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Abstract
Model transformations play an important role in the evolution of systems in various 
fields such as healthcare, automotive and aerospace industry. Thus, it is important to 
check the correctness of model transformation programs. Several approaches have 
been proposed to generate test cases for model transformations based on different 
coverage criteria (e.g., statements, rules, metamodel elements, etc.). However, the 
execution of a large number of test cases during the evolution of transformation pro-
grams is time-consuming and may include a lot of overlap between the test cases. 
In this paper, we propose a test case selection approach for model transformations 
based on multi-objective search. We use the non-dominated sorting genetic algo-
rithm (NSGA-II) to find the best trade-offs between two conflicting objectives: (1) 
maximize the coverage of rules and (2) minimize the execution time of the selected 
test cases. We validated our approach on several evolution cases of medium and 
large ATLAS Transformation Language programs.
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1  Introduction

Model-driven engineering (MDE) (Brambilla et  al. 2017) raised the portabil-
ity, and maintainability of software systems by using models as first-class enti-
ties (Hutchinson et al. 2011). The used models can be executed, manipulated, or 
migrated using recent model transformations advances (Schmidt 2006). Nowa-
days, model transformations are used in a wide spectrum of critical industrial 
projects (Mohagheghi and Dehlen 2008), making their correctness and robustness 
a top priority.

To check the correctness of model transformations, several testing techniques 
have been proposed Lin et al. (2005), Cabot et al. (2010, 2013), Wimmer and Bur-
gueño (2013), Sahin et  al. (2015). Besides the conventional software testing dif-
ficulties (Bertolino 2007), model transformations have their own additional testing 
challenges (Lin et al. 2005; Baudry et al. 2010) making it harder to automatically 
generate test cases and execute them efficiently. Several research contributions have 
discussed the test case generation issue for model transformations (Wang et  al. 
2013; Fleurey et  al. 2009; González and Cabot 2012). The main challenge is the 
large number of test cases required to ensure the coverage of the source and tar-
get meta-model elements as well as of the model transformation rules. The overlap 
between test cases may result in days or even weeks to complete executing their test 
suite (Elbaum et al. 2000). In practice, developers and testers usually have limited 
time to complete certain tasks; the increased pressure to minimize the product’s 
time to market may pose risks of overlooking major expensive defects. Therefore, 
the quality of test cases is not the only factor to be considered, execution cost is 
equally important. Furthermore, the overlap between the test cases covering the 
same rules and elements increases the execution time without improving the effi-
ciency to identify errors. Nowadays, the state of the art techniques did not address 
the problem of test case selection for model transformations unlike for other para-
digms such as object-oriented programming languages.

One possible way to reduce the cost of testing is test case selection that provided 
promising results at the code level (Bates and Horwitz 1993; Binkley 1995; Yau and 
Kishimoto 1987; Seawright and Gerring 2008; Goodenough and Gerhart 1975; Yoo 
and Harman 2007). The primary objective of these techniques is to select a subset 
of the test cases that maximizes the coverage criteria and minimizes the number 
of selected test cases. However, test case selection and prioritization received not 
enough attention in the MDE community as is explained in the following.

The adoption of existing test cases selection techniques developed for regular 
programming languages such as object oriented or procedural is not straightfor-
ward for several reasons. First, coverage criteria for model transformation pro-
grams are completely different than regular programming languages since most of 
the model transformation languages are declarative, rule-based formalisms, thus 
effective coverage metrics for such languages have to be found (Burgueno et al. 
2014). Second, the inputs and outputs of selected test cases are different than the 
ones for regular programming languages since they are a combination of source 
and target model elements (i.e., complex graph structures) (Baudry et al. 2010). 
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Third, the MDE community is lacking dedicated test cases selection techniques 
for model transformation programs, thus the validation of the new hypothesis that 
these programs can be efficiently tested during their evolution would be a new 
knowledge discovery (Selim et al. 2012).

In this paper, we propose the first test case selection technique for model transforma-
tions. We formulate the problem of test case selection for model transformations as a 
multi-objective problem, using NSGA-II, that finds the best combination of test cases 
that satisfies two conflicting objectives: (1) maximizing rule coverage and (2) mini-
mizing test suite’s execution time. We evaluated our approach based on a set of model 
transformation programs extracted from the ATLAS Transformation Language (ATL) 
zoo and previous studies. The results confirm that our test case selection approach 
significantly reduces the time to test ATL programs while keeping a high level of 
coverage.

The primary contributions of this paper can be summarized as follows: 

1.	 The paper introduces the first study for selecting test cases for model transfor-
mations. To handle the conflicting objectives of coverage and cost, we adapted 
a multi-objective algorithm to select the test cases maximizing the coverage and 
minimizing the execution time.

2.	 The paper reports the results of an empirical study on the implementation of our 
approach. The obtained results provide evidence to support the claim that our pro-
posal is more efficient, on average, than existing test case generation approaches 
in terms of reducing the execution time with high coverage.

The remainder of this paper is organized as follows. We first introduce the back-
ground and motivate our approach in Sect. 2. Section 3 describes our approach for the 
selection of test cases and the adopted multi-objective search-based algorithm NSGA-
II. Section 4 provides and discusses the different results obtained from our experiments. 
Section  6 presents the threats to validity. Section  7 discusses related work. Finally, 
Sect. 8 presents the conclusion and future works.

2 � Background and motivating example

In this section, we present the essentials to understand and motivate our approach. First, 
a general introduction to models and model transformations is presented. Second, we 
explain ATL by presenting a concrete transformation example and motivate the test 
case selection problem.

2.1 � Background

2.1.1 � Models and meta‑models

Model-Driven Engineering (MDE) (Brambilla et  al. 2017) is a methodology that 
advocates the use of models as first-class entities throughout the engineering life 
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cycle. In MDE, metamodels are the means to specify the abstract syntax of modeling 
languages (Kühne 2006). For defining metamodels, there are metamodeling stand-
ards available such as the Meta-Object Facility (MOF) (Object Management Group 
(OMG) 2003) which are mostly based on a core subset of the UML class diagrams, 
i.e., classes, attributes, and references.

