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Abstract
Modern Code review is one of the most critical tasks in software maintenance and 
evolution. A rigorous code review leads to fewer bugs and reduced overall mainte-
nance costs. Most existing studies focus on automatically identifying the most quali-
fied reviewers, based on their expertise, to review pull-up requests. However, the 
management of code reviews is a complex problem in practice due to a project’s 
limited resources, including the availability of peer reviewers. Furthermore, the his-
tory of collaborations between developers and reviewers could affect the quality of 
the reviews, in positive or negative ways. In this paper, we formulate the recommen-
dation of code reviewers as a multi-objective search problem to balance the conflict-
ing objectives of expertise, availability, and history of collaborations. Our validation 
confirms the effectiveness of our multi-objective approach on 9 open source projects 
by making better recommendations, on average, than the state of the art.

Keywords  Modern code review · Search based software engineering · Reviewers 
recommendation

 *	 Marouane Kessentini 
	 marouane@umich.edu

	 Soumaya Rebai 
	 srebal@umich.edu

	 Abderrahmen Amich 
	 aamich@umich.edu

	 Somayeh Molaei 
	 smolaei@umich.edu

	 Rick Kazman 
	 kazman@hawaii.edu

1	 University of Michigan, Dearborn, USA
2	 University of Hawaii, Honolulu, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00275-6&domain=pdf


302	 Automated Software Engineering (2020) 27:301–328

1 3

1  Introduction

The source code review process has always been one of the most important software 
maintenance and evolution activities (Committee 1997). Several studies show that a 
careful code inspection can significantly reduce defects and improve the quality of 
software systems. Recently this process has become informal, asynchronous, light-
weight and facilitated by tools (Balachandran 2013; Rigby and Bird 2013). A survey 
with practitioners, performed by Bacchelli and Bird (2013), show that code review 
nowadays is expanding beyond just looking for defects but to also provide alterna-
tives to improve the code and transfer knowledge among developers.

Despite recent progress (Ouni et al. 2016; Zanjani et al. 2016) code reviews are 
still time-consuming, expensive, and complex involving a large amount of effort 
by managers, developers and reviewers. Thongtanunam et  al. (2015) found on 
four open source projects with 12 days as the average to approve a code change. 
The automated recommendation of peer code reviewers may help to reduce 
delays by finding the best reviewers who will then spend less time in reviewing 
the assigned files.

The majority of existing tools and techniques for automated recommendation of 
code reviewers are based on the level of reviewer expertise (Zanjani et  al. 2016; 
Balachandran 2013; Thongtanunam et al. 2014, 2015). Expertise is mainly defined 
as the prior knowledge of the changes under review. For instance, a selected peer 
reviewer with high expertise should have reviewed the same files (Thongtanunam 
et al. 2015, 2014), or even the same lines of code in the files (Balachandran 2013). 
An empirical study at Microsoft found that selected reviewers with high expertise 
can provide valuable and rapid feedback to the author of the code under review 
(Bacchelli and Bird 2013). However, reviewers with high expertise may not be 
always available in practice, or at least assigning them may create delays.

To address the above challenges we propose to formulate the selection of peer 
code reviewers as a multi-objective problem. The goal is to balance the con-
flicting objectives of expertise, availability and history of collaborations. The 
multi-objective approach tries to find a trade-off between multiple objectives and 
minimizing the former collaborations on reviewing the same files is just one com-
ponent between many objectives. We adopted one of the widely used multi-objec-
tive search algorithms, NSGA-II (Deb et  al. 2002), to find a trade-off depend-
ing on current context and available resources. For instance, our formulation can 
slightly sacrifice expertise to avoid a delay caused by limited resources (e.g. low 
availability of peer reviewers). In another context, the reviewer(s) with the highest 
expertise can be selected when the goal is to inspect high priority code changes 
such as critical buggy files. Thus, our approach enables navigation between the 
three different dimensions by generating multiple non-dominated peer reviewer 
recommendations instead of one solution as is done in existing work.

Our validation on 9 open source confirms the effectiveness of our multi-objec-
tive approach by making better recommendations than the state of the art.

The remainder of this paper is organized as follows. Section  2 presents the 
relevant background related to this research and the problem statement. Section 3 
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describes our approach overview and the adaptation steps. Empirical study and 
results are provided in Sect. 4 while threats to validity are discussed in Sect. 5. 
Section  6 is dedicated to related work. Finally, we conclude and provide our 
future research directions in Sect. 7.

2 � Background

2.1 � Review process

We begin by defining the key concepts related to the modern code review process 
supported nowadays by many tools such as Gerrit.1 A code review includes all the 
interactions between the submitter of a pull-request and one or more reviewers of 
that change including comments on the code and discussions with reviewers. The 
owner is the programmer making the changes to the code and then submitting the 
review request. A peer reviewer is a developer assigned to contribute in reviewing 
the set of code changes. These reviewers write review comments as feedback to the 
owner about the introduced changes.

Figure 1 shows the code review process in a version-control repository. A code 
review process starts with a new branch ( 1  ). In this new branch, each commit 
should correspond to a code-level change ( 2  ). After developers commit all the 
code-level changes, developers make a pull request, in which they write a descrip-
tion of the code changes ( 3  ). After a pull request has been sent out, it appears in 
the list of pull requests for the project in question, visible to anyone who can see the 
project. Then, other collaborators can check the changes made in the branch and dis-
cuss the changes (code reviews 4  ). During the code review, developers may make 
more changes to the branch. Finally, if the collaborators accept these code changes, 
this branch is merged into the master branch ( 5 ).

Fig. 1   A summary of the code review process

1  https​://www.gerri​tcode​revie​w.com/intro​-quick​.html.

https://www.gerritcodereview.com/intro-quick.html
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Figure 2 shows one example of code reviews where many possible reviewers can 
be assigned to review the changes. Thus, dealing with a large number of possible 
reviewers for multiple pull requests is a management problem which is under-stud-
ied in the research literature. This management process requires handling multiple 
competing criteria including expertise, availability and previous collaborations with 
the owners and reviewers. We will describe, in the next section, our formulation of 
code reviewer recommendations as a multi-objective problem.

2.2 � Preliminary study

As part of preliminary work of this paper, we performed unstructured survey with 
6 senior managers and 11 senior developers actively involved in code reviews to 
assign reviewers or/and review pull-requests. We decided to perform an unstructured 
survey to encourage the participants to think-aloud and avoid biasing them with our 
opinions. Furthermore, the goal of our surveys is get insights about the current chal-
lenges in code reviews rather than a large empirical study. We found that 10 days is 
the average to approve a code change at eBay. The main reason based on the sur-
veys for the delay is the challenging task of identifying the right reviewers which is 
aligned with existing studies (Xia et al. 2015; Yu et al. 2016).

A senior manager confirmed that “We don’t actually need more tools to just sug-
gest reviewers based on expertise. We need better support to manage code reviews 
especially with short deadlines and limited resources while not sacrificing a lot of 
expertise. It is a complex problem.” In addition, the participants highlighted that it 
is critical to consider the priority of the files to be inspected as part of the manage-
ment of the code review process. Furthermore, we found in our interviews that the 
social interactions between code authors and reviewers is another critical aspect to 
consider to ensure high quality reviews.

