
Vol.:(0123456789)

Automated Software Engineering (2020) 27:301–328
https://doi.org/10.1007/s10515-020-00275-6

1 3

Multi‑objective code reviewer recommendations:
balancing expertise, availability and collaborations

Soumaya Rebai1 · Abderrahmen Amich1 · Somayeh Molaei1 ·
Marouane Kessentini1 · Rick Kazman2

Received: 30 November 2019 / Accepted: 27 August 2020 / Published online: 5 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Modern Code review is one of the most critical tasks in software maintenance and
evolution. A rigorous code review leads to fewer bugs and reduced overall mainte-
nance costs. Most existing studies focus on automatically identifying the most quali-
fied reviewers, based on their expertise, to review pull-up requests. However, the
management of code reviews is a complex problem in practice due to a project’s
limited resources, including the availability of peer reviewers. Furthermore, the his-
tory of collaborations between developers and reviewers could affect the quality of
the reviews, in positive or negative ways. In this paper, we formulate the recommen-
dation of code reviewers as a multi-objective search problem to balance the conflict-
ing objectives of expertise, availability, and history of collaborations. Our validation
confirms the effectiveness of our multi-objective approach on 9 open source projects
by making better recommendations, on average, than the state of the art.

Keywords  Modern code review · Search based software engineering · Reviewers
recommendation

 *	 Marouane Kessentini
	 marouane@umich.edu

	 Soumaya Rebai
	 srebal@umich.edu

	 Abderrahmen Amich
	 aamich@umich.edu

	 Somayeh Molaei
	 smolaei@umich.edu

	 Rick Kazman
	 kazman@hawaii.edu

1	 University of Michigan, Dearborn, USA
2	 University of Hawaii, Honolulu, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00275-6&domain=pdf

302	 Automated Software Engineering (2020) 27:301–328

1 3

1  Introduction

The source code review process has always been one of the most important software
maintenance and evolution activities (Committee 1997). Several studies show that a
careful code inspection can significantly reduce defects and improve the quality of
software systems. Recently this process has become informal, asynchronous, light-
weight and facilitated by tools (Balachandran 2013; Rigby and Bird 2013). A survey
with practitioners, performed by Bacchelli and Bird (2013), show that code review
nowadays is expanding beyond just looking for defects but to also provide alterna-
tives to improve the code and transfer knowledge among developers.

Despite recent progress (Ouni et al. 2016; Zanjani et al. 2016) code reviews are
still time-consuming, expensive, and complex involving a large amount of effort
by managers, developers and reviewers. Thongtanunam et al. (2015) found on
four open source projects with 12 days as the average to approve a code change.
The automated recommendation of peer code reviewers may help to reduce
delays by finding the best reviewers who will then spend less time in reviewing
the assigned files.

The majority of existing tools and techniques for automated recommendation of
code reviewers are based on the level of reviewer expertise (Zanjani et al. 2016;
Balachandran 2013; Thongtanunam et al. 2014, 2015). Expertise is mainly defined
as the prior knowledge of the changes under review. For instance, a selected peer
reviewer with high expertise should have reviewed the same files (Thongtanunam
et al. 2015, 2014), or even the same lines of code in the files (Balachandran 2013).
An empirical study at Microsoft found that selected reviewers with high expertise
can provide valuable and rapid feedback to the author of the code under review
(Bacchelli and Bird 2013). However, reviewers with high expertise may not be
always available in practice, or at least assigning them may create delays.

To address the above challenges we propose to formulate the selection of peer
code reviewers as a multi-objective problem. The goal is to balance the con-
flicting objectives of expertise, availability and history of collaborations. The
multi-objective approach tries to find a trade-off between multiple objectives and
minimizing the former collaborations on reviewing the same files is just one com-
ponent between many objectives. We adopted one of the widely used multi-objec-
tive search algorithms, NSGA-II (Deb et al. 2002), to find a trade-off depend-
ing on current context and available resources. For instance, our formulation can
slightly sacrifice expertise to avoid a delay caused by limited resources (e.g. low
availability of peer reviewers). In another context, the reviewer(s) with the highest
expertise can be selected when the goal is to inspect high priority code changes
such as critical buggy files. Thus, our approach enables navigation between the
three different dimensions by generating multiple non-dominated peer reviewer
recommendations instead of one solution as is done in existing work.

Our validation on 9 open source confirms the effectiveness of our multi-objec-
tive approach by making better recommendations than the state of the art.

The remainder of this paper is organized as follows. Section 2 presents the
relevant background related to this research and the problem statement. Section 3

303

1 3

Automated Software Engineering (2020) 27:301–328	

describes our approach overview and the adaptation steps. Empirical study and
results are provided in Sect. 4 while threats to validity are discussed in Sect. 5.
Section 6 is dedicated to related work. Finally, we conclude and provide our
future research directions in Sect. 7.

2 � Background

2.1 � Review process

We begin by defining the key concepts related to the modern code review process
supported nowadays by many tools such as Gerrit.1 A code review includes all the
interactions between the submitter of a pull-request and one or more reviewers of
that change including comments on the code and discussions with reviewers. The
owner is the programmer making the changes to the code and then submitting the
review request. A peer reviewer is a developer assigned to contribute in reviewing
the set of code changes. These reviewers write review comments as feedback to the
owner about the introduced changes.

Figure 1 shows the code review process in a version-control repository. A code
review process starts with a new branch ( 1  ). In this new branch, each commit
should correspond to a code-level change ( 2  ). After developers commit all the
code-level changes, developers make a pull request, in which they write a descrip-
tion of the code changes ( 3  ). After a pull request has been sent out, it appears in
the list of pull requests for the project in question, visible to anyone who can see the
project. Then, other collaborators can check the changes made in the branch and dis-
cuss the changes (code reviews 4  ). During the code review, developers may make
more changes to the branch. Finally, if the collaborators accept these code changes,
this branch is merged into the master branch ( 5).

Fig. 1   A summary of the code review process

1  https​://www.gerri​tcode​revie​w.com/intro​-quick​.html.

https://www.gerritcodereview.com/intro-quick.html

304	 Automated Software Engineering (2020) 27:301–328

1 3

Figure 2 shows one example of code reviews where many possible reviewers can
be assigned to review the changes. Thus, dealing with a large number of possible
reviewers for multiple pull requests is a management problem which is under-stud-
ied in the research literature. This management process requires handling multiple
competing criteria including expertise, availability and previous collaborations with
the owners and reviewers. We will describe, in the next section, our formulation of
code reviewer recommendations as a multi-objective problem.

2.2 � Preliminary study

As part of preliminary work of this paper, we performed unstructured survey with
6 senior managers and 11 senior developers actively involved in code reviews to
assign reviewers or/and review pull-requests. We decided to perform an unstructured
survey to encourage the participants to think-aloud and avoid biasing them with our
opinions. Furthermore, the goal of our surveys is get insights about the current chal-
lenges in code reviews rather than a large empirical study. We found that 10 days is
the average to approve a code change at eBay. The main reason based on the sur-
veys for the delay is the challenging task of identifying the right reviewers which is
aligned with existing studies (Xia et al. 2015; Yu et al. 2016).

A senior manager confirmed that “We don’t actually need more tools to just sug-
gest reviewers based on expertise. We need better support to manage code reviews
especially with short deadlines and limited resources while not sacrificing a lot of
expertise. It is a complex problem.” In addition, the participants highlighted that it
is critical to consider the priority of the files to be inspected as part of the manage-
ment of the code review process. Furthermore, we found in our interviews that the
social interactions between code authors and reviewers is another critical aspect to
consider to ensure high quality reviews.

Fig. 2   An example of a code review extracted from OpenStack

305

1 3

Automated Software Engineering (2020) 27:301–328	

Existing studies assume that peer reviewers with high interactions with authors/
owners of the code under review are the best to select (Ouni et al. 2016). However,
this aspect may be considered negative with extensive mutual peer reviews and/or
quick approval of code changes as suggested by the participants. The diversity of
peer code reviews is important, as pointed out by the eBay senior managers and peer
reviewers, especially when frequent patterns of code authors/reviewers are observed.

3 � Approach

In this section, we describe our proposed approach for recommending the most
appropriate set of reviewers for pull-requests to be reviewed using multi-objective
search.

3.1 � Multi‑objective optimization

Multi-Objective search considers more than one objective function to be optimized
simultaneously. It is hard to find an optimal solution that solves such problems
because the objectives to be optimized are conflicting. For this reason, a multi-
objective search-based algorithm could be suitable to solve this problem because it
finds a set of alternative solutions, rather than a single solution as result. One of the
widely used multi-objective search techniques is NSGA-II (Deb et al. 2002; Alm-
hana et al. 2016; Ouni et al. 2017) that has shown good performance in solving sev-
eral software engineering problems (Harman et al. 2012).