A metamodel gives the intentional description of all possible models within a 
given language. Practically, metamodels are instantiated to produce models which 
are in essence object graphs, i.e., they consist of objects (instances of classes) rep-
resenting the modeling elements, object slots for storing values (instances of attrib-
utes), and links between the objects (instances of references), which have to conform 
to the UML class diagram describing the metamodel. Therefore, models are often 
represented in terms of UML object diagrams. A model has to conform to its meta-
model which is often indicated by the conformsTo relationship (cf. Fig. 1).

2.1.2 � Model transformations

In general, a model transformation is a program executed by a transformation engine 
which takes one or more models as input to produce one or more models as out-
put as illustrated by the model transformation pattern (Czarnecki and Helsen 2006) 
in Fig. 1. One important aspect is that model transformations are developed on the 
metamodel level, and thus, are reusable (executable) for all valid model instances.

Various model transformation kinds emerged in the last decade (Czarnecki and 
Helsen 2006; Mens and Gorp 2006) such as model-to-model, text-to-model, and 
model-to-text transformations. A model transformation can be further categorized as 
out-place if it creates new models from scratch or as in-place if it rewrites the input 
models until the output models are obtained.

To implement model transformations, several model transformation languages 
with different characteristics have emerged over the last decade. Most importantly, 
their underlying paradigm can be classified as declarative, imperative, and hybrid. In 
this paper, we set the focus on hybrid languages as they cover both, declarative and 
imperative constructs, and present our approach according to the ATLAS Transfor-
mation Language (ATL).

Transformation
Specification

Source
Models

Source
Metamodel

Target 
Models

Target 
Metamodel

«conformsTo» «conformsTo»

Transformation
Engine

«reads» «writes»

«executes»

«refersTo» «refersTo»

Fig. 1   Model transformation pattern (Czarnecki and Helsen 2006)
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2.2 � Motivating example

The ATLAS Transformation Language (ATL) (Jouault et al. 2008) has been chosen 
as transformation language demonstrator for this paper, because it is one of the most 
widely used transformation languages, both in academia and industry, and there is a 
mature tool support1 available. ATL is a rule-based language which builds heavily on 
the Object Constraint Language (OCL), but provides dedicated language features for 
model transformations which are missing in OCL, like the creation of model elements.

An ATL transformation is mainly composed of a set of rules. A rule describes how 
a subset of the target model should be generated from a subset of the source model. 
Consequently, a rule consists of an input pattern—having an optional filter condition—
which is matched on the source model and an output pattern which produces certain 
elements in the target model for each match of the input pattern. OCL expressions are 
used to calculate the values of target elements’ features, in the so-called bindings.

To further illustrate ATL, we use the BibTeXML to DocBook transformation 
example, a prominent ATL program taken from ATL Zoo (ATL 2006). As the name 
suggests, BibTeXML to DocBook generates a DocBook document from a BibTeXML 
model. BibTeXML is a schema that describes the model contents of BibTeX using 
XML syntax to allow users to extend the bibliography data with custom ones. The 
BibTeXML to DocBook transformation’s objective is to create a DocBook document 
that consists of four sections: (1) reference list, (2) author list, (3) title list, and (4) jour-
nal list. An excerpt of the transformation is shown in Listing 1 and the metamodels of 

Fig. 2   The BibTeXML metamodel [taken from INRIA (2005)]

1  http://www.eclip​se.org/atl.

http://www.eclipse.org/atl
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the source and target models are shown in Figs. 2 and 3, respectively. The full details 
can be found in the documentation section at Eclipse’s ATL Transformations Zoo.2

Having this transformation specified, testing is required to find out if the transfor-
mation is working as expected for all possible inputs or if there are bugs in the trans-
formation leading to unintended output models for certain input models (Baudry 
et  al. 2010). Testing ATL transformations has been discussed in several papers in 
the past (González and Cabot 2012; Guerra 2012; Gogolla et al. 2015; Gogolla and 
Vallecillo 2011) to mention just a few. However, due to the complex input and out-
put parameters (i.e., the input and output models) as well as sophisticated language 
semantics of ATL, testing ATL transformations is still a challenge. In particular, dif-
ferent coverage metrics have been proposed such as metamodel element coverage as 
well as transformation element coverage (McQuillan and Power 2009; Guerra 2012). 
Moreover, many different approaches for test case generation have been proposed in 
the past showing different advantages and disadvantages (cf. Selim et al. (2012) for 
a survey). As a result, different approaches may be used to generate test cases, and 
still, often manually developed test cases for testing particular situations are created.

Fig. 3   The DocBook metamodel [taken from INRIA (2005)]

2  https​://www.eclip​se.org/atl/atlTr​ansfo​rmati​ons/BibTe​XML2D​ocBoo​k/Examp​leBib​TeXML​2DocB​
ook[v00.01].pdf.

https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook%5bv00.01%5d.pdf
https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook%5bv00.01%5d.pdf
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Listing 1 Excerpt of the BibTeXML to DocBook transformation

...
rule Main {
from
bib : BibTeX!BibTeXFile
to
doc : DocBook!DocBook (
books <- Sequence{boo}
),
boo : DocBook!Book (
articles <- Sequence{art}
),
art : DocBook!Article (
title <- ’BibTeXML to DocBook’,
sections_1 <- Sequence{se1, se2, se3, se4}
),
se1 : DocBook!Sect1 (
title <- ’References List’,
paras <- BibTeX!BibTeXEntry.allInstances()->sortedBy(e | e.id)
),
se2 : DocBook!Sect1 (
title <- ’Authors list’,
paras <- thisModule.authorSet
),
se3 : DocBook!Sect1 (
title <- ’Titles List’,
paras <- thisModule.titledEntrySet->collect(e | thisModule.resolveTemp(e,

’title_para’))
),
se4 : DocBook!Sect1 (
title <- ’Journals List’,
paras <- thisModule.articleSet->collect(e | thisModule.resolveTemp(e,

’journal_para’))
)
}

rule Author {
from
a : BibTeX!Author (
thisModule.authorSet->includes(a)
)
to
p1 : DocBook!Para (
content <- a.author
)
}

rule Article_Title_Journal {
from
e : BibTeX!Article (
thisModule.titledEntrySet->includes(e) and
thisModule.articleSet->includes(e)
)
to
entry_para : DocBook!Para (
content <- e.buildEntryPara()
),
title_para : DocBook!Para (
content <- e.title
),
journal_para : DocBook!Para (
content <- e.journal
)
}