Fig. 2   An example of a code review extracted from OpenStack
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Existing studies assume that peer reviewers with high interactions with authors/
owners of the code under review are the best to select (Ouni et al. 2016). However, 
this aspect may be considered negative with extensive mutual peer reviews and/or 
quick approval of code changes as suggested by the participants. The diversity of 
peer code reviews is important, as pointed out by the eBay senior managers and peer 
reviewers, especially when frequent patterns of code authors/reviewers are observed.

3 � Approach

In this section, we describe our proposed approach for recommending the most 
appropriate set of reviewers for pull-requests to be reviewed using multi-objective 
search.

3.1 � Multi‑objective optimization

Multi-Objective search considers more than one objective function to be optimized 
simultaneously. It is hard to find an optimal solution that solves such problems 
because the objectives to be optimized are conflicting. For this reason, a multi-
objective search-based algorithm could be suitable to solve this problem because it 
finds a set of alternative solutions, rather than a single solution as result. One of the 
widely used multi-objective search techniques is NSGA-II (Deb et al. 2002; Alm-
hana et al. 2016; Ouni et al. 2017) that has shown good performance in solving sev-
eral software engineering problems (Harman et al. 2012).

A high-level view of NSGA-II is depicted in Algorithm 1. The algorithm starts 
by randomly creating an initial population P0 of individuals encoded using a specific 
representation (line 1). Then, a child population Q0 is generated from the population 
of parents P0 (line 2) using genetic operators (crossover and mutation). Both popula-
tions are merged into an initial population R0 of size N (line 5). Fast-non-dominated-
sort (Deb et al. 2002) is the technique used by NSGA-II to classify individual solu-
tions into different dominance levels (line 6). Indeed, the concept of non-dominance 
consists of comparing each solution x with every other solution in the population 
until it is dominated (or not) by one of them. According to Pareto optimality: “A 
solution x1 is said to dominate another solution x2 , if x1 is no worse than x2 in all 
objectives and x1 is strictly better than x2 in at least one objective”. Formally, if we 
consider a set of objectives fi , i ∈ 1..n , to maximize, a solution x1 dominates x2 :

iff ∀i , fi(x2) ⩽ fi(x1) and ∃j ∣ fj(x2) < fj(x1)

The whole population that contains N individuals (solutions) is sorted using the 
dominance principle into several fronts (line 6). Solutions on the first Pareto-front 
F0 get assigned dominance level of 0. Then, after taking these solutions out, fast-
non-dominated-sort calculates the Pareto-front F1 of the remaining population; 
solutions on this second front get assigned dominance level of 1, and so on. The 
dominance level becomes the basis of selection of individual solutions for the next 
generation. Fronts are added successively until the parent population Pt+1 is filled 
with N solutions (line 8). When NSGA-II has to cut off a front Fi and select a subset 
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of individual solutions with the same dominance level, it relies on the crowding dis-
tance (Deb et al. 2002) to make the selection (line 9). This parameter is used to pro-
mote diversity within the population. This front Fi to be split, is sorted in descending 
order (line 13), and the first (N- |Pt+1| ) elements of Fi are chosen (line 14). Then 
a new population Qt+1 is created using selection, crossover and mutation (line 15). 
This process will be repeated until reaching the last iteration according to stop crite-
ria (line 4).

3.2 � Approach overview: a multi‑objective code reviewer recommendation 
framework

The ultimate goal of our Code Reviewer Recommendation framework is to auto-
matically assign the most appropriate reviewers to newly opened pull-requests. The 
assignment is performed by balancing three important competing criteria: the exper-
tise of the reviewers, their availability (considering their current workload) and their 
social connections (collaborations) with the submitter of the open pull request(s). 
Thus, we propose to use multi-objective search, based on NSGA-II (Deb et  al. 
2002), to find a tradeoff between the different competing objectives. An overview of 
the approach is illustrated in Fig. 3.

Our approach takes as input: (1) the pull-request(s) to be reviewed; (2) the pull-
request(s) under review and the involved reviewers; and (3) the detailed history of 
closed pull-requests. The extraction of these 3 required inputs is easy and straight-
forward by simply providing the GitHub link of the project to our tool. Using our 
integrated parser, we automatically analyze the GitHub repository to collect the 
code review history, commit messages and source code. Next, from the collected 
data, we extract three clusters of interaction information: a File-Reviewer interac-
tion matrix (FR), a Developer-Reviewer interaction matrix (DR) and a File-Devel-
oper interaction matrix (FD). From the open pull-requests to be reviewed we can 
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automatically extract the files that need to be reviewed and evaluate the expertise of 
assigned reviewers in our solution representation, as detailed later.

As an output, our multi-objective algorithm generates a set of trade-off solutions 
where each solution consists of assigning one or more reviewers per pull-request. 
Thus, the solution can be represented as a matrix matching reviewers to the files of 
the pull-request(s). For each file, the reviewers are ranked based on their level of 
expertise to review the file, their availability, and their past collaboration with the 
developer of that file, all while reducing the number of reviewers per pull-request as 
much as possible.

To find a trade-off between the different objectives, we used NSGA-II (Deb et al. 
2002) since it was used for similar discrete problems in software engineering and 
performed well. The use of a metaheuristic algorithm to deal with conflicting objec-
tives is justified by the large search space to explore. Let M be the number of total 
reviewers and P number of total files submitted to be reviewed for code changes. 
The size of the search space to explore in order to find the best subset of m reviewers 

among a set of M reviewers to review p files is of 
(
m

M

)
× p =

m!

m!(M−m)!
× p . This is a 

very fast growing function and as M grows the search space becomes prohibitively 
large to the point where exhaustive search is not practical. We propose the use of 
metaheuristic search to explore this combinatorial search space to find near-opti-
mum reviewer recommendations.

he multi-objective approach proposed in this paper generates as output a set of 
non-dominated solutions (Pareto front). It is upto the team manager to select the 
reviewers assignment solution based on their preferences

Thus, the final output of the algorithm is a set of solutions (Pareto front) repre-
senting trade-offs between the three objectives. It is up to the manager to select the 
reviewers assignment (choose a solution) based on their preferences. In general, the 
preferences are defined based on the current context: urgency to release code quickly, 
available resources, speedy growth phase of the project, etc. These different contexts 
are not changing daily and they are not related to only one or few pull-requests but 

Fig. 3   Overview of our multi-objective search-based approach for code reviewer recommendation
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more related to the situation of the whole project. The preferred solution can be quickly 
selected by looking at the distribution of the solutions in the Pareto front or ranking 
the solutions based on the most preferred fitness function based on the current con-
text. The two common ways to extract a solution from the Pareto front are the use of 
the reference point and the knee point (Keller 2019; Emmerich and Deutz 2018; Deb 
and Gupta 2011; Rachmawati and Srinivasan 2009). The knee point corresponds to the 
solution with the maximal trade-off between all fitness functions, i.e., a vector of the 
best objective values for all solutions. In order to find the maximal trade-off, we use the 
trade-off worthiness metric proposed by Rachmawati and Srinivasan (2009) to evalu-
ate the worthiness of each solution in terms of objective value compromise. While the 
knee point selection may not be the perfect way, it is the only strategy to ensure a fair 
comparison with the mono-objective and deterministic approaches since they generate 
only one solution as output.