A high-level view of NSGA-II is depicted in Algorithm 1. The algorithm starts
by randomly creating an initial population P0 of individuals encoded using a specific
representation (line 1). Then, a child population Q0 is generated from the population
of parents P0 (line 2) using genetic operators (crossover and mutation). Both popula-
tions are merged into an initial population R0 of size N (line 5). Fast-non-dominated-
sort (Deb et al. 2002) is the technique used by NSGA-II to classify individual solu-
tions into different dominance levels (line 6). Indeed, the concept of non-dominance
consists of comparing each solution x with every other solution in the population
until it is dominated (or not) by one of them. According to Pareto optimality: “A
solution x1 is said to dominate another solution x2 , if x1 is no worse than x2 in all
objectives and x1 is strictly better than x2 in at least one objective”. Formally, if we
consider a set of objectives fi , i ∈ 1..n , to maximize, a solution x1 dominates x2 :

iff ∀i , fi(x2) ⩽ fi(x1) and ∃j ∣ fj(x2) < fj(x1)

The whole population that contains N individuals (solutions) is sorted using the
dominance principle into several fronts (line 6). Solutions on the first Pareto-front
F0 get assigned dominance level of 0. Then, after taking these solutions out, fast-
non-dominated-sort calculates the Pareto-front F1 of the remaining population;
solutions on this second front get assigned dominance level of 1, and so on. The
dominance level becomes the basis of selection of individual solutions for the next
generation. Fronts are added successively until the parent population Pt+1 is filled
with N solutions (line 8). When NSGA-II has to cut off a front Fi and select a subset

306	 Automated Software Engineering (2020) 27:301–328

1 3

of individual solutions with the same dominance level, it relies on the crowding dis-
tance (Deb et al. 2002) to make the selection (line 9). This parameter is used to pro-
mote diversity within the population. This front Fi to be split, is sorted in descending
order (line 13), and the first (N- |Pt+1| ) elements of Fi are chosen (line 14). Then
a new population Qt+1 is created using selection, crossover and mutation (line 15).
This process will be repeated until reaching the last iteration according to stop crite-
ria (line 4).

3.2 � Approach overview: a multi‑objective code reviewer recommendation
framework

The ultimate goal of our Code Reviewer Recommendation framework is to auto-
matically assign the most appropriate reviewers to newly opened pull-requests. The
assignment is performed by balancing three important competing criteria: the exper-
tise of the reviewers, their availability (considering their current workload) and their
social connections (collaborations) with the submitter of the open pull request(s).
Thus, we propose to use multi-objective search, based on NSGA-II (Deb et al.
2002), to find a tradeoff between the different competing objectives. An overview of
the approach is illustrated in Fig. 3.

Our approach takes as input: (1) the pull-request(s) to be reviewed; (2) the pull-
request(s) under review and the involved reviewers; and (3) the detailed history of
closed pull-requests. The extraction of these 3 required inputs is easy and straight-
forward by simply providing the GitHub link of the project to our tool. Using our
integrated parser, we automatically analyze the GitHub repository to collect the
code review history, commit messages and source code. Next, from the collected
data, we extract three clusters of interaction information: a File-Reviewer interac-
tion matrix (FR), a Developer-Reviewer interaction matrix (DR) and a File-Devel-
oper interaction matrix (FD). From the open pull-requests to be reviewed we can

307

1 3

Automated Software Engineering (2020) 27:301–328	

automatically extract the files that need to be reviewed and evaluate the expertise of
assigned reviewers in our solution representation, as detailed later.

As an output, our multi-objective algorithm generates a set of trade-off solutions
where each solution consists of assigning one or more reviewers per pull-request.
Thus, the solution can be represented as a matrix matching reviewers to the files of
the pull-request(s). For each file, the reviewers are ranked based on their level of
expertise to review the file, their availability, and their past collaboration with the
developer of that file, all while reducing the number of reviewers per pull-request as
much as possible.

To find a trade-off between the different objectives, we used NSGA-II (Deb et al.
2002) since it was used for similar discrete problems in software engineering and
performed well. The use of a metaheuristic algorithm to deal with conflicting objec-
tives is justified by the large search space to explore. Let M be the number of total
reviewers and P number of total files submitted to be reviewed for code changes.
The size of the search space to explore in order to find the best subset of m reviewers

among a set of M reviewers to review p files is of
(
m

M

)
× p =

m!

m!(M−m)!
× p . This is a

very fast growing function and as M grows the search space becomes prohibitively
large to the point where exhaustive search is not practical. We propose the use of
metaheuristic search to explore this combinatorial search space to find near-opti-
mum reviewer recommendations.

he multi-objective approach proposed in this paper generates as output a set of
non-dominated solutions (Pareto front). It is upto the team manager to select the
reviewers assignment solution based on their preferences

Thus, the final output of the algorithm is a set of solutions (Pareto front) repre-
senting trade-offs between the three objectives. It is up to the manager to select the
reviewers assignment (choose a solution) based on their preferences. In general, the
preferences are defined based on the current context: urgency to release code quickly,
available resources, speedy growth phase of the project, etc. These different contexts
are not changing daily and they are not related to only one or few pull-requests but

Fig. 3   Overview of our multi-objective search-based approach for code reviewer recommendation

308	 Automated Software Engineering (2020) 27:301–328

1 3

more related to the situation of the whole project. The preferred solution can be quickly
selected by looking at the distribution of the solutions in the Pareto front or ranking
the solutions based on the most preferred fitness function based on the current con-
text. The two common ways to extract a solution from the Pareto front are the use of
the reference point and the knee point (Keller 2019; Emmerich and Deutz 2018; Deb
and Gupta 2011; Rachmawati and Srinivasan 2009). The knee point corresponds to the
solution with the maximal trade-off between all fitness functions, i.e., a vector of the
best objective values for all solutions. In order to find the maximal trade-off, we use the
trade-off worthiness metric proposed by Rachmawati and Srinivasan (2009) to evalu-
ate the worthiness of each solution in terms of objective value compromise. While the
knee point selection may not be the perfect way, it is the only strategy to ensure a fair
comparison with the mono-objective and deterministic approaches since they generate
only one solution as output.

The manager may select a reference point with high expertise, if s(he) cares about
finding knowledgeable reviewers of the files while accepting some delays in the review
process. Thus, the selected solution will be the closest one to the specified reference
point. This scenario happens, for example, when a pull-request is modifying some
security critical files. However, it is not required that the managers specify the refer-
ence point for each pull-request since the preferences usually depend on the context of
the whole project and they do not change daily. Moreover, the knee point can be auto-
matically calculated based on the distribution of the solutions in the Pareto front (Keller
2019) and it represents the maximum trade-off between the objectives.

3.3 � Main components of the approach

3.3.1 � Reviewer’s expertise model

This model aims at exploring reviewer-file connections: Who are the peer reviewers
who worked on the same file? From the previous commits and closed pull-requests, we
can automatically extract a matrix that represents the expertise of reviewers. Expertise
value is defined as the number of times that the reviewer reviewed the same file. In fact,
for every file, the matrix keeps track of reviewers who reviewed that specific file and
how many times every reviewer reviewed that particular file.

FR is a P ×M matrix where each entry frk,i represents the number of times reviewer
ri reviewed or modified file fk where i ∈ {1, 2,… ,M} , k ∈ {1, 2,… ,P} , P is total
number of files requested to be reviewed and M total number of reviewers working on
the project. This matrix represents how familiar is each reviewer with each file, which
is used as a proxy measure for expertise.

3.3.2 � Reviewer‑developer collaboration model

To take the socio-technical factor into account when searching for the best review-
ers to review a code change, we extracted the collaborations between reviewers and

(1)FR = (fr(k,i))�
P×M

309

1 3

Automated Software Engineering (2020) 27:301–328	

developers from the history of closed pull-requests. In fact, for every potential rec-
ommended reviewer, we extract both the list of developers and the files per pull-
request that he/she reviewed or modified in the past. Then, we calculated for each
pair (reviewer,developer) the total number of commonly modified files. Note that the
reviewer can be found in the comments of the pull-requests of the submitter (devel-
oper). Thus, a “Collaborations” matrix DR is automatically created.

To sum up, DR is a N ×M matrix where each entry drj,i represents the number
of times reviewer ri reviewed a file changed by developer dj where i ∈ {1, 2,… ,M} ,
j ∈ {1, 2,… ,N }, N is total number of developers working on the project and M
total number of reviewers working on the project. In fact, drj,i is defined as the num-
ber of files that the reviewer and the developer collaborated together (reviewed or
modified) in the past. This matrix represents the social connections between review-
ers and developers.