...
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Listing 2 Sample Input Test Data

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:BibTeX="BibTeX">
<BibTeX:InProceedings id="a" year="2016" title="Automated refactoring of ATL

model transformations" booktitle="MODELS16">
<authors author="Alkhazi, B."/>
<authors author="Ruas, T."/>
<authors author="Kessentini, M."/>
<authors author="Wimmer, M."/>
<authors author="Grosky, W."/>
</BibTeX:InProceedings>

<BibTeX:Article id="b" year="2017" title="Model Transformation Modularization
as a Many-Objective Optimization Problem" journal="IEEE Transactions on
Software Engineering">

<authors author="Fleck, M."/>
<authors author="Troya, T."/>
<authors author="Kessentini, M."/>
<authors author="Wimmer, M."/>
<authors author="Alkhazi, B."/>
</BibTeX:Article>
</xmi:XMI>

For instance, for the ATL program shown in Listing 1, we have collected a total 
of 111 test models where most of them are reused from a previous study on fault 
localization for ATL (Troya et al. 2018) and some additional models are created to 
improve the transformation rule coverage. Each model covers specific parts of the 
transformation program and the metamodels. An example model is shown in List-
ing 2 which should activate the rules dealing with InProceedings entries as well as 
Article entries.

The number of rules in the example transformation is 9 and the total number of 
input and output metamodel classes is 29. With the given test suite, we can have 
good coverage of the rules and metamodel elements. However, the next question 

Fig. 4   Test cases selection overview
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arises: are all given models needed for testing the given transformation or is a sub-
set equally effective? Therefore, we propose in the next section an approach that 
helps transformation tester to build and maintain an effective test suite for their ATL 
transformations.

3 � Test cases selection for model transformation

In this section, we first present an overview of our approach including the multi-
objective formulation and the solution approach. We also describe briefly our adapta-
tion of NSGA-II applied on the test case selection problem for ATL transformations.

3.1 � Approach overview

The primary objective of our approach is to analyze a test suite and optimize it to 
satisfy certain criteria as illustrated in Fig. 4. As an input, we take an ATL program 
and a number of test cases. Then, we pre-process each test case to collect some data 
about their coverage and execution time, which later will be used as the main con-
straints for the algorithm.

For our test case selection approach, we selected rule coverage as the main met-
ric. The reason for this decision is threefold. First, we preferred rule coverage over 
metamodel coverage as model transformations often do not involve all the elements 
of the input and output metamodels in the transformation definition. Second, even if 
there is full coverage with respect to certain metamodel coverage measures, it may 
still be the case that not all rules of a transformation are activated because of com-
plex pre-conditions. Third, rule coverage is often considered as a white-box tech-
nique. However, for model transformations it may be also considered as a gray-box 
technique as most model transformation engines provide a trace model of the model 
transformation execution, e.g., to trace the input elements to the output elements. In 
addition, the trace models record which rules have produced the output elements. 
Thus, trace models can be easily investigated to compute rule coverage measures by 
using a dedicated model transformation.

Since the two goals, coverage and execution time, are inherently conflicting 
and we are potentially dealing with a huge search space, a multi-objective algo-
rithm (NSGA-II) is used to find the Pareto-optimal solutions for this problem. This 
algorithm and its adaptation to the selection problem are described in the next 
subsection.

3.2 � Adapting NSGA‑II for the test case selection problem

Evolutionary algorithms are inspired by the idea of survival of the fittest from Dar-
winian evolution and modern genetics. The general argument behind adopting evolu-
tionary algorithms in multiple domains is that if we can artificially replicate that pro-
cess to evolve solutions, we can get remarkable results. NSGA-II (Deb et  al. 2002) 
is one of the widely used and recognized multi-objective evolutionary algorithms. 
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After initializing the first population randomly, the main next steps are as follows: (1) 
Evaluation stage, a fitness score is assigned to each solution based on the defined cri-
teria. (2) Non-dominated sorting and crowding distance value assignment. This value 
will prefer solutions that are “different” than existing ones since they exist in a less 
crowded space. (3) Selection: A subset of the solutions (the fittest) will be selected to 
be used as an input for the next iteration in combination with a genetically modified 
offspring population using crossover and mutation operations. NSGA-II is an evolu-
tionary algorithm (a multi-objective version of the genetic algorithm) that uses an elit-
ist principle, i.e., the elites of a population are given the opportunity to be carried to 
the next generation (Kalyanmoy et al. 2001). It uses an explicit diversity preserving 
mechanism (Crowding distance) and emphasizes the non-dominated solutions. Elitism 
is a useful concept to accelerate the process of obtaining the final optimal set of solu-
tions by preserving the good solutions already found. Thus, the best solutions from the 
current population are directly copied to the next generation. The rest of the new popu-
lation is created by the usual genetic operations applied on the entire population using 
the crossover and mutation operators described in Sect. 3.3. These three steps will be 
repeated until termination criterion is reached. We describe, in the following, how we 
adopted NSGA-II to our problem to find the best trade-off between rules coverage and 
test suite execution time.

Algorithm 1 Pseudo code of NSGA-II adaptation for model transformations
test-cases selection
1: Inputs: ATL program P , Test suite TC
2: Output: subset(s) of the test suite
3: Begin
4: I:= Instantiation(TC)// vectors of TCs
5: P0:=set of(I)
6: t:=0
7: Repeat
8: Ct:=apply Genetic Operators(Pt)
9: Gt:=Pt ∪ Ct // Combine parent and offspring populations
10: for all I ∈ Gt do
11: Execution Time(I):=calculate Execution Time(P )
12: Coverage Rules(I):=calculate Rules Coverage(P )
13: end for
14: F:=fast Non Dominated Sort(Gt) // F=(F1,F2,...), all nondominated fronts of

Gt

15: Pt+1 = ∅
16: i:=1
17: while |Pt+1| + |Fi| < Max size do
18: Crowding distance assignment(Fi) // calculate crowding distance in Fi

