
Vol.:(0123456789)

Automated Software Engineering (2020) 27:91–118
https://doi.org/10.1007/s10515-020-00271-w

1 3

Multi‑criteria test cases selection for model
transformations

Bader Alkhazi1 · Chaima Abid1 · Marouane Kessentini1 · Dorian Leroy2 ·
Manuel Wimmer2

Received: 12 April 2019 / Accepted: 23 March 2020 / Published online: 12 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Model transformations play an important role in the evolution of systems in various
fields such as healthcare, automotive and aerospace industry. Thus, it is important to
check the correctness of model transformation programs. Several approaches have
been proposed to generate test cases for model transformations based on different
coverage criteria (e.g., statements, rules, metamodel elements, etc.). However, the
execution of a large number of test cases during the evolution of transformation pro-
grams is time-consuming and may include a lot of overlap between the test cases.
In this paper, we propose a test case selection approach for model transformations
based on multi-objective search. We use the non-dominated sorting genetic algo-
rithm (NSGA-II) to find the best trade-offs between two conflicting objectives: (1)
maximize the coverage of rules and (2) minimize the execution time of the selected
test cases. We validated our approach on several evolution cases of medium and
large ATLAS Transformation Language programs.

Keywords  Model-driven engineering · Model transformation · Model
transformation testing · Test case selection · NSGA-II

 *	 Marouane Kessentini
	 marouane@umich.edu

	 Bader Alkhazi
	 balkhazi@umich.edu

	 Chaima Abid
	 cabid@umich.edu

	 Dorian Leroy
	 dorian.leroy@jku.at

	 Manuel Wimmer
	 manuel.wimmer@jku.at

1	 University of Michigan, Dearborn, USA
2	 CDL‑MIssNT, Johannes Kepler University, Linz, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00271-w&domain=pdf

92	 Automated Software Engineering (2020) 27:91–118

1 3

1  Introduction

Model-driven engineering (MDE) (Brambilla et al. 2017) raised the portabil-
ity, and maintainability of software systems by using models as first-class enti-
ties (Hutchinson et al. 2011). The used models can be executed, manipulated, or
migrated using recent model transformations advances (Schmidt 2006). Nowa-
days, model transformations are used in a wide spectrum of critical industrial
projects (Mohagheghi and Dehlen 2008), making their correctness and robustness
a top priority.

To check the correctness of model transformations, several testing techniques
have been proposed Lin et al. (2005), Cabot et al. (2010, 2013), Wimmer and Bur-
gueño (2013), Sahin et al. (2015). Besides the conventional software testing dif-
ficulties (Bertolino 2007), model transformations have their own additional testing
challenges (Lin et al. 2005; Baudry et al. 2010) making it harder to automatically
generate test cases and execute them efficiently. Several research contributions have
discussed the test case generation issue for model transformations (Wang et al.
2013; Fleurey et al. 2009; González and Cabot 2012). The main challenge is the
large number of test cases required to ensure the coverage of the source and tar-
get meta-model elements as well as of the model transformation rules. The overlap
between test cases may result in days or even weeks to complete executing their test
suite (Elbaum et al. 2000). In practice, developers and testers usually have limited
time to complete certain tasks; the increased pressure to minimize the product’s
time to market may pose risks of overlooking major expensive defects. Therefore,
the quality of test cases is not the only factor to be considered, execution cost is
equally important. Furthermore, the overlap between the test cases covering the
same rules and elements increases the execution time without improving the effi-
ciency to identify errors. Nowadays, the state of the art techniques did not address
the problem of test case selection for model transformations unlike for other para-
digms such as object-oriented programming languages.

One possible way to reduce the cost of testing is test case selection that provided
promising results at the code level (Bates and Horwitz 1993; Binkley 1995; Yau and
Kishimoto 1987; Seawright and Gerring 2008; Goodenough and Gerhart 1975; Yoo
and Harman 2007). The primary objective of these techniques is to select a subset
of the test cases that maximizes the coverage criteria and minimizes the number
of selected test cases. However, test case selection and prioritization received not
enough attention in the MDE community as is explained in the following.

The adoption of existing test cases selection techniques developed for regular
programming languages such as object oriented or procedural is not straightfor-
ward for several reasons. First, coverage criteria for model transformation pro-
grams are completely different than regular programming languages since most of
the model transformation languages are declarative, rule-based formalisms, thus
effective coverage metrics for such languages have to be found (Burgueno et al.
2014). Second, the inputs and outputs of selected test cases are different than the
ones for regular programming languages since they are a combination of source
and target model elements (i.e., complex graph structures) (Baudry et al. 2010).

93

1 3

Automated Software Engineering (2020) 27:91–118	

Third, the MDE community is lacking dedicated test cases selection techniques
for model transformation programs, thus the validation of the new hypothesis that
these programs can be efficiently tested during their evolution would be a new
knowledge discovery (Selim et al. 2012).

In this paper, we propose the first test case selection technique for model transforma-
tions. We formulate the problem of test case selection for model transformations as a
multi-objective problem, using NSGA-II, that finds the best combination of test cases
that satisfies two conflicting objectives: (1) maximizing rule coverage and (2) mini-
mizing test suite’s execution time. We evaluated our approach based on a set of model
transformation programs extracted from the ATLAS Transformation Language (ATL)
zoo and previous studies. The results confirm that our test case selection approach
significantly reduces the time to test ATL programs while keeping a high level of
coverage.

The primary contributions of this paper can be summarized as follows:

1.	 The paper introduces the first study for selecting test cases for model transfor-
mations. To handle the conflicting objectives of coverage and cost, we adapted
a multi-objective algorithm to select the test cases maximizing the coverage and
minimizing the execution time.

2.	 The paper reports the results of an empirical study on the implementation of our
approach. The obtained results provide evidence to support the claim that our pro-
posal is more efficient, on average, than existing test case generation approaches
in terms of reducing the execution time with high coverage.

The remainder of this paper is organized as follows. We first introduce the back-
ground and motivate our approach in Sect. 2. Section 3 describes our approach for the
selection of test cases and the adopted multi-objective search-based algorithm NSGA-
II. Section 4 provides and discusses the different results obtained from our experiments.
Section 6 presents the threats to validity. Section 7 discusses related work. Finally,
Sect. 8 presents the conclusion and future works.

2 � Background and motivating example

In this section, we present the essentials to understand and motivate our approach. First,
a general introduction to models and model transformations is presented. Second, we
explain ATL by presenting a concrete transformation example and motivate the test
case selection problem.

2.1 � Background

2.1.1 � Models and meta‑models

Model-Driven Engineering (MDE) (Brambilla et al. 2017) is a methodology that
advocates the use of models as first-class entities throughout the engineering life

94	 Automated Software Engineering (2020) 27:91–118

1 3

cycle. In MDE, metamodels are the means to specify the abstract syntax of modeling
languages (Kühne 2006). For defining metamodels, there are metamodeling stand-
ards available such as the Meta-Object Facility (MOF) (Object Management Group
(OMG) 2003) which are mostly based on a core subset of the UML class diagrams,
i.e., classes, attributes, and references.

A metamodel gives the intentional description of all possible models within a
given language. Practically, metamodels are instantiated to produce models which
are in essence object graphs, i.e., they consist of objects (instances of classes) rep-
resenting the modeling elements, object slots for storing values (instances of attrib-
utes), and links between the objects (instances of references), which have to conform
to the UML class diagram describing the metamodel. Therefore, models are often
represented in terms of UML object diagrams. A model has to conform to its meta-
model which is often indicated by the conformsTo relationship (cf. Fig. 1).

2.1.2 � Model transformations

In general, a model transformation is a program executed by a transformation engine
which takes one or more models as input to produce one or more models as out-
put as illustrated by the model transformation pattern (Czarnecki and Helsen 2006)
in Fig. 1. One important aspect is that model transformations are developed on the
metamodel level, and thus, are reusable (executable) for all valid model instances.

Various model transformation kinds emerged in the last decade (Czarnecki and
Helsen 2006; Mens and Gorp 2006) such as model-to-model, text-to-model, and
model-to-text transformations. A model transformation can be further categorized as
out-place if it creates new models from scratch or as in-place if it rewrites the input
models until the output models are obtained.

To implement model transformations, several model transformation languages
with different characteristics have emerged over the last decade. Most importantly,
their underlying paradigm can be classified as declarative, imperative, and hybrid. In
this paper, we set the focus on hybrid languages as they cover both, declarative and
imperative constructs, and present our approach according to the ATLAS Transfor-
mation Language (ATL).

Transformation
Specification

Source
Models

Source
Metamodel

Target
Models

Target
Metamodel

«conformsTo» «conformsTo»

Transformation
Engine

«reads» «writes»

«executes»

«refersTo» «refersTo»

Fig. 1   Model transformation pattern (Czarnecki and Helsen 2006)

95

1 3

Automated Software Engineering (2020) 27:91–118	

2.2 � Motivating example

The ATLAS Transformation Language (ATL) (Jouault et al. 2008) has been chosen
as transformation language demonstrator for this paper, because it is one of the most
widely used transformation languages, both in academia and industry, and there is a
mature tool support1 available. ATL is a rule-based language which builds heavily on
the Object Constraint Language (OCL), but provides dedicated language features for
model transformations which are missing in OCL, like the creation of model elements.

