manage the transitions between symbolic and concrete execution modes.
While S2E targets errors that may get manifested in any layers of the software
stack, PROMPT targets errors inside the component under analysis while using a
model for the environment. Since S2E mixes concrete and symbolic execution, it
needs hardware emulation to analyze device drivers or any component that directly
interacts with the hardware. However, PROMPT is based on symbolic execution
only and, therefore, does not require hardware emulation. SymDrive (Renzelmann
et al. 2012) uses S2E and symbolic hardware models and analyzes driver code that
is instrumented with checkers. SymDrive is specialized for driver analysis whereas
PROMPT provides a generic modeling framework for analyzing components of
system code. Apisan (Yun et al. 2016) detects bugs that are due to incorrect usage
of APIs in large code bases. It uses relaxed symbolic execution to infer semantic
beliefs for API usage and reports bugs when a deviation from the inferred beliefs is
detected. Due to the precise memory model used by the underlying symbolic execu-
tion engine, PROMPT can check whether such deviating behaviors are correct or
not without a belief model as long as it is provided with sufficiently precise API
models.

2.3 � Lazy initialization

Lazy initialization for symbolic execution has been presented in Khurshid et al.
(2003) and was implemented as an extension to the Java Path Finder model checking
tool (Visser and Mehlitz 2005). In this work, the motivation for lazy initialization
was to represent unbounded data structures symbolically and to check concurrent
data structure implementations in an exhaustive way. Therefore, when a symbolic
field needed to be concretized all possible candidates among the existing compatible
memory objects and the null value would be considered non-deterministically. Lazy
initialization capability was added to the KLEE symbolic execution engine in UC-
KLEE (Ramos and Engler 2015) to reach deep parts of the system code and librar-
ies. The modeling constructs provided by UC-KLEE get weaved into the analyzed

333

1 3

Automated Software Engineering (2020) 27:329–367	

code with the goal of filtering out some of the false positives. PROMPT enables cus-
tomization of the analysis environment through API model guided lazy initialization
and symbolic execution, which achieves scalability in addition to achieving a lower
false positive rate.

3 � Overview

In this section, we present an overview of our API modeling approach and introduce
its salient features. The overall goal is to be able to analyze implementations of soft-
ware components independently from the implementations of the APIs they inter-
act with. However, users should also be able to specify a model of such API based
on their analysis goals. This would have the benefit of reducing the footprint of the
analyzed code and the number of paths explored. The users can design the models
based on domain expertise and a specific goal, e.g., detecting memory related errors.

Another goal is usability of the approach. We would like to minimize the man-
ual effort that would be needed for API modeling, which needs to be done once for
every version of the software framework.2 We achieve this by eliminating the need
to write a test harness for the component to be analyzed using the lazy initializa-
tion approach (Khurshid et al. 2003; Ramos and Engler 2015). Lazy initialization
eliminates the need for creating and initializing dynamic data structures. Plain lazy
initialization has been shown to be effective for the analysis of abstract data type
implementations (Khurshid et al. 2003). However, it leads to a high false positive
rate for software frameworks, such as the Linux kernel (Ramos and Engler 2015).
This is due to the inability to capture the rules of the underlying API.

We have designed PROMPT to perform API model guided symbolic execution
on a software component and the API models it interacts with. PROMPT gets the
code for the software component under analysis and an API model specified in the
PROSE modeling language. A PROSE model consists of the C implementation of
the modeled API functions and the API models, which fall into one or more of the
three categories: data models, function models, and life-cycle models.

3.1 � A motivating example

In this section, we motivate the need for modeling the environment of a software
component for a precise and scalable analysis using symbolic execution. Although
our approach can be applied to a variety of kernel components, e.g., protocol stack
implementations, and to other software frameworks, we use a Linux device driver
with a known use-after-free vulnerability as a running example. Figure 1 shows a
function from the usbtv driver, a Linux driver for a USB tuner, which is used as
the entry point for symbolic execution.

2  Models of the API functions can be reused across different versions as long as the modeled aspects do
not change.

334	 Automated Software Engineering (2020) 27:329–367

1 3

Figure 2 shows some of the components of the API model specification for the
usbtv driver. A Linux device driver that supports the hot-plug events implements
a function, probe, to be called when the device gets plugged in and implements
another function, disconnect, to be called when the device gets unplugged.
According to the life-cycle rules, the disconnect function executes after the probe
function and only if the probe function returns a success value. According to the
data constraint rules, some of the data structures, such as struct usb_inter-
face, have only one instance. As an example, for USB drivers the single instance

Fig. 1   The usbtv driver (the component under analysis, on the left and on the middle) and the summa-
rized PROSE API models (on the right). The use-after-free vulnerability can be detected as PROMPT
precisely simulates the environment for the usbtv driver using the video API models and other rules of
the API modeling

API DATA MODELS

 sdebme ecived_bsu tcurts ecafretni_bsu tcurts
 struct vb2_queue struct device
 struct v4l2_device
 struct usb_device

API FUNCTION MODELS
 C/C++ models of the

registration/deregistration APIs
of the Linux video subsystem

API LIFE-CYCLE MODELS
entry point driver_probe followed

by driver_disconnect if
driver_probe returns 0

Fig. 2   The components of a PROSE API model specification as defined for the Linux drivers from the
video subsystem

335

1 3

Automated Software Engineering (2020) 27:329–367	

of the struct usb_interface type gets passed as a parameter to both the
probe and the disconnect functions.3

Another data constraint rule involves specifying embedding of one data structure
type in another one. In the Linux kernel, polymorphism is achieved by embedding
generic data structures, e.g., struct device, within specialized data structures,
e.g., usb_device. Also, the address of the generic data structure instance is used
to compute the address of the specialized data structure. This is implemented by
the container_of macro and involves pointer arithmetic. Basically, the address
of a specialized data structure instance is computed by subtracting the static off-
set of an embedded data structure from the address of an embedded data structure
instance. Note that this type of pointer arithmetic that goes outside the boundaries
of a data object is not supported by standard points-to analyses (Yong et al. 1999),
which led to the design of specialized techniques such as Chatterjee et al. (2009;
Wang et al. 2017). Symbolic execution has a precise memory model and can deal
with such non-standard pointer arithmetic as long as it is provided with sufficient
context, e.g., the embedding object has also been created. However, in component-
level analysis such context may not be available. PROSE allows specification of such
data structure dependencies and PROMPT applies them during lazy initialization
to provide proper context during component-level analysis. Such pointer arithmetic
exists in low-level system software, e.g., in dynamic data structure implementations
(Chatterjee et al. 2009), and, hence, we expect the embedding rule to be effective in
the analysis of system code other than the Linux kernel as well.

In Fig. 1, the boxes on the right-hand side show summarized PROSE models of
the API functions that called from the driver code, e.g., usbtv_video_init
calls the v4l2_device_register and the video_register_device API
functions. Figure 3 shows the C implementation of the PROSE model for v4l2_
device_register. This driver interacts with the video subsystem of the
Linux kernel. The usbtv_probe function is the entry function and it gets exe-
cuted when the USB device gets plugged in. The driver calls some video API func-
tions inside the usbtv_video_init function of the driver to setup video related
data structures and to register them with the kernel. Among other things, some of
these API functions keep track of the reference counts of video data structures. In
the Linux kernel, two different APIs are used for reference counting: kref and
kobject. These APIs differ in how they specify the cleanup function. We abstract
away the details of these two different APIs by providing a metadata tracking and
update mechanism in PROMPT. Basically, we implemented two handlers: klee_
set_metadata and klee_get_metadata. The former function sets the meta-
data for the first argument, which represents an address in the analyzed component,
and the latter returns the existing metadata. The metadata API keeps the mapping
between the address and the metadata specific to the current symbolic execution
state in which the call gets executed. Currently, we support int as a type for the
metadata and we will extend it with additional types in the future.

3  This singleton rule applies to other bus types including the PCI and I2C.

336	 Automated Software Engineering (2020) 27:329–367

1 3

Using the metadata interface we mention above, we could abstract the refer-
ence counting APIs for the v4l2_device_register PROSE model. For
instance, as shown in Fig. 3, the v4l2_device_register function sets the
reference count of a v4l2_device type object to 1 at line 14. Line 13 shows
the commented out original program statement that achieves this operation using
the kref API. Lines 17–18 show the reference count increment operation for the
device type object. Line 16 shows the commented out original program state-
ment that achieves this operation using the kobject API.