3.3.3 � Availability model

To estimate the availability of peer reviewers, we considered of the number of files
per open pull-requests and numbers of commits where they are currently involved.
We represented the availability (workload) in a vector A = [a1, a2,… , aM] where ai
represents the total number of files of open pull requests and commits for a reviewer
ri.

Data. For expertise and collaborations, we considered all the data since the
start of the project because we believe that more information about the expertise
and collaborations of the developers is useful in assigning the appropriate reviewer.
Regarding the availability model, we considered the last 7 days of open pull requests
because we wanted to have an estimate of the current workload of the reviewers.

3.4 � Problem formulation

3.4.1 � Solution representation

The solution of the optimization problem is a matrix S that contains an integer
value o ∈ {0, 1, 2,… ,M} for entry sk,i denoting the recommended order (rank) for
the reviewer ri to review file fk . This matrix contains P rows and M columns. P is
the number of files that contains code changes to be reviewed and M is the num-
ber of potential reviewers. To initialize the matrix S, we first extract the number M
because it represents the number of candidate reviewers for the files to be reviewed
in the submitted pull-request. Second, we extract the files to be reviewed in the pull-
request to review. Then, initially, each S[k,i] will take a distinct random number.
Assigning 0 to S[k,i] means that the kth developer is not assigned to review the ith
file and assigning an integer 0 < o <= M means that the developer is assigned to
review the ith changed file and his rank is o within the list of appropriate reviewers.

(2)DR = (dr(j,i))�
N×M

310	 Automated Software Engineering (2020) 27:301–328

1 3

After each iteration, the genetic algorithm decides if a reviewer is suitable for
a review assignment for a specific file or not. If yes, it will decide the rank of that
reviewer, compared to other candidate reviewers for the same file, based on our three
objectives (defined in the Sect. 3.4.2).

An example of a two-dimensional solution representation is illustrated in Fig. 4.
Let say we have seven reviewers who are working on the project: Brian, Matt, John,
Alex, David, jack and Zuul, and there are k files with code changes. Based on our
solution representation, we suggest which reviewers are appropriate for reviewing
which file(s) and in what order. In this example, Brian is not recommended to review
file1 and file2, but he is the most appropriate reviewer to review the changes in filek.
To review file1, Matt is the second best reviewer and Zuul is the third best one.
To sum up, our multi-objective algorithm outputs reviewer-file matrix (as shown
in Fig. 4) which assigns reviewers to all the files changed in the submitted pull-
request. Thus, for each pull-request (PR) we rank the reviewers based on how many
files in that PR he/she is able to review taking into consideration the different fitness
functions.

3.4.2 � Fitness functions

In our approach, we aim to optimize three fitness functions. The first and the
second ones are formulated to maximize the expertise and the availability of the
reviewers. While the third fitness function is formulated to minimize the social
connections between reviewers and developers in the hope of reducing human
bias. The motivation of our multi-objective approach is aligned with the observa-
tion of a recent study at Microsoft (Bosu et al. 2016) highlighting that promoting
diversity depends on the norms of the team, i.e., some teams prefer diverse, some
teams prefer close connections. While previous collaborations between develop-
ers and reviewers could reduce the tension around the review task, the extensive
former interactions/collaborations can be an indication of light/weak review to
approve code quickly to meet release deadlines especially when associated with
low expertise. The multi-objective approach proposed in this paper generates as

Fig. 4   An example of our solution representation. Red: this reviewer is not recommended to review the
file; green: the most appropriate reviewer for the file; and purple: recommended, but the least appropriate
reviewer for the file (Color figure online)

311

1 3

Automated Software Engineering (2020) 27:301–328	

an output a set of non-dominated solutions (Pareto front). It is up to the team
manager to select the reviewers assignment solution based on their preferences.
If the team prefers close connection then the selected/preferred solution from the
Pareto front will be in the region of interest where the objective of collabora-
tions is high otherwise the selected solution will be in the area of the Pareto front
where the value of collaboration is low. Our goal is to provide a diverse set of
good reviewers assignment solutions rather than only one solution then the user
can select the preferred one based on his/her preferences.

We present in the following our three fitness functions: availability, expertise
and collaborations.

Availability The availability is the inverse of the estimated wait until review-
ers that are selected to work on a selected set of file S become available. In our
case, the waiting period is deducted from the workload that the reviewer has. We
considered the workload as the combination of the number of commits submit-
ted recently (during the last 7 days) and the total number of files for all open
pull-requests.

where a = {a1, a2,… , aM} is an array that contains the tasks queued for a reviewer.
ai represents the number of tasks in the queue for the reviewer ri . P is total number
of files requested to be reviewed and M is total number of reviewers working on the
project.

Expertise Considering File Priority PR is a vector of weights that defines how
urgently a file needs to be reviewed. For a file fk , the priority score will take 1 if
the tag “priority” is used in the pull-request, otherwise, the priority will be 0. We
used both FR and PR to formulate the reviewer expertise as an objective.

where M is total number of reviewers working on the project and P is total num-
ber of developers working on the project. FR is a File-Reviewer matrix and S[k, i]
represents the rank of the reviewers in the solution S. In fact, We are ranking the
reviewers from 0 to P. For instance, if we have P = 7 developers (potential review-
ers), a reviewer with rank 2 would be more appropriate than a reviewer with rank 4
to review the assigned file.

Both fitness functions “availability” and “expertise” are to be maximized.
Thus, a lower rank (more suitable reviewer) would result in a higher fitness
function (availability or expertise) since the rank (S[k, i]) is in the denominator.
Therefore, the top ranked developers with high expertise/availability would be
more likely to survive for the next evaluations of the multi-objective algorithm.

Collaboration Collaboration is computed as the sum of all connections between
recommended reviewers selected to work with a selected set of developers:

(3)Availability =
1

∑P

k=1

∑M

i=1
ai ∗ S[k, i]

, sk,i > 0

(4)Expertise =

P∑

k=1

M∑

i=1

FR[k, i] + PR[k]

S[k, i]
, sk,i > 0

312	 Automated Software Engineering (2020) 27:301–328

1 3

where (s[k, j] > 0) is a binary mask for S[k, j], meaning each entry with value 0 will
remain 0 and each entry with value greater than 0 will become 1. P is total num-
ber of files requested to be reviewed, M is total number of reviewers working on
the project and N is total number of developers working on the project. DR is a
Developer-Reviewer matrix and FD is a File-Developer matrix where FD[i, j] rep-
resents the number of times that the developer i worked on the file j. Therefore, the
developer who changed the file under review (one or many times) can be assigned as
a reviewer. The two matrix DR and FD are created during the data extraction step.

3.4.3 � Change operators

We applied single point crossover and swap mutation to explore and exploit the
search space. Regarding crossover, we deploy a single random cut-point crossover.
This operator is performed by generating a random crossover point. The cut-point
is a binary block from crossover point K, which is a row-index and a column- index
of a solution, to the end of the solution is copied from one parent, the rest is cop-
ied from the second parent. Then, it exchanges the subsequences before and after
K between two parent individuals to create two offspring. In case we generate any
infeasible offspring we apply a repair mechanism.

Our mutation–bit inversion changes the new offspring by swapping two rows in
the matrix of the solution. Mutation can occur at each row in the matrix with some
probability. The purpose of mutation is to prevent all solutions in the population fall-
ing into a local optimum.

4 � Experiment and results

To evaluate our approach for recommending relevant peer reviewers, we conducted
a set of experiments based on different versions of 9 open source systems. Due the
stochastic nature of search algorithms, each experiment was repeated 30 times and
the results were subsequently and statistically analyzed with the aim of comparing
our multi-objective approach with both a mono-objective search technique based on
an aggregation of expertise and collaborations (Ouni et al. 2016) and also all the
three objectives (AEC GA), and existing tools not based on heuristic search cHRev
(Zanjani et al. 2015), REVFINDER (Thongtanunam et al. 2015), and ReviewBot
(Balachandran 2013) that only use expertise models without considering collabo-
rations and availability of peer reviewers. Furthermore, we conducted an ablation
study to compare our approach with three multi-objective variants considering two
out of the three objectives (AC NSAG-II, AE NSGA-II and EC NSGA-II). All these
existing studies were already evaluated in the literature on the same projects consid-
ered in this validation and the associated data is available thus we did not find a need
to re-implement them. In this section, we present our research questions followed

(5)Collaboration =

N∑

k=1

P∑

j=1

M∑

i=1

DR[j, i] ∗ FD[k, j] ∗ (S[k, j] > 0)

313

1 3

Automated Software Engineering (2020) 27:301–328	

by experimental settings and parameters. Finally, we discuss our results for each of
those research questions.

4.1 � Research questions

We focused on the following three research questions to evaluate the efficiency of
our approach:

–	 RQ1. (Efficiency) Can the proposed approach precisely identify relevant peer
reviewers?