An ATL transformation is mainly composed of a set of rules. A rule describes how
a subset of the target model should be generated from a subset of the source model.
Consequently, a rule consists of an input pattern—having an optional filter condition—
which is matched on the source model and an output pattern which produces certain
elements in the target model for each match of the input pattern. OCL expressions are
used to calculate the values of target elements’ features, in the so-called bindings.

To further illustrate ATL, we use the BibTeXML to DocBook transformation
example, a prominent ATL program taken from ATL Zoo (ATL 2006). As the name
suggests, BibTeXML to DocBook generates a DocBook document from a BibTeXML
model. BibTeXML is a schema that describes the model contents of BibTeX using
XML syntax to allow users to extend the bibliography data with custom ones. The
BibTeXML to DocBook transformation’s objective is to create a DocBook document
that consists of four sections: (1) reference list, (2) author list, (3) title list, and (4) jour-
nal list. An excerpt of the transformation is shown in Listing 1 and the metamodels of

Fig. 2   The BibTeXML metamodel [taken from INRIA (2005)]

1  http://www.eclip​se.org/atl.

http://www.eclipse.org/atl

96	 Automated Software Engineering (2020) 27:91–118

1 3

the source and target models are shown in Figs. 2 and 3, respectively. The full details
can be found in the documentation section at Eclipse’s ATL Transformations Zoo.2

Having this transformation specified, testing is required to find out if the transfor-
mation is working as expected for all possible inputs or if there are bugs in the trans-
formation leading to unintended output models for certain input models (Baudry
et al. 2010). Testing ATL transformations has been discussed in several papers in
the past (González and Cabot 2012; Guerra 2012; Gogolla et al. 2015; Gogolla and
Vallecillo 2011) to mention just a few. However, due to the complex input and out-
put parameters (i.e., the input and output models) as well as sophisticated language
semantics of ATL, testing ATL transformations is still a challenge. In particular, dif-
ferent coverage metrics have been proposed such as metamodel element coverage as
well as transformation element coverage (McQuillan and Power 2009; Guerra 2012).
Moreover, many different approaches for test case generation have been proposed in
the past showing different advantages and disadvantages (cf. Selim et al. (2012) for
a survey). As a result, different approaches may be used to generate test cases, and
still, often manually developed test cases for testing particular situations are created.

Fig. 3   The DocBook metamodel [taken from INRIA (2005)]

2  https​://www.eclip​se.org/atl/atlTr​ansfo​rmati​ons/BibTe​XML2D​ocBoo​k/Examp​leBib​TeXML​2DocB​
ook[v00.01].pdf.

https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook%5bv00.01%5d.pdf
https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook%5bv00.01%5d.pdf

97

1 3

Automated Software Engineering (2020) 27:91–118	

Listing 1 Excerpt of the BibTeXML to DocBook transformation

...
rule Main {
from
bib : BibTeX!BibTeXFile
to
doc : DocBook!DocBook (
books <- Sequence{boo}
),
boo : DocBook!Book (
articles <- Sequence{art}
),
art : DocBook!Article (
title <- ’BibTeXML to DocBook’,
sections_1 <- Sequence{se1, se2, se3, se4}
),
se1 : DocBook!Sect1 (
title <- ’References List’,
paras <- BibTeX!BibTeXEntry.allInstances()->sortedBy(e | e.id)
),
se2 : DocBook!Sect1 (
title <- ’Authors list’,
paras <- thisModule.authorSet
),
se3 : DocBook!Sect1 (
title <- ’Titles List’,
paras <- thisModule.titledEntrySet->collect(e | thisModule.resolveTemp(e,

’title_para’))
),
se4 : DocBook!Sect1 (
title <- ’Journals List’,
paras <- thisModule.articleSet->collect(e | thisModule.resolveTemp(e,

’journal_para’))
)
}

rule Author {
from
a : BibTeX!Author (
thisModule.authorSet->includes(a)
)
to
p1 : DocBook!Para (
content <- a.author
)
}

rule Article_Title_Journal {
from
e : BibTeX!Article (
thisModule.titledEntrySet->includes(e) and
thisModule.articleSet->includes(e)
)
to
entry_para : DocBook!Para (
content <- e.buildEntryPara()
),
title_para : DocBook!Para (
content <- e.title
),
journal_para : DocBook!Para (
content <- e.journal
)
}

...

98	 Automated Software Engineering (2020) 27:91–118

1 3

Listing 2 Sample Input Test Data

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:BibTeX="BibTeX">
<BibTeX:InProceedings id="a" year="2016" title="Automated refactoring of ATL

model transformations" booktitle="MODELS16">
<authors author="Alkhazi, B."/>
<authors author="Ruas, T."/>
<authors author="Kessentini, M."/>
<authors author="Wimmer, M."/>
<authors author="Grosky, W."/>
</BibTeX:InProceedings>

<BibTeX:Article id="b" year="2017" title="Model Transformation Modularization
as a Many-Objective Optimization Problem" journal="IEEE Transactions on
Software Engineering">

<authors author="Fleck, M."/>
<authors author="Troya, T."/>
<authors author="Kessentini, M."/>
<authors author="Wimmer, M."/>
<authors author="Alkhazi, B."/>
</BibTeX:Article>
</xmi:XMI>

For instance, for the ATL program shown in Listing 1, we have collected a total
of 111 test models where most of them are reused from a previous study on fault
localization for ATL (Troya et al. 2018) and some additional models are created to
improve the transformation rule coverage. Each model covers specific parts of the
transformation program and the metamodels. An example model is shown in List-
ing 2 which should activate the rules dealing with InProceedings entries as well as
Article entries.

The number of rules in the example transformation is 9 and the total number of
input and output metamodel classes is 29. With the given test suite, we can have
good coverage of the rules and metamodel elements. However, the next question

Fig. 4   Test cases selection overview

99

1 3

Automated Software Engineering (2020) 27:91–118	

arises: are all given models needed for testing the given transformation or is a sub-
set equally effective? Therefore, we propose in the next section an approach that
helps transformation tester to build and maintain an effective test suite for their ATL
transformations.

3 � Test cases selection for model transformation

In this section, we first present an overview of our approach including the multi-
objective formulation and the solution approach. We also describe briefly our adapta-
tion of NSGA-II applied on the test case selection problem for ATL transformations.

3.1 � Approach overview

The primary objective of our approach is to analyze a test suite and optimize it to
satisfy certain criteria as illustrated in Fig. 4. As an input, we take an ATL program
and a number of test cases. Then, we pre-process each test case to collect some data
about their coverage and execution time, which later will be used as the main con-
straints for the algorithm.

For our test case selection approach, we selected rule coverage as the main met-
ric. The reason for this decision is threefold. First, we preferred rule coverage over
metamodel coverage as model transformations often do not involve all the elements
of the input and output metamodels in the transformation definition. Second, even if
there is full coverage with respect to certain metamodel coverage measures, it may
still be the case that not all rules of a transformation are activated because of com-
plex pre-conditions. Third, rule coverage is often considered as a white-box tech-
nique. However, for model transformations it may be also considered as a gray-box
technique as most model transformation engines provide a trace model of the model
transformation execution, e.g., to trace the input elements to the output elements. In
addition, the trace models record which rules have produced the output elements.
Thus, trace models can be easily investigated to compute rule coverage measures by
using a dedicated model transformation.

Since the two goals, coverage and execution time, are inherently conflicting
and we are potentially dealing with a huge search space, a multi-objective algo-
rithm (NSGA-II) is used to find the Pareto-optimal solutions for this problem. This
algorithm and its adaptation to the selection problem are described in the next
subsection.

3.2 � Adapting NSGA‑II for the test case selection problem

Evolutionary algorithms are inspired by the idea of survival of the fittest from Dar-
winian evolution and modern genetics. The general argument behind adopting evolu-
tionary algorithms in multiple domains is that if we can artificially replicate that pro-
cess to evolve solutions, we can get remarkable results. NSGA-II (Deb et al. 2002)
is one of the widely used and recognized multi-objective evolutionary algorithms.

100	 Automated Software Engineering (2020) 27:91–118

1 3

After initializing the first population randomly, the main next steps are as follows: (1)
Evaluation stage, a fitness score is assigned to each solution based on the defined cri-
teria. (2) Non-dominated sorting and crowding distance value assignment. This value
will prefer solutions that are “different” than existing ones since they exist in a less
crowded space. (3) Selection: A subset of the solutions (the fittest) will be selected to
be used as an input for the next iteration in combination with a genetically modified
offspring population using crossover and mutation operations. NSGA-II is an evolu-
tionary algorithm (a multi-objective version of the genetic algorithm) that uses an elit-
ist principle, i.e., the elites of a population are given the opportunity to be carried to
the next generation (Kalyanmoy et al. 2001). It uses an explicit diversity preserving
mechanism (Crowding distance) and emphasizes the non-dominated solutions. Elitism
is a useful concept to accelerate the process of obtaining the final optimal set of solu-
tions by preserving the good solutions already found. Thus, the best solutions from the
current population are directly copied to the next generation. The rest of the new popu-
lation is created by the usual genetic operations applied on the entire population using
the crossover and mutation operators described in Sect. 3.3. These three steps will be
repeated until termination criterion is reached. We describe, in the following, how we
adopted NSGA-II to our problem to find the best trade-off between rules coverage and
test suite execution time.