PROMPT detected this known use-after-free vulnerability, CVE-2017-17975,
in the usbtv driver. The bug gets manifested on an error path and the use-after-
free happens due to accessing the driver data structure pointed by the usbtv
variable, denoted by the rectangle shown in Fig. 1, after freeing of the object. The
error path is executed due to the usbtv_audio_init function returning an
error value. So, the usbtv_video_free function gets executed next. Inside
this function, the reference count of the v4l2_device object is decremented
as indicated by the PROSE models of the video_unregister_device and
v4l2_device_put functions. When the reference count becomes zero, a call-
back function gets called according to the model. The address of this callback

Fig. 3   The C implementation of the PROSE model for the v4l2_device_register function. Com-
mented lines denote the original program statements that are modeled. The metadata handling functions
klee_set_metadata and klee_get_metadata are PROSE extensions to KLEE

337

1 3

Automated Software Engineering (2020) 27:329–367	

function is represented by the expression arg0->release and it turns out to
be the usbtv_release function of the driver, which gets registered/set inside
the usbtv_video_init function of the driver. The callback frees the driver
data structure, usbtv, using the kfree function. Eventually, the control-flow
on the error path moves to the usb_put_dev callsite, at which point the use-
after-free is detected by PROMPT.

We note that the actual PROSE model we used for the video API to detect
this vulnerability is more detailed than the one shown in Fig. 1.4 Without modeling,
i.e., using the full kernel code, initialization of the glo.bal state took approximately
2 h while using a 32 GB of memory on an Ubuntu 16.04 machine with 256 GB of
RAM (see Sect. 7.2). However, using the PROSE models and the driver code as sys-
tem under analysis, PROMPT could detect the use-after-free vulnerability shown in
Fig. 1 within 6 s as reported in Sect. 7.6.

4 � The PROSE API modeling language

Figure 4 shows the grammar of the PROSE API modeling language. One of the
goals of PROSE is to minimize modeling effort by providing a way to specify rules
that can be applied globally. However, this may lead to an imprecise analysis. So,
users can also specify rules that involve specific data types and functions. In that
case, type and function specific modeling rules take precedence over the globally
specified modeling rules. Below, we explain major components of the PROSE API
modeling language.

4.1 � Global settings

In lazy initialization, an important modeling decision involves the size of memory
region to be allocated for a pointer. It is possible that the pointer refers to a sin-
gle object or an array of objects. So, in general an array of the base type with size
greater than or equal to one needs to be allocated. If the array size is too small, this
would lead to false positives. On the other hand, if the array size is too large, it
would lead to false negatives and to high memory overhead during symbolic exe-
cution. With these caveats, the user can specify an array size to be applied to any
pointer that gets lazily initialized using the array size < ������ > rule, where
< ������ > denotes a positive integer. Users can overwrite this rule for a specific
type as explained in Sect. 4.2.

In PROSE, a function can be modeled either via another function that matches
the signature and is implemented in C or by specifying how to handle the arguments
and the return value, which we call the generic approach. If the function is modeled
using the generic approach, the return value is automatically symbolized. However,
if a modeled function returns a pointer-type, the users can specify whether the NULL

4  The PROSE models of our benchmarks can be found at https​://githu​b.com/sysre​l/PROMP​T/tree/maste​
r/JASE_bencm​arks.

https://github.com/sysrel/PROMPT/tree/master/JASE_bencmarks
https://github.com/sysrel/PROMPT/tree/master/JASE_bencmarks

338	 Automated Software Engineering (2020) 27:329–367

1 3

value should be considered as a possible return value by using the NULL return
< ������ > rule, where < ������ > can be ON or OFF. Users can overwrite this
rule for specific functions as explained in Sect. 4.2.

Another important aspect of lazy initialization of data structures is how to deal
with the function pointers. In some cases, the user needs to specify which function
to use for a specific field of a type. However, in some cases setting a function pointer

Fig. 4   The grammar of the PROSE API modeling language that gets interpreted by the PROMPT tool to
simulate an environment model for the component under analysis

339

1 3

Automated Software Engineering (2020) 27:329–367	

field to NULL works if it is about an optional functionality that can be abstracted
away. So, users can specify whether the function pointers in lazily initialized data
structures can be set to NULL using the init funcptrs to NULL rule. Users
can overwrite this rule for a specific type as explained in Sect. 4.2.

System code often come with inline assembly code. Although users can deal
with inline assembly via automated assembly lifters such as Recoules et al. (2019),
PROSE provides two ways to model inline assembly, if needed. The first way is to
model the assembly instruction as a side-effect free operation and symbolizing the
return value, if any, using the symbolize inline asm ON rule. The other way
is to automatically modeling functions that have inline assembly using the model
funcs with asm < ������ > rule. The optional except < ���������� >
specifies exceptions to this setting for functions with names matching the list of reg-
ular expressions < ���������� > . The details of modeling such functions are sub-
ject to other global and type and function specific rules as specified in the PROSE
API model.

Users can also specify a global approach to dealing with the pointer arguments
of functions that are modeled using the generic approach. As mentioned above and
detailed in Sect. 4.3, such arguments can be chosen to be havoced (symbolized) to
model the side-effect of the function in the most abstract sense. Havocing process
marks the object pointed by the argument as symbolic. However, users can choose
to skip or turn on this havocing operation for functions modeled using the generic
approach with the skip havocing singletons < ������ > rule, which
can be overwritten for specific functions and specific arguments as explained in
Sect. 4.3.

4.2 � Data modeling

An important aspect of providing a precise context for a component under analy-
sis is describing the embedding relationship between data structures. System
software utilizes the embedding of one struct in another one to achieve polymor-
phism and code reuse (Chatterjee et al. 2009). This assumption may be leveraged
to use the address of an embedded object to derive a pointer for the embedding
object, e.g., the container_of macro in the Linux kernel. If a proper context
is not provided, analysis of such code may lead to false positives and low cover-
age of the code. PROSE allows users to specify such embedding relationship using
the < �����_� > ������ < �����_� > rule, where < �����_� > denotes the
name of the embedding type and < �����_� > denotes the name of the embedded
type. Optionally, users can specify the index of the field of < �����_� > at which
< �����_� > is embedded using the extension ����� < ������ > . When the
field index is not specified and if there are multiple fields of < �����_� > of type
< �����_� > then the one with the lowest index is assumed for lazy initialization
purposes.

Another type of data modeling has to do with whether the lazy initialized struct
type has a single instance within the context of the analyzed components. If so,
using the same instance instead of creating a new instance improves the precision of

340	 Automated Software Engineering (2020) 27:329–367

1 3

the analysis. Users can specify whether a data type should be treated as a singleton
using the ��������� < ����� > rule, where < ����� > is the type name.

Finally, users can specify constraints about the fields of struct types. Such constraints
consist of two parts: the expression and the binding. In the expression part, users can
use model variables in constraints that involve arithmetic (+, -, *, /), boolean (!),
and relational operators ( >,≥,<,≤,=, ! = ). These model variables need to be bound
to some entities in the code using comma separated < ����� > �� < ������ >
clauses. The types of entities include the fields of struct types
( < ����� > ����� < ������ > ), the arguments ( < ����� > ��� < ������ > )
or the return values ( ������_�� < ����� > ) of functions, and the sizes of arrays or
pointer fields ( ����_�� < ����� > ����� < ������ > ). The field and argument
numbers start at 0 and consecutive numbers are used based on the order of their decla-
ration in the function signature or in the type definition. These constraints get enforced
on the relevant objects during lazy initialization, handling of callsites for functions
modeled using the generic approach, or handling of return instructions that cause tran-
sitioning from one life-cycle entry to another.

4.3 � Function modeling

When a software component is analyzed, it is important to capture the key interac-
tions with some of the API functions that are critical for achieving the analysis goal.
Some of the API functions, on the other hand, will not be that critical. So, PROSE
provides various ways of modeling an API function with different levels of detail.

One way is to implement the model as a C function and specify the modeling rela-
tionship with the original one using the < �����_� > ������� �� < �����_� >
rule, where < �����_� > and < �����_� > denote the names of the original func-
tion and the model function, respectively.

Another way of function modeling in PROSE is by specifying the side
effects of the function in terms of its return value and the pointer type argu-
ments, which we call the generic approach. Return values of functions mod-
eled in this way are always symbolized. However, the return value can be con-
strained as explained in Sect. 4.2. The pointer arguments can be explicitly
specified to be havoced by providing the indices of the arguments using the rule
����� ���� < ������_���� > �� < ����� > . Another option in the generic
approach is to symbolize the return value only and skip havocing of all pointer argu-
ments, which can be specified using the ‘returnOnly’ < ����� >.

An important class of API functions involve memory allocation and deallo-
cation. Such API can be modeled in PROSE to abstract away framework specific
details. An allocation function may either return a pointer to the allocated mem-
ory or store the address in a pointer argument. Users can use the to specify how
the address of the allocated memory is returned ( < �����_���_��� > ), the argu-
ment index ( < ������ > ) that specifies the size of the memory allocation, whether
the allocated memory would be initialized with zeros, and whether the memory
would be symbolized. To model a deallocation function, one needs to specify the
argument that holds the address of the memory region to be deallocated using the

341

1 3

Automated Software Engineering (2020) 27:329–367	

���� < ����� > ���_��� < ������ > rule, where < ������ > denotes the argu-
ment index.