19: Pt+1= Pt+1 ∪ Fi // include ith nondominated front in parent pop
20: i:=i+1
21: end while
22: Sort (Fi, ≺n) // sort in descending order using ≺n

23: Pt+1= Pt+1 ∪ Fi [1. . . (Max size− |Pt+1|)] // choose the first Max size - |Pt+1|
elements of Fi

24: t:=t+1 // increment generation counter
25: until t=Max iteration
26: best solutions := first front(Pt)
27: return best solutions
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The algorithm 1 takes as an input an ATL program and a set of test cases. The 
first step is to randomly generate the initial population (Line 4–5). The rest is all 
about evolving this population towards the Pareto-optimal solutions. For each itera-
tion t, we first generate an offspring population Ct from a parent population Pt using 
genetic operators (selection, crossover, and mutation) (Line 8). The two populations 
are merged (Line 9) before evaluating each individual solution I against our two fit-
ness functions (Line 10–13). Next, a non-dominated sorting is applied to rank the 
solutions and place them in their appropriate fronts F(F1,F2,…) where the solu-
tions of the first front F1 have the highest status of non-dominance, the solutions 
of F2 dominated only by solutions in F1 , etc. (Line 16). The subsequent population 
Pt+1 , that will be fed into the next iteration, is formed by adding solutions starting 
from the Pareto-front ( F1 ) and moving downwards to the succeeding fronts until the 
size reaches Max_size (Line 15–21). When the number of solutions in the last front 
is greater than the remaining space for Pt+1 , the solutions will be sorted and selected 
using the crowded-comparison operator ( ≺n ) as detailed in Li (2003) (Line 22). 
Now, the first Max_size solution will be included for the next population Pt+1 (Line 
23) before repeating the loop with the new population until a stopping criterion 
is reached. By that, the algorithm returns the best solutions that balance between 
the test suite’s execution time and the coverage of an ATL program’s rules (Line 
26–27). Since we have two objectives, the complexity of NSGA-II is O(2N2) (where 
N is the population size) (Deb et al. 2002). We chose the population size by trial and 
error. We made sure that it is large enough to avoid premature convergence.

Each solution in the Pareto front is executed exactly N times as each individual 
can be the member of at most one front. The second inner loop, which is the set of 
solutions that comes right after the ones from the Pareto front, can be executed at 
maximum N − 1 times for each individual results in the overall O(MN2) computa-
tions (each individual dominates N − 1 individuals at maximum and each domina-
tion check requires at most M comparisons, where M is the number of objective).

3.3 � Solution approach

To illustrate the approach, in particular how we perform the adaptation of NSGA-II 
to the problem of test case selection, we will use the example introduced in Sect. 2.

Solution representation A solution is a sequence of n test cases that are repre-
sented in a vector-based fashion, where each dimension represents a test case. A 
sample test model that used as an input to the program to test is shown in Listing 
2. An example of a solution vector is depicted in Table 1. Each vector’s dimension 
represents an execution of a test case to analyze its impact in terms of execution 

Table 1   Example of solution 
representation 1 TestCase(8, 342.08, Rules[R7,R1,R5,R7,R7])

2 TestCase(30, 202.11, Rules[R1,R4])
3 TestCase(2, 542.43, Rules[R10,R9,R3,R7,R8,R2])



102	 Automated Software Engineering (2020) 27:91–118

1 3

time and rule coverage (Case ID, Execution Time, Covered Rules). For instance, 
executing the case shown in Listing 2 (cf. Sect. 2) will cover three rules out of nine 
(33.33%) and the execution time is 219.7421 ms.

The initial population is randomly selected. The size of the vector V is bounded 
by a maximum number VMAX that is proportional to the program size and the 
number of test cases.

Solution evaluation Solutions need to be evaluated to keep the fittest ones and 
eliminate/replace the lowest. We have two objectives; thus we are using two fitness 
functions:

Objective 1: Maximize rules coverage, we trace the triggered rules during the execu-
tion of every test case to determine the rules covered by the entire test suite. We then 
measure the percentage of rule coverage after eliminating duplicates.

Objective 2: Minimize test suite execution time. When executing the test cases, we 
keep track of the time needed to complete the testing activities; solutions that require 
less time are preferred.

Solution variation Exploring the search space to look for better potential candi-
date solutions requires using variation operations such as the crossover and muta-
tion. A one-point crossover operation is used as follows: two parent solutions are 
selected and each one is split at a random point before crossing the split parts 
between the two parents to create two new children. We use the bit-string mutation 
operator to pick at least one of the vector’s dimensions and replace it randomly with 
a test case. An illustration of the mutation operator is depicted in Table 2. 

4 � Validation

To evaluate our approach for test case selection, we conducted a set of experiments 
based on six ATL transformation programs, their size and structures are detailed in 
Sect. 4.2. The following subsections describe the research questions, followed by the 
experimental setup and the obtained results. Finally, a discussion on threats to the 
validity of our experiments is given.

f1 = Max(RuleCoverage)

f2 = Min(ExecutionTime)

Table 2   Example of applying 
mutation operator to the vector 
previously shown in Table 1

1 TestCase(8, 342.08, Rules[R7,R1,R5,R7,R7])
2 TestCase(30, 202.11, Rules[R1,R4])
3 TestCase(2, 542.43, Rules[R10,R9,R3,R7,R8,R2])
↓

1 TestCase(8, 342.08, Rules[R7,R1,R5,R7,R7])
2 TestCase(6, 170.05, Rules[R8,R6])
3 TestCase(2, 542.43, Rules[R10,R9,R3,R7,R8,R2])



103

1 3

Automated Software Engineering (2020) 27:91–118	

4.1 � Research questions

We defined three research questions that address the performance, suitability, and 
scalability ISO (2011). The three research questions are as follows:

•	 RQ1: How does our proposed multi-objective approach perform compared to 
random search (sanity check) and a mono-objective selection algorithm? To 
validate the problem formulation of our approach, we compared our NSGA-II 
formulation with Random Search (RS). If RS outperforms an intelligent search 
method, we can conclude that there is no need to use a metaheuristic search. 
To ensure that the objectives are conflicting, we use a single fitness function 
by aggregating the two normalized objectives. If the results are the same or the 
mono-objective formulation performed better than their multi-objective coun-
terparts, we conclude that the latter is not needed. The algorithm used for the 
mono-objective approach is the single-objective genetic algorithm. It has the 
same architecture as NSGA-II but used when we have only one objective to opti-
mize and did not use the non-dominance principles and the crowding distance to 
generate the Pareto front.