Algorithm 1 Pseudo code of NSGA-II adaptation for model transformations
test-cases selection
1: Inputs: ATL program P , Test suite TC
2: Output: subset(s) of the test suite
3: Begin
4: I:= Instantiation(TC)// vectors of TCs
5: P0:=set of(I)
6: t:=0
7: Repeat
8: Ct:=apply Genetic Operators(Pt)
9: Gt:=Pt ∪ Ct // Combine parent and offspring populations
10: for all I ∈ Gt do
11: Execution Time(I):=calculate Execution Time(P)
12: Coverage Rules(I):=calculate Rules Coverage(P)
13: end for
14: F:=fast Non Dominated Sort(Gt) // F=(F1,F2,...), all nondominated fronts of

Gt

15: Pt+1 = ∅
16: i:=1
17: while |Pt+1| + |Fi| < Max size do
18: Crowding distance assignment(Fi) // calculate crowding distance in Fi

19: Pt+1= Pt+1 ∪ Fi // include ith nondominated front in parent pop
20: i:=i+1
21: end while
22: Sort (Fi, ≺n) // sort in descending order using ≺n

23: Pt+1= Pt+1 ∪ Fi [1. . . (Max size− |Pt+1|)] // choose the first Max size - |Pt+1|
elements of Fi

24: t:=t+1 // increment generation counter
25: until t=Max iteration
26: best solutions := first front(Pt)
27: return best solutions

101

1 3

Automated Software Engineering (2020) 27:91–118	

The algorithm 1 takes as an input an ATL program and a set of test cases. The
first step is to randomly generate the initial population (Line 4–5). The rest is all
about evolving this population towards the Pareto-optimal solutions. For each itera-
tion t, we first generate an offspring population Ct from a parent population Pt using
genetic operators (selection, crossover, and mutation) (Line 8). The two populations
are merged (Line 9) before evaluating each individual solution I against our two fit-
ness functions (Line 10–13). Next, a non-dominated sorting is applied to rank the
solutions and place them in their appropriate fronts F(F1,F2,…) where the solu-
tions of the first front F1 have the highest status of non-dominance, the solutions
of F2 dominated only by solutions in F1 , etc. (Line 16). The subsequent population
Pt+1 , that will be fed into the next iteration, is formed by adding solutions starting
from the Pareto-front ( F1 ) and moving downwards to the succeeding fronts until the
size reaches Max_size (Line 15–21). When the number of solutions in the last front
is greater than the remaining space for Pt+1 , the solutions will be sorted and selected
using the crowded-comparison operator ( ≺n ) as detailed in Li (2003) (Line 22).
Now, the first Max_size solution will be included for the next population Pt+1 (Line
23) before repeating the loop with the new population until a stopping criterion
is reached. By that, the algorithm returns the best solutions that balance between
the test suite’s execution time and the coverage of an ATL program’s rules (Line
26–27). Since we have two objectives, the complexity of NSGA-II is O(2N2) (where
N is the population size) (Deb et al. 2002). We chose the population size by trial and
error. We made sure that it is large enough to avoid premature convergence.

Each solution in the Pareto front is executed exactly N times as each individual
can be the member of at most one front. The second inner loop, which is the set of
solutions that comes right after the ones from the Pareto front, can be executed at
maximum N − 1 times for each individual results in the overall O(MN2) computa-
tions (each individual dominates N − 1 individuals at maximum and each domina-
tion check requires at most M comparisons, where M is the number of objective).

3.3 � Solution approach

To illustrate the approach, in particular how we perform the adaptation of NSGA-II
to the problem of test case selection, we will use the example introduced in Sect. 2.

Solution representation A solution is a sequence of n test cases that are repre-
sented in a vector-based fashion, where each dimension represents a test case. A
sample test model that used as an input to the program to test is shown in Listing
2. An example of a solution vector is depicted in Table 1. Each vector’s dimension
represents an execution of a test case to analyze its impact in terms of execution

Table 1   Example of solution
representation 1 TestCase(8, 342.08, Rules[R7,R1,R5,R7,R7])

2 TestCase(30, 202.11, Rules[R1,R4])
3 TestCase(2, 542.43, Rules[R10,R9,R3,R7,R8,R2])

102	 Automated Software Engineering (2020) 27:91–118

1 3

time and rule coverage (Case ID, Execution Time, Covered Rules). For instance,
executing the case shown in Listing 2 (cf. Sect. 2) will cover three rules out of nine
(33.33%) and the execution time is 219.7421 ms.

The initial population is randomly selected. The size of the vector V is bounded
by a maximum number VMAX that is proportional to the program size and the
number of test cases.

Solution evaluation Solutions need to be evaluated to keep the fittest ones and
eliminate/replace the lowest. We have two objectives; thus we are using two fitness
functions:

Objective 1: Maximize rules coverage, we trace the triggered rules during the execu-
tion of every test case to determine the rules covered by the entire test suite. We then
measure the percentage of rule coverage after eliminating duplicates.

Objective 2: Minimize test suite execution time. When executing the test cases, we
keep track of the time needed to complete the testing activities; solutions that require
less time are preferred.

Solution variation Exploring the search space to look for better potential candi-
date solutions requires using variation operations such as the crossover and muta-
tion. A one-point crossover operation is used as follows: two parent solutions are
selected and each one is split at a random point before crossing the split parts
between the two parents to create two new children. We use the bit-string mutation
operator to pick at least one of the vector’s dimensions and replace it randomly with
a test case. An illustration of the mutation operator is depicted in Table 2.

4 � Validation

To evaluate our approach for test case selection, we conducted a set of experiments
based on six ATL transformation programs, their size and structures are detailed in
Sect. 4.2. The following subsections describe the research questions, followed by the
experimental setup and the obtained results. Finally, a discussion on threats to the
validity of our experiments is given.

f1 = Max(RuleCoverage)

f2 = Min(ExecutionTime)

Table 2   Example of applying
mutation operator to the vector
previously shown in Table 1

1 TestCase(8, 342.08, Rules[R7,R1,R5,R7,R7])
2 TestCase(30, 202.11, Rules[R1,R4])
3 TestCase(2, 542.43, Rules[R10,R9,R3,R7,R8,R2])
↓

1 TestCase(8, 342.08, Rules[R7,R1,R5,R7,R7])
2 TestCase(6, 170.05, Rules[R8,R6])
3 TestCase(2, 542.43, Rules[R10,R9,R3,R7,R8,R2])

103

1 3

Automated Software Engineering (2020) 27:91–118	

4.1 � Research questions

We defined three research questions that address the performance, suitability, and
scalability ISO (2011). The three research questions are as follows:

•	 RQ1: How does our proposed multi-objective approach perform compared to
random search (sanity check) and a mono-objective selection algorithm? To
validate the problem formulation of our approach, we compared our NSGA-II
formulation with Random Search (RS). If RS outperforms an intelligent search
method, we can conclude that there is no need to use a metaheuristic search.
To ensure that the objectives are conflicting, we use a single fitness function
by aggregating the two normalized objectives. If the results are the same or the
mono-objective formulation performed better than their multi-objective coun-
terparts, we conclude that the latter is not needed. The algorithm used for the
mono-objective approach is the single-objective genetic algorithm. It has the
same architecture as NSGA-II but used when we have only one objective to opti-
mize and did not use the non-dominance principles and the crowding distance to
generate the Pareto front.

•	 RQ2: What is the cost-effectiveness of using our multi-objective test case
selection approach? Reducing the test suite is clearly beneficial when it comes
to execution time, however, we need to keep an eye on the ability of the new
test suite to reveal faults as it contains less number of test cases. Moreover, the
selection process should not take more than the time gained by reducing the
test suite (Leung and White 1989).

•	 RQ3: How does our proposed approach perform compared to a retest-all
approach? Since our hypothesis is to reduce the time and number of test cases
for testing model transformation, we compared our approach with a traditional
testing technique for ATL model transformations consisting of running all the
pre-defined test cases after every change made to the transformations program.

4.2 � Case studies

To evaluate our research questions, six case studies have been used. Four cases
taken from the ATL Zoo repository (ATL 2006), the remaining programs were
taken from an existing work for spectrum-based fault localization (Troya et al.
2018). The transformations used are diverse in terms of size, application domain,
number of dependencies among their transformation artifacts, and structure. We
briefly describe in the following the different transformation programs used.

•	 UML2ER: This transformation generates Entity Relationship (ER) diagrams
from UML Class diagrams.

•	 XSLT2XQuery: The XSLT to XQuery transformation produces models based
on the XQuery meta-model from XSLT code.