4.4 � Life‑cycle modeling

In a PROSE model, the components under analysis can be specified using a life-
cycle model. If there is only one component to be analyzed then this can be specified
using the entry-point < ����� > rule, where < ����� > denotes the name of
the function to analyze. If there are multiple functions to analyze in a sequential
order then the sequential composition can be specified as a semicolon separated list
of life-cycle entries. A life-cycle entry can be just a function name, which means
that either the return type of the function is void or that regardless of the return
value the execution will continue with the next function in the sequence. If the exe-
cution should continue only for certain cases of return values, e.g., success cases,
then the continue if < ����� ���������� > clause should be specified after
the function name. The bound constraints that are valid in this context are those that
involve the return values of the functions ( ������_�� < ����� > ) in the life-cycle
sequence. Alternatively, users can choose to use the < ����� > [< ������ >] rule
to specify the specific return value, < ������ > , for which the execution continues.
Finally, just specifying the name of the function < ����� > indicates that the execu-
tion must continue with the next life-cycle step regardless of the return value, if any,
as long as the path has not terminated.

5 � API model guided symbolic execution

In this section, we explain the details of our approach for API model guided sym-
bolic execution as implemented in the PROMPT tool. PROMPT extends the KLEE
symbolic execution engine, which follows an execution-generated testing (EGT)
approach to dynamic symbolic execution (Cadar and Engler 2005). Algorithm 1
shows how the basic EGT approach to symbolic execution works. Starting from an
initial state that consists of the dynamic and static memory, Mem , the stack, Stack ,
the path condition, PC , the next instruction to execute, nextInst , and the termina-
tion status, term, it generates a tree of states as the component under analysis, C,
gets executed symbolically. By designating some of the inputs as symbolic, which is
invisible in Algorithm 1, the program instructions get executed by computing sym-
bolic expressions when the operands involve symbolic values. So, both Mem and
Stack have a combination of memory locations with concrete values and memory
locations with symbolic expressions. The PC , known as the path condition, repre-
sents the constraints on the symbolic inputs on a given execution path. Computation
of the PC in Algorithm 1 is implicitly handled by line 8. Each branch instruction
generates the children of the current state such that the path condition of each child,
PCi , restricts the path condition of the parent with the symbolic branch condition,
cond , that is true on that path, i.e., PCi ≡ PC ∧ cond . For non-branching instruc-
tions, the set succs is empty if inst is the last instruction of C, in which case the state

342	 Automated Software Engineering (2020) 27:329–367

1 3

gets terminated. For non-terminating non-branching instructions, the set succs is a
singleton and the PC is an exact copy of that of state , i.e., the predecessor.

Basic symbolic execution (BSE) does not scale when the component under analy-
sis is large. So, we present an API Model Guided Symbolic Execution (PMGSE) to
enable the analysis of software components of large frameworks. The challenge in
analyzing a software component is to come up with a precise model of the environ-
ment it interacts with so that symbolic execution can be performed on the software
component and the model only, which would scale better than analyzing the compo-
nent in the context of the large software framework.

We assume that depending on the goal of the analysis the framework API models
have been implemented in C and get linked with the component. However, replac-
ing the API functions with their model implementations does not provide a precise
analysis. The rules of the API also need to be enforced. Otherwise, either some of
the important paths will not get explored or too many false positives will be gener-
ated. In Sect. 4, we have presented the API modeling rules as defined in the PROSE
language. In this section, we explain how the rules that are specified in a PROSE
model get enforced by PMGSE as implemented in the PROMPT tool.

Algorithm 2 shows how PMGSE extends the basic symbolic execution given in
Fig. 1 to enforce a given API model, M, which consists of the global settings, the
singleton types, SG , the type embedding relations, EM , the data constraints, DC ,
to be used during lazy initialization, the function argument, FAC , and return value,
FRC , constraints to be used to simulate the life-cycle rules, LC , the modeled allo-
cation, AF , and deallocation, DF , functions, the functions that are modeled by
other functions, FM, the exceptional cases, AE , for modeling functions with inline
assembly, and the rules about havocing arguments, HV. We refer to the relevant ele-
ments of the API model M in Algorithms 2–8 to explain how PROMPT implements
PMGSE.

343

1 3

Automated Software Engineering (2020) 27:329–367	

PMGSE extends the symbolic execution state with metadata, MT, that gets
manipulated by the API models. The main extensions of Algorithm 2 to Algorithm 1
are (1) extending the state representation with metadata, (2) collecting type embed-
ding information by traversing all the types in the component under analysis, (3)
keeping track of a type to address mapping, TA , and (4) extending the handling of
several instruction types to enforce the API model. We skipped some details about
keeping track of TA such as including static allocations and bitcast instructions that
cast void pointers to a specific type. In what follows, we use executeInstruction and
allocate to represent the algorithms for symbolically executing an instruction and
allocating memory for a given type, respectively, as performed in BSE. We mark all
struct types and all primitive types that are used as pointer fields in the struct
types to be lazily initialized and do so if a pointer to one of these types actually take
a symbolic address.

344	 Automated Software Engineering (2020) 27:329–367

1 3

Algorithm 3 handles the load and store instructions. Since KLEE executes LLVM
bitcode, we would like to provide some details in the context of LLVM. In LLVM,
a load/store instruction may have a pointer type or a double pointer type address
operand. Those with the latter refer to the memory locations that store memory
addresses. So, if a symbolic expression is stored in the address provided in a load/
store instruction and the operand is a double pointer type, we allocate the memory
object of that type and store the address of that allocated memory into the relevant
memory location. We represent an allocated memory region with a memory object
mo = (A, T ,C) , where A denotes the base address, T denotes the base type, and C
denotes the number of T objects stored in mo, i.e., size of mo is C × sizeof (T) . So,
given a state st and a possibly symbolic address A,Resolve(st,A) returns the set of
memory objects that A may fall into by forking at the instruction i and generating
a copy of state st in each st′ . For each memory object mo, the algorithm checks if
the address value stored at address A is a symbolic value. If so, it calls Algorithm 4
to lazily create an object and copies the address of the object, address2 , to address
A. The size of the lazily initialized memory region is inferred from the API model;
if there is a type specific rule then the specified constant is retrieved from the data
constraint, M.DC , or from the singletons M.SG , otherwise, the global setting on the
array size is used.

After the memory gets created, PROMPT applies any data constraint that is
related to the size of the generated memory object by executing the ApplyDataCon-
straint algorithm, which is explained below. If the applied constraints contradict the
path condition then the path gets terminated. Otherwise, the load/store instruction
is executed as in regular basic symbolic execution, which would now use a concrete
address, address2 , to execute the load/store instruction. Memory allocation is shown
in Algorithm 4 and performs additional tracking for lazy initialization.

345

1 3

Automated Software Engineering (2020) 27:329–367	

Algorithm 4 performs some extra steps if it is called as part of the lazy initiali-
zation process, e.g., from the load/store instructions. Since it needs to enforce the
embedding rules, it executes recursively to make sure that the outermost embed-
ding object gets created as part of the allocation of the given type T. One side effect
of this algorithm is to infer new singletons; if a type is specified to be a singleton
then so must be its embedding type. When we reach the base case of this recursive
algorithm, i.e., there is no embedding type to consider according to the specified
API rule, M.EM , we check if this is a singleton. If so, we should use the existing
instance, if any. Otherwise, a new instance gets created. In our implementation, we

346	 Automated Software Engineering (2020) 27:329–367

1 3

create an array instead of a single cell when we lazily initialize pointers to primitive
or non-singleton types. The size of the array can be tuned. We have used 20 for our
evaluation.

Algorithm 5 applies data constraints in the API model, M.DC . If
sizeof parameter is set to true then this algorithm gets called from Algo-
rithm 3 to apply constraints on the size of a dynamic array, e.g.,
� < � ����� � �� � ����� �, � �� ����_�� � ����� � , where field 0 represents
the length and field 1 represents the dynamic array in struct A = {int
length; int *data}. The algorithm finds the relevant constraint by

347

1 3

Automated Software Engineering (2020) 27:329–367	

locating the relevant field based on the base address b of the object of type T and
the address a of the dynamic array field. If sizeof parameter is set to false then
this algorithm gets called from Algorithm 4 to make sure that primitive fields of
the lazy initialized object of type T gets constrained as specified. In both cases,
the abstract syntax trees that corresponds to the specified constraints get trans-
lated into expressions on the symbolic names of the relevant memory regions.
The symbolic expressions are checked against the path condition and the state
gets terminated if a contradiction is detected. The algorithm is executed recur-
sively to handle the struct type fields of T to apply the constraints that involve any
of the embedded types.

348	 Automated Software Engineering (2020) 27:329–367

1 3

Figure 5 illustrates some of the data structures used by the usbtv driver given
in Fig. 1 and how they get created. We use the explicit label (positioned below the
objects) to represent memory allocation due to an allocation callsite such as calling
kmalloc or kzalloc and we use lazy to denote that the object gets created as
part of the lazy initialization. As an example, the usbtv driver creates a struct
usbtv object inside the usbtv_probe function by calling kzalloc and, there-
fore, this objects get created explicitly during symbolic execution. However, both the
struct usb_interface type and the struct usb_device type objects
get lazily initialized. The lazy initialization of the former is due to being a parameter
of some entry function, e.g., usbtv_probe or usbtv_disconnect, whereas
that of the latter is due to an access of the usb_dev field on the lazily initialized
struct usb_interface object, denoted by the lazy label on arrow (1) from
the usb_dev field to the usb_device object.