•	 RQ2: What is the cost-effectiveness of using our multi-objective test case 
selection approach? Reducing the test suite is clearly beneficial when it comes 
to execution time, however, we need to keep an eye on the ability of the new 
test suite to reveal faults as it contains less number of test cases. Moreover, the 
selection process should not take more than the time gained by reducing the 
test suite (Leung and White 1989).

•	 RQ3: How does our proposed approach perform compared to a retest-all 
approach? Since our hypothesis is to reduce the time and number of test cases 
for testing model transformation, we compared our approach with a traditional 
testing technique for ATL model transformations consisting of running all the 
pre-defined test cases after every change made to the transformations program.

4.2 � Case studies

To evaluate our research questions, six case studies have been used. Four cases 
taken from the ATL Zoo repository (ATL 2006), the remaining programs were 
taken from an existing work for spectrum-based fault localization (Troya et  al. 
2018). The transformations used are diverse in terms of size, application domain, 
number of dependencies among their transformation artifacts, and structure. We 
briefly describe in the following the different transformation programs used.

•	 UML2ER: This transformation generates Entity Relationship (ER) diagrams 
from UML Class diagrams.

•	 XSLT2XQuery: The XSLT to XQuery transformation produces models based 
on the XQuery meta-model from XSLT code.
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•	 BibTeX2DocBook: This transformation generates a DocBook composed docu-
ment from a BibTeXML model. We have already introduced this transformation 
in Sect. 2.

•	 XML2MySQL: XML to MySQL transformation translates XML representa-
tions of the structure of domain model into actual MySQL representations.

•	 CPL2SPL: This program is a relatively complex transformation as it handles 
several aspects of two telephony DSLs: SPL and CPL (ATL 2006).

•	 Ecore2Maude: In this transformation, Ecore metamodels are used to generate 
Maude (Clavel et al. 2007) specifications.

Table 3 summarizes the number of rules, number of helpers, number of lines of code 
(LoC), and number of classes in both input and output metamodels for each case 
study. In addition, Table 4 illustrates for each case study the test suites used by stat-
ing the number of test cases, max. coverage, as well as the total execution time. 
Please note that we have reused 4 test suites (for CS1, CS3, CS5, and CS6) from 
previous work about spectrum-based fault detection in model transformations (Troya 
et al. 2018). The test suites have been semi-automatically created by model genera-
tion scripts.3 Furthermore, we asked a transformation engineer in our research group 

Table 3   Case studies and their 
sizes and structures

ID Name #Rules #Helpers #LoC #MM classes
Input–output

CS1 UML2ER 8 0 55 4–8
CS2 XSLT2Query 7 0 170 16–18
CS3 BibTex2DocBook 9 0 263 21–8
CS4 XML2MySQL 6 10 294 5–8
CS5 CPL2SPL 19 6 518 33–77
CS6 Ecore2Maude 39 41 1372 13–45

Table 4   Test cases data for each 
case study

Case study #Test cases Max possible 
coverage (%)

Execution 
time for all 
(ms)

CS1 105 100 697.99
CS2 13 100 304.46
CS3 111 100 4358.36
CS4 17 100 617.02
CS5 108 94.73 9120.79
CS6 171 100 34994.96

3  https​://githu​b.com/javit​roya/SBFL_MT.

https://github.com/javitroya/SBFL_MT
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(a post-doc researcher who worked previously in the research group which devel-
oped ATL and the researcher is not an author of this paper) to manually develop the 
test suites for the remaining two cases (CS2 and CS4).

4.3 � Experimental settings

The efficiency of search algorithms can be significantly influenced by parameter set-
tings Arcuri and Fraser (2013). Selecting the right population size, stopping crite-
rion, crossover and mutation rate is essential to avoid premature convergence. We 
used MOEA Framework v2.12 Hadka (2012) for our experiments, and performed 
several experiments with various population sizes; 50, 100, 250, 500. The stopping 
criterion was set to 100 k evaluations for all algorithms. For crossover and mutation, 
we used 0.7 and 0.3 probabilities, respectively, per generation. We have used one 
of the most efficient and popular approaches for parameters setting of evolutionary 
algorithms which is Design of Experiments (DoE) (Talbi 2009). Each parameter has 
been uniformly discretized in some intervals. Values from each interval have been 
tested for our application. Finally, we pick the best values for all parameters. Hence, 
a reasonable set of parameter’s values have been experimented.

MOEA Framework’s default parameter setting values were used for all other 
parameters. Metaheuristic algorithms are stochastic optimizers and may provide 
different results for the same problem. Thus, for each configuration, we performed 
30 independent runs for every problem instance. Later, we statistically analyzed the 
obtained results using Wilcoxon test (Arcuri and Fraser 2013) with � = 5% (i.e. 95% 
confidence level). All experiments have been executed on a Macbook Pro machine 
with 2.5 GHz Intel Core i7 processor, 16 GB 1600 MHz DDR3 RAM, and 500 GB 
SSD. The Eclipse Modeling Tools version Neon.3 (Release 4.6.3) was used in addi-
tion to ATL plugin (version 3.7.0) and ATL/EMFTVM (version 4.0.0) (Table 5). 

The main motivation of the comparison with the mono-objective search is to 
validate if the two objectives are conflicting. Thus, we considered the same equal 
weight for both objectives, after normalization between 0 and 1, for the mono-objec-
tive formulation. We note that the mono-objective approach only provides one solu-
tion, while the multi-objective algorithm, NSGA-II, generates multiple non-domi-
nated solutions to cover the Pareto front of the conflicting objectives. To perform 
meaningful and fair comparisons, we selected the NSGA-II solution for the multi-
objective algorithm using a knee-point strategy. The knee point corresponds to the 

Table 5   Mutations for ATL transformations [reused from Troya et al. (2015)]

Concept Mutation operators

Matched rule Addition, deletion, name change
In pattern element Addition, deletion, class change, name change
Filter Addition, deletion, condition change
Out pattern element Addition, deletion, class change, name change
Binding Addition, deletion, value change, feature change
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solution with the maximal trade-off between the different objectives (Branke et al. 
2004) which can be equivalent to the mono-objective solution with equal objectives 
weight if the two objectives are not conflicting. Thus, we selected the knee point 
from the Pareto approximation having the median hyper-volume IHV value.