104	 Automated Software Engineering (2020) 27:91–118

1 3

•	 BibTeX2DocBook: This transformation generates a DocBook composed docu-
ment from a BibTeXML model. We have already introduced this transformation
in Sect. 2.

•	 XML2MySQL: XML to MySQL transformation translates XML representa-
tions of the structure of domain model into actual MySQL representations.

•	 CPL2SPL: This program is a relatively complex transformation as it handles
several aspects of two telephony DSLs: SPL and CPL (ATL 2006).

•	 Ecore2Maude: In this transformation, Ecore metamodels are used to generate
Maude (Clavel et al. 2007) specifications.

Table 3 summarizes the number of rules, number of helpers, number of lines of code
(LoC), and number of classes in both input and output metamodels for each case
study. In addition, Table 4 illustrates for each case study the test suites used by stat-
ing the number of test cases, max. coverage, as well as the total execution time.
Please note that we have reused 4 test suites (for CS1, CS3, CS5, and CS6) from
previous work about spectrum-based fault detection in model transformations (Troya
et al. 2018). The test suites have been semi-automatically created by model genera-
tion scripts.3 Furthermore, we asked a transformation engineer in our research group

Table 3   Case studies and their
sizes and structures

ID Name #Rules #Helpers #LoC #MM classes
Input–output

CS1 UML2ER 8 0 55 4–8
CS2 XSLT2Query 7 0 170 16–18
CS3 BibTex2DocBook 9 0 263 21–8
CS4 XML2MySQL 6 10 294 5–8
CS5 CPL2SPL 19 6 518 33–77
CS6 Ecore2Maude 39 41 1372 13–45

Table 4   Test cases data for each
case study

Case study #Test cases Max possible
coverage (%)

Execution
time for all
(ms)

CS1 105 100 697.99
CS2 13 100 304.46
CS3 111 100 4358.36
CS4 17 100 617.02
CS5 108 94.73 9120.79
CS6 171 100 34994.96

3  https​://githu​b.com/javit​roya/SBFL_MT.

https://github.com/javitroya/SBFL_MT

105

1 3

Automated Software Engineering (2020) 27:91–118	

(a post-doc researcher who worked previously in the research group which devel-
oped ATL and the researcher is not an author of this paper) to manually develop the
test suites for the remaining two cases (CS2 and CS4).

4.3 � Experimental settings

The efficiency of search algorithms can be significantly influenced by parameter set-
tings Arcuri and Fraser (2013). Selecting the right population size, stopping crite-
rion, crossover and mutation rate is essential to avoid premature convergence. We
used MOEA Framework v2.12 Hadka (2012) for our experiments, and performed
several experiments with various population sizes; 50, 100, 250, 500. The stopping
criterion was set to 100 k evaluations for all algorithms. For crossover and mutation,
we used 0.7 and 0.3 probabilities, respectively, per generation. We have used one
of the most efficient and popular approaches for parameters setting of evolutionary
algorithms which is Design of Experiments (DoE) (Talbi 2009). Each parameter has
been uniformly discretized in some intervals. Values from each interval have been
tested for our application. Finally, we pick the best values for all parameters. Hence,
a reasonable set of parameter’s values have been experimented.

MOEA Framework’s default parameter setting values were used for all other
parameters. Metaheuristic algorithms are stochastic optimizers and may provide
different results for the same problem. Thus, for each configuration, we performed
30 independent runs for every problem instance. Later, we statistically analyzed the
obtained results using Wilcoxon test (Arcuri and Fraser 2013) with � = 5% (i.e. 95%
confidence level). All experiments have been executed on a Macbook Pro machine
with 2.5 GHz Intel Core i7 processor, 16 GB 1600 MHz DDR3 RAM, and 500 GB
SSD. The Eclipse Modeling Tools version Neon.3 (Release 4.6.3) was used in addi-
tion to ATL plugin (version 3.7.0) and ATL/EMFTVM (version 4.0.0) (Table 5).

The main motivation of the comparison with the mono-objective search is to
validate if the two objectives are conflicting. Thus, we considered the same equal
weight for both objectives, after normalization between 0 and 1, for the mono-objec-
tive formulation. We note that the mono-objective approach only provides one solu-
tion, while the multi-objective algorithm, NSGA-II, generates multiple non-domi-
nated solutions to cover the Pareto front of the conflicting objectives. To perform
meaningful and fair comparisons, we selected the NSGA-II solution for the multi-
objective algorithm using a knee-point strategy. The knee point corresponds to the

Table 5   Mutations for ATL transformations [reused from Troya et al. (2015)]

Concept Mutation operators

Matched rule Addition, deletion, name change
In pattern element Addition, deletion, class change, name change
Filter Addition, deletion, condition change
Out pattern element Addition, deletion, class change, name change
Binding Addition, deletion, value change, feature change

106	 Automated Software Engineering (2020) 27:91–118

1 3

solution with the maximal trade-off between the different objectives (Branke et al.
2004) which can be equivalent to the mono-objective solution with equal objectives
weight if the two objectives are not conflicting. Thus, we selected the knee point
from the Pareto approximation having the median hyper-volume IHV value.

In practice, there is no obvious way to assign weights to the objectives. It usually
depends on the developers’ needs and priorities and they always face difficulties to
express their preferences in numbers/weights. However, it is not required in a multi-
objective approach to give weights to different objectives but the developers can
select a solution by visualizing the Pareto front based on the objectives. Thus, we
selected the knee-point strategy to ensure a fair comparison between the two algo-
rithms as recommended by the state of the art in computational intelligence.

5 � Results and discussions

Results for RQ1 For the random search, an algorithm was implemented where test
cases were randomly selected at each iteration. Then, we selected the knee point
from the generated Pareto front. We do not dwell long in describing the performance
of RS since the coverage was lower than 13.4% on all the case studies which con-
firms the large search space of our approach. We just performed the random search
executions as a sanity check.

Table 6   Average coverage and
execution time (ms) for the three
approaches

ID Retest-all Mono-objective Multi-objective

Coverage Time Coverage Time Coverage Time

CS1 100 697.99 60.0 262.41 86.0 433.24
CS2 100 304.46 57.14 168.26 79.4 264.99
CS3 100 4358.36 55.55 327.45 81.4 559.57
CS4 100 617.02 50 456.47 84.7 520.70
CS5 94.73 7339.36 63.15 417.21 77.4 736.70
CS6 100 23522.79 61.53 473.65 85.6 903.99

Table 7   Average percentage of
time and test suite size reduction

ID Mono-objective Multi-objective

Time (%) Size (%) Time (%) Size (%)

CS1 62.41 96.88 37.93 93.75
CS2 44.73 92.31 12.97 84.62
CS3 84.17 97.62 72.95 95.24
CS4 26.02 94.12 15.61 87.65
CS5 94.32 98.82 89.96 97.65
CS6 97.99 98.18 96.16 96.36

107

1 3

Automated Software Engineering (2020) 27:91–118	

We evaluated the performance of our NSGA-II adaptation to a mono-objective
genetic programming formulation, where the normalized values of the time and cov-
erage metrics are aggregated into one fitness function. Tables 6 and 7 show an over-
view of the average results of the 30 runs for each algorithm.

The mono-objective algorithm reduced test suite size between 92.31 and 98.82%
of the original test suite. Also, the computational cost is reduced by percentages
ranges between 26.02% for CS4 to up to 97.99% for CS6. In all case studies, mono-
objective’s computational time was better, which is intuitive as more objectives usu-
ally require more computation time to evaluate the different Pareto front options. We
note that the computational time included both the search and test cases execution
time.

Another factor that influenced the computational time is the number of selected
cases; a higher number of test cases in a test suite leads to a higher computa-
tional cost. In all case studies, NSGA-II selected more cases compared to mono-
objective GA formulation. An interesting observation here is that when the size
of the case study increases, the difference in time reduction vanishes between the
mono-objective and multi-objective algorithms as shown in larger cases such as
CS5 and CS6. Worth mentioning that the time for both algorithms is calculated
by adding the test suite execution time to the algorithms analysis time. If we have
a closer look at CS2 and CS4, we see that the multi-objective time reduction was
12.97% and 15.61%, respectively. Both case studies have small numbers of test
cases already (Table 4), thus the algorithm’s computational time nearly exceeded
the time gained by reducing the test suite. Since our technique has quadratic com-
plexity, NSGA-II performs similar to the mono-objective method with a relatively
small population size. However, the mono-objective GA will still be faster than
NSGA-II since it is based on only one objective and does not use the concept of
the Pareto front to generate multiple non-dominated solutions instead of only one
solution. Furthermore, the addressed problem is not a real-time one, thus devel-
opers can even run the tool overnight for very large projects, which is a typical
way of testing in practice for very large projects.

Regarding rules coverage (Table 6), values are significantly better in our adap-
tation’s favor, regardless of the test case’s size or structure. The average coverage
for the six case studies is 82.4% compared to 57.8% on average for the mono-
objective formulation.