The reason for the device object being created as embedded inside a usb_
device object instead of as being a standalone object is that the API rule on
embedding was specified as usb_device embeds device. It is possible that
some symbolic pointers get later in the execution set to concrete values, examples
of which are shown in Fig. 5 and are denoted by the arrows labelled with either
explicit or API. The explicit label indicates that the pointer has been set due to an
assignment instruction in the component whereas the API label indicates the pointer
having been set inside the API model. As an example, the link denoted by arrow (3)
in Fig. 5 is generated due to line 25 of the v4l2_device_register function
model shown in Fig. 3.

In Algorithm 6, we handle certain callsites in a special way to (1) track and check
consistency of declared and inferred singleton types (lines 3–13), (2) perform meta-
data handling (lines 14–17), and (3) to handle the API functions in a special way.
PROMPT consults the API model M to determine how to handle a callsite, i.e., to

usb_dev
struct
device

struct usb_device

of
fs

et

(1)

lazy

struct usb_interface

driver_data

struct usbtv

struct
v4l2_device

dev

struct
video_device

v4l2_dev

(2)
explicit

(3)
API

(4)
explicit

model guided
lazy initialization

lazy initialization
(argument)

explicit
(kmalloc)

Fig. 5   Major data structures manipulated by the usbtv driver. The region with a bold border shows an
example of an embedded region, where the embedding type is usb_device (with the dashed border),
which gets created to enforce the modeling rule on type embedding. The labels on the arrows represent
the source of the updates and those under the objects show how they get created

349

1 3

Automated Software Engineering (2020) 27:329–367	

execute the original function or perform some modeling. If the function is modeled
by another function then we execute that model function instead of the original func-
tion (lines 19–20). Otherwise, we check if the function can be modeled in a generic
way, i.e., by symbolizing its arguments and the return value, if any. External func-
tions are handled in a generic way. A function that has a definition may also be mod-
eled in a generic way if it has inline assembly and the global setting on modeling
functions with inline assembly, M.modelwithassembly , is set and the function name
does not match any of the exceptional cases, M.AE . The significance of assembly-
level instructions is due to the inability of the underlying symbolic execution engine,
KLEE, to handle them, which leads to the immediate termination of the path, and,
hence, prevents coverage of the symbolic execution tree beyond that instruction. In
general, PROMPT models a function in a generic way by havocing (symbolizing) its
arguments and the return value, if any, (lines 22–44) However, havocing of an argu-
ment would still be skipped if the global setting on skipping havocing singletons is
set, the argument type is a singleton, and havocing of the argument is not specified
in M.HV. Otherwise, the argument gets havoced. The return value is symbolized and
if the global setting for NULL return is set then that case is also considered. Algo-
rithm 7 gets executed to apply any constraint on the return value on the original state
and, if applicable, on the cloned one in which the return value is set to NULL. For
the API functions for which PROSE models are available, the return values can be
explicitly made symbolic inside the models as shown in Fig. 3 in lines 7–9. So, for
the v4l2_device_register function, the side-effects specified on lines 13–25
are are only modeled for the success cases, i.e., return_value ≥ 0 . This is because on
failure cases, the API functions typically revert back the side effects that they may
have performed, e.g., allocated memory gets deallocated and the reference count
operations get reverted.

Functions that have inline assembly would end up being executed like other
unmodeled functions if they correspond to some exceptional cases (line 46). If
the global setting on symbolize inline assembly is set to true then such
instructions would be abstracted away by symbolizing their return values, which is
not explicitly shown in the algorithms. This would avoid an error on such a path and
enable further exploration.

350	 Automated Software Engineering (2020) 27:329–367

1 3

351

1 3

Automated Software Engineering (2020) 27:329–367	

Algorithm 7 applies constraints on the function arguments or function return
values to the given state by transforming the abstract syntax trees of the con-
straints into symbolic expressions similar to Algorithm 5, which applies type-
specific data constraints. For return values, there are two types of constraints
depending on whether they relate to the life-cycle or not. Those that relate to the
life-cycle determine whether the execution can continue with the next life-cycle
entry or terminates. Algorithm 8 calls Algorithm 7 on line 6 for such cases. Those
that do not relate to the life-cycle just constrain the return value for that path.
Algorithm 6 calls Algorithm 7 line 34 for such cases. The argument constraints
are always related to the life-cycle model, i.e., they determine how the arguments
should be constrained when a life-cycle entry gets executed. This algorithm gets
called by Algorithm 2 (line 7) when the life-cycle starts and by Algorithm 8 (line
13), which we explain next.

Finally, we handle the return instructions to enforce the life-cycle rules as
shown in Algorithm 8. Recall that in Algorithm 2, we start the execution from
the first entry point specified in the life-cycle rule, M.LC , which includes a list
of function/entry point names along with the constraints on the return values for
continuing with the next step. When we return from a function, f, that happens to
be one of the life-cycle entries in M.LC , we check if the return value satisfies the
constraints for continuation of the life-cycle sequence as long as it is not the very
last life-cycle entry. If so, the execution continues with the next entry point from
the life-cycle sequence by updating the execution stack. Otherwise, the path gets
terminated.

352	 Automated Software Engineering (2020) 27:329–367

1 3

6 � Case studies

6.1 � Linux device drivers

We have used PROSE to model memory related API of three subsystems in the
Linux kernel: video, sound, and network. Below, we briefly describe our mod-
eling experience for each subsystem.

The video subsystem This subsystem creates and manages two main data struc-
tures, video_device and v4l2_device. Typically both objects get embedded
in the custom driver data structure and reference counts are kept for each object.
Either one of the object types get assigned a release callback, which gets called
when the reference count of the respective object gets to zero. The release call-
back gets assigned inside the device driver. The v4l2_device_register func-
tion also sets some pointer fields of the parameters (if not already set) to be used
later to drive a pointer to the v4l2_device object from a given device object.
We modeled 11 API functions for the video subsystem. The model consist of 150
SLOC.

The sound subsystem This subsystem creates a snd_card data structure and
some auxiliary data structures such as rawmidi and pcm. Some drivers create a
snd_device object. Unlike the video subsystem, the private/custom data struc-
ture of the driver may get allocated by the snd_card_new function if a non-
zero size for the private data structure is provided as the 5th argument. If so, the

353

1 3

Automated Software Engineering (2020) 27:329–367	

snd_card object and the private data structure is created as a single blob. The
private_data field of the snd_card object is set to the private data by the
snd_card_new function. This enables the driver to access the created private data
structure via this field. Drivers free sound subsystem related data structures using
the snd_card_free function and are not supposed to free the card object or the
private data structure explicitly. Other other hand, if the private data structure has
not been created via snd_card_new then it is the driver’s responsibility to free it.
We modeled 17 API functions for the sound subsystem. The model consists of 342
SLOC.

The network subsystem In this subsystem, net_device is the core data
structure. However, as in the sound subsystem, it may get allocated as a single
blob with the private data structure by the allocation API functions alloc_net-
dev and alloc_etherdev. Both of these functions use the first parameter as
the size of the private data structure. However, they differ in terms of the setup
callback they use. The alloc_netdev function gets the setup callback from the
driver whereas the alloc_etherdev function uses a specific callback function,
ether_setup, defined by the ethernet subsystem.

The significance of the setup callback and how it initializes the fields of the
net_device object comes into play at cleanup time. The cleanup is generally per-
formed by the free_netdev function, which checks a flag field, reg_state, of
the net_device object to check for the registration status. If the object is not reg-
istered, it performs an explicit free of the blob. Otherwise, it decrements a reference
count, which triggers a generic callback function that frees the object containing
the reference count. However, if the setup callback sets the destructor func-
tion pointer, that callback gets executed inside the unregister_netdev API

Fig. 6   A code excerpt from the l2cap_config_rsp function that hosts the Blueborne vulnerability,
CVE-2017-1000251, on line 18

354	 Automated Software Engineering (2020) 27:329–367

1 3

function. We modeled 13 API functions for the network subsystem. The model
consists of 215 SLOC.