The manager may select a reference point with high expertise, if s(he) cares about 
finding knowledgeable reviewers of the files while accepting some delays in the review 
process. Thus, the selected solution will be the closest one to the specified reference 
point. This scenario happens, for example, when a pull-request is modifying some 
security critical files. However, it is not required that the managers specify the refer-
ence point for each pull-request since the preferences usually depend on the context of 
the whole project and they do not change daily. Moreover, the knee point can be auto-
matically calculated based on the distribution of the solutions in the Pareto front (Keller 
2019) and it represents the maximum trade-off between the objectives.

3.3 � Main components of the approach

3.3.1 � Reviewer’s expertise model

This model aims at exploring reviewer-file connections: Who are the peer reviewers 
who worked on the same file? From the previous commits and closed pull-requests, we 
can automatically extract a matrix that represents the expertise of reviewers. Expertise 
value is defined as the number of times that the reviewer reviewed the same file. In fact, 
for every file, the matrix keeps track of reviewers who reviewed that specific file and 
how many times every reviewer reviewed that particular file.

FR is a P ×M matrix where each entry frk,i represents the number of times reviewer 
ri reviewed or modified file fk where i ∈ {1, 2,… ,M} , k ∈ {1, 2,… ,P} , P is total 
number of files requested to be reviewed and M total number of reviewers working on 
the project. This matrix represents how familiar is each reviewer with each file, which 
is used as a proxy measure for expertise.

3.3.2 � Reviewer‑developer collaboration model

To take the socio-technical factor into account when searching for the best review-
ers to review a code change, we extracted the collaborations between reviewers and 

(1)FR = (fr(k,i))�
P×M
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developers from the history of closed pull-requests. In fact, for every potential rec-
ommended reviewer, we extract both the list of developers and the files per pull-
request that he/she reviewed or modified in the past. Then, we calculated for each 
pair (reviewer,developer) the total number of commonly modified files. Note that the 
reviewer can be found in the comments of the pull-requests of the submitter (devel-
oper). Thus, a “Collaborations” matrix DR is automatically created.

To sum up, DR is a N ×M matrix where each entry drj,i represents the number 
of times reviewer ri reviewed a file changed by developer dj where i ∈ {1, 2,… ,M} , 
j ∈ {1, 2,… ,N }, N is total number of developers working on the project and M 
total number of reviewers working on the project. In fact, drj,i is defined as the num-
ber of files that the reviewer and the developer collaborated together (reviewed or 
modified) in the past. This matrix represents the social connections between review-
ers and developers.

3.3.3 � Availability model

To estimate the availability of peer reviewers, we considered of the number of files 
per open pull-requests and numbers of commits where they are currently involved. 
We represented the availability (workload) in a vector A = [a1, a2,… , aM] where ai 
represents the total number of files of open pull requests and commits for a reviewer 
ri.

Data. For expertise and collaborations, we considered all the data since the 
start of the project because we believe that more information about the expertise 
and collaborations of the developers is useful in assigning the appropriate reviewer. 
Regarding the availability model, we considered the last 7 days of open pull requests 
because we wanted to have an estimate of the current workload of the reviewers.

3.4 � Problem formulation

3.4.1 � Solution representation

The solution of the optimization problem is a matrix S that contains an integer 
value o ∈ {0, 1, 2,… ,M} for entry sk,i denoting the recommended order (rank) for 
the reviewer ri to review file fk . This matrix contains P rows and M columns. P is 
the number of files that contains code changes to be reviewed and M is the num-
ber of potential reviewers. To initialize the matrix S, we first extract the number M 
because it represents the number of candidate reviewers for the files to be reviewed 
in the submitted pull-request. Second, we extract the files to be reviewed in the pull-
request to review. Then, initially, each S[k,i] will take a distinct random number. 
Assigning 0 to S[k,i] means that the kth developer is not assigned to review the ith 
file and assigning an integer 0 < o <= M means that the developer is assigned to 
review the ith changed file and his rank is o within the list of appropriate reviewers.

(2)DR = (dr(j,i))�
N×M
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After each iteration, the genetic algorithm decides if a reviewer is suitable for 
a review assignment for a specific file or not. If yes, it will decide the rank of that 
reviewer, compared to other candidate reviewers for the same file, based on our three 
objectives (defined in the Sect. 3.4.2).

An example of a two-dimensional solution representation is illustrated in Fig. 4. 
Let say we have seven reviewers who are working on the project: Brian, Matt, John, 
Alex, David, jack and Zuul, and there are k files with code changes. Based on our 
solution representation, we suggest which reviewers are appropriate for reviewing 
which file(s) and in what order. In this example, Brian is not recommended to review 
file1 and file2, but he is the most appropriate reviewer to review the changes in filek. 
To review file1, Matt is the second best reviewer and Zuul is the third best one. 
To sum up, our multi-objective algorithm outputs reviewer-file matrix ( as shown 
in Fig.  4) which assigns reviewers to all the files changed in the submitted pull-
request. Thus, for each pull-request (PR) we rank the reviewers based on how many 
files in that PR he/she is able to review taking into consideration the different fitness 
functions.

3.4.2 � Fitness functions

In our approach, we aim to optimize three fitness functions. The first and the 
second ones are formulated to maximize the expertise and the availability of the 
reviewers. While the third fitness function is formulated to minimize the social 
connections between reviewers and developers in the hope of reducing human 
bias. The motivation of our multi-objective approach is aligned with the observa-
tion of a recent study at Microsoft (Bosu et al. 2016) highlighting that promoting 
diversity depends on the norms of the team, i.e., some teams prefer diverse, some 
teams prefer close connections. While previous collaborations between develop-
ers and reviewers could reduce the tension around the review task, the extensive 
former interactions/collaborations can be an indication of light/weak review to 
approve code quickly to meet release deadlines especially when associated with 
low expertise. The multi-objective approach proposed in this paper generates as 

Fig. 4   An example of our solution representation. Red: this reviewer is not recommended to review the 
file; green: the most appropriate reviewer for the file; and purple: recommended, but the least appropriate 
reviewer for the file (Color figure online)
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an output a set of non-dominated solutions (Pareto front). It is up to the team 
manager to select the reviewers assignment solution based on their preferences. 
If the team prefers close connection then the selected/preferred solution from the 
Pareto front will be in the region of interest where the objective of collabora-
tions is high otherwise the selected solution will be in the area of the Pareto front 
where the value of collaboration is low. Our goal is to provide a diverse set of 
good reviewers assignment solutions rather than only one solution then the user 
can select the preferred one based on his/her preferences.