Table 8   Average percentage of
fault revealing capabilities of the
different approaches

ID # Mutations Mono-objective Multi-objective

CS1 13 61.1 86.60
CS2 14 45.0 78.50
CS3 28 66.6 89.16
CS4 10 56.3 85.62
CS5 22 62.5 83.52
CS6 17 40.9 89.54

108	 Automated Software Engineering (2020) 27:91–118

1 3

From these results, we conclude that the two considered objectives are conflict-
ing and therefore a multi-objective formulation is necessary to balance between
the cost and coverage, which answers RQ1.

Results for RQ2 To answer this question, we created multiple mutations for
each case study by manually introducing bugs at different locations in the trans-
formations using the approach and operators proposed in Mottu et al. (2006),
Troya et al. (2015). Table 5 summarizes the mutation operations used in our
experiments, further details about the operators and their possible impact on the
transformation are discussed in Troya et al. (2015). In addition to the manually
created mutants, we also reused some of the existing mutations already proposed
in Troya et al. (2018).

In total, we had 104 mutants, where each mutant consists of one or more changes
compared to the original transformation. Note that these are semantic mutations,
thus, there will be no compilation or run-time error and we will wait until the execu-
tion of the transformation is complete to evaluate the results.

Table 8 summarizes the results for both approaches. The mono-objective algo-
rithm was able to cover, on average, 53.5% of the expected faults among all case
studies. The mono-objective formulation already covers fewer rules as shown in
Table 6 and that automatically led to hindering its ability to detect bugs 46.5% of
the time. In contrast, the multi-objective adaptation was able to cover on average
85.49% of the expected faults on all the case studies. From these results, we see
that reducing test suite cost by 54.26% on average, provides a good fault revealing
percentage.

The main limitation of mono-objective search is the weights selection since
developers in practice may not even be able to translate their preferences in terms
of numbers (weights). This limitation cannot be addressed even if we assume that
mono-objective search can perform better than multi-objective search when select-
ing some specific weights. The challenge will be still on how to determine these
weights. Instead, we are proposing a natural way to explore the Pareto front by gen-
erating a set of non-dominated solutions.

Results for RQ3 Running all test cases is the safest route, assuming no changes in
the specs have been made. However, this demands the most computational time and
often companies do not have this option. Table 7 shows the significant size reduction
in all case studies. This might be due to overlapping cases or because of changes
in the transformation (Leung and White 1990), without updating the test suite by
updating the correlated test cases leading to obsolete ones. Also, we can see that the
computational time was substantially reduced ( > 70 %) for some case studies (CS3,
CS5, and CS6), and reduced significantly for the rest. We see that the larger the
search space (application size and test suite), the better the results we are getting for
our multi-objective adaptation.

As discussed for the results of RQ1 and RQ2, the coverage results (Table 6)
and fault revealing capability (Table 8) shows strong evidence that we are getting
high coverage and fault detection rates despite the big reduction in size and com-
putational time. Note that for CS5, the maximum possible coverage when we run
all available test cases is 94.73% (Table 4). Thus, the coverage and fault revealing
results have room for improvement with more test cases to select from. Furthermore,

109

1 3

Automated Software Engineering (2020) 27:91–118	

in our formulation, we gave the same importance to both metrics (time and cover-
age). However, in certain practical applications, more weight may be given to the
coverage, which will help in revealing more bugs.

6 � Threats to validity

6.1 � Internal validity

This threat is concerned with the factors that might influence the results of our
evaluation. The stochastic nature of our approach and the parameter tuning might
be considered an internal validity threat. To address this problem, we performed
30 independent simulations for each problem instance, making it unlikely that the
observations are not caused by the multi-objective formulation. Another internal
threat to consider is concerned with using search-algorithms for test suite optimi-
zation. No particular meta-heuristic approach is recommended for test case selec-
tion problems, however, evolutionary algorithms proved to be successful for various
multi- and many-objectives search problems in previous studies (Kalyanmoy et al.
2001).

Another internal threat to validity is the manual introduction of the mutations
to the model transformations to simulate bugs. To mitigate this threat, we aimed
to have a good coverage of all the mutation operators which have been previously
proposed in literature as well as to reuse concrete mutations already proposed in
previous studies by different researchers. Moreover, we aimed to assign the muta-
tion operators randomly to the different model transformations. However, having a
fully automated process in the future would even allow to play with different muta-
tion distributions as well as to scale up the number of mutations introduced for a
transformation.

6.2 � Construct validity

The relationship between what we observe and the theory is within the domain of
this threat. We used well-known performance measures such as computational cost
and code coverage in our objective functions. To compare the different approaches,
we additionally used test suite size and fault coverage to compare the performances.
We plan to further investigate different metrics and performance measures in our
future work. The absence of similar work in the area of model transformation to
select test cases is another construct threat, thus we compared our work with mono-
objective algorithm aggregating the objectives and retest-all approach to tackle this
issue.

6.3 � Conclusion validity

Our ability to draw conclusions for the observed data is governed by conclusion
validity. To address this threat, we analyzed the obtained results statistically with

110	 Automated Software Engineering (2020) 27:91–118

1 3

Wilcoxon’s t-test with 95% confidence level ( � = 5%). We used a popular trial-and-
error method in the literature (Eiben and Smit 2011), however, choosing different
parameters may affect the results. However, we may use in the future an adaptive
parameter tuning strategy where the values are updated during the execution to find
the best possible combinations for ultimate performance.

6.4 � External validity

This threat is concerned with our ability to generalize the findings. We used six case
studies, four of them are taken from ATL Zoo repository which is widely used in
research. The remaining two test cases are also used previously by many research-
ers in the field of MDE. The test cases are different in size, structure and application
domain. Yet, we can not assert that our results are generalizable for all transforma-
tion cases. Future empirical studies are required to confirm our findings.

Another threat is concerned with the test case creation. Test suites for model
transformation may be automatically generated in many different ways, e.g., black-
box approaches using the input and output metamodels only, white-box approaches
analysing the transformation definition, or even combined approaches. Furthermore,
there may be different ways to manually construct test cases, e.g., writing particular
tests for dedicated rules, certain input patterns, for detecting a certain bug, etc. Con-
sequently, the size and quality of a test suite may vary, e.g., how many duplicate test
cases are included. We focused in our study on test suites which have been devel-
oped in a previous study on fault localization for model transformations by differ-
ent researchers (Troya et al. 2018). They used a script-based test model generation
approach—so to speak a semi-automated test case generation approach. In addition,
we also used for two cases purely manually developed test cases provided by a trans-
formation engineer. If our results generalize for other test case creation approaches,
e.g., fully automated ones, is subject for future work.

Finally, we would like to stress that currently there are no studies about bug fre-
quencies in model transformations. The main reason for this may be the lack of open
transformation repositories providing access to different transformation versions and
other information such as bug reports. Thus, the question how realistically the cur-
rent list of mutation operators mimics real-world bugs remains open. We used our
experiences of teaching ATL as well as applying ATL in industrial projects for over
a decade to inject bugs we have explored in the past to the transformations used in
this study. However, future empirical research is required to shed more light on the
topic of representative bug injection by mutation.

7 � Related work

With respect to the contribution of this paper, we discuss three threads of related
work: (1) test case selection, (2) testing in MDE, and (3) search-based approaches
in MDE.

111

1 3

Automated Software Engineering (2020) 27:91–118	

7.1 � Test case selection

There are three main test case management directions in the literature; test case pri-
oritization, reduction, and selection. In this section, we consider test case selection
work.

Early test case selection approaches using Integer Programming technique are
presented in Fischer (1977), Fischer et al. (1981), Lee and He (1990). Fischer’s algo-
rithm was extended in Hartmann and Robson (1989), Hartmann and Robson (1990)
to be applied for C programs. Several test case selection techniques have been pro-
posed afterwards including symbolic execution (Yau and Kishimoto 1987), program
slicing (Agrawal et al. 1993; Bates and Horwitz 1993), data-flow analysis (Gupta
et al. 1992; Harrold and Souffa 1988; Taha et al. 1989), path analysis (Benedusi
et al. 1988), dependence and flow graphs (Rothermel and Harrold 1993, 1994, 1997;
Laski and Szermer 1992; Ball 1998). There are works that used heuristics to select
test cases; In Biswas et al. (2009), the authors used genetic algorithms. In Mirarab
et al. (2012); Kumar et al. (2012); Panichella et al. (2015); de Souza et al. (2014);
Yoo and Harman (2007), the authors used multi-objective optimization techniques
to select the appropriate cases. The following surveys discussed test case selection
techniques in a broader manner (Yoo and Harman 2012; Biswas et al. 2011; Rosero
et al. 2016; Kazmi et al. 2017).

We are inline with test case selection approaches using multi-objective optimiza-
tion techniques, but we apply them to a new kind of software artifact, namely model
transformations.