We have studied the drivers for each subsystem and reviewed the implementa-
tions of the API functions to summarize their side effect in terms of reference count-
ing of the subsystem specific data structures and their registration/deregistration

prev
next

prev
next

list_head chan_l

list_head list

l2cap_conn

l2cap_chan

of
fs

et

lazy

model guided
lazy initialization

lazy initialization
(argument)

Fig. 7   Model guided lazy initialization of an embedded linked list in the L2CAP layer of BlueZ.
The region with a bold border shows an example of an embedded region, where the embedding type
is l2cap_chan, (with the dashed border), which gets created to enforce the modeling rule on type
embedding. The labels on the arrows represent the source of the updates and those under the objects
show how they get created

Fig. 8   A code excerpt from the HCI layer of BlueZ that hosts a memory out of bounds read at line 15

355

1 3

Automated Software Engineering (2020) 27:329–367	

logic. Each subsystem took 1 person day to do the modeling and its validation using
PROMPT. In some cases, we got false positives that helped us understand what part
of the model was not precise enough. We think that it may take less time to develop
precise models for domain experts. As we report in Sect. 7, with these models we
could analyze the setup and teardown entry points of 57 device drivers with consid-
erable coverage and found some real bugs.

6.2 � BlueZ: a Bluetooth stack

In this section, we show how to detect some of the recent vulnerabilities in BlueZ
(2020) using PROMPT. BlueZ is the implementation of the Bluetooth protocol
Bluetooth (2020) for the Linux kernel. The implementations of the Bluetooth pro-
tocol form an important part of the attack surface for the Internet of Things (IoT)
due to its critical role for short-range communications. Researchers have found a
set of vulnerabilities, called BlueBorne (2020), in various Bluetooth stack imple-
mentations. One of these is a stack overflow in the L2CAP layer of BlueZ. Figure 6
shows an excerpt from the l2cap_config_rsp function that is vulnerable to a
stack overflow. The vulnerability is due to not checking the size of the buffer buf
(line 16) while copying configuration data from the rsp->data buffer inside the
l2cap_parse_conf_rsp function (line 18).

To analyze the l2cap_config_rsp function and to reproduce the Blueborne
vulnerability, we needed to specify the type embedding relationship between the
list_head struct and the l2cap_chan struct as shown in Fig. 7. This is because
before the configuration options get copied to the local buffer, the l2cap_config_
rsp function retrieves a handle to the communication channel using the l2cap_
get_chan_by_scid function, which gets a pointer to a l2cap_conn object
and a channel no scid and performs a linear search on a linked list. Failing to spec-
ify the type embedding relationship causes a memory error due to a pointer arithme-
tic that tries to compute the address of the l2cap_chan object that encloses the
list_head object shown with a rectangle with a bold border in Fig. 7. This false
positive also prevents symbolic execution from covering code after line 8 in Fig. 6
and, hence, prevents component-level symbolic execution from detecting the vulner-
ability. Embedded linked lists are another source of non-standard pointer arithme-
tic that is known to exist in system code (Chatterjee et al. 2009). PROSE enables
us to model this programming idiom through the type embedding relationship and
PROMPT incorporates this type of modeling to its lazy initialization process.

Another vulnerability in BlueZ is a memory out of bounds read Bluetooth (2020)
that was recently found in the HCI layer. Figure 8 shows a code excerpt from the
hci_extended_inquiry_result_evt function. The number of responses
stored in num_rsp is read from the event packet. In a malformed event packet this
field may be larger than the socket buffer length skb->len, which leads to a memory

356	 Automated Software Engineering (2020) 27:329–367

1 3

out of bounds error at line 16. For reproducing this vulnerability, our modeling efforts
involved taming the path explosion through modeling all functions inside the hci_
extended_inquiry_result_evt function except bacpy using the generic
modeling approach.

7 � Experiments

We have implemented our approach in a tool, called PROMPT, by extending the
KLEE symbolic execution engine (Cadar et al. 2008). We have applied PROMPT to
two case studies: Linux device drivers and BlueZ as explained in Sects. 6.1 and 6.2,
respectively. We have analyzed a total of 57 Linux device drivers: 18 video drivers,
19 sound drivers, and 20 network drivers. We chose the drivers that were developed
for the x86 architecture and those that do not use the firmware upload feature as
we lacked the domain knowledge5 needed to model the relevant API functions. For

Table 1   Drivers from the Linux video subsystem

 RO, ST, AL, EM , and DC denote the number of functions specified as return only, the number of sin-
gletons, the number of modeled (de)alloc functions, the number of embedding pairs, and the number of
data constraints, respectively

Driver Device Bus Size Model size

Vendor Type (KB) RO ST AL EM DC

airspy AirSpy USB 58 18 5 5 1 1
dsbr100 D-Link USB 33 11 5 5 1 0
go7007 Micronas USB 242 11 5 5 1 0
hackrf SparkFun USB 69 20 5 5 1 1
hdpvr Hauppauge USB 92 12 5 5 1 1
radio-keene Keene USB 34 13 5 5 1 0
radio-ma901 MasterKit USB 33 13 5 5 1 0
radio-maxiradio Guillemot PCI 26 22 5 5 1 1
radio-mr800 Avervideo USB 38 13 5 5 1 1
radio-raremono Cisco USB 32 14 5 7 1 1
radio-shark2 Griffin USB 33 13 5 5 1 0
radio-shark Griffin USB 34 13 5 5 1 0
radio-tea5764 NXP I2C 35 13 5 5 1 0
saa7706h Philips I2C 27 15 7 5 1 0
stkwebcam Syntek USB 80 11 5 5 1 0
tef6862 Philips I2C 25 16 5 5 1 0
usbtv Fushicai USB 68 11 5 5 0 0
zr364xx Zoran USB 74 12 5 5 1 0

5  Note that the developers of such drivers typically have such domain knowledge and by modeling the
relevant API functions they can analyze such drivers with the help of PROMPT.

357

1 3

Automated Software Engineering (2020) 27:329–367	

BlueZ, we focused on reproducing two vulnerabilities: one on the L2CAP layer and
the other one on the HCI layer. We have used version v4.11-rc2 of the Linux ker-
nel. Our experiments have been performed on an Ubuntu 16.04 rack server that fea-
tures 4 processors with 16 cores, and 256 GB memory. Section 7.1 presents statis-
tics about the benchmarks and their models. Sects. 7.2–7.6 present the experimental
results to evaluate PROMPT w.r.t. five important research questions.

7.1 � Benchmarks

The benchmarks we have used for our experiments are shown in Tables 1, 2 and 3,
which list the driver and vendor names, bus types, and bitcode sizes of the drivers
along with the sizes of the models in terms of the number of functions specified
as return only (RO), the number of singletons (ST), the number of modeled alloc/
dealloc functions (AL), the number of embedding pairs (EM), and the number of
data constraints (DC). The models mentioned in Tables 1, 2 and 3 are in addition
to the PROSE models of subsystems that are explained in Sect. 6.1. As shown in
Algorithm 6, the functions that are specified as return value only are modeled by

Table 2   Drivers from the Linux
sound subsystem

RO, ST, AL, EM , and DC denote the number of functions specified
as return only, the number of singletons, the number of modeled (de)
alloc functions, the number of embedding pairs, and the number of
data constraints, respectively

Driver Device Bus Size Model size

Vendor Type (KB) RO ST AL EM DC

6fire TerraTec USB 85 26 7 4 1 0
ad1889 A.D. PCI 48 31 6 3 1 0
ali5451 ALi PCI 75 33 6 3 1 0
aw2 Emagic PCI 42 33 6 3 1 0
bcd2000 Behringer USB 31 27 8 4 1 0
ca0106 S.B. PCI 118 38 6 3 1 0
caiaq Caiaq USB 118 24 7 4 1 0
card – USB 88 23 7 4 1 0
cs46xx Cirrus L. PCI 218 41 6 3 1 0
cs5535audio – PCI 50 33 6 3 1 0
hiface M2Tech USB 44 27 8 4 1 0
lx6464es Digigram PCI 73 34 6 3 1 0
misc Edirol USB 28 27 8 3 1 0
nm256 NeoMagic PCI 113 35 6 3 1 0
oxygen C-video PCI 240 39 6 3 1 0
riptide Conexant PCI 79 35 6 3 1 0
usx2y Tascam USB 28 27 8 4 1 0
vx222 Digigram PCI 45 33 6 3 1 0
ymfpci Yamaha PCI 107 36 6 3 1 0

358	 Automated Software Engineering (2020) 27:329–367

1 3

symbolizing the return value and interpreting them as side-effect free. Such func-
tions constitute an important part of the modeling effort as they are identified in an
iterative manner and as a response to various issues encountered during API model
guided symbolic execution of the component under analysis. These issues include
the following: (1) the underlying symbolic execution engine, KLEE, terminating a
path upon encountering an assembly-level instruction, (2) a memory out-of-bounds
error due to an under-constrained symbolic value that gets used as an array index,
and (3) a symbolized object pointed by a pointer argument leading to a false positive
as a result of imprecise data-flow in subsequent instructions. The return value only
model helps achieve more coverage in cases (1) and (2) by modeling the function in
which the error occurs and avoiding the error cases and in case (3) by avoiding sym-
bolization of the arguments. We talk more about this modeling overhead and how
PROMPT manages to eliminate it in Sect. 7.3. The majority of singleton types (ST)
are the same for the drivers in the same subsystem. The number of unique singleton
types from various subsystems and the number of unique driver specific singleton
types within the benchmark set of each subsystem are as follows: video: (12, 18),