In practice, there is no obvious way to assign weights to the objectives. It usually 
depends on the developers’ needs and priorities and they always face difficulties to 
express their preferences in numbers/weights. However, it is not required in a multi-
objective approach to give weights to different objectives but the developers can 
select a solution by visualizing the Pareto front based on the objectives. Thus, we 
selected the knee-point strategy to ensure a fair comparison between the two algo-
rithms as recommended by the state of the art in computational intelligence.

5 � Results and discussions

Results for RQ1 For the random search, an algorithm was implemented where test 
cases were randomly selected at each iteration. Then, we selected the knee point 
from the generated Pareto front. We do not dwell long in describing the performance 
of RS since the coverage was lower than 13.4% on all the case studies which con-
firms the large search space of our approach. We just performed the random search 
executions as a sanity check.

Table 6   Average coverage and 
execution time (ms) for the three 
approaches

ID Retest-all Mono-objective Multi-objective

Coverage Time Coverage Time Coverage Time

CS1 100 697.99 60.0 262.41 86.0 433.24
CS2 100 304.46 57.14 168.26 79.4 264.99
CS3 100 4358.36 55.55 327.45 81.4 559.57
CS4 100 617.02 50 456.47 84.7 520.70
CS5 94.73 7339.36 63.15 417.21 77.4 736.70
CS6 100 23522.79 61.53 473.65 85.6 903.99

Table 7   Average percentage of 
time and test suite size reduction

ID Mono-objective Multi-objective

Time (%) Size (%) Time (%) Size (%)

CS1 62.41 96.88 37.93 93.75
CS2 44.73 92.31 12.97 84.62
CS3 84.17 97.62 72.95 95.24
CS4 26.02 94.12 15.61 87.65
CS5 94.32 98.82 89.96 97.65
CS6 97.99 98.18 96.16 96.36
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We evaluated the performance of our NSGA-II adaptation to a mono-objective 
genetic programming formulation, where the normalized values of the time and cov-
erage metrics are aggregated into one fitness function. Tables 6 and 7 show an over-
view of the average results of the 30 runs for each algorithm.

The mono-objective algorithm reduced test suite size between 92.31 and 98.82% 
of the original test suite. Also, the computational cost is reduced by percentages 
ranges between 26.02% for CS4 to up to 97.99% for CS6. In all case studies, mono-
objective’s computational time was better, which is intuitive as more objectives usu-
ally require more computation time to evaluate the different Pareto front options. We 
note that the computational time included both the search and test cases execution 
time.

Another factor that influenced the computational time is the number of selected 
cases; a higher number of test cases in a test suite leads to a higher computa-
tional cost. In all case studies, NSGA-II selected more cases compared to mono-
objective GA formulation. An interesting observation here is that when the size 
of the case study increases, the difference in time reduction vanishes between the 
mono-objective and multi-objective algorithms as shown in larger cases such as 
CS5 and CS6. Worth mentioning that the time for both algorithms is calculated 
by adding the test suite execution time to the algorithms analysis time. If we have 
a closer look at CS2 and CS4, we see that the multi-objective time reduction was 
12.97% and 15.61%, respectively. Both case studies have small numbers of test 
cases already (Table 4), thus the algorithm’s computational time nearly exceeded 
the time gained by reducing the test suite. Since our technique has quadratic com-
plexity, NSGA-II performs similar to the mono-objective method with a relatively 
small population size. However, the mono-objective GA will still be faster than 
NSGA-II since it is based on only one objective and does not use the concept of 
the Pareto front to generate multiple non-dominated solutions instead of only one 
solution. Furthermore, the addressed problem is not a real-time one, thus devel-
opers can even run the tool overnight for very large projects, which is a typical 
way of testing in practice for very large projects.

Regarding rules coverage (Table 6), values are significantly better in our adap-
tation’s favor, regardless of the test case’s size or structure. The average coverage 
for the six case studies is 82.4% compared to 57.8% on average for the mono-
objective formulation.

Table 8   Average percentage of 
fault revealing capabilities of the 
different approaches

ID # Mutations Mono-objective Multi-objective

CS1 13 61.1 86.60
CS2 14 45.0 78.50
CS3 28 66.6 89.16
CS4 10 56.3 85.62
CS5 22 62.5 83.52
CS6 17 40.9 89.54
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From these results, we conclude that the two considered objectives are conflict-
ing and therefore a multi-objective formulation is necessary to balance between 
the cost and coverage, which answers RQ1.

Results for RQ2 To answer this question, we created multiple mutations for 
each case study by manually introducing bugs at different locations in the trans-
formations using the approach and operators proposed in  Mottu et  al. (2006), 
Troya et  al. (2015). Table  5 summarizes the mutation operations used in our 
experiments, further details about the operators and their possible impact on the 
transformation are discussed in Troya et  al. (2015). In addition to the manually 
created mutants, we also reused some of the existing mutations already proposed 
in Troya et al. (2018).

In total, we had 104 mutants, where each mutant consists of one or more changes 
compared to the original transformation. Note that these are semantic mutations, 
thus, there will be no compilation or run-time error and we will wait until the execu-
tion of the transformation is complete to evaluate the results.

Table 8 summarizes the results for both approaches. The mono-objective algo-
rithm was able to cover, on average, 53.5% of the expected faults among all case 
studies. The mono-objective formulation already covers fewer rules as shown in 
Table 6 and that automatically led to hindering its ability to detect bugs 46.5% of 
the time. In contrast, the multi-objective adaptation was able to cover on average 
85.49% of the expected faults on all the case studies. From these results, we see 
that reducing test suite cost by 54.26% on average, provides a good fault revealing 
percentage.