We present in the following our three fitness functions: availability, expertise 
and collaborations.

Availability The availability is the inverse of the estimated wait until review-
ers that are selected to work on a selected set of file S become available. In our 
case, the waiting period is deducted from the workload that the reviewer has. We 
considered the workload as the combination of the number of commits submit-
ted recently (during the last 7 days) and the total number of files for all open 
pull-requests.

where a = {a1, a2,… , aM} is an array that contains the tasks queued for a reviewer. 
ai represents the number of tasks in the queue for the reviewer ri . P is total number 
of files requested to be reviewed and M is total number of reviewers working on the 
project.

Expertise Considering File Priority PR is a vector of weights that defines how 
urgently a file needs to be reviewed. For a file fk , the priority score will take 1 if 
the tag “priority” is used in the pull-request, otherwise, the priority will be 0. We 
used both FR and PR to formulate the reviewer expertise as an objective.

where M is total number of reviewers working on the project and P is total num-
ber of developers working on the project. FR is a File-Reviewer matrix and S[k, i] 
represents the rank of the reviewers in the solution S. In fact, We are ranking the 
reviewers from 0 to P. For instance, if we have P = 7 developers (potential review-
ers), a reviewer with rank 2 would be more appropriate than a reviewer with rank 4 
to review the assigned file.

Both fitness functions “availability” and “expertise” are to be maximized. 
Thus, a lower rank (more suitable reviewer) would result in a higher fitness 
function (availability or expertise) since the rank (S[k,  i]) is in the denominator. 
Therefore, the top ranked developers with high expertise/availability would be 
more likely to survive for the next evaluations of the multi-objective algorithm.

Collaboration Collaboration is computed as the sum of all connections between 
recommended reviewers selected to work with a selected set of developers:

(3)Availability =
1

∑P

k=1

∑M

i=1
ai ∗ S[k, i]

, sk,i > 0

(4)Expertise =

P∑

k=1

M∑

i=1

FR[k, i] + PR[k]

S[k, i]
, sk,i > 0
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where (s[k, j] > 0) is a binary mask for S[k, j], meaning each entry with value 0 will 
remain 0 and each entry with value greater than 0 will become 1. P is total num-
ber of files requested to be reviewed, M is total number of reviewers working on 
the project and N is total number of developers working on the project. DR is a 
Developer-Reviewer matrix and FD is a File-Developer matrix where FD[i, j] rep-
resents the number of times that the developer i worked on the file j. Therefore, the 
developer who changed the file under review (one or many times) can be assigned as 
a reviewer. The two matrix DR and FD are created during the data extraction step.

3.4.3 � Change operators

We applied single point crossover and swap mutation to explore and exploit the 
search space. Regarding crossover, we deploy a single random cut-point crossover. 
This operator is performed by generating a random crossover point. The cut-point 
is a binary block from crossover point K, which is a row-index and a column- index 
of a solution, to the end of the solution is copied from one parent, the rest is cop-
ied from the second parent. Then, it exchanges the subsequences before and after 
K between two parent individuals to create two offspring. In case we generate any 
infeasible offspring we apply a repair mechanism.

Our mutation–bit inversion changes the new offspring by swapping two rows in 
the matrix of the solution. Mutation can occur at each row in the matrix with some 
probability. The purpose of mutation is to prevent all solutions in the population fall-
ing into a local optimum.

4 � Experiment and results

To evaluate our approach for recommending relevant peer reviewers, we conducted 
a set of experiments based on different versions of 9 open source systems. Due the 
stochastic nature of search algorithms, each experiment was repeated 30 times and 
the results were subsequently and statistically analyzed with the aim of comparing 
our multi-objective approach with both a mono-objective search technique based on 
an aggregation of expertise and collaborations (Ouni et  al. 2016) and also all the 
three objectives (AEC GA), and existing tools not based on heuristic search cHRev 
(Zanjani et  al. 2015), REVFINDER (Thongtanunam et  al. 2015), and ReviewBot 
(Balachandran 2013) that only use expertise models without considering collabo-
rations and availability of peer reviewers. Furthermore, we conducted an ablation 
study to compare our approach with three multi-objective variants considering two 
out of the three objectives (AC NSAG-II, AE NSGA-II and EC NSGA-II). All these 
existing studies were already evaluated in the literature on the same projects consid-
ered in this validation and the associated data is available thus we did not find a need 
to re-implement them. In this section, we present our research questions followed 

(5)Collaboration =

N∑

k=1

P∑

j=1

M∑

i=1

DR[j, i] ∗ FD[k, j] ∗ (S[k, j] > 0)
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by experimental settings and parameters. Finally, we discuss our results for each of 
those research questions.

4.1 � Research questions

We focused on the following three research questions to evaluate the efficiency of 
our approach:

–	 RQ1. (Efficiency) Can the proposed approach precisely identify relevant peer 
reviewers?

–	 RQ2. (Comparison to search-based techniques) Does the proposed multi-objec-
tive approach perform significantly better than an existing mono-objective for-
mulation aggregating expertise and collaboration (Ouni et  al. 2016), a mono-
objective aggregation of all the three objectives (AEC GA) and variants of our 
multi-objective search considering two out of the three objectives (NSGA-II, AE 
NSGA-II and EC NSGA-II)?

–	 RQ3. (Comparison to state-of-the-art) Does our approach perform significantly 
better than existing peer reviewer recommendation techniques not based on heu-
ristic search?

To answer RQ1, we validated the proposed multi-objective technique on 9 medium 
to large-size open-source systems, as detailed in the next section, to evaluate the 
correctness of our code-reviewer recommendation framework. To ensure a fair com-
parison with existing techniques, we followed a similar evaluation procedure by tak-
ing the most recent 1000 reviews and the reviewers assigned to these pull-requests 
as the ground truth. We built the different expertise, availability and collaborations 
models based on the review data just before the pull-request to evaluate in order to 
assign peer reviewers. We used GitHub API to extract the information about the pull 
request. From the information extracted, there is a tag ’reviewer’ which contains the 
name of the reviewer. The name of the reviewer is also extracted from the comments 
under the pull request and this information is also provided by GitHub API.To this 
end, we used the following evaluation metrics:

–	 Precision@k denotes the number of correct recommended peer reviewers in the 
top k of recommended ones by the solution divided by the total number of peer 
reviewer recommendations to inspect.

–	 Recall@k denotes the number of correct recommended peer reviewers in the top 
k of recommended ones by the solution divided by the total number of expected 
reviewers to be recommended based on the ground truth.

–	 MMR@k measures the mean reciprocal rank which is an average rank of correct 
reviewers in the recommendation list. The higher the value the better.