Table 3   Drivers from the Linux
network subsystem

RO, ST, AL, EM, and DC denote the number of functions specified
as return only, the number of singletons, the number of modeled (de)
alloc functions, the number of embedding pairs, and the number of
data constraints, respectively

Driver Device Bus Size Model size

Vendor Type (KB) RO ST AL EM DC

amazon Amazon PCI 298 21 5 5 1 0
amd Amd PCI 85 27 3 5 1 0
axnet_cs – PCI 67 28 4 3 1 0
catc CATC​ USB 56 30 4 3 1 0
cdc-phonet Nokia USB 43 27 4 3 1 0
cisco Cisco PCI 320 21 3 5 1 0
dlink DLink PCI 90 21 3 5 1 0
e100 Intel PCI 126 22 3 5 1 0
fujitsu Fujitsu PCI 55 42 3 5 1 0
hso Option USB 119 25 7 3 1 1
ipheth Apple USB 49 24 4 3 1 0
kaweth – USB 61 25 4 3 1 0
lan78xx Microchip USB 159 25 4 3 1 0
forcedeth Nvidia PCI 206 21 3 5 1 0
qlogic QLogic PCI 143 28 3 5 1 0
qmi_wwan Huawei USB 70 26 6 3 1 0
r8152 Realtek PCI 175 24 4 3 2 0
r8169 Realtek PCI 249 24 4 5 2 1
typhoon 3Com PCI 24 3 3 1 0
usbnet – USB 109 24 3 3 1 0

359

1 3

Automated Software Engineering (2020) 27:329–367	

sound: (9, 19), network: (11, 20). The number of unique (de)alloc functions mod-
eled within the benchmark set of each subsystem is as follows: video: 7, sound: 4,
network: 5. The number of unique embedding types within the benchmark set of
each subsystem is as follows: video: 3, sound: 2, network: 4. The number of unique
data initializations within the benchmark set of each subsystem is as follows: video:
2, sound: 0, network: 2.

7.2 � RQ1: What is the advantage of modeling and API model guided symbolic
execution?

An obvious question is whether we could do the analysis on the whole framework
and avoid modeling. We created the full bitcode for the Linux kernel to analyze each
driver without any models. On an Ubuntu 16.04 machine with 256 GB of RAM,
running PROMPT on the full kernel bitcode without any modeling took 2 h to ini-
tialize the global state with around 86K global object allocations and a total memory
usage around of 32 GB virtual memory.

Another relevant question is how easy it would be to detect the vulnerabilities
using testing instead of API model guided symbolic execution. To answer this
question we focus on the two vulnerabilities found in BlueZ from Sect. 6.2 as we
have some evidence about the difficulty of detecting these vulnerabilities. The
first vulnerability we consider is the stack overflow vulnerability in BlueZ and
is part of the BlueBorne family of vulnerabilities (BlueBorne 2020). We quote
from the report (BlueBorne 2020) that comments on the difficulty of detecting
this stack overflow vulnerability: “It should be mentioned that testing and trig-
gering this vulnerability was not an easy task, and required direct use of the ACL
layer to send malformed L2CAP packets. Since no Bluetooth stack provides this
to the user a minimal stack implementing the HCI, ACL and L2CAP layers had
to be created. The high barrier of entry for testing highly exposed kernel code
paths is also detrimental to security”. We were able to reproduce this stack over-
flow vulnerability with PROMPT within 5 minutes. Modeling the embedding
relationship mentioned in Sect. 6.2 enabled component-level symbolic execution
to move beyond the callsite for the l2cap_get_chan_by_scid at line 8 in
Fig. 6 and to reach the location of the memory error. We also needed to restrict
the type of configuration option to MTU by implementing a model function for
the l2cap_get_conf_opt option to deal with the state explosion.

The other vulnerability we consider has been detected recently in the HCI
layer of BlueZ (Bluetooth 2020) using a coverage based fuzzing tool (Syzkaller-
Kernel Fuzzer 2020). Analyzing the stack trace (KASAN 2020) indicates the
difficulty of preparing a test environment. There are a total of 29 kernel func-
tions listed in the stack trace excluding those functions from KASAN, the kernel
sanitizer. Only five of these functions are from BlueZ. We have detected this
memory out of bounds vulnerability within a minute by modeling all functions
inside the loop in Fig. 8 except bacpy using the generic approach.

360	 Automated Software Engineering (2020) 27:329–367

1 3

vi
de

o
so
un

d
ne

t

010203040

InstructionCoverage(%)

L
A
Z
Y

I
N
I
T

P
M
G
S
E
-
F
U
L
L

P
M
G
S
E
-
R
E
D

(a
)
C
om

pa
ri
so
n
in

te
rm

s
of

in
st
ru

ct
io
n

co
ve

ra
ge

.

vi
de

o
so
un

d
ne

t

01020

BranchCoverage(%)

L
A
Z
Y

I
N
I
T

P
M
G
S
E
-
F
U
L
L

P
M
G
S
E
-
R
E
D

(b
)
C
om

pa
ri
so
n
in

te
rm

s
of

br
an

ch
co
ve

ra
ge

.

Fi
g.

 9
  

C
om

pa
ris

on
 o

f l
az

y
in

iti
al

iz
at

io
n

on
ly

 (L
A
Z
Y

I
N
I
T

) a
nd

 p
ro

gr
am

m
in

g
m

od
el

 g
ui

de
d

sy
m

bo
lic

 e
xe

cu
tio

n
w

ith
 fu

ll
(P
M
G
S
E
-
F
U
L
L

) a
nd

 re
du

ce
d

(P
M
G
S
E
-
R
E
D

m

od
el

s.)
 m

od
el

s

361

1 3

Automated Software Engineering (2020) 27:329–367	

As we present in the following subsections, modeling reduces the memory
footprint and the analysis time of the system under analysis. It also helps detect
deep vulnerabilities that may require considerable testing effort.

7.3 � RQ2: How does PROMPT perform when some of the modeling effort
is reduced through automation?

As mentioned in Sect. 7.1, it is important to identify the functions to be modeled
as the return value to be symbolized only to improve coverage during API model
guided symbolic execution. However, the manual effort in the identification of such
functions dominates the modeling effort for each benchmark. We have implemented
two features that are shown in Algorithm 6 to eliminate this manual overhead: (1)
automatically identifying functions with assembly-level instructions and handling
them by symbolizing the return value only and (2) not symbolizing the arguments
of external functions that point to singleton type objects or point to objects reach-
able by singleton type objects. To evaluate the effectiveness of these two automated
modeling heuristics, we compared PROMPT with a manually identified set of func-
tions that are handled by symbolizing the return value only , which we call PMGSE-
FULL, with PROMPT not using any such manually identified set of functions, i.e.,
the RO column in Tables 1, 2 and 3 being 0 for each benchmark, which we call
PMGSE-RED. We based our comparison in terms of the effectiveness of each con-
figuration with respect to instruction coverage and branch coverage. As Fig. 9a, b
shows PMGSE-RED achieves comparable coverage while having less manual effort
for modeling.

7.4 � RQ3: Is programming model guided symbolic execution more effective
than symbolic execution with lazy initialization?

We would have liked to compare PROMPT with the lazy initialization implementa-
tion in Ramos and Engler (2015). However, due to the unavailability of this code,
we ran PROMPT in a mode without an API model and used lazy initialization only
(LAZY INIT). Our goal was to understand in what ways programming model

Table 4   Comparison of lazy initialization with programming model guided symbolic execution
(PMGSE-FULL and PMGSE-RED) in terms of error rate

% PMGSE-FULL PMGSE-RED AZY INIT

MIN MAX AVG MIN MAX AVG MIN MAX AVG

Video 0 5.88 0.33 0 100 11.44 0 100 .00 78.70
Sound 0 16.67 4.44 0 25.00 7.92 0 50.00 23.69
Net 0 1.27 0.08 0 1.33 0.17 0 100.00 61.47

362	 Automated Software Engineering (2020) 27:329–367

1 3

vi
de

o
so
un

d
ne

t

01020304050

InstructionCoverage(%)

d
i
s
c
o
n
n
e
c
t

p
r
o
b
e

p
r
o
b
e
;
d
i
s
c
.

(a
)
C
om

pa
ri
so
n
in

te
rm

s
of

in
st
ru

ct
io
n

co
ve

ra
ge

.

vi
de

o
so
un

d
ne

t

01020

BranchCoverage(%)

d
i
s
c
o
n
n
e
c
t

p
r
o
b
e

p
r
o
b
e
;
d
i
s
c
.

(b
)
C
om

pa
ri
so
n
in

te
rm

s
of

br
an

ch
co
ve

ra
ge

.

Fi
g.