7.2 � Testing and model driven engineering

Model transformation testing is considered as one of the main challenges in MDE
and several papers discussed the need for a systematic validation of model transfor-
mations (Bryant et al. 2011; Baudry et al. 2006, 2010; France and Rumpe 2007; Van
Der Straete et al. 2008; Fleurey et al. 2004). In Brottier et al. (2006), the authors pre-
sented an automatic approach to generate a test model to satisfy certain criteria. Sev-
eral papers took this direction afterward such as the works of Fleurey et al. (2009),
Lamari (2007), Ehrig et al. (2009), Almendros-Jiménez and Becerra-Terón (2016),
while others used GA techniques to make the test case generation more efficient or
relevant (Jilani et al. 2014; Shelburg et al. 2013; Wang et al. 2013; Gomez et al.
2012; Sahin et al. 2015). In Finot et al. (2013), the authors proposed an approach to
partially validate the output using expected target models. A black-box approach was
proposed in Vallecillo et al. (2012), where Tracts are used to certify that test models
work for the transformation. The authors in Rose and Poulding (2013) worked on
producing smaller test suits by using probabilistic distributions for generating model
samples, while the authors of Kessentini et al. (2011) discussed the definition of
oracle function, and the automatic derivation of well-formedness rules is presented
in Faunes et al. (2013a).

In the context of Model-Based Testing (MBT), several contributions were pro-
posed to manage test suites. In Hemmati et al. (2010), the authors proposed a

112	 Automated Software Engineering (2020) 27:91–118

1 3

similarity-based test case selection technique that uses genetic algorithms to mini-
mize similarities between test cases. However, a test suite minimization framework
is proposed in Farooq and Lam (2009), the authors formalized test case reduction as
a combinatorial optimization problem. A test case prioritizing approach based on
GA is proposed in Sharma et al. (2014). Covering all work is beyond the scope of
this paper. Thus, we redirect to the survey by Wu et al. (2012).

To summarize, while a lot of research has been spent on test case generation for
models and model transformations, the selection of test cases for efficiently test-
ing model transformations has been mostly overlooked. To the best of our knowl-
edge, our approach is the first test case selection approach for model transformations
which considers coverage of the transformation specifications.

7.3 � Search‑based software engineering and model driven engineering

SBSE (Wang et al. 2016; Mansoor et al. 2017; Kessentini et al. 2013a) has been
used to tackle major MDE challenges for a while, as the associated search spaces
have the potential to be very large, SBSE techniques are gaining popularity in both
academia and industry since they are very beneficial in terms of finding good solu-
tions in a reasonable time (Boussaid et al. 2017).

The idea of formalizing model transformations as a combinatorial optimization
problem was first proposed in Kessentini et al. (2008), several work followed this
initiative to use search-based optimization techniques with model transformations
for different intents. The pioneer contributions applied the search-based techniques
to the model transformation by example (MTBE) (Kappel et al. 2012) either to gen-
erate transformation rules (Kessentini et al. 2010; Faunes et al. 2013b; Baki et al.
2014), recover transformation traces (Saada et al. 2013), or to generate target models
(Kessentini et al. 2008, 2012).

The model refactoring by example approach was considered in Ghannem et al.
(2011), the authors used genetic programming to detect refactoring opportunities
concerning multiple model design anti-patterns by analyzing a couple of design
defects examples from various systems and using this knowledge to generate defect
detection rules. The authors went the extra mile by using an interactive genetic algo-
rithm (IGA) in Ghannem et al. (2013). By adding the user’s feedback to the fitness
function, the approach became able to adapt the recommended sequence of refac-
torings to accommodate the developer’s needs since the IGA better understood the
semantics of the software system.

Moreover, the SBSE approach is extended to cover various MDE challenges;
model versioning or model merging, e.g., see Kessentini et al. (2013b), Debreceni
et al. (2016), transformation rules orchestration, e.g., see Denil et al. (2014), Fleck
et al. (2015), Gyapay et al. (2004), and model refactoring in both design-level and
code-level, e.g., see Fleck et al. (2017), Alkhazi et al. (2016), Jensen and Cheng
(2010), Moghadam and Cinneide (2012). A survey by Boussaid et al. (2017) covers
an extended list of work in this domain. It also shows that an approach for test case

113

1 3

Automated Software Engineering (2020) 27:91–118	

selection for model transformation testing which incorporates the coverage of model
transformation rules has been missing.

8 � Conclusion

In this paper, we proposed the first test case selection approach for model transfor-
mations by considering transformation rule coverage as well as execution time spent
on executing the test cases. The evaluation based on several cases shows a drastic
speed-up of the testing process while still showing a good testing performance.

For future work, we see several dimensions to explore. First, the combination
of test generation and test selection techniques is of interest. This would allow us
to automatically reduce the test suits when they are generated which would allow
concentrating the generation on cases that are not already covered. Second, adding
further objectives such as trace diversity in the search process may be helpful for
other approaches such as fault localization approaches (Troya et al. 2018). Third, the
investigation of different coverage metrics for model transformation testing, e.g., dif-
ferent kinds of metamodel coverage metrics, and even their combination for test case
selection is an interesting line of research worth to explore. Finally, further stud-
ies considering other model transformation languages may be of interest to see how
portable and generalizable our approach is.

Acknowledgements  This work has been partially supported and funded by the Austrian Federal Ministry
for Digital and Economic Affairs, the National Foundation for Research, Technology and Development
and by the FWF under the Grant Numbers P28519-N31 and P30525-N31.

References

Agrawal, H., Horgan, J.R., Krauser, E.W., London, S.A.: Incremental regression testing. In: Proceed-
ings of the International Conference on Software Maintenance (ICSM), pp. 348–357. IEEE
(1993)

Alkhazi, B., Ruas, T., Kessentini, M., Wimmer, M., Grosky, W.I.: Automated refactoring of atl model
transformations: a search-based approach. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, pp. 295–304. ACM (2016)

Almendros-Jiménez, J.M., Becerra-Terón, A.: Automatic generation of Ecore models for testing ATL
transformations. In: Proceedings of the International Conference on Model and Data Engineering
(MEDI), pp. 16–30. Springer (2016)

Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investigation in search-based
software engineering. Empir. Softw. Eng. 18(3), 594–623 (2013)

ATL: ATL Transformations Zoo https​://www.eclip​se.org/atl/atlTr​ansfo​rmati​ons/ (2006). Last Accessed
11 Dec 2018

Baki, I., Sahraoui, H.A., Cobbaert, Q., Masson, P., Faunes, M.: Learning implicit and explicit control
in model transformations by example. In: Proceedings of the International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp. 636–652 (2014)

Ball, T.: On the limit of control flow analysis for regression test selection. ACM SIGSOFT Softw. Eng.
Notes 23(2), 134–142 (1998)

https://www.eclipse.org/atl/atlTransformations/

114	 Automated Software Engineering (2020) 27:91–118

1 3

Bates, S., Horwitz, S.: Incremental program testing using program dependence graphs. In: Proceedings
of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
384–396. ACM (1993)

Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S., Fleurey, F., Le Traon, Y.:
Model transformation testing challenges. In: Proceedings of the ECMDA Workshop on Integration
of Model Driven Development and Model Driven Testing (2006)

Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers to systematic model
transformation testing. Commun. ACM 53(6), 139–143 (2010)

Benedusi, P., Cmitile, A., De Carlini, U.: Post-maintenance testing based on path change analysis. In:
Proceedings of the International Conference on Software Maintenance (ICSM), pp. 352–361. IEEE
(1988)

Bertolino, A.: Software testing research: achievements, challenges, dreams. In: 2007 Future of Software
Engineering, pp. 85–103. IEEE Computer Society (2007)

Binkley, D.: Reducing the cost of regression testing by semantics guided test case selection. In: Proceed-
ings of the International Conference on Software Maintenance (ICSM), pp. 251–260. IEEE (1995)

Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: A model-based regression test selection approach for
embedded applications. ACM SIGSOFT Softw. Eng. Notes 34(4), 1–9 (2009)

Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: Regression test selection techniques: a survey. Infor-
matica 35(3), 289–321 (2011)

Boussaid, I., Siarry, P., Ahmed-Nacer, M.: A survey on search-based model-driven engineering. Autom.
Softw. Eng. 24(2), 233–294 (2017)

Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice. Synth. Lect.
Softw. Eng. 3(1), 1–207 (2017)

Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Interna-
tional Conference on Parallel Problem Solving from Nature, pp. 722–731. Springer (2004)

Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based test generation for model
transformations: an algorithm and a tool. In: Proceedings of the 17th International Symposium on
Software Reliability Engineering (ISSRE), pp. 85–94. IEEE (2006)

Bryant, B.R., Gray, J.G., Mernik, M., Clarke, P., Karsai, G.: Challenges and directions in formalizing the
semantics of modeling languages. Comput. Sci. Inf. Syst. 8(2), 225–253 (2011)

Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault localization in model transformations.
IEEE Trans. Softw. Eng. 41(5), 490–506 (2014)

Cabot, J., Clarisó, R., Guerra, E., De Lara, J.: Verification and validation of declarative model-to-model
transformations through invariants. J. Syst. Softw. 83(2), 283–302 (2010)

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude-A
High-performance Logical Framework: How to Specify, Program and Verify Systems in Rewriting
Logic. Springer, Berlin (2007)

Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J. 45(3),
621–645 (2006). https​://doi.org/10.1147/sj.453.0621

de Souza, L.S., Prudêncio, R.B., Barros, F.D.A.: A hybrid binary multi-objective particle swarm opti-
mization with local search for test case selection. In: Proceedings of the Brazilian Conference on
Intelligent Systems, pp. 414–419. IEEE (2014)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

Debreceni, C., Rath, I., Varro, D., Carlos, X.D., Mendialdua, X., Trujillo, S.: Automated model merge
by design space exploration. In: Proceedings of the 19th International Conference on Fundamental
Approaches to Software Engineering (FASE), pp. 104–121 (2016)

Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.: Search-based model optimization using model trans-
formations. In: Proceedings of the International Conference on System Analysis and Modeling
(SAM), pp. 80–95 (2014)

Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta models. Softw. Syst. Model.
8(4), 479–500 (2009)

Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm
Evolut. Comput. 1(1), 19–31 (2011)

Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing test cases for regression testing. In: Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA), pp. 102–112.
ACM (2000)

https://doi.org/10.1147/sj.453.0621

115

1 3

Automated Software Engineering (2020) 27:91–118	

Farooq, U., Lam, C.P.: Evolving the quality of a model based test suite. In: Proceedings of the Inter-
national Conference on Software Testing, Verification, and Validation Workshops, pp. 141–149.
IEEE (2009)

Faunes, M., Cadavid, J.J., Baudry, B., Sahraoui, H.A., Combemale, B.: Automatically searching for
metamodel well-formedness rules in examples and counter-examples. In: Proceedings of the 16th
International Conference on Model-Driven Engineering Languages and Systems (MODELS), pp.
187–202 (2013a)

Faunes, M., Sahraoui, H.A., Boukadoum, M.: Genetic-programming approach to learn model transforma-
tion rules from examples. In: Proceedings of the International Conference on Theory and Practice
of Model Transformations (ICMT), pp. 17–32 (2013b)

Finot, O., Mottu, J.M., Sunyé, G., Attiogbé, C.: Partial test oracle in model transformation testing. In:
International Conference on Theory and Practice of Model Transformations, pp. 189–204. Springer
(2013)

Fischer, K., Raji, F., Chruscicki, A.: A methodology for retesting modified software. In: Proceedings of
the National Telecommunications Conference, pp. 1–6 (1981)

Fischer, K.F.: A test case selection method for the validation of software maintenance modifications. In:
Proceedings of 1st International Computer Software and Applications Conference (COMPSAC),
pp. 421–426 (1977)

Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model transformation tech-
nology. In: Proceedings of the 1st North American Search Based Software Engineering Sympo-
sium (NasBASE), pp. 1–16 (2015)

Fleck, M., Troya, J., Kessentini, M., Wimmer, M., Alkhazi, B.: Model transformation modularization as a
many-objective optimization problem. IEEE Tran. Softw. Eng. 43(11), 1009–1032 (2017)

Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: testing model transformations.
In: Proceedings of the First International Workshop on Model, Design and Validation, pp. 29–40.
IEEE (2004)

Fleurey, F., Baudry, B., Muller, P.A., Le Traon, Y.: Qualifying input test data model transformations.
Softw. Syst. Model. 8(2), 185–203 (2009)

France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap. In: 2007
Future of Software Engineering, pp. 37–54. IEEE Computer Society (2007)

Ghannem, A., Kessentini, M., Boussaidi, G.E.: Detecting model refactoring opportunities using heuristic
search. In: Proceedings of the Conference of the Center for Advanced Studies on Collaborative
Research (CASCON), pp. 175–187 (2011)

Ghannem, A., Boussaidi, G.E., Kessentini, M.: Model refactoring using interactive genetic algorithm. In:
Proceedings of the 5th International Symposium on Search Based Software Engineering (SSBSE),
pp. 96–110 (2013)

Gogolla, M., Vallecillo, A.: Tractable model transformation testing. In: Modelling Foundations and
Applications—7th European Conference, ECMFA 2011, Birmingham, UK, June 6–9, 2011 Pro-
ceedings, pp. 221–235 (2011)

Gogolla, M., Vallecillo, A., Burgueño, L., Hilken, F.: Employing classifying terms for testing model
transformations. In: 18th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30–October 2, 2015,
pp. 312–321 (2015)

Gomez, J.J.C., Baudry, B., Sahraoui, H.: Searching the boundaries of a modeling space to test meta-
models. In: Proceedings of the Fifth International Conference on Software Testing, Verification
and Validation, pp. 131–140 (2012)

González, C.A., Cabot, J.: ATLTest: a white-box test generation approach for ATL transformations.
In: Proceedings of the 15th International Conference Model Driven Engineering Languages and
Systems (MODELS), pp. 449–464 (2012)

Goodenough, J.B., Gerhart, S.L.: Toward a theory of test data selection. IEEE Trans. Softw. Eng.
1(2), 156–173 (1975)

Guerra, E.: Specification-driven test generation for model transformations. In: Theory and Practice of
Model Transformations—5th International Conference, ICMT 2012, Prague, Czech Republic,
May 28–29, 2012. Proceedings, pp. 40–55 (2012)

Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J.,
Schwinger, W.: Automated verification of model transformations based on visual contracts.
Autom. Softw. Eng. 20(1), 5–46 (2013)

116	 Automated Software Engineering (2020) 27:91–118

1 3

Gupta, R., Harrold, M.J., Soffa, M.L.: An approach to regression testing using slicing. In: Proceedings
of the International Conference on Software Maintenance (ICSM), pp. 299–308. IEEE (1992)

Gyapay, S., Schmidt, A., Varro, D.: Joint optimization and reachability analysis in graph transforma-
tion systems with time. Electron. Notes Theor. Comput. Sci. 109, 137–147 (2004)

Hadka, D.: Moea Framework: A Free and Open Source Java Framework for Multiobjective Optimiza-
tion http://www.moeaf​ramew​ork.org(2012). Accessed 12 Apr 2019

Harrold, M.J., Souffa, M.: An incremental approach to unit testing during maintenance. In: Proceed-
ings of the International Conference on Software Maintenance (ICSM), pp. 362–367. IEEE
(1988)

Hartmann, J., Robson, D.: Revalidation during the software maintenance phase. In: Proceedings of the
International Conference on Software Maintenance (ICSM), pp. 70–80. IEEE (1989)

Hartmann, J., Robson, D.J.: Retest-development of a selective revalidation prototype environment for
use in software maintenance. In: Twenty-Third Annual Hawaii International Conference on Sys-
tem Sciences, pp. 92–101. IEEE (1990)

Hemmati, H., Briand, L., Arcuri, A., Ali, S.: An enhanced test case selection approach for model-
based testing: an industrial case study. In: Proceedings of the 8th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 267–276. ACM (2010)

Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of MDE in indus-
try. In: Proceedings of the 33rd International Conference on Software Engineering (ICSE), pp.
471–480. IEEE (2011)

INRIA: Atl Transformation Example: Bibtexml to Docbook https​://www.eclip​se.org/atl/atlTr​ansfo​
rmati​ons/BibTe​XML2D​ocBoo​k/Examp​leBib​TeXML​2DocB​ook[v00.01].pdf (2005). Last
Accessed 11 Dec 2018

ISO: IEC25010: 2011 Systems and Software Engineering–Systems and Software Quality Require-
ments and Evaluation (Square)–System and Software Quality Models. Technical Report. Inter-
national Organization for Standardization (2011)

Jensen, A.C., Cheng, B.H.: On the use of genetic programming for automated refactoring and the
introduction of design patterns. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, pp. 1341–1348 (2010)

Jilani, A.A., Iqbal, M.Z., Khan, M.U.: A search based test data generation approach for model trans-
formations. In: Proceedings of the International Conference on Theory and Practice of Model
Transformations (ICMT), pp. 17–24 (2014)

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Comput. Pro-
gram. 72(1–2), 31–39 (2008)

Kalyanmoy, D., et al.: Multi Objective Optimization Using Evolutionary Algorithms. Wiley, New
York (2001)

Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model transformation by-
example: a survey of the first wave. In: Düsterhöft, A., Klettke, M., Schewe, K.-D. (eds.) Con-
ceptual Modelling and Its Theoretical Foundations, vol. 7260, pp. 197–215. Springer, Berlin
(2012)

Kazmi, R., Jawawi, D.N., Mohamad, R., Ghani, I.: Effective regression test case selection: a system-
atic literature review. ACM Comput. Surv. (CSUR) 50(2), 29 (2017)

Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model transformation as an optimization problem.
In: Proceedings of the 11th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pp. 159–173 (2008)

Kessentini, M., Bouchoucha, A., Sahraoui, H.A., Boukadoum, M.: Example-based sequence diagrams
to colored petri nets transformation using heuristic search. In: Proceedings of the 6th European
Conference on Modelling Foundations and Applications (ECMFA), pp. 156–172 (2010)

Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Example-based model-transformation testing.
Autom. Softw. Eng. 18(2), 199–224 (2011)

Kessentini, M., Sahraoui, H., Boukadoum, M., Omar, O.B.: Search-based model transformation by
example. Softw. Syst. Model. 11(2), 209–226 (2012)