Since the number of involved reviewers in each pull-request evaluation is limited in 
general to a few developers, we calculate these precision and recall metrics with dif-
ferent k values, 1, 3, 5 and 10.
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To answer RQ2, we compared, using the above metrics, the performance of 
our multi-objective approach with an existing mono-objective formulation, based 
on a Genetic Algorithm, aggregating the two objectives of expertise and collabo-
ration into one objective as the sum of them with equal weight (Ouni et al. 2016). 
We selected that mono-objective approach since it is the closest one to our work 
and already outperformed random search and other metaheuristic algorithms 
(simulated annealing and Particle Swarm Optimization) based on the results pre-
sented in Ouni et  al. (2016). Furthermore, we implemented a mono-objective 
approach aggregating all the three objectives (AEC GA) in one fitness function 
to evaluate the impact of adding the availability objective on the quality of the 
results by comparing with Ouni et  al. (2016). In addition, we compared differ-
ent variants of our multi-objective approach including only two out of the three 
objectives (NSGA-II AE, AC and EC) to evaluate the contribution of each objec-
tive to the quality of the assignment results. The comparison between NSGA-II 
EC and the mono-objective search using only expertise and collaboration (Ouni 
et al. 2016) can confirm the impact of the conflicting nature of the two objectives 
on the quality of the results.

To answer RQ3, we compared our multi-objective approach to different existing 
techniques not based on heuristic search:

–	 REVFINDER (Thongtanunam et  al. 2015) uses the paths of the files to be 
reviewed to find reviewers who evaluated files in the same location.

–	 cHRev (Zanjani et al. 2015) is a hybrid approach using the frequency and recency 
of the history of the reviews to find relevant peer reviewers.

–	 ReviewBot (Balachandran 2013) uses static analysis tools to find experienced 
reviewers

We limited the evaluation in RQ2 and RQ3 to Android, OpenStack, and Qt to ensure 
a fair comparison based on an existing benchmark (Thongtanunam et al. 2015; Yang 
et al. 2016; Ouni et al. 2016). More details about these projects will be presented in 
the next section.

4.2 � Studied projects

As described in Table 1, we used a data set of 9 open-source systems including 3 
projects (OpenStack, Android and Qt) from existing code review benchmarks (Yang 
et al. 2016; Thongtanunam et al. 2015; Ouni et al. 2016). We used our tool to collect 
the data about Atomix, Tablesaw, Vavr, Takes, Dkpro-core, and Pac4j. In fact, our 
tool is implemented in a way that it takes a link to the project repository on GitHub 
and extracts all the needed data automatically similar to the existing public dataset 
for OpenStack, Android and Qt. To collect the data, we used GitHub API to send 
multiple queries to GitHub to get the needed information about the project under 
study. Actually, GitHub API provides different queries to extract the information 
about the pull requests, its reviewers, its changed files and all the committer names. 
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The response to each query is a JSON file. Thus, we had to perform some cleaning 
and extracting steps to keep only the needed pieces of information.

–	 Atomix: A fault-tolerant distributed coordination framework.
–	 Tablesaw: A data science platform that includes a data-frame, an embedded col-

umn store, and hundreds of methods to transform, summarize, or filter data.
–	 Vavr: A functional component library that provides persistent data types and 

functional control structures.
–	 Takes: Opinionated web framework which is built around the concepts of True 

Object-Oriented Programming and immutability.
–	 Dkpro-core: A collection of reusable NLP tools for linguistic pre-processing, 

machine learning, lexical resources, etc.
–	 Pac4j: A security engine.
–	 Android: A software stack for mobile devices developed by Google.
–	 OpenStack: A large platform for cloud computing to manage a data-center.
–	 Qt: A widget toolkit for creating graphical user interfaces.

Table 1 shows statistics for the analyzed systems including the number of review-
ers, the number of reviews in a project, the size, etc. All collected reviews are from 
closed pull-requests and contain at least one file. We selected these open source pro-
jects for our experiments since they contain a large number of code reviews and they 
have been studied in the software review literature (Zanjani et al. 2015; Thongtanu-
nam et al. 2015; Balachandran 2013) to ensure a fair comparison with the current 
state of the art.

4.3 � Parameter tuning and statistical tests

Since metaheuristic algorithms are stochastic optimizers, they can provide differ-
ent results for the same problem instance from one run to another. For this reason, 
our experimental study was performed based on 30 independent simulation runs 

Table 1   Summary of studied systems

Project (studied period) Number of 
classes

Number of 
reviewers

Number of files Number of reviews

Atomix (04/2017–11/2018) 1459 136 182,280 4237
Tablesaw (06/2016–03/2018) 224 12 52,837 1930
Vavr (04/2016–08/2018) 301 123 126,683 4188
Takes (07/2015–05/2018) 472 264 50,369 2687
Dkpro-core (03/2015–08/2018) 376 411 54,695 4564
Pac4j (08/2014–10/2017) 302 29 31,916 2282
Android (10/2008–01/2012) 563 94 26,840 5126
OpenStack (07/2011–05/2012) 539 82 16,953 6586
Qt (05/2011–05/2012) 782 202 78,401 23,810
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for each problem instance and the obtained results were statistically analyzed using 
the Friedman test with a 95% confidence level ( � = 5%). Since the Friedman test 
results were significant, we used the Wilcoxon rank sum test (Wilcoxon et al. 1970) 
in a pairwise fashion (AEC NSGA-II versus each of the competitor approaches) in 
order to detect significant performance differences between the algorithms under 
comparison based on 30 independent runs. For deterministic techniques, we did not 
perform 30 independent runs. The Wilcoxon test allows testing the null hypothesis 
H0 that states that both algorithms medians’ values for a particular metric are not 
statistically different against H1 which states the opposite. The Wilcoxon test does 
not require that the data sets follow a normal distribution since it operates on values’ 
ranks instead of operating on the values themselves. Since we are comparing more 
than two different algorithms, we performed several pairwise comparisons based on 
Wilcoxon test to detect the statistical difference in terms of performance. To com-
pare two algorithms based on a particular metric, we record the obtained metric’s 
values for both algorithms over 30 runs. For deterministic techniques, we consid-
ered one value of each metric on each system. After that, we compute the metric’s 
median value for each algorithm. Besides, we executed the Wilcoxon test with a 
95% confidence level ( � = 5%) on the recorded metric’s values using the Wilcoxon 
MATLAB routine. If the returned p-value is less than 0.05 then we reject H0 and 
we can state that one algorithm outperforms the other, otherwise we cannot say any-
thing in terms of performance difference between the two algorithms.

The above tests allow verifying whether the results are statistically different or 
not. However, it does not give any idea about the difference in magnitude. To this 
end, we used the Vargha and Delaney’s A statistics which are non-parametric effect 
size measures. In our context, given the different performance metrics (such as 
Precision@k and Recall@k), the A statistics measure the probability that running an 
algorithm B1 (NSGA-II) yields better performance than running another algorithm 
B2 (such as GA). If the two algorithms are equivalent, then A = 0.5.