 1
0  

C
om

pa
ris

on
 o

f a
na

ly
si

s o
f i

nd
iv

id
ua

l f
un

ct
io

ns
 w

ith
 th

e
lif

e-
cy

cl
e

m
od

el
 o

f p
r
o
b
e
;
d
i
s
c
o
n
n
e
c
t

 

363

1 3

Automated Software Engineering (2020) 27:329–367	

guided symbolic execution improves over pure lazy initialization. We have analyzed
the probe functions of the drivers using both modes. Figure 9a, b compares lazy
initialization only with the two modes of PMGSE in terms of instruction coverage
and branch coverage, respectively. We also measured the percentage of error paths
and present it in Table 4. API model guided execution, both PMGSE-FULL and
PMGSE-RED, significantly improves lazy initialization both in terms of coverage
and in terms of false positives as all the errors generated by the LAZY INIT mode

Table 5   Comparison of enforcing the life-cycle model probe ; disconnect versus executing
probe and disconnect alone in terms of the error rate for PMGSE-FULL 

% DISCONNECT PROBE PROBE; DISC.

MIN MAX AVG MIN MAX AVG MIN MAX AVG

Video 0.00 100.00 88.89 0.00 5.88 0.33 0.00 3.23 0.18
Sound 0.19 100.00 47.90 0.00 16.67 4.41 0.00 16.67 4.43
Net 0.00 100.00 81.58 0.00 1.27 0.09 0.00 1.28 0.09

Table 6   Comparison of enforcing the life-cycle model probe; disconnect versus executing
probe and disconnect alone in terms of the error rate for PMGSE-RED 

% ISCONNECT PROBE PROBE;DISC.

MIN MAX AVG MIN MAX AVG MIN MAX AVG

Video 0.00 100.00 80.56 0.00 100.00 11.43 0.00 100.00 11.29
Sound 0.19 100.00 47.09 0.00 25.00 7.92 0.00 25.00 7.92
Net 0.00 100.00 81.58 0.00 1.33 0.17 0.00 2.13 0.29

Table 7   Time and memory usage of PROMPT for finding various bugs with full (PMGSE-FULL) and
reduced (PMGSE-RED) models

✓ ( ✓∗) means the bug could be detected (while enforcing originals of certain functions with inline
assembly), and – denotes the bug could not be detected

COMPONENT BUG PMGSE-FULL PMGSE-RED

Time Mem. Det.? Time Mem. Det.?

(s) (MB) (s) (MB)

L2CAP (BlueZ) Stack overflow 259.93 155.65 ✓ 9480.00 1250.97 ✓∗

HCI (BlueZ) Out of bounds 41.42 133.20 ✓ – – ✗
usbtv Use-after-free 5.93 7.78 ✓ 6.67 8.42 ✓

stkwebcam Double-free 7.64 6.68 ✓ 7.74 6.68 ✓∗

cs46xx Null pointer 10.68 22.12 ✓ 10.68 22.08 ✓∗

hso Double-free 305.10 132.53 ✓ – – ✗

364	 Automated Software Engineering (2020) 27:329–367

1 3

were false positives and in that mode PROMPT could not detect any of the six real
bugs that it could detect when executed in API model guided mode.

7.5 � RQ4: Is simulation of the life‑cycle more effective than the individual analysis
of life‑cycle functions?

Finally, we wanted to check whether simulation of the life-cycle as a sequence of
function executions have any benefit over analyzing the life-cycle functions indi-
vidually. We ran PROMPT in API model guided mode in three configurations: (1)
executes the probe function only, (2) executes the disconnect function only, and (3)
executes probe followed by disconnect, denoted by probe; disconnect. As
shown in Fig. 10, life-cycle model does not improve coverage as the sum of cov-
erage of individual cases is almost equal to the coverage of the life-cycle model.
This is because the disconnect functions are typically small in size and mostly
without any branch instructions. However, as Tables 5 and 6 show, the percentage
of error paths for the disconnect case is significantly higher than the probe ;
disconnect case. This is because when disconnect is executed without the
proper setup that is normally performed by the probe function, errors that are due
to improper setup get manifested. This also prevents the detection of real errors, e.g.,
a memory leak when the device gets unplugged.

7.6 � RQ5: How effective is PROMPT in detecting memory errors?

In addition to the two BlueZ vulnerabilities presented in Sect. 6.2, PROMPT was
able to detect four vulnerabilities in the Linux device drivers. Two of them were
previously known use-after-free vulnerabilities in the usbtv (also shown in Sect. 3)
and the stkwebcam drivers from the video subsystem. The new bugs discovered
by PROMPT consist of a double-free in the hso driver (network subsystem) and a
NULL pointer error in the cs46xx driver (sound subsystem). Table 7 presents the
time and maximum amount of memory6 usage of PROMPT for both PMGSE-FULL
and PMGSE-RED modes as reported by the klee-stats tool. In terms of the bug
detection capability, PMGSE-RED was able to detect four out of six bugs. The ✓∗
in stkwebcam and cs46xx refers to the fact that we needed to enforce usage of
the original implementations for the functions of the driver even if they may have
inline-assembly (see the formal condition on line 22 in Algorithm 6), which required
a simple pattern for such functions to be defined: *stk* and *cs46xx* for the
stkwebcam and the cs46xx drivers, respectively. So, as a result any function in
the stkwebcam (cs46xx) driver that includes the string stk (cs46xx) in its
name would not be modeled as return only and the original implementation would
be used in the analysis even if it has inline assembly.
PMGSE-RED took much longer to detect the stack overflow in BlueZ compared

to PMGSE-FULL as not all functions that contributed to path explosion included

6  klee-stats reports the amount of heap memory created via malloc.

365

1 3

Automated Software Engineering (2020) 27:329–367	

inline assembly. This is because of the path explosion problem observed in these
components. In the case of memory out of bounds in the HCI layer, PMGSE-RED
could not detect the vulnerability within 12 h. For the hso case, PMGSE-RED could
not detect the bug because it gets masked by a memory error due to an under-con-
strained symbolic value that gets used as an array index in the hso_get_con-
fig_data function. However, specifying this function to be modeled as symbol-
izing the return value only, enables PMGSE-RED also detect this bug, which is still
an improvement in terms of modeling effort as the size of RO is 1 compared to the
RO size of 25 for the PMGSE-FULL mode. The bug in the cs46xx driver got fixed
(Carpenter 2019) after we reported it and we provided a patch for the bug in the
hsobug driver (Yavuz 2019).

8 � Conclusions

We have presented an API model guided symbolic execution tool, PROMPT, to
detect memory related bugs in system code. Our work identifies the major aspects
of API modeling and provides an API modeling language, PROSE, and presents
PROMPT, a component-level symbolic execution algorithm that enforces the speci-
fied API model on top of the KLEE symbolic execution engine. PROSE facilitates
analysis of system components by eliminating the need for developing a test har-
ness, recompilation of the underlying code base, and changing the underlying sym-
bolic execution engine. Additionally, PROSE enables modeling of programming
idioms that are common in systems code, which can be used to guide PROMPT
for a more precise analysis at the component level. We demonstrated the effective-
ness of our approach by modeling the registration and cleanup APIs of the video,
sound, and network subsystems of the Linux kernel and by analyzing 57 device
drivers. We also applied our approach to reproduce some critical vulnerabilities in
BlueZ. PROMPT could detect two new and four known memory vulnerabilities in
the Linux kernel. PROMPT can also be used to validate models of API functions
and to infer various rules on their usages. In future work, we are planning to extend
PROMPT with automated API model synthesis capability.

Acknowledgements  This work was partially funded by the National Science Foundation under Grants
CNS-1815883 and CNS-1942235 and by the Semiconductor Research Corporation. We would like to
thank the anonymous reviewers for their feedback. We would like to thank Joshua Nelson for helping
with the PROSE parser as an undergraduate researcher.