–	 RQ2. (Comparison to search-based techniques) Does the proposed multi-objec-
tive approach perform significantly better than an existing mono-objective for-
mulation aggregating expertise and collaboration (Ouni et al. 2016), a mono-
objective aggregation of all the three objectives (AEC GA) and variants of our
multi-objective search considering two out of the three objectives (NSGA-II, AE
NSGA-II and EC NSGA-II)?

–	 RQ3. (Comparison to state-of-the-art) Does our approach perform significantly
better than existing peer reviewer recommendation techniques not based on heu-
ristic search?

To answer RQ1, we validated the proposed multi-objective technique on 9 medium
to large-size open-source systems, as detailed in the next section, to evaluate the
correctness of our code-reviewer recommendation framework. To ensure a fair com-
parison with existing techniques, we followed a similar evaluation procedure by tak-
ing the most recent 1000 reviews and the reviewers assigned to these pull-requests
as the ground truth. We built the different expertise, availability and collaborations
models based on the review data just before the pull-request to evaluate in order to
assign peer reviewers. We used GitHub API to extract the information about the pull
request. From the information extracted, there is a tag ’reviewer’ which contains the
name of the reviewer. The name of the reviewer is also extracted from the comments
under the pull request and this information is also provided by GitHub API.To this
end, we used the following evaluation metrics:

–	 Precision@k denotes the number of correct recommended peer reviewers in the
top k of recommended ones by the solution divided by the total number of peer
reviewer recommendations to inspect.

–	 Recall@k denotes the number of correct recommended peer reviewers in the top
k of recommended ones by the solution divided by the total number of expected
reviewers to be recommended based on the ground truth.

–	 MMR@k measures the mean reciprocal rank which is an average rank of correct
reviewers in the recommendation list. The higher the value the better.

Since the number of involved reviewers in each pull-request evaluation is limited in
general to a few developers, we calculate these precision and recall metrics with dif-
ferent k values, 1, 3, 5 and 10.

314	 Automated Software Engineering (2020) 27:301–328

1 3

To answer RQ2, we compared, using the above metrics, the performance of
our multi-objective approach with an existing mono-objective formulation, based
on a Genetic Algorithm, aggregating the two objectives of expertise and collabo-
ration into one objective as the sum of them with equal weight (Ouni et al. 2016).
We selected that mono-objective approach since it is the closest one to our work
and already outperformed random search and other metaheuristic algorithms
(simulated annealing and Particle Swarm Optimization) based on the results pre-
sented in Ouni et al. (2016). Furthermore, we implemented a mono-objective
approach aggregating all the three objectives (AEC GA) in one fitness function
to evaluate the impact of adding the availability objective on the quality of the
results by comparing with Ouni et al. (2016). In addition, we compared differ-
ent variants of our multi-objective approach including only two out of the three
objectives (NSGA-II AE, AC and EC) to evaluate the contribution of each objec-
tive to the quality of the assignment results. The comparison between NSGA-II
EC and the mono-objective search using only expertise and collaboration (Ouni
et al. 2016) can confirm the impact of the conflicting nature of the two objectives
on the quality of the results.

To answer RQ3, we compared our multi-objective approach to different existing
techniques not based on heuristic search:

–	 REVFINDER (Thongtanunam et al. 2015) uses the paths of the files to be
reviewed to find reviewers who evaluated files in the same location.

–	 cHRev (Zanjani et al. 2015) is a hybrid approach using the frequency and recency
of the history of the reviews to find relevant peer reviewers.

–	 ReviewBot (Balachandran 2013) uses static analysis tools to find experienced
reviewers

We limited the evaluation in RQ2 and RQ3 to Android, OpenStack, and Qt to ensure
a fair comparison based on an existing benchmark (Thongtanunam et al. 2015; Yang
et al. 2016; Ouni et al. 2016). More details about these projects will be presented in
the next section.

4.2 � Studied projects

As described in Table 1, we used a data set of 9 open-source systems including 3
projects (OpenStack, Android and Qt) from existing code review benchmarks (Yang
et al. 2016; Thongtanunam et al. 2015; Ouni et al. 2016). We used our tool to collect
the data about Atomix, Tablesaw, Vavr, Takes, Dkpro-core, and Pac4j. In fact, our
tool is implemented in a way that it takes a link to the project repository on GitHub
and extracts all the needed data automatically similar to the existing public dataset
for OpenStack, Android and Qt. To collect the data, we used GitHub API to send
multiple queries to GitHub to get the needed information about the project under
study. Actually, GitHub API provides different queries to extract the information
about the pull requests, its reviewers, its changed files and all the committer names.

315

1 3

Automated Software Engineering (2020) 27:301–328	

The response to each query is a JSON file. Thus, we had to perform some cleaning
and extracting steps to keep only the needed pieces of information.

–	 Atomix: A fault-tolerant distributed coordination framework.
–	 Tablesaw: A data science platform that includes a data-frame, an embedded col-

umn store, and hundreds of methods to transform, summarize, or filter data.
–	 Vavr: A functional component library that provides persistent data types and

functional control structures.
–	 Takes: Opinionated web framework which is built around the concepts of True

Object-Oriented Programming and immutability.
–	 Dkpro-core: A collection of reusable NLP tools for linguistic pre-processing,

machine learning, lexical resources, etc.
–	 Pac4j: A security engine.
–	 Android: A software stack for mobile devices developed by Google.
–	 OpenStack: A large platform for cloud computing to manage a data-center.
–	 Qt: A widget toolkit for creating graphical user interfaces.

Table 1 shows statistics for the analyzed systems including the number of review-
ers, the number of reviews in a project, the size, etc. All collected reviews are from
closed pull-requests and contain at least one file. We selected these open source pro-
jects for our experiments since they contain a large number of code reviews and they
have been studied in the software review literature (Zanjani et al. 2015; Thongtanu-
nam et al. 2015; Balachandran 2013) to ensure a fair comparison with the current
state of the art.

4.3 � Parameter tuning and statistical tests

Since metaheuristic algorithms are stochastic optimizers, they can provide differ-
ent results for the same problem instance from one run to another. For this reason,
our experimental study was performed based on 30 independent simulation runs

Table 1   Summary of studied systems

Project (studied period) Number of
classes

Number of
reviewers

Number of files Number of reviews

Atomix (04/2017–11/2018) 1459 136 182,280 4237
Tablesaw (06/2016–03/2018) 224 12 52,837 1930
Vavr (04/2016–08/2018) 301 123 126,683 4188
Takes (07/2015–05/2018) 472 264 50,369 2687
Dkpro-core (03/2015–08/2018) 376 411 54,695 4564
Pac4j (08/2014–10/2017) 302 29 31,916 2282
Android (10/2008–01/2012) 563 94 26,840 5126
OpenStack (07/2011–05/2012) 539 82 16,953 6586
Qt (05/2011–05/2012) 782 202 78,401 23,810

316	 Automated Software Engineering (2020) 27:301–328

1 3

for each problem instance and the obtained results were statistically analyzed using
the Friedman test with a 95% confidence level ( � = 5%). Since the Friedman test
results were significant, we used the Wilcoxon rank sum test (Wilcoxon et al. 1970)
in a pairwise fashion (AEC NSGA-II versus each of the competitor approaches) in
order to detect significant performance differences between the algorithms under
comparison based on 30 independent runs. For deterministic techniques, we did not
perform 30 independent runs. The Wilcoxon test allows testing the null hypothesis
H0 that states that both algorithms medians’ values for a particular metric are not
statistically different against H1 which states the opposite. The Wilcoxon test does
not require that the data sets follow a normal distribution since it operates on values’
ranks instead of operating on the values themselves. Since we are comparing more
than two different algorithms, we performed several pairwise comparisons based on
Wilcoxon test to detect the statistical difference in terms of performance. To com-
pare two algorithms based on a particular metric, we record the obtained metric’s
values for both algorithms over 30 runs. For deterministic techniques, we consid-
ered one value of each metric on each system. After that, we compute the metric’s
median value for each algorithm. Besides, we executed the Wilcoxon test with a
95% confidence level ( � = 5%) on the recorded metric’s values using the Wilcoxon
MATLAB routine. If the returned p-value is less than 0.05 then we reject H0 and
we can state that one algorithm outperforms the other, otherwise we cannot say any-
thing in terms of performance difference between the two algorithms.

The above tests allow verifying whether the results are statistically different or
not. However, it does not give any idea about the difference in magnitude. To this
end, we used the Vargha and Delaney’s A statistics which are non-parametric effect
size measures. In our context, given the different performance metrics (such as
Precision@k and Recall@k), the A statistics measure the probability that running an
algorithm B1 (NSGA-II) yields better performance than running another algorithm
B2 (such as GA). If the two algorithms are equivalent, then A = 0.5.