An often-omitted aspect in metaheuristic search is the tuning of algorithm param-
eters. In fact, parameter setting significantly influences the performance of a search 
algorithm on a particular problem. For this reason, for each search algorithm and 
each system, we performed a set of experiments using several population sizes: 10, 
20, 30, 40 and 50. The stopping criterion was set to 100,000 fitness evaluations for 
all search algorithms to ensure fairness of comparison. We used a high number of 
evaluations as a stopping criterion since our approach requires multiple objectives. 
Each algorithm was executed 30 times with each configuration and then the compar-
ison between the configurations was performed based on different metrics described 
previously using the Friedman test. The other parameter values were fixed by trial 
and error and are as follows: (1) crossover probability = 0.5; mutation probability 
= 0.4 where the probability of gene modification is 0.2. We used the same param-
eters of the existing work of Ouni et al., called RevRec, (Ouni et al. 2016) for a fair 
comparison.
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Table 2   Median Precision@k results for the search algorithms (multi-objective variants) including 
RevRec (mono-objective search) on all the systems based on 30 runs

All the results are statistically significant using the Friedman test and Wilcoxon with a 95% confidence 
level ( � = 5%)

Project k Precision@k

AEC 
(NSGA-II)

RevRec 
(GA)

AEC (GA) AC (NSGA-
II)

AE (NSGA-
II)

EC (NSGA-
II)

Atomix 1 0.62 0.56 0.60 0.52 0.58 0.60
3 0.58 0.44 0.47 0.41 0.44 0.51
5 0.52 0.38 0.43 0.36 0.40 0.47

10 0.47 0.41 0.41 0.38 0.41 0.45
Tablesaw 1 0.57 0.49 0.54 0.44 0.52 0.54

3 0.64 0.52 0.56 0.41 0.52 0.60
5 0.61 0.44 0.51 0.38 0.48 0.56

10 0.55 0.41 0.46 0.40 0.44 0.50
Vavr 1 0.62 0.53 0.56 0.46 0.53 0.58

3 0.58 0.47 0.52 0.41 0.44 0.54
5 0.64 0.56 0.59 0.47 0.52 0.61

10 0.66 0.51 0.56 0.44 0.53 0.60
Takes 1 0.57 0.48 0.52 0.42 0.50 0.52

3 0.62 0.56 0.59 0.48 0.52 0.59
5 0.55 0.46 0.50 0.40 0.43 0.52

10 0.53 0.44 0.47 0.37 0.44 0.50
Dkpro-core 1 0.63 0.52 0.56 0.41 0.50 0.59

3 0.57 0.47 0.51 0.34 0.43 0.54
5 0.66 0.55 0.59 0.42 0.55 0.61

10 0.59 0.43 0.49 0.37 0.47 0.52
Pac4j 1 0.61 0.52 0.56 0.41 0.54 0.58

3 0.56 0.43 0.47 0.38 0.45 0.49
5 0.59 0.39 0.46 0.33 0.42 0.51

10 0.54 0.42 0.46 0.36 0.40 0.49
Android 1 0.68 0.58 0.62 0.51 0.60 0.64

3 0.62 0.47 0.53 0.44 0.51 0.56
5 0.53 0.39 0.43 0.37 0.41 0.45

10 0.47 0.34 0.39 0.31 0.36 0.41
OpenStack 1 0.72 0.59 0.64 0.52 0.61 0.64

3 0.61 0.51 0.54 0.46 0.52 0.56
5 0.64 0.43 0.5 0.39 0.48 0.52

10 0.54 0.36 0.39 0.33 0.36 0.43
Qt 1 0.58 0.49 0.51 0.46 0.47 0.53

3 0.61 0.45 0.50 0.43 0.43 0.55
5 0.54 0.41 0.45 0.39 0.38 0.48

10 0.46 0.34 0.39 0.31 0.32 0.39
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Table 3   Median Recall@k results for the search algorithms (multi-objective variants) including RevRec 
(mono-objective search) on all the systems based on 30 runs

All the results are statistically significant using the Friedman test and Wilcoxon test with a 95% confi-
dence level ( � = 5%)

Project k Recall@k

AEC 
(NSGA-II)

RevRec 
(GA)

AEC (GA) AC (NSGA-
II)

AE (NSGA-
II)

EC (NSGA-
II)

Atomix 1 0.56 0.43 0.48 0.39 0.46 0.51
3 0.52 0.39 0.44 0.36 0.44 0.47
5 0.61 0.46 0.53 0.41 0.50 0.58

10 0.58 0.34 0.45 0.39 0.43 0.56
Tablesaw 1 0.51 0.43 0.48 0.37 0.46 0.48

3 0.55 0.41 0.46 0.36 0.43 0.52
5 0.52 0.38 0.44 0.35 0.40 0.50

10 0.59 0.33 0.50 0.36 0.42 0.56
Vavr 1 0.53 0.41 0.48 0.38 0.43 0.50

3 0.62 0.39 0.52 0.35 0.46 0.59
5 0.55 0.42 0.50 0.40 0.44 0.52

10 0.59 0.38 0.46 0.34 0.41 0.54
Takes 1 0.49 0.41 0.46 0.38 0.44 0.46

3 0.53 0.44 0.47 0.39 0.42 0.50
5 0.62 0.37 0.43 0.31 0.40 0.59

10 0.66 0.34 0.51 0.32 0.39 0.62
Dkpro-core 1 0.54 0.47 0.44 0.40 0.42 0.51

3 0.51 0.41 0.46 0.39 0.43 0.48
5 0.58 0.39 0.49 0.36 0.46 0.53

10 0.67 0.35 0.59 0.31 0.56 0.63
Pac4j 1 0.56 0.41 0.49 0.38 0.44 0.53

3 0.62 0.36 0.53 0.31 0.50 0.58
5 0.51 0.31 0.39 0.28 0.35 0.47

10 0.63 0.38 0.49 0.31 0.47 0.60
Android 1 0.57 0.38 0.51 0.36 0.48 0.54

3 0.72 0.51 0.63 0.48 0.60 0.67
5 0.76 0.61 0.66 0.53 0.63 0.71

10 0.79 0.71 0.77 0.66 0.71 0.77
OpenStack 1 0.59 0.41 0.49 0.38 0.45 0.56

3 0.68 0.54 0.62 0.51 0.60 0.65
5 0.76 0.61 0.68 0.53 0.64 0.72

10 0.81 0.74 0.77 0.68 0.69 0.77
Qt 1 0.56 0.41 0.48 0.38 0.43 0.50

3 0.66 0.50 0.58 0.47 0.50 0.61
5 0.68 0.59 0.63 0.53 0.61 0.63

10 0.76 0.65 0.68 0.57 0.65 0.71
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4.4 � Results

Results for RQ1 The results of Tables 2, 3 and Fig. 5 confirm the efficiency of our 
multi-objective approach, based on NSGA-II, to identify relevant peer reviewers for 
pull-requests from all the 9 open source systems. Tables 2 and 3 show the average 
precision@k and recall@k results of our NSGA-II AEC technique on the various 
systems, with k equal to 1, 3, 5 and 10. For example, most of the recommended peer 
reviewers in the top 3 (k=3) are relevant (compared to the expected results) with 
precision over 60% on all the 9 systems. The lowest precision is around 47% for 
k = 10 which still could be considered acceptable due to a large number of possible 
reviewers in the selected systems.