Kessentini, M., Mahaouachi, R., Ghedira, K.: What you like in design use to correct bad-smells.
Softw. Qual. J. 21(4), 551–571 (2013a)

Kessentini, M., Werda, W., Langer, P., Wimmer, M.: Search-based model merging. In: Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1453–
1460 (2013b)

http://www.moeaframework.org
https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook%5bv00.01%5d.pdf
https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook%5bv00.01%5d.pdf

117

1 3

Automated Software Engineering (2020) 27:91–118	

Kühne, T.: Matters of (meta-)modeling. Softw. Syst. Model. 5(4), 369–385 (2006). https​://doi.
org/10.1007/s1027​0-006-0017-9

Kumar, M., Sharma, A., Kumar, R.: Multi faceted measurement framework for test case classification
and fitness evaluation using fuzzy logic based approach. Chiang Mai J. Sci. 39(3), 112–127
(2012)

Lamari, M.: Towards an automated test generation for the verification of model transformations. In:
Proceedings of the 2007 ACM Symposium on Applied Computing (SAC), pp. 998–1005. ACM
(2007)

Laski, J., Szermer, W.: Identification of program modifications and its applications in software main-
tenance. In: Proceedings of the International Conference on Software Maintenance (ICSM), pp.
282–290. IEEE (1992)

Lee, J.A., He, X.: A methodology for test selection. J. Syst. Softw. 13(3), 177–185 (1990)
Leung, H.K., White, L.: Insights into regression testing (software testing). In: Proceedings of the

International Conference on Software Maintenance (ICSM), pp. 60–69. IEEE (1989)
Leung, H.K., White, L.: A study of integration testing and software regression at the integration level.

In: Proceedings Conference on Software Maintenance 1990, pp. 290–301. IEEE (1990)
Li, X.: A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Pro-

ceedings of the Genetic and Evolutionary Computation Conference, pp. 37–48. Springer (2003)
Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. In: Model-Driven Soft-

ware Development, pp. 219–236. Springer (2005)
Mansoor, U., Kessentini, M., Wimmer, M., Deb, K.: Multi-view refactoring of class and activity dia-

grams using a multi-objective evolutionary algorithm. Softw. Qual. J. 25(2), 473–501 (2017)
McQuillan, J.A., Power, J.F.: White-box coverage criteria for model transformations. In: Proceedings

of the 1st International Workshop on Model Transformation with ATL, pp. 63–77 (2009)
Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electron. Notes in Theor. Comput. Sci.

152, 125–142 (2006). https​://doi.org/10.1016/j.entcs​.2005.10.021
Mirarab, S., Akhlaghi, S., Tahvildari, L.: Size-constrained regression test case selection using multic-

riteria optimization. IEEE Trans. Softw. Eng. 38(4), 936–956 (2012)
Moghadam, I.H., Cinneide, M.O.: Automated refactoring using design differencing. In: Proceedings

of the 16th European Conference on Software Maintenance and Reengineering (CSMR), pp.
43–52 (2012)

Mohagheghi, P., Dehlen, V.: Where is the proof? A review of experiences from applying MDE in
industry. In: Proceedings of the European Conference on Model Driven Architecture—Founda-
tions and Applications, pp. 432–443. Springer (2008)

Mottu, J.M., Baudry, B., Le Traon, Y.: Mutation analysis testing for model transformations. In: Euro-
pean Conference on Model Driven Architecture-Foundations and Applications, pp. 376–390.
Springer (2006)

Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Core Specification. OMG Docu-
ment ptc/03-10-04 (2003)

Panichella, A., Oliveto, R., Di Penta, M., De Lucia, A.: Improving multi-objective test case selection
by injecting diversity in genetic algorithms. IEEE Trans. Softw. Eng. 41(4), 358–383 (2015)

Rose, L.M., Poulding, S.M.: Efficient probabilistic testing of model transformations using search.
In: Proceedings of the 1st International Workshop on Combining Modelling and Search-Based
Software Engineering, pp. 16–21 (2013)

Rosero, R.H., Gómez, O.S., Rodríguez, G.: 15 years of software regression testing techniques—a sur-
vey. Int. J. Softw. Eng. Knowl. Eng. 26(05), 675–689 (2016)

Rothermel, G., Harrold, M.J.: A safe, efficient algorithm for regression test selection. In: Proceedings
of the International Conference on Software Maintenance (ICSM), pp. 358–367. IEEE (1993)

Rothermel, G., Harrold, M.J.: Selecting tests and identifying test coverage requirements for modified
software. In: Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pp. 169–184 (1994)

Rothermel, G., Harrold, M.J.: Experience with regression test selection. Empir. Softw. Eng. 2(2),
178–188 (1997)

Saada, H., Huchard, M., Nebut, C., Sahraoui, H.A.: Recovering model transformation traces using
multi-objective optimization. In: Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 688–693 (2013)

Sahin, D., Kessentini, M., Wimmer, M., Deb, K.: Model transformation testing: a bi-level search-
based software engineering approach. J. Softw. Evol. Process 27(11), 821–837 (2015)

https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1016/j.entcs.2005.10.021

118	 Automated Software Engineering (2020) 27:91–118

1 3

Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25 (2006)
Seawright, J., Gerring, J.: Case selection techniques in case study research: a menu of qualitative and

quantitative options. Polit. Res. Q. 61(2), 294–308 (2008)
Selim, G.M., Cordy, J.R., Dingel, J.: Model transformation testing: the state of the art. In: Proceed-

ings of the First Workshop on the Analysis of Model Transformations, pp. 21–26. ACM (2012)
Sharma, C., Sabharwal, S., Sibal, R.: Applying genetic algorithm for prioritization of test case sce-

narios derived from uml diagrams (2014). arXiv preprint arXiv​:1410.4838
Shelburg, J., Kessentini, M., Tauritz, D.R.: Regression testing for model transformations: a multi-

objective approach. In: Proceedings of the International Symposium on Search Based Software
Engineering (SSBSE), pp. 209–223 (2013)

Taha, A.B., Thebaut, S.M., Liu, S.S.: An approach to software fault localization and revalidation
based on incremental data flow analysis. In: Proceedings of the Thirteenth Annual International
Computer Software and Applications Conference, pp. 527–534. IEEE (1989)

Talbi, E.G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, New York (2009)
Troya, J., Bergmayr, A., Burgueño, L., Wimmer, M.: Towards systematic mutations for and with ATL

model transformations. In: Proceedings of the Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 1–10. IEEE (2015)

Troya, J., Segura, S., Parejo, J.A., Cortés, A.R.: Spectrum-based fault localization in model transfor-
mations. ACM Trans. Softw. Eng. Methodol. (TOSEM) 27(3), 13:1–13:50 (2018)

Vallecillo, A., Gogolla, M., Burgueno, L., Wimmer, M., Hamann, L.: Formal specification and testing
of model transformations. In: International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems, pp. 399–437. Springer (2012)

Van Der Straeten, R., Mens, T., Van Baelen, S.: Challenges in model-driven software engineering.
In: International Conference on Model Driven Engineering Languages and Systems, pp. 35–47.
Springer (2008)

Wang, W., Kessentini, M., Jiang, W.: Test cases generation for model transformations from structural
information. In: Proceedings of the MDEBE@MoDELS Workshop, pp. 42–51 (2013)

Wang, H., Kessentini, M., Ouni, A.: Bi-level identification of web service defects. In: International
Conference on Service-Oriented Computing, pp. 352–368. Springer, Cham (2016)

Wimmer, M., Burgueño, L.: Testing M2T/T2M transformations. In: Proceedings of the International
Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 203–219.
Springer (2013)

Wu, H., Monahan, R., Power, J.F.: Metamodel Instance Generation: A Systematic Literature Review
(2012). arXiv preprint arXiv​:1211.6322

Yau, S.S., Kishimoto, Z.: Method for revalidating modified programs in the maintenance phase. In:
Proceedings of the IEEE Computer Society’s International Computer Software and Applica-
tions Conference. IEEE (1987)

Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA), pp. 140–150. ACM (2007)

Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey. Softw. Test.
Verif. Reliab. 22(2), 67–120 (2012)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1410.4838
http://arxiv.org/abs/1211.6322

	Multi-criteria test cases selection for model transformations
	Abstract
	1 Introduction
	2 Background and motivating example
	2.1 Background
	2.1.1 Models and meta-models
	2.1.2 Model transformations

	2.2 Motivating example

	3 Test cases selection for model transformation
	3.1 Approach overview
	3.2 Adapting NSGA-II for the test case selection problem
	3.3 Solution approach

	4 Validation
	4.1 Research questions
	4.2 Case studies
	4.3 Experimental settings

	5 Results and discussions
	6 Threats to validity
	6.1 Internal validity
	6.2 Construct validity
	6.3 Conclusion validity
	6.4 External validity

	7 Related work
	7.1 Test case selection
	7.2 Testing and model driven engineering
	7.3 Search-based software engineering and model driven engineering

	8 Conclusion
	Acknowledgements
	References