An often-omitted aspect in metaheuristic search is the tuning of algorithm param-
eters. In fact, parameter setting significantly influences the performance of a search
algorithm on a particular problem. For this reason, for each search algorithm and
each system, we performed a set of experiments using several population sizes: 10,
20, 30, 40 and 50. The stopping criterion was set to 100,000 fitness evaluations for
all search algorithms to ensure fairness of comparison. We used a high number of
evaluations as a stopping criterion since our approach requires multiple objectives.
Each algorithm was executed 30 times with each configuration and then the compar-
ison between the configurations was performed based on different metrics described
previously using the Friedman test. The other parameter values were fixed by trial
and error and are as follows: (1) crossover probability = 0.5; mutation probability
= 0.4 where the probability of gene modification is 0.2. We used the same param-
eters of the existing work of Ouni et al., called RevRec, (Ouni et al. 2016) for a fair
comparison.

317

1 3

Automated Software Engineering (2020) 27:301–328	

Table 2   Median Precision@k results for the search algorithms (multi-objective variants) including
RevRec (mono-objective search) on all the systems based on 30 runs

All the results are statistically significant using the Friedman test and Wilcoxon with a 95% confidence
level ( � = 5%)

Project k Precision@k

AEC
(NSGA-II)

RevRec
(GA)

AEC (GA) AC (NSGA-
II)

AE (NSGA-
II)

EC (NSGA-
II)

Atomix 1 0.62 0.56 0.60 0.52 0.58 0.60
3 0.58 0.44 0.47 0.41 0.44 0.51
5 0.52 0.38 0.43 0.36 0.40 0.47

10 0.47 0.41 0.41 0.38 0.41 0.45
Tablesaw 1 0.57 0.49 0.54 0.44 0.52 0.54

3 0.64 0.52 0.56 0.41 0.52 0.60
5 0.61 0.44 0.51 0.38 0.48 0.56

10 0.55 0.41 0.46 0.40 0.44 0.50
Vavr 1 0.62 0.53 0.56 0.46 0.53 0.58

3 0.58 0.47 0.52 0.41 0.44 0.54
5 0.64 0.56 0.59 0.47 0.52 0.61

10 0.66 0.51 0.56 0.44 0.53 0.60
Takes 1 0.57 0.48 0.52 0.42 0.50 0.52

3 0.62 0.56 0.59 0.48 0.52 0.59
5 0.55 0.46 0.50 0.40 0.43 0.52

10 0.53 0.44 0.47 0.37 0.44 0.50
Dkpro-core 1 0.63 0.52 0.56 0.41 0.50 0.59

3 0.57 0.47 0.51 0.34 0.43 0.54
5 0.66 0.55 0.59 0.42 0.55 0.61

10 0.59 0.43 0.49 0.37 0.47 0.52
Pac4j 1 0.61 0.52 0.56 0.41 0.54 0.58

3 0.56 0.43 0.47 0.38 0.45 0.49
5 0.59 0.39 0.46 0.33 0.42 0.51

10 0.54 0.42 0.46 0.36 0.40 0.49
Android 1 0.68 0.58 0.62 0.51 0.60 0.64

3 0.62 0.47 0.53 0.44 0.51 0.56
5 0.53 0.39 0.43 0.37 0.41 0.45

10 0.47 0.34 0.39 0.31 0.36 0.41
OpenStack 1 0.72 0.59 0.64 0.52 0.61 0.64

3 0.61 0.51 0.54 0.46 0.52 0.56
5 0.64 0.43 0.5 0.39 0.48 0.52

10 0.54 0.36 0.39 0.33 0.36 0.43
Qt 1 0.58 0.49 0.51 0.46 0.47 0.53

3 0.61 0.45 0.50 0.43 0.43 0.55
5 0.54 0.41 0.45 0.39 0.38 0.48

10 0.46 0.34 0.39 0.31 0.32 0.39

318	 Automated Software Engineering (2020) 27:301–328

1 3

Table 3   Median Recall@k results for the search algorithms (multi-objective variants) including RevRec
(mono-objective search) on all the systems based on 30 runs

All the results are statistically significant using the Friedman test and Wilcoxon test with a 95% confi-
dence level ( � = 5%)

Project k Recall@k

AEC
(NSGA-II)

RevRec
(GA)

AEC (GA) AC (NSGA-
II)

AE (NSGA-
II)

EC (NSGA-
II)

Atomix 1 0.56 0.43 0.48 0.39 0.46 0.51
3 0.52 0.39 0.44 0.36 0.44 0.47
5 0.61 0.46 0.53 0.41 0.50 0.58

10 0.58 0.34 0.45 0.39 0.43 0.56
Tablesaw 1 0.51 0.43 0.48 0.37 0.46 0.48

3 0.55 0.41 0.46 0.36 0.43 0.52
5 0.52 0.38 0.44 0.35 0.40 0.50

10 0.59 0.33 0.50 0.36 0.42 0.56
Vavr 1 0.53 0.41 0.48 0.38 0.43 0.50

3 0.62 0.39 0.52 0.35 0.46 0.59
5 0.55 0.42 0.50 0.40 0.44 0.52

10 0.59 0.38 0.46 0.34 0.41 0.54
Takes 1 0.49 0.41 0.46 0.38 0.44 0.46

3 0.53 0.44 0.47 0.39 0.42 0.50
5 0.62 0.37 0.43 0.31 0.40 0.59

10 0.66 0.34 0.51 0.32 0.39 0.62
Dkpro-core 1 0.54 0.47 0.44 0.40 0.42 0.51

3 0.51 0.41 0.46 0.39 0.43 0.48
5 0.58 0.39 0.49 0.36 0.46 0.53

10 0.67 0.35 0.59 0.31 0.56 0.63
Pac4j 1 0.56 0.41 0.49 0.38 0.44 0.53

3 0.62 0.36 0.53 0.31 0.50 0.58
5 0.51 0.31 0.39 0.28 0.35 0.47

10 0.63 0.38 0.49 0.31 0.47 0.60
Android 1 0.57 0.38 0.51 0.36 0.48 0.54

3 0.72 0.51 0.63 0.48 0.60 0.67
5 0.76 0.61 0.66 0.53 0.63 0.71

10 0.79 0.71 0.77 0.66 0.71 0.77
OpenStack 1 0.59 0.41 0.49 0.38 0.45 0.56

3 0.68 0.54 0.62 0.51 0.60 0.65
5 0.76 0.61 0.68 0.53 0.64 0.72

10 0.81 0.74 0.77 0.68 0.69 0.77
Qt 1 0.56 0.41 0.48 0.38 0.43 0.50

3 0.66 0.50 0.58 0.47 0.50 0.61
5 0.68 0.59 0.63 0.53 0.61 0.63

10 0.76 0.65 0.68 0.57 0.65 0.71

319

1 3

Automated Software Engineering (2020) 27:301–328	

4.4 � Results

Results for RQ1 The results of Tables 2, 3 and Fig. 5 confirm the efficiency of our
multi-objective approach, based on NSGA-II, to identify relevant peer reviewers for
pull-requests from all the 9 open source systems. Tables 2 and 3 show the average
precision@k and recall@k results of our NSGA-II AEC technique on the various
systems, with k equal to 1, 3, 5 and 10. For example, most of the recommended peer
reviewers in the top 3 (k=3) are relevant (compared to the expected results) with
precision over 60% on all the 9 systems. The lowest precision is around 47% for
k = 10 which still could be considered acceptable due to a large number of possible
reviewers in the selected systems.

In terms of recall, Table 3 confirms that the majority of the expected peer review-
ers to recommend are located in the top 10 (k = 10) with a recall score over 53%.
The highest recall is 78% for k = 10 (Qt project). Since several pull-requests may
require more than one peer reviewer, most of the highest recall scores are obtained
for k = 5 and k = 10.

Figure 5 shows that NSGA-II was able to efficiently rank the recommended peer-
reviewers. In fact, the median MMR on the different systems is higher than 68%
with the highest score of 79% for the Open Stack project. This outcome is important
since the efficient ranking of the recommended peer reviewer is one of the main
motivations of our approach that consider not only the expertise but also the availa-
bility and the collaborations among reviewers. The availability in our case is consid-
ered based on the number of commits and files that a programmer is working on in
the time period closest to the evaluated pull-request. We noticed that our technique
does not have a bias toward the evaluated system. We had almost consistent average
scores of precision, recall and the mean reciprocal rank.