In terms of recall, Table 3 confirms that the majority of the expected peer review-
ers to recommend are located in the top 10 (k = 10) with a recall score over 53%. 
The highest recall is 78% for k = 10 (Qt project). Since several pull-requests may 
require more than one peer reviewer, most of the highest recall scores are obtained 
for k = 5 and k = 10.

Figure 5 shows that NSGA-II was able to efficiently rank the recommended peer-
reviewers. In fact, the median MMR on the different systems is higher than 68% 
with the highest score of 79% for the Open Stack project. This outcome is important 
since the efficient ranking of the recommended peer reviewer is one of the main 
motivations of our approach that consider not only the expertise but also the availa-
bility and the collaborations among reviewers. The availability in our case is consid-
ered based on the number of commits and files that a programmer is working on in 
the time period closest to the evaluated pull-request. We noticed that our technique 
does not have a bias toward the evaluated system. We had almost consistent average 
scores of precision, recall and the mean reciprocal rank.

Results for RQ2 Tables 2, 3 and Fig. 5 confirm that our multi-objective approach 
(AEC NSGA-II) is better, on average, than the existing mono-objective technique, 
RevRec (Ouni et  al. 2016), based on the 3 metrics of precision, recall and MMR 
on all the 9 systems. The median precision and recall values of the RevRec tool on 

Fig. 5   Median MMR results for the different search algorithms on all systems based on 30 runs. All the 
results are statistically significant using the Friedman test with a 95% confidence level ( � = 5%)
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the 9 systems are lower than 56% as described in Table 2 for all values of k (1, 3, 5 
and 10). Furthermore, the EC NSGA-II variant of our approach outperformed the 
mono-objective search aggregating the same objectives (Ouni et al. 2016) based on 
the metrics on almost all the systems. Thus, an interesting observation is the clear 
conflicting objectives of expertise and collaborations which confirms our observa-
tion in the eBay survey that collaborations does not mean qualified reviewers (with 
high expertise) are assigned to review the pull-requests. The same observation is 
valid for the ranking of recommended peer reviewers based on the MMR measure as 
described in Fig. 5. For instance, the MMR score for AEC NSGA-II is 78% on the 
Takes project while it is limited to 61% for RevRec.

The outperformance of NSGA-II can be explained as well by the considera-
tion of the new objective of availability which may reflect the reality of how peer 

Table 4   The effect size for Precision based on 30 runs when comparing AEC NSGA-II versus each of 
the search algorithms

Project Effect Size-
RevRec (GA)

Effect Size-
AEC (GA)

Effect Size-AC 
(NSGA-II)

Effect Size-AE 
(NSGA-II)

Effect 
Size-EC 
(NSGA-II)

Atomix 0.52 0.61 0.82 0.76 0.58
Tablesaw 0.39 0.72 0.79 0.73 0.63
Vavr 0.87 0.63 0.86 0.78 0.71
Takes 0.64 0.68 0.91 0.83 0.68
Dkpro-core 0.92 0.77 0.83 0.71 0.72
Pac4j 0.86 0.72 0.72 0.84 0.66
Android 0.52 0.64 0.77 0.92 0.74
OpenStack 0.76 0.68 0.84 0.81 0.63
Qt 0.94 0.71 0.92 0.83 0.61

Table 5   The effect size for Recall based on 30 runs when comparing AEC NSGA-II with each of the 
search algorithms

Project Effect Size-
RevRec (GA)

Effect Size-
AEC (GA)

Effect Size-AC 
(NSGA-II)

Effect Size-AE 
(NSGA-II)

Effect 
Size-EC 
(NSGA-II)

Atomix 0.64 0.66 0.83 0.72 0.61
Tablesaw 0.82 0.62 0.75 0.69 0.53
Vavr 0.93 0.71 0.83 0.77 0.64
Takes 0.72 0.63 0.91 0.82 0.68
Dkpro-core 0.89 0.74 0.84 0.91 0.59
Pac4j 0.74 0.61 0.88 0.73 0.71
Android 0.91 0.77 0.94 0.68 0.63
OpenStack 0.83 0.82 0.83 0.73 0.69
Qt 0.72 0.64 0.86 0.77 0.57
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reviewers are manually assigned to reduce delays. In fact, the aggregation of all 
the three objectives in a mono-objective search (AEC GA) is performing better 
than Ouni et al. (2016) which confirms the positive contribution of the availibil-
ity objective on the quality of the results. The least performance of our multi-
objective approach in terms of MMR ( slightly less than RevRec) was observed 
for the Dkpro-core and pac4j projects. While investigating the reasons behind this 
decreased performance, we found out that the main reason is that these projects 
have a large enough number of contributors comparing to their sizes(in terms of 
files, commits and pull-request). In fact, the ratio ’contributors to size’ is larger 
than the other projects. Thus, the availability objective may not represent a big 
concern for these projects unlike the others since they have enough contributors 
to review the changed files/pull-requests.

All these results were statistically significant on 30 independent runs using the 
Friedman test and Wilcoxon test (pairwise comparison) with a 95% confidence 
level ( 𝛼 < 5% ). We also found the results of the Vargha Delaney A12 statistic are 
higher than 0.8 (large) on all the systems which confirms the significant outper-
formance of AEC NSGA-II comparing to the mono-objective formulation. The 
detailed effect size results can be found in Tables 4 and 5.

Results for RQ3 Since it is not sufficient to compare our approach with just 
search-based algorithms, we compared the performance of NSGA-II to three dif-
ferent peer reviewer recommendation techniques which are not based on heuristic 
search, as described in Tables 6 and 7, and Fig. 6.

Similar to the comparison with RevRec, we used the precision@k, recall@k and 
MMR measures with k ranging from 1 to 10. NSGA-II achieves better results, on 
average than the other three methods on all the three projects. For example, our 
approach achieved a Precision@k median of 63%, 59%, 48% and 43% are achieved 
for k = 1, 3, 5 and 10 respectively as described in Table 6. In comparison, CHrev 
achieved a median Precision@k of 58%, 47%, 39%, and 34% are obtained for k = 1, 
3, 5 and 10. CHRev has the highest precision among all the remaining tools of 
REVFINDER and ReviewBot. Similar observations are also valid for the recall@k 
and MMR.

5 � Threats to validity

Conclusion validity is concerned with the statistical relationship between the treat-
ment and the outcome. We addressed conclusion threats to validity by performing 
30 independent simulation runs for each problem instance and statistically analyzing 
the obtained results using the Friedman test with a 95% confidence level ( � = 5% ). 
However, the parameter tuning of the different optimization algorithms used in our 
experiments creates another internal threat that we need to evaluate in our future 
work. The parameter values used in our experiments were determined by trial-and-
error (Jackson et al. 2001). In addition, the estimation of the availability of reviewers 
on open source systems may not be very accurate.
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Construct validity is concerned with the relationship between theory and what 
is observed. The definition of expertise and collaborations can be subjective and 
hard to formalize thus further empirical studies are required to validate the different 
metrics used in our work. We are planning to consider other possible formations as 
part of our future work and compare between them. Additionally, our current defini-
tion of the availability needs further improvement. In fact, reviewers can be assigned 
other types of development activities than coding ( e.g., testing, design/architecture, 
requirements analysis, etc.). The data about these activities are not always available. 
However, the formulation of our fitness function is easy to modify in a way that 
enables managers to enter the number of tasks per reviewer, especially the ones that 
they are beyond code reviews.