References

Amann, S., Nguyen, H.A., Nadi, S., Nguyen, T.N., Mezini, M.: A systematic evaluation of API-misuse
detectors. CoRR arXiv​:1712.00242​ (2017)

Bai, G., Ye, Q., Wu, Y., Botha, H., Sun, J., Liu, Y., Dong, J.S., Visser, W.: Towards model checking
android applications. IEEE Trans. Softw. Eng. 44(6), 595–612 (2018)

Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with slam. Commun. ACM
54(7), 11 (2011)

http://arxiv.org/abs/1712.00242

366	 Automated Software Engineering (2020) 27:329–367

1 3

Ball, T., Rajamani, S.: Slic: A specification language for interface checking (of c). Tech. rep. (2002). https​
://tinyu​rl.com/y8y4z​kdy

Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verification. In: Computer
Aided Verification—23rd International Conference, CAV’11. Proceedings, pp. 184–190 (2011)

BlueBorne: https://info.armis.com/rs/645-PDC-047/images/BlueBorne%20Technical%20White%20
Paper_20171130.pdf. Last accessed on August 1st, 2020

Bluetooth: Fix slab-out-of-bounds read in hci_extended_inquiry_result_evt(). https​://git.kerne​l.org/
pub/scm/linux​/kerne​l/git/bluet​ooth/bluet​ooth-next.git/commi​t/net/bluet​ooth?id=51c19​bf3d5​cfaa6​
6571e​4b88b​a2a6f​62953​11101​. Last accessed on August 1st, 2020

Bluetooth: https​://www.bluet​ooth.com/. Last accessed on August 1st, 2020
BlueZ: Official Linux Bluetooth protocol stack. http://www.bluez​.org/. Last accessed on August 1st, 2020
Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for automated real-world soft-

ware testing. In: Proceedings of the Sixth European Conference on Computer Systems, EuroSys
2011, Salzburg, Austria, April 10–13, pp. 183–198 (2011)

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation of high-coverage tests
for complex systems programs. In: 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8–10, 2008, San Diego, CA, USA, Proceedings, pp. 209–
224 (2008)

Cadar, C., Engler, D.: Execution generated test cases: how to make systems code crash itself. In: Proceed-
ings of the 12th International Conference on Model Checking Software, SPIN’05 (2005)

Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later. Commun. ACM 56(2),
82–90 (2013)

Carpenter, D.: Alsa: cs46xx: Potential null dereference in probe. https​://git.kerne​l.org/pub/scm/linux​/
kerne​l/git/stabl​e/linux​.git/commi​t/sound​/pci/cs46x​x?id=1524f​4e47f​90b27​a3ac8​4efbd​d94c6​31722​
46a6f​

Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamaric, Z.: A low-level memory model and an accompanying
reachability predicate. Int. J. Softw. Tools Technol. Transf. 11(2), 105–116 (2009)

Chipounov, V., Kuznetsov, V., Candea, G.: The s2e platform: design, implementation, and applications.
ACM Trans. Comput. Syst. 30(1) (2012)

Fahl, S., Harbach, M., Perl, H., Koetter, M., Smith, M.: Rethinking SSL development in an applied world.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’13 (2013)

Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The most dangerous code in
the world: validating SSL certificates in non-browser software. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12 (2012)

Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation, Chi-
cago, IL, USA, June 12–15, 2005, pp. 213–223 (2005)

Heule, S., Sridharan, M., Chandra, S.: Mimic: Computing models for opaque code. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015 (2015)

Indela, S., Kulkarni, M., Nayak, K., Dumitraş, T.: Helping Johnny Encrypt: toward semantic interfaces
for cryptographic frameworks. In: Proceedings of the 2016 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, Onward! (2016)

KASAN: slab-out-of-bounds Read in hci_extended_inquiry_result_evt. https​://syzka​ller.appsp​ot.com/
bug?id=4bf11​aa05c​4ca51​ce0df​86e50​0fce4​86552​dc8d2​. Last accessed on August 1st, 2020

Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized symbolic execution for model checking and test-
ing. In: Tools and Algorithms for the Construction and Analysis of Systems, 9th International Con-
ference, TACAS 2003, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7–11, 2003, Proceedings, pp. 553–568 (2003)

King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
Mehlitz, P.C., Tkachuk, O., Ujma, M.: JPF-AWT: model checking GUI applications. In: 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6–10, 2011, pp. 584–587 (2011)

Myers, B.A., Stylos, J.: Improving API usability. Commun. ACM 59, 6 (2016)
Nadi, S., Krüger, S., Mezini, M., Bodden, E.: Jumping through hoops: why do java developers struggle

with cryptography APIs? In: Proceedings of the 38th International Conference on Software Engi-
neering, ICSE ’16 (2016)

https://tinyurl.com/y8y4zkdy
https://tinyurl.com/y8y4zkdy
https://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next.git/commit/net/bluetooth?id=51c19bf3d5cfaa66571e4b88ba2a6f6295311101
https://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next.git/commit/net/bluetooth?id=51c19bf3d5cfaa66571e4b88ba2a6f6295311101
https://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next.git/commit/net/bluetooth?id=51c19bf3d5cfaa66571e4b88ba2a6f6295311101
https://www.bluetooth.com/
http://www.bluez.org/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/sound/pci/cs46xx?id=1524f4e47f90b27a3ac84efbdd94c63172246a6f
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/sound/pci/cs46xx?id=1524f4e47f90b27a3ac84efbdd94c63172246a6f
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/sound/pci/cs46xx?id=1524f4e47f90b27a3ac84efbdd94c63172246a6f
https://syzkaller.appspot.com/bug?id=4bf11aa05c4ca51ce0df86e500fce486552dc8d2
https://syzkaller.appspot.com/bug?id=4bf11aa05c4ca51ce0df86e500fce486552dc8d2

367

1 3

Automated Software Engineering (2020) 27:329–367	

Park, J., Jordan, A., Ryu, S.: Automatic modeling of opaque code for javascript static analysis. In: Funda-
mental Approaches to Software Engineering—22nd International Conference, FASE 2019, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6–11, 2019, Proceedings, pp. 43–60 (2019)

Qi, D., Sumner, W.N., Qin, F., Zheng, M., Zhang, X., Roychoudhury, A.: Modeling software execution
environment. In: 19th Working Conference on Reverse Engineering, WCRE 2012, Kingston, ON,
Canada, October 15–18, 2012, pp. 415–424 (2012)

Ramos, D.A., Engler, D.: Under-constrained symbolic execution: correctness checking for real code. In:
Proceedings of the 24th USENIX Conference on Security Symposium, SEC’15, pp. 49–64 (2015)

Recoules, F., Bardin, S., Bonichon, R., Mounier, L., Potet, M.: Get rid of inline assembly through verifi-
cation-oriented lifting. In: 34th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2019, San Diego, CA, USA, November 11–15, 2019, pp. 577–589 (2019)

Renzelmann, M.J., Kadav, A., Swift, M.M.: Symdrive: Testing drivers without devices. In: Thekkath, C.,
Vahdat, A. (eds.) 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8–10, 2012, pp. 279–292. USENIX Association (2012)

Shi, K., Steinhardt, J., Liang, P.: Frangel: Component-based synthesis with control structures. Proc. ACM
Program. Lang. 3(POPL) (2019)

Syzkaller-Kernel Fuzzer: https​://githu​b.com/googl​e/syzka​ller. Last accessed on August 1st, 2020
Visser, W., Mehlitz, P.C.: Model checking programs with java pathfinder. In: Model Checking Software,

12th International SPIN Workshop, San Francisco, CA, USA, August 22–24, 2005, Proceedings,
p. 27 (2005)

Wang, W., Barrett, C.W., Wies, T.: Partitioned memory models for program analysis. In: Verification,
Model Checking, and Abstract Interpretation—18th International Conference, VMCAI 2017, Paris,
France, January 15–17, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10145, pp.
539–558. Springer (2017)

Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concurrent linux device
drivers. In: 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE
2007), November 5–9, 2007, Atlanta, GA, USA, pp. 501–504 (2007)

Yavuz, T.: [patch] net: hso: do not call unregister if not registered. https​://lists​.openw​all.net/netde​
v/2019/02/09/1 (2019)

Yong, S.H., Horwitz, S., Reps, T.: Pointer analysis for programs with structures and casting. In: Proceed-
ings of the ACM SIGPLAN 1999 Conference on Programming Language Design and Implementa-
tion, PLDI ’99, pp. 91–103. Association for Computing Machinery, New York, NY, USA (1999)

Yun, I., Min, C., Si, X., Jang, Y., Kim, T., Naik, M.: APISan: sanitizing API usages through semantic
cross-checking. In: 25th USENIX Security Symposium, USENIX Security’16, pp. 363–378 (2016)

Zakharov, I.S., Mandrykin, M.U., Mutilin, V.S., Novikov, E., Petrenko, A.K., Khoroshilov, A.V.: Config-
urable toolset for static verification of operating systems kernel modules. Program. Comput. Softw.
41(1), 49–64 (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://github.com/google/syzkaller
https://lists.openwall.net/netdev/2019/02/09/1
https://lists.openwall.net/netdev/2019/02/09/1

	Analyzing system software components using API model guided symbolic execution
	Abstract
	1 Introduction
	2 Related work
	2.1 Environment modeling
	2.2 Symbolic execution for system code
	2.3 Lazy initialization

	3 Overview
	3.1 A motivating example

	4 The PROSE API modeling language
	4.1 Global settings
	4.2 Data modeling
	4.3 Function modeling
	4.4 Life-cycle modeling

	5 API model guided symbolic execution
	6 Case studies
	6.1 Linux device drivers
	6.2 BlueZ: a Bluetooth stack

	7 Experiments
	7.1 Benchmarks
	7.2 RQ1: What is the advantage of modeling and API model guided symbolic execution?
	7.3 RQ2: How does PROMPT perform when some of the modeling effort is reduced through automation?
	7.4 RQ3: Is programming model guided symbolic execution more effective than symbolic execution with lazy initialization?
	7.5 RQ4: Is simulation of the life-cycle more effective than the individual analysis of life-cycle functions?
	7.6 RQ5: How effective is PROMPT in detecting memory errors?

	8 Conclusions
	Acknowledgements
	References