Results for RQ2 Tables 2, 3 and Fig. 5 confirm that our multi-objective approach
(AEC NSGA-II) is better, on average, than the existing mono-objective technique,
RevRec (Ouni et al. 2016), based on the 3 metrics of precision, recall and MMR
on all the 9 systems. The median precision and recall values of the RevRec tool on

Fig. 5   Median MMR results for the different search algorithms on all systems based on 30 runs. All the
results are statistically significant using the Friedman test with a 95% confidence level ( � = 5%)

320	 Automated Software Engineering (2020) 27:301–328

1 3

the 9 systems are lower than 56% as described in Table 2 for all values of k (1, 3, 5
and 10). Furthermore, the EC NSGA-II variant of our approach outperformed the
mono-objective search aggregating the same objectives (Ouni et al. 2016) based on
the metrics on almost all the systems. Thus, an interesting observation is the clear
conflicting objectives of expertise and collaborations which confirms our observa-
tion in the eBay survey that collaborations does not mean qualified reviewers (with
high expertise) are assigned to review the pull-requests. The same observation is
valid for the ranking of recommended peer reviewers based on the MMR measure as
described in Fig. 5. For instance, the MMR score for AEC NSGA-II is 78% on the
Takes project while it is limited to 61% for RevRec.

The outperformance of NSGA-II can be explained as well by the considera-
tion of the new objective of availability which may reflect the reality of how peer

Table 4   The effect size for Precision based on 30 runs when comparing AEC NSGA-II versus each of
the search algorithms

Project Effect Size-
RevRec (GA)

Effect Size-
AEC (GA)

Effect Size-AC
(NSGA-II)

Effect Size-AE
(NSGA-II)

Effect
Size-EC
(NSGA-II)

Atomix 0.52 0.61 0.82 0.76 0.58
Tablesaw 0.39 0.72 0.79 0.73 0.63
Vavr 0.87 0.63 0.86 0.78 0.71
Takes 0.64 0.68 0.91 0.83 0.68
Dkpro-core 0.92 0.77 0.83 0.71 0.72
Pac4j 0.86 0.72 0.72 0.84 0.66
Android 0.52 0.64 0.77 0.92 0.74
OpenStack 0.76 0.68 0.84 0.81 0.63
Qt 0.94 0.71 0.92 0.83 0.61

Table 5   The effect size for Recall based on 30 runs when comparing AEC NSGA-II with each of the
search algorithms

Project Effect Size-
RevRec (GA)

Effect Size-
AEC (GA)

Effect Size-AC
(NSGA-II)

Effect Size-AE
(NSGA-II)

Effect
Size-EC
(NSGA-II)

Atomix 0.64 0.66 0.83 0.72 0.61
Tablesaw 0.82 0.62 0.75 0.69 0.53
Vavr 0.93 0.71 0.83 0.77 0.64
Takes 0.72 0.63 0.91 0.82 0.68
Dkpro-core 0.89 0.74 0.84 0.91 0.59
Pac4j 0.74 0.61 0.88 0.73 0.71
Android 0.91 0.77 0.94 0.68 0.63
OpenStack 0.83 0.82 0.83 0.73 0.69
Qt 0.72 0.64 0.86 0.77 0.57

321

1 3

Automated Software Engineering (2020) 27:301–328	

reviewers are manually assigned to reduce delays. In fact, the aggregation of all
the three objectives in a mono-objective search (AEC GA) is performing better
than Ouni et al. (2016) which confirms the positive contribution of the availibil-
ity objective on the quality of the results. The least performance of our multi-
objective approach in terms of MMR (slightly less than RevRec) was observed
for the Dkpro-core and pac4j projects. While investigating the reasons behind this
decreased performance, we found out that the main reason is that these projects
have a large enough number of contributors comparing to their sizes(in terms of
files, commits and pull-request). In fact, the ratio ’contributors to size’ is larger
than the other projects. Thus, the availability objective may not represent a big
concern for these projects unlike the others since they have enough contributors
to review the changed files/pull-requests.

All these results were statistically significant on 30 independent runs using the
Friedman test and Wilcoxon test (pairwise comparison) with a 95% confidence
level ( 𝛼 < 5% ). We also found the results of the Vargha Delaney A12 statistic are
higher than 0.8 (large) on all the systems which confirms the significant outper-
formance of AEC NSGA-II comparing to the mono-objective formulation. The
detailed effect size results can be found in Tables 4 and 5.

Results for RQ3 Since it is not sufficient to compare our approach with just
search-based algorithms, we compared the performance of NSGA-II to three dif-
ferent peer reviewer recommendation techniques which are not based on heuristic
search, as described in Tables 6 and 7, and Fig. 6.

Similar to the comparison with RevRec, we used the precision@k, recall@k and
MMR measures with k ranging from 1 to 10. NSGA-II achieves better results, on
average than the other three methods on all the three projects. For example, our
approach achieved a Precision@k median of 63%, 59%, 48% and 43% are achieved
for k = 1, 3, 5 and 10 respectively as described in Table 6. In comparison, CHrev
achieved a median Precision@k of 58%, 47%, 39%, and 34% are obtained for k = 1,
3, 5 and 10. CHRev has the highest precision among all the remaining tools of
REVFINDER and ReviewBot. Similar observations are also valid for the recall@k
and MMR.

5 � Threats to validity

Conclusion validity is concerned with the statistical relationship between the treat-
ment and the outcome. We addressed conclusion threats to validity by performing
30 independent simulation runs for each problem instance and statistically analyzing
the obtained results using the Friedman test with a 95% confidence level ( � = 5% ).
However, the parameter tuning of the different optimization algorithms used in our
experiments creates another internal threat that we need to evaluate in our future
work. The parameter values used in our experiments were determined by trial-and-
error (Jackson et al. 2001). In addition, the estimation of the availability of reviewers
on open source systems may not be very accurate.

322	 Automated Software Engineering (2020) 27:301–328

1 3

Ta
bl

e 
6  

M
ed

ia
n

Pr
ec

is
io

n@
k

re
su

lts
 fo

r a
ll

th
e

ap
pr

oa
ch

es
 o

n
th

re
e

sy
ste

m
s b

as
ed

 o
n

30
 ru

ns

A
ll

th
e

re
su

lts
 a

re
 st

at
ist

ic
al

ly
 si

gn
ifi

ca
nt

 u
si

ng
 th

e
Fr

ie
dm

an
 te

st
an

d
W

ilc
ox

on
 te

st
w

ith
 a

 9
5%

 c
on

fid
en

ce
 le

ve
l (

 �
=

 5
%

)

Pr
oj

ec
t

K
Pr

ec
is

io
n@

k

A
C

E
(N

SG
A

-I
I)

A
EC

 (G
A

)
A

C
 (N

SG
A

-I
I)

A
E

(N
SG

A
-I

I)
EC

 (N
SG

A
-I

I)
Re

vR
ec

 (G
A

)
cH

Re
v

R
EV

FI
N

D
ER

Re
vi

ew
B

ot

A
nd

ro
id

1
0.

68
0.

62
0.

51
0.

60
0.

64
0.

58
0.

50
0.

34
0.

21
3

0.
62

0.
53

0.
44

0.
51

0.
56

0.
47

0.
35

0.
25

0.
17

5
0.

53
0.

43
0.

37
0.

41
0.

45
0.

39
0.

30
0.

22
0.

12
10

0.
47

0.
39

0.
31

0.
36

0.
41

0.
34

0.
26

0.
18

0.
09

O
pe

nS
ta

ck
1

0.
72

0.
64

0.
52

0.
61

0.
64

0.
59

0.
48

0.
32

0.
24

3
0.

61
0.

54
0.

46
0.

52
0.

56
0.

51
0.

42
0.

27
0.

20
5

0.
64

0.
50

0.
39

0.
48

0.
52

0.
43

0.
38

0.
25

0.
16

10
0.

54
0.

39
0.

33
0.

36
0.

43
0.

36
0.

31
0.

21
0.

11
Q

t
1

0.
58

0.
51

0.
46

0.
47

0.
53

0.
49

0.
45

0.
30

0.
22

3
0.

61
0.

50
0.

43
0.

43
0.

55
0.

45
0.

40
0.

27
0.

19
5

0.
54

0.
45

0.
39

0.
38

0.
48

0.
41

0.
37

0.
21

0.
13

10
0.

46
0.

39
0.

31
0.

32
0.

39
0.

34
0.

31
0.

16
0.