External validity refers to the generalizability of our findings. In this study, we 
performed our experiments on different widely used open-source systems belonging 
to different domains and having different sizes. However, we cannot assert that our 
results can be generalized to other systems. Future replications of this study are nec-
essary to confirm our results with a larger set of pull requests and reviewers.

Another threat to our approach could be the effort required by the manager to 
select the preferred solution. In general, the preferences are defined based on the 
current context such as: the urgency to release code quickly, available resources, 
speedy growth phase of the project, etc. These different contexts are not changing 
daily and they are not related to only one or few pull-requests but they are more 
related to the situation of the whole project. To mitigate this threat, we provide the 
distribution of the solutions of the Pareto front which can be ranked based on the 
preferred fitness functions or based on the current context. Thus, the preferred solu-
tion can be selected in an easier and faster way.

Fig. 6   Median MMR results for all the approaches on three systems based on 30 runs. All the results are 
statistically significant using the Friedman test and Wilcoxon test with a 95% confidence level ( � = 5%)
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6 � Related work

Expertise has been the most important factor in the studies proposing peer reviewer 
recommendation. Zanjani et al. found that expertise changes over time and thus both 
frequency and recency of reviews must be accounted for to find the most appropri-
ate reviewers. Therefore their approach builds a reviewer expertise model, gener-
ated from past reviews, that combines a quantification of review comments and their 
recency (Zanjani et al. 2016).

Balachandran et al. first suggested to use the Review Bot tool, as a recommenda-
tion system to reduce human effort and improve review quality by finding source 
code issues, which need to be addressed, but could be missed during reviewer 
inspection. The bot can review the code by integrating the static analysis of the 
source code (Balachandran 2013). The bot, as part of a review process, is able to rec-
ommend the most appropriate human reviewer. In cases when the project has been 
modified frequently and there is a history of the changes for the source code, the bot 
is a suitable solution. However, Thongtanunam et al. (2014) showed that the Review 
Bot’s algorithm had poor performance on other projects with no or little change in 
their files due to the lack of history in line-by-line source code. In the same work, 
they introduced the idea of using file location (but not content) as an indicator for 
similarity of reviews. Their reviewer recommender approach, called File Path Simi-
larity (FPS), implementing this idea, assumes that files that are located in similar 
file paths would be managed and reviewed by similarly experienced expert code 
reviewers. To improve their previous idea, Thongtanunam et al. (2015) introduced 
REVFINDER, a file location-based code-reviewer recommendation approach. 
REVFINDER uses the similarity of previously reviewed file paths to recommend an 
appropriate code-reviewer. However, they did not consider the reviewer’s work load 
and availability.

Xia et  al. (2013) used bug reports and developer information to recommend 
developers to resolve bugs. However, the most notable limitation of these works is 
that the socio-technical aspect of the code review process is not considered.

Several other studies focused on human factors and socio-technical aspects of 
code review. Cohen et  al. (2006) discuss that code review is a complex process 
involving both social and personal aspects. Fagan (2002), to ensure the quality of 
software, introduced software inspection as a systematic peer review activity. Other 
studies (Rigby et al. 2008; Bird et al. 2008; Rigby and Storey 2011, 2011; Bosu and 
Carver 2013, 2014; Kononenko et al. 2015; Yang et al. 2016) motivate the need for 
a peer review recommendation system, considering the volunteer nature of open-
source software (OSS) developers and the peer review structure, suggest that dif-
ferent human factors influence the OSS peer review. Baysal et  al. conducted sev-
eral studies (Baysal et al. 2013; Baysal and Holmes 2012; Kononenko et al. 2015) 
to explore the relationships between a set of personal and social factors and code 
review.

Bosu and Carver (2013) conducted a survey on four aspects of peer impression 
formation: trust, reliability, perception of expertise, and friendship. They concluded 
that there is a high level of trust, reliability, perception of expertise, and friendship 
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between OSS peers who have participated in code review for a period of time. In 
another survey on how social interaction networks influence peer impressions forma-
tion (Bosu and Carver 2014), they found that code review interactions have the most 
favorable characteristics to support impression formation among OSS participants.

Based on search based software engineering (Ouni et al. 2017; Wang et al. 2016; 
Ghannem et al. 2016; Amal et al. 2014; Ghannem et al. 2011), Ouni et al. (2016) com-
bined both aspects in their proposed approach, called RevRec, to provide decision-
making support for code change submitters and reviewer assigners to identify the 
most appropriate peer reviewers for code changes. RevRec uses a genetic algorithm to 
assign reviewers to review a code change based on expertise and history of collabora-
tion. Their single objective optimization approach aims to find appropriate reviewers 
for a given patch based on the reviewer’s expertise with the submitted patch files, and 
the reviewer’s prior collaborations with the review request submitter. Although this is 
the closest work in the literature to our proposed approach, our work differs from their 
work in a few ways: their solution representation determines if any of the reviewers 
are recommended to review a single file, therefore in cases when there are more files 
to review, let say k files, then the single objective optimization must run k times inde-
pendently from each other which may not necessarily match the reality of the task. Our 
solution representation recommends reviewers for all the files that need to be reviewed 
at the same time. Furthermore, they do not consider the current workload of the review-
ers and when they might be available to review the current files that match their exper-
tise. In our method, we account for a reviewer’s availability and we provide a ranking 
for the recommended reviewers so that if one reviewer is the best match, but busy with 
other work, we do not recommend the reviewer as the first choice for reviewing that 
file. This will decrease the overall delay in the system for files to get reviewed. Addi-
tionally, to capture the complexity of peer code review task, we formulate the problem 
as interaction among the competing objectives of expertise, availability and history of 
collaborations.

7 � Conclusion

In this paper we formulated the recommendation of peer code reviewers as a multi-
objective problem to find a trade-off between the competing objectives of expertise, 
availability and history of collaborations. Unlike existing approaches, our approach can 
sacrifice expertise to avoid a delay caused by limited resources (e.g. low peer reviewer 
availability). Our evaluation results confirm the efficiency of our multi-objective 
approach on 9 open source projects in finding better reviewer recommendations, as 
compared to the state of the art (Ouni et al. 2016). Furthermore, our survey with prac-
titioners highlighted the importance of managing code reviews to reduce delays while 
ensuring high expertise as much as possible.

As part of our future work, we plan to consider the use of additional projects and 
feedback. Furthermore, we will extend our collaboration model of code reviews beyond 
the history of data from a single project. We are also planing to extend the definition of 
the expertise by taking into consideration the recency and the quality of past reviews. 
Since there is a lack of empirical evidence on how to define “good quality” in code 
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reviews, we are planning to perform a rigorous empirical study via conducting exten-
sive surveys to answer this subjective question.
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