The main limitation of mono-objective search is the weights selection since 
developers in practice may not even be able to translate their preferences in terms 
of numbers (weights). This limitation cannot be addressed even if we assume that 
mono-objective search can perform better than multi-objective search when select-
ing some specific weights. The challenge will be still on how to determine these 
weights. Instead, we are proposing a natural way to explore the Pareto front by gen-
erating a set of non-dominated solutions.

Results for RQ3 Running all test cases is the safest route, assuming no changes in 
the specs have been made. However, this demands the most computational time and 
often companies do not have this option. Table 7 shows the significant size reduction 
in all case studies. This might be due to overlapping cases or because of changes 
in the transformation (Leung and White 1990), without updating the test suite by 
updating the correlated test cases leading to obsolete ones. Also, we can see that the 
computational time was substantially reduced ( > 70 %) for some case studies (CS3, 
CS5, and CS6), and reduced significantly for the rest. We see that the larger the 
search space (application size and test suite), the better the results we are getting for 
our multi-objective adaptation.

As discussed for the results of RQ1 and RQ2, the coverage results (Table  6) 
and fault revealing capability (Table 8) shows strong evidence that we are getting 
high coverage and fault detection rates despite the big reduction in size and com-
putational time. Note that for CS5, the maximum possible coverage when we run 
all available test cases is 94.73% (Table 4). Thus, the coverage and fault revealing 
results have room for improvement with more test cases to select from. Furthermore, 
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in our formulation, we gave the same importance to both metrics (time and cover-
age). However, in certain practical applications, more weight may be given to the 
coverage, which will help in revealing more bugs.

6 � Threats to validity

6.1 � Internal validity

This threat is concerned with the factors that might influence the results of our 
evaluation. The stochastic nature of our approach and the parameter tuning might 
be considered an internal validity threat. To address this problem, we performed 
30 independent simulations for each problem instance, making it unlikely that the 
observations are not caused by the multi-objective formulation. Another internal 
threat to consider is concerned with using search-algorithms for test suite optimi-
zation. No particular meta-heuristic approach is recommended for test case selec-
tion problems, however, evolutionary algorithms proved to be successful for various 
multi- and many-objectives search problems in previous studies (Kalyanmoy et al. 
2001).

Another internal threat to validity is the manual introduction of the mutations 
to the model transformations to simulate bugs. To mitigate this threat, we aimed 
to have a good coverage of all the mutation operators which have been previously 
proposed in literature as well as to reuse concrete mutations already proposed in 
previous studies by different researchers. Moreover, we aimed to assign the muta-
tion operators randomly to the different model transformations. However, having a 
fully automated process in the future would even allow to play with different muta-
tion distributions as well as to scale up the number of mutations introduced for a 
transformation.

6.2 � Construct validity

The relationship between what we observe and the theory is within the domain of 
this threat. We used well-known performance measures such as computational cost 
and code coverage in our objective functions. To compare the different approaches, 
we additionally used test suite size and fault coverage to compare the performances. 
We plan to further investigate different metrics and performance measures in our 
future work. The absence of similar work in the area of model transformation to 
select test cases is another construct threat, thus we compared our work with mono-
objective algorithm aggregating the objectives and retest-all approach to tackle this 
issue.

6.3 � Conclusion validity

Our ability to draw conclusions for the observed data is governed by conclusion 
validity. To address this threat, we analyzed the obtained results statistically with 
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Wilcoxon’s t-test with 95% confidence level ( � = 5%). We used a popular trial-and-
error method in the literature (Eiben and Smit 2011), however, choosing different 
parameters may affect the results. However, we may use in the future an adaptive 
parameter tuning strategy where the values are updated during the execution to find 
the best possible combinations for ultimate performance.

6.4 � External validity

This threat is concerned with our ability to generalize the findings. We used six case 
studies, four of them are taken from ATL Zoo repository which is widely used in 
research. The remaining two test cases are also used previously by many research-
ers in the field of MDE. The test cases are different in size, structure and application 
domain. Yet, we can not assert that our results are generalizable for all transforma-
tion cases. Future empirical studies are required to confirm our findings.

Another threat is concerned with the test case creation. Test suites for model 
transformation may be automatically generated in many different ways, e.g., black-
box approaches using the input and output metamodels only, white-box approaches 
analysing the transformation definition, or even combined approaches. Furthermore, 
there may be different ways to manually construct test cases, e.g., writing particular 
tests for dedicated rules, certain input patterns, for detecting a certain bug, etc. Con-
sequently, the size and quality of a test suite may vary, e.g., how many duplicate test 
cases are included. We focused in our study on test suites which have been devel-
oped in a previous study on fault localization for model transformations by differ-
ent researchers (Troya et al. 2018). They used a script-based test model generation 
approach—so to speak a semi-automated test case generation approach. In addition, 
we also used for two cases purely manually developed test cases provided by a trans-
formation engineer. If our results generalize for other test case creation approaches, 
e.g., fully automated ones, is subject for future work.

Finally, we would like to stress that currently there are no studies about bug fre-
quencies in model transformations. The main reason for this may be the lack of open 
transformation repositories providing access to different transformation versions and 
other information such as bug reports. Thus, the question how realistically the cur-
rent list of mutation operators mimics real-world bugs remains open. We used our 
experiences of teaching ATL as well as applying ATL in industrial projects for over 
a decade to inject bugs we have explored in the past to the transformations used in 
this study. However, future empirical research is required to shed more light on the 
topic of representative bug injection by mutation.

7 � Related work

With respect to the contribution of this paper, we discuss three threads of related 
work: (1) test case selection, (2) testing in MDE, and (3) search-based approaches 
in MDE.
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7.1 � Test case selection

There are three main test case management directions in the literature; test case pri-
oritization, reduction, and selection. In this section, we consider test case selection 
work.