09

323

1 3

Automated Software Engineering (2020) 27:301–328	

Ta
bl

e 
7  

M
ed

ia
n

Re
ca

ll@
k

re
su

lts
 fo

r a
ll

th
e

ap
pr

oa
ch

es
 o

n
th

re
e

sy
ste

m
s b

as
ed

 o
n

30
 ru

ns

A
ll

th
e

re
su

lts
 a

re
 st

at
ist

ic
al

ly
 si

gn
ifi

ca
nt

 u
si

ng
 th

e
Fr

ie
dm

an
 te

st
an

d
W

ilc
ox

on
 te

st
w

ith
 a

 9
5%

 c
on

fid
en

ce
 le

ve
l (

 �
=

 5
%

)

Pr
oj

ec
t

K
Re

ca
ll@

k

A
C

E
(N

SG
A

-I
I)

A
EC

 (G
A

)
A

C
 (N

SG
A

-I
I)

A
E

(N
SG

A
-I

I)
EC

 (N
SG

A
-I

I)
Re

vR
ec

 (G
A

)
cH

Re
v

R
EV

FI
N

D
ER

Re
vi

ew
B

ot

A
nd

ro
id

1
0.

57
0.

51
0.

36
0.

48
0.

54
0.

38
0.

27
0.

18
0.

11
3

0.
72

0.
63

0.
48

0.
60

0.
67

0.
51

0.
50

0.
39

0.
19

5
0.

76
0.

66
0.

53
0.

63
0.

71
0.

61
0.

61
0.

48
0.

29
10

0.
79

0.
77

0.
66

0.
71

0.
77

0.
71

0.
65

0.
54

0.
38

O
pe

nS
ta

ck
1

0.
59

0.
49

0.
38

0.
45

0.
56

0.
41

0.
31

0.
15

0.
12

3
0.

68
0.

62
0.

51
0.

60
0.

65
0.

54
0.

39
0.

29
0.

20
5

0.
76

0.
68

0.
53

0.
64

0.
72

0.
61

0.
52

0.
37

0.
32

10
0.

81
0.

77
0.

68
0.

69
0.

77
0.

74
0.

66
0.

46
0.

39
Q

t
1

0.
56

0.
48

0.
38

0.
43

0.
50

0.
41

0.
33

0.
14

0.
90

3
0.

66
0.

58
0.

47
0.

50
0.

61
0.

50
0.

47
0.

27
0.

16
5

0.
68

0.
63

0.
53

0.
61

0.
63

0.
59

0.
52

0.
35

0.
24

10
0.

76
0.

68
0.

57
0.

65
0.

71
0.

65
0.

60
0.

43
0.

30

324	 Automated Software Engineering (2020) 27:301–328

1 3

Construct validity is concerned with the relationship between theory and what
is observed. The definition of expertise and collaborations can be subjective and
hard to formalize thus further empirical studies are required to validate the different
metrics used in our work. We are planning to consider other possible formations as
part of our future work and compare between them. Additionally, our current defini-
tion of the availability needs further improvement. In fact, reviewers can be assigned
other types of development activities than coding (e.g., testing, design/architecture,
requirements analysis, etc.). The data about these activities are not always available.
However, the formulation of our fitness function is easy to modify in a way that
enables managers to enter the number of tasks per reviewer, especially the ones that
they are beyond code reviews.

External validity refers to the generalizability of our findings. In this study, we
performed our experiments on different widely used open-source systems belonging
to different domains and having different sizes. However, we cannot assert that our
results can be generalized to other systems. Future replications of this study are nec-
essary to confirm our results with a larger set of pull requests and reviewers.

Another threat to our approach could be the effort required by the manager to
select the preferred solution. In general, the preferences are defined based on the
current context such as: the urgency to release code quickly, available resources,
speedy growth phase of the project, etc. These different contexts are not changing
daily and they are not related to only one or few pull-requests but they are more
related to the situation of the whole project. To mitigate this threat, we provide the
distribution of the solutions of the Pareto front which can be ranked based on the
preferred fitness functions or based on the current context. Thus, the preferred solu-
tion can be selected in an easier and faster way.

Fig. 6   Median MMR results for all the approaches on three systems based on 30 runs. All the results are
statistically significant using the Friedman test and Wilcoxon test with a 95% confidence level ( � = 5%)

325

1 3

Automated Software Engineering (2020) 27:301–328	

6 � Related work

Expertise has been the most important factor in the studies proposing peer reviewer
recommendation. Zanjani et al. found that expertise changes over time and thus both
frequency and recency of reviews must be accounted for to find the most appropri-
ate reviewers. Therefore their approach builds a reviewer expertise model, gener-
ated from past reviews, that combines a quantification of review comments and their
recency (Zanjani et al. 2016).

Balachandran et al. first suggested to use the Review Bot tool, as a recommenda-
tion system to reduce human effort and improve review quality by finding source
code issues, which need to be addressed, but could be missed during reviewer
inspection. The bot can review the code by integrating the static analysis of the
source code (Balachandran 2013). The bot, as part of a review process, is able to rec-
ommend the most appropriate human reviewer. In cases when the project has been
modified frequently and there is a history of the changes for the source code, the bot
is a suitable solution. However, Thongtanunam et al. (2014) showed that the Review
Bot’s algorithm had poor performance on other projects with no or little change in
their files due to the lack of history in line-by-line source code. In the same work,
they introduced the idea of using file location (but not content) as an indicator for
similarity of reviews. Their reviewer recommender approach, called File Path Simi-
larity (FPS), implementing this idea, assumes that files that are located in similar
file paths would be managed and reviewed by similarly experienced expert code
reviewers. To improve their previous idea, Thongtanunam et al. (2015) introduced
REVFINDER, a file location-based code-reviewer recommendation approach.
REVFINDER uses the similarity of previously reviewed file paths to recommend an
appropriate code-reviewer. However, they did not consider the reviewer’s work load
and availability.

Xia et al. (2013) used bug reports and developer information to recommend
developers to resolve bugs. However, the most notable limitation of these works is
that the socio-technical aspect of the code review process is not considered.

Several other studies focused on human factors and socio-technical aspects of
code review. Cohen et al. (2006) discuss that code review is a complex process
involving both social and personal aspects. Fagan (2002), to ensure the quality of
software, introduced software inspection as a systematic peer review activity. Other
studies (Rigby et al. 2008; Bird et al. 2008; Rigby and Storey 2011, 2011; Bosu and
Carver 2013, 2014; Kononenko et al. 2015; Yang et al. 2016) motivate the need for
a peer review recommendation system, considering the volunteer nature of open-
source software (OSS) developers and the peer review structure, suggest that dif-
ferent human factors influence the OSS peer review. Baysal et al. conducted sev-
eral studies (Baysal et al. 2013; Baysal and Holmes 2012; Kononenko et al. 2015)
to explore the relationships between a set of personal and social factors and code
review.

Bosu and Carver (2013) conducted a survey on four aspects of peer impression
formation: trust, reliability, perception of expertise, and friendship. They concluded
that there is a high level of trust, reliability, perception of expertise, and friendship

326	 Automated Software Engineering (2020) 27:301–328

1 3

between OSS peers who have participated in code review for a period of time. In
another survey on how social interaction networks influence peer impressions forma-
tion (Bosu and Carver 2014), they found that code review interactions have the most
favorable characteristics to support impression formation among OSS participants.

Based on search based software engineering (Ouni et al. 2017; Wang et al. 2016;
Ghannem et al. 2016; Amal et al. 2014; Ghannem et al. 2011), Ouni et al. (2016) com-
bined both aspects in their proposed approach, called RevRec, to provide decision-
making support for code change submitters and reviewer assigners to identify the
most appropriate peer reviewers for code changes. RevRec uses a genetic algorithm to
assign reviewers to review a code change based on expertise and history of collabora-
tion. Their single objective optimization approach aims to find appropriate reviewers
for a given patch based on the reviewer’s expertise with the submitted patch files, and
the reviewer’s prior collaborations with the review request submitter. Although this is
the closest work in the literature to our proposed approach, our work differs from their
work in a few ways: their solution representation determines if any of the reviewers
are recommended to review a single file, therefore in cases when there are more files
to review, let say k files, then the single objective optimization must run k times inde-
pendently from each other which may not necessarily match the reality of the task. Our
solution representation recommends reviewers for all the files that need to be reviewed
at the same time. Furthermore, they do not consider the current workload of the review-
ers and when they might be available to review the current files that match their exper-
tise. In our method, we account for a reviewer’s availability and we provide a ranking
for the recommended reviewers so that if one reviewer is the best match, but busy with
other work, we do not recommend the reviewer as the first choice for reviewing that
file. This will decrease the overall delay in the system for files to get reviewed. Addi-
tionally, to capture the complexity of peer code review task, we formulate the problem
as interaction among the competing objectives of expertise, availability and history of
collaborations.

7 � Conclusion

In this paper we formulated the recommendation of peer code reviewers as a multi-
objective problem to find a trade-off between the competing objectives of expertise,
availability and history of collaborations. Unlike existing approaches, our approach can
sacrifice expertise to avoid a delay caused by limited resources (e.g. low peer reviewer
availability). Our evaluation results confirm the efficiency of our multi-objective
approach on 9 open source projects in finding better reviewer recommendations, as
compared to the state of the art (Ouni et al. 2016). Furthermore, our survey with prac-
titioners highlighted the importance of managing code reviews to reduce delays while
ensuring high expertise as much as possible.

As part of our future work, we plan to consider the use of additional projects and
feedback. Furthermore, we will extend our collaboration model of code reviews beyond
the history of data from a single project. We are also planing to extend the definition of
the expertise by taking into consideration the recency and the quality of past reviews.
Since there is a lack of empirical evidence on how to define “good quality” in code

327

1 3

Automated Software Engineering (2020) 27:301–328	

reviews, we are planning to perform a rigorous empirical study via conducting exten-
sive surveys to answer this subjective question.

References

Almhana, R., Mkaouer, W., Kessentini, M., Ouni, A.: Recommending relevant classes for bug reports
using multi-objective search. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, pp. 286–295. ACM, New York, NY, USA (2016).
https​://doi.org/10.1145/29702​76.29703​44

Amal, B., Kessentini, M., Bechikh, S., Dea, J., Said, L.B.: On the use of machine learning and search-
based software engineering for ill-defined fitness function: a case study on software refactoring.
In: International Symposium on Search Based Software Engineering, pp. 31–45. Springer, Cham
(2014)

Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 2013 International Conference on Software Engineering, pp. 712–721. IEEE Press (2013)

Balachandran, V.: Reducing human effort and improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. In: Proceedings of the 2013 International Conference
on Software Engineering, pp. 931–940. IEEE Press (2013)

Baysal, O., Holmes, R.: A qualitative study of mozilla’s process management practices. David R. Cheri-
ton School of Computer Science, University of Waterloo, Waterloo, Canada, Tech. Rep. CS-2012-
10 (2012)

Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: The influence of non-technical factors on code
review. In: 2013 20th Working Conference on Reverse Engineering (WCRE), pp. 122–131. IEEE
(2013)

Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure in open source pro-
jects. In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 24–35. ACM (2008)

Bosu, A., Carver, J.C.: Impact of peer code review on peer impression formation: A survey. In: 2013
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp.
133–142. IEEE (2013)

Bosu, A., Carver, J.C.: How do social interaction networks influence peer impressions formation? A case
study. In: IFIP International Conference on Open Source Systems, pp. 31–40. Springer (2014)

Bosu, A., Carver, J.C.: Impact of developer reputation on code review outcomes in oss projects: an
empirical investigation. In: Proceedings of the 8th ACM/IEEE International Symposium on Empiri-
cal Software Engineering and Measurement, p. 33. ACM (2014)

Bosu, A., Carver, J.C., Bird, C., Orbeck, J., Chockley, C.: Process aspects and social dynamics of con-
temporary code review: insights from open source development and industrial practice at microsoft.
IEEE Trans. Softw. Eng. 43(1), 56–75 (2016)

Cohen, J., Brown, E., DuRette, B., Teleki, S.: Best kept secrets of peer code review. Smart Bear Somer-
ville (2006)

Committee, S.E.S., et al.: IEEE standard for software reviews. IEEE Std, pp. 1028–1997 (1997)
Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred

solution principles. Eng. Optim. 43(11), 1175–1204 (2011)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-

ii. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)
Emmerich, M.T., Deutz, A.H.: A tutorial on multiobjective optimization: fundamentals and evolutionary

methods. Nat. Comput. 17(3), 585–609 (2018)
Fagan, M.: Design and code inspections to reduce errors in program development. In: Software Pioneers,

pp. 575–607. Springer (2002)
Ghannem, A., El Boussaidi, G., Kessentini, M.: On the use of design defect examples to detect model

refactoring opportunities. Softw. Qual. J. 24(4), 947–965 (2016)
Ghannem, A., Kessentini, M., El Boussaidi, G.: Detecting model refactoring opportunities using heuristic

search. In: Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative
Research, pp. 175–187 (2011)

https://doi.org/10.1145/2970276.2970344

328	 Automated Software Engineering (2020) 27:301–328

1 3

Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends, techniques and
applications. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)

Jackson, R.R., Carter, C.M., Tarsitano, M.S.: Trial-and-error solving of a confinement problem by a
jumping spider, portia fimbriata. Behaviour 138(10), 1215–1234 (2001)

Keller, A.A.: Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms.
Bentham Science Publishers, Sharjah (2019)

Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., Godfrey, M.W.: Investigating code review quality: do
people and participation matter? In: 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 111–120. IEEE (2015)

Ouni, A., Kessentini, M., Ó Cinnéide, M., Sahraoui, H., Deb, K., Inoue, K.: More: a multi-objective
refactoring recommendation approach to introducing design patterns and fixing code smells. J.
Softw. Evol. Process 29(5), e1843 (2017)

Ouni, A., Kula, R.G., Inoue, K.: Search-based peer reviewers recommendation in modern code review.
In: 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp.
367–377. IEEE (2016)

Ouni, A., Kula, R.G., Kessentini, M., Ishio, T., German, D.M., Inoue, K.: Search-based software library
recommendation using multi-objective optimization. Inf. Softw. Technol. 83, 55–75 (2017)

Rachmawati, L., Srinivasan, D.: Multiobjective evolutionary algorithm with controllable focus on the
knees of the pareto front. IEEE Trans. Evol. Comput. 13(4), 810–824 (2009)

Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In: Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, pp. 202–212. ACM (2013)

Rigby, P.C., German, D.M., Storey, M.A.: Open source software peer review practices: a case study of the
apache server. In: Proceedings of the 30th International Conference on Software Engineering, pp.
541–550. ACM (2008)

Rigby, P.C., Storey, M.A.: Understanding broadcast based peer review on open source software projects.
In: 2011 33rd International Conference on Software Engineering (ICSE), pp. 541–550. IEEE (2011)

Thongtanunam, P., Kula, R.G., Cruz, A.E.C., Yoshida, N., Iida, H.: Improving code review effectiveness
through reviewer recommendations. In: Proceedings of the 7th International Workshop on Coopera-
tive and Human Aspects of Software Engineering, pp. 119–122. ACM (2014)

Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Matsumoto, K.i.: Who should
review my code? a file location-based code-reviewer recommendation approach for modern code
review. In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), pp. 141–150. IEEE (2015)

Wang, H., Kessentini, M., Ouni, A.: Bi-level identification of web service defects. In: International Con-
ference on Service-Oriented Computing, pp. 352–368. Springer, Cham (2016)

Wilcoxon, F., Katti, S., Wilcox, R.A.: Critical values and probability levels for the wilcoxon rank sum test
and the Wilcoxon signed rank test. Sel. Tab. Math. Stat. 1, 171–259 (1970)

Xia, X., Lo, D., Wang, X., Yang, X.: Who should review this change?: Putting text and file location
analyses together for more accurate recommendations. In: 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 261–270. IEEE (2015)

Xia, X., Lo, D., Wang, X., Zhou, B.: Accurate developer recommendation for bug resolution. In: 2013
20th Working Conference on Reverse Engineering (WCRE), pp. 72–81. IEEE (2013)

Yang, X., Kula, R.G., Yoshida, N., Iida, H.: Mining the modern code review repositories: a dataset of
people, process and product. In: Proceedings of the 13th International Conference on Mining Soft-
ware Repositories, pp. 460–463. ACM (2016)

Yang, X., Yoshida, N., Kula, R.G., Iida, H.: Peer review social network (person) in open source projects.
IEICE Trans. Inf. Syst. 99(3), 661–670 (2016)

Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for pull-requests in github: what can we
learn from code review and bug assignment? Inf. Softw. Technol. 74, 204–218 (2016)

Zanjani, M.B., Kagdi, H., Bird, C.: Automatically recommending peer reviewers in modern code review.
IEEE Trans. Softw. Eng. 42(6), 530–543 (2015)

Zanjani, M.B., Kagdi, H., Bird, C.: Automatically recommending peer reviewers in modern code review.
IEEE Trans. Softw. Eng. 42(6), 530–543 (2016)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Multi-objective code reviewer recommendations: balancing expertise, availability and collaborations
	Abstract
	1 Introduction
	2 Background
	2.1 Review process
	2.2 Preliminary study

	3 Approach
	3.1 Multi-objective optimization
	3.2 Approach overview: a multi-objective code reviewer recommendation framework
	3.3 Main components of the approach
	3.3.1 Reviewer’s expertise model
	3.3.2 Reviewer-developer collaboration model
	3.3.3 Availability model

	3.4 Problem formulation
	3.4.1 Solution representation
	3.4.2 Fitness functions
	3.4.3 Change operators

	4 Experiment and results
	4.1 Research questions
	4.2 Studied projects
	4.3 Parameter tuning and statistical tests
	4.4 Results

	5 Threats to validity
	6 Related work
	7 Conclusion
	References