Early test case selection approaches using Integer Programming technique are 
presented in Fischer (1977), Fischer et al. (1981), Lee and He (1990). Fischer’s algo-
rithm was extended in Hartmann and Robson (1989), Hartmann and Robson (1990) 
to be applied for C programs. Several test case selection techniques have been pro-
posed afterwards including symbolic execution (Yau and Kishimoto 1987), program 
slicing (Agrawal et  al. 1993; Bates and Horwitz 1993), data-flow analysis (Gupta 
et  al. 1992; Harrold and Souffa 1988; Taha et  al. 1989), path analysis (Benedusi 
et al. 1988), dependence and flow graphs (Rothermel and Harrold 1993, 1994, 1997; 
Laski and Szermer 1992; Ball 1998). There are works that used heuristics to select 
test cases; In Biswas et al. (2009), the authors used genetic algorithms. In Mirarab 
et al. (2012); Kumar et al. (2012); Panichella et al. (2015); de Souza et al. (2014); 
Yoo and Harman (2007), the authors used multi-objective optimization techniques 
to select the appropriate cases. The following surveys discussed test case selection 
techniques in a broader manner (Yoo and Harman 2012; Biswas et al. 2011; Rosero 
et al. 2016; Kazmi et al. 2017).

We are inline with test case selection approaches using multi-objective optimiza-
tion techniques, but we apply them to a new kind of software artifact, namely model 
transformations.

7.2 � Testing and model driven engineering

Model transformation testing is considered as one of the main challenges in MDE 
and several papers discussed the need for a systematic validation of model transfor-
mations (Bryant et al. 2011; Baudry et al. 2006, 2010; France and Rumpe 2007; Van 
Der Straete et al. 2008; Fleurey et al. 2004). In Brottier et al. (2006), the authors pre-
sented an automatic approach to generate a test model to satisfy certain criteria. Sev-
eral papers took this direction afterward such as the works of Fleurey et al. (2009), 
Lamari (2007), Ehrig et al. (2009), Almendros-Jiménez and Becerra-Terón (2016), 
while others used GA techniques to make the test case generation more efficient or 
relevant (Jilani et  al. 2014; Shelburg et  al. 2013; Wang et  al. 2013; Gomez et  al. 
2012; Sahin et al. 2015). In Finot et al. (2013), the authors proposed an approach to 
partially validate the output using expected target models. A black-box approach was 
proposed in Vallecillo et al. (2012), where Tracts are used to certify that test models 
work for the transformation. The authors in Rose and Poulding (2013) worked on 
producing smaller test suits by using probabilistic distributions for generating model 
samples, while the authors of  Kessentini et  al. (2011) discussed the definition of 
oracle function, and the automatic derivation of well-formedness rules is presented 
in Faunes et al. (2013a).

In the context of Model-Based Testing (MBT), several contributions were pro-
posed to manage test suites. In Hemmati et  al. (2010), the authors proposed a 
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similarity-based test case selection technique that uses genetic algorithms to mini-
mize similarities between test cases. However, a test suite minimization framework 
is proposed in Farooq and Lam (2009), the authors formalized test case reduction as 
a combinatorial optimization problem. A test case prioritizing approach based on 
GA is proposed in Sharma et al. (2014). Covering all work is beyond the scope of 
this paper. Thus, we redirect to the survey by Wu et al. (2012).

To summarize, while a lot of research has been spent on test case generation for 
models and model transformations, the selection of test cases for efficiently test-
ing model transformations has been mostly overlooked. To the best of our knowl-
edge, our approach is the first test case selection approach for model transformations 
which considers coverage of the transformation specifications.

7.3 � Search‑based software engineering and model driven engineering

SBSE (Wang et  al. 2016; Mansoor et  al. 2017; Kessentini et  al. 2013a) has been 
used to tackle major MDE challenges for a while, as the associated search spaces 
have the potential to be very large, SBSE techniques are gaining popularity in both 
academia and industry since they are very beneficial in terms of finding good solu-
tions in a reasonable time (Boussaid et al. 2017).

The idea of formalizing model transformations as a combinatorial optimization 
problem was first proposed in Kessentini et  al. (2008), several work followed this 
initiative to use search-based optimization techniques with model transformations 
for different intents. The pioneer contributions applied the search-based techniques 
to the model transformation by example (MTBE) (Kappel et al. 2012) either to gen-
erate transformation rules (Kessentini et al. 2010; Faunes et al. 2013b; Baki et al. 
2014), recover transformation traces (Saada et al. 2013), or to generate target models 
(Kessentini et al. 2008, 2012).

The model refactoring by example approach was considered in Ghannem et al. 
(2011), the authors used genetic programming to detect refactoring opportunities 
concerning multiple model design anti-patterns by analyzing a couple of design 
defects examples from various systems and using this knowledge to generate defect 
detection rules. The authors went the extra mile by using an interactive genetic algo-
rithm (IGA) in Ghannem et al. (2013). By adding the user’s feedback to the fitness 
function, the approach became able to adapt the recommended sequence of refac-
torings to accommodate the developer’s needs since the IGA better understood the 
semantics of the software system.

Moreover, the SBSE approach is extended to cover various MDE challenges; 
model versioning or model merging, e.g., see Kessentini et al. (2013b), Debreceni 
et al. (2016), transformation rules orchestration, e.g., see Denil et al. (2014), Fleck 
et al. (2015), Gyapay et al. (2004), and model refactoring in both design-level and 
code-level, e.g., see  Fleck et  al. (2017), Alkhazi et  al. (2016), Jensen and Cheng 
(2010), Moghadam and Cinneide (2012). A survey by Boussaid et al. (2017) covers 
an extended list of work in this domain. It also shows that an approach for test case 
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selection for model transformation testing which incorporates the coverage of model 
transformation rules has been missing.

8 � Conclusion

In this paper, we proposed the first test case selection approach for model transfor-
mations by considering transformation rule coverage as well as execution time spent 
on executing the test cases. The evaluation based on several cases shows a drastic 
speed-up of the testing process while still showing a good testing performance.

For future work, we see several dimensions to explore. First, the combination 
of test generation and test selection techniques is of interest. This would allow us 
to automatically reduce the test suits when they are generated which would allow 
concentrating the generation on cases that are not already covered. Second, adding 
further objectives such as trace diversity in the search process may be helpful for 
other approaches such as fault localization approaches (Troya et al. 2018). Third, the 
investigation of different coverage metrics for model transformation testing, e.g., dif-
ferent kinds of metamodel coverage metrics, and even their combination for test case 
selection is an interesting line of research worth to explore. Finally, further stud-
ies considering other model transformation languages may be of interest to see how 
portable and generalizable our approach is.
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