
Automated Software Engineering (2019) 26:653–704
https://doi.org/10.1007/s10515-019-00264-4

Automatic B-model repair using model checking and
machine learning

Cheng-Hao Cai1 · Jing Sun1 · Gillian Dobbie1

Received: 12 November 2018 / Accepted: 2 August 2019 / Published online: 14 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The B-method, which provides automated verification for the design of software
systems, still requires users to manually repair faulty models. This paper proposes
B-repair, an approach that supports automated repair of faulty models written in the B
formal specification language.After discovering a fault in amodel using theB-method,
B-repair is able to suggest possible repairs for the fault, estimate the quality of sug-
gested repairs and use a suitable repair to revise the model. The suggestion of repairs is
produced using the I solation method, which suggests changing the pre-conditions of
operations, and the Revisionmethod, which suggests changing the post-conditions of
operations. The estimation of repair quality makes use of machine learning techniques
that can learn the features of state transitions. After estimating the quality of suggested
repairs, the repairs are ranked, and a best repair is selected according to the result of
ranking and is used to revise themodel. This approach has been evaluated using a set of
finite state machines seeded with faults and a case study. The evaluation has revealed
that B-repair is able to repair a large number of faults, including invariant violations,
assertion violations and deadlock states, and gain high accuracies of repair. Using the
combination of model checking and machine learning-guided techniques, B-repair
saves development time by finding and repairing faults automatically during design.

Keywords Model repair · B-method · Model checking · Formal verification ·
Machine learning

This work is supported by the State Scholarship Fund sponsored by the China Scholarship Council [Grant
Number: 201708060334].

B Cheng-Hao Cai
chenghao.cai@auckland.ac.nz

Jing Sun
jing.sun@auckland.ac.nz

Gillian Dobbie
g.dobbie@auckland.ac.nz

1 School of Computer Science, University of Auckland, 38 Princes Street, Auckland 1142,
New Zealand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-019-00264-4&domain=pdf
http://orcid.org/0000-0001-6815-9091
http://orcid.org/0000-0002-1979-6622
http://orcid.org/0000-0001-7245-0367

654 Automated Software Engineering (2019) 26:653–704

1 Introduction

Formal verification focuses on using rigorousmathematical reasoning to verify the cor-
rectness of systems. For example, the railway control system in Paris has been verified
using the B-method, which is a formal verification technique based on Zermelo-
Fraenkel (ZF) set theory (Abrial 2005; Behm et al. 1999). As ZF set theory is built
upon natural deduction and nine axioms of sets (Bagaria 2017), all reasoning pro-
cesses in B are traceable, which means that the verification of B is highly reliable and
trustworthy. Formal verification treats a system as premises and system requirements
as goals. Checking the system requirements can thus be treated as proving the goals
using the premises.

Although formal verification techniques can automatically discover faults in a sys-
tem, in most cases, users need to fix the faulty parts of the system. As a result, in
order to remove the faults, a considerable amount of time is usually spent changing
the design of the system, making system development very inefficient. In order to
solve this problem, this research focuses on the automation of design repair. That is,
after discovering faults in the system using formal verification techniques, computers
can automatically remove the faults by changing the design of the system. Formally,
the research question of this work is as follows. Suppose that a system is repre-
sented as a model M = {R1, R2, . . . , Rn}, where R1, R2, . . . , Rn are logical rules,
and the expected properties of the system are represented as a set of specifications
S = {φ1, φ2, . . . , φm}. It is expected that M |� S is proved to be true. If there exists a
specification φi that is proved to be false, are there any methods that can automatically
change R1, R2, . . . , Rn to make φi true?

Recently, a number of approaches to automated system repair have targeted the
aboveproblem.Alrajeh andCraven (2014) haveproposed an automated error-detection
and repairmethod for finite statemachines. It canfind error transitions and revisemodel
descriptions by adding new operations and deleting faulty operations. Schmidt et al.
(2016) have proposed an interactive repair technique for Event-B. It discovers faults
of synthesised events, such as invariant violations and missing transitions, and then
changes the state transitions until there is no faulty event. Yang et al. (2012) have
proposed an automated program repair approach based on a logical method and a test
repair method. When discovering faults in a program, it makes use of test data and a
SAT (satisfiability) solver to generate possible repairs and then applies the generated
repairs to the program. Gopinath et al. (2011) have proposed a repair technique based
on relational logics andSATsolving.The relational logics are used to encodeprograms.
If an error is detected from the encoding of a program, an existing variable will be
replaced by a new variable, and the SAT solver is used to find possible valuations of
the new variable. It is often the case that many possible repairs are available for a
given model, but evaluating the quality of repairs remains a challenge (Le Goues et al.
2013). For model repair methods based on testing, the evaluation of repairs is often
based on the number of passed test cases in test suites (Yang et al. 2012). For those
based on formal verification, however, evaluating repairs is difficult, because formal
verification is usually done without test suites. Thus, suggesting high-quality repairs
within the framework of formal verification remains a challenging task.

123

Automated Software Engineering (2019) 26:653–704 655

Fig. 1 A diagram of B-Repair

In order to solve the problem of suggesting high-quality repairs within the frame-
work of formal verification, we propose B-repair. Figure1 shows the basic working
of B-repair, which includes three components. The first component is the state tran-
sition learning part. Given a faulty abstract machine, a tendency model reflecting the
behaviours of the machine is built by learning from available state transitions in the
machine. This step requires model checking and machine learning. Model check-
ing can perform symbolic analysis and compute available state transitions from the
given abstract machine, and machine learning can use these transitions as training
data to train the tendency model. The second component is the model checking and
repair generation part. In order to diagnose the abstract machine, the model checker
detects errors including invariant violations, assertion violations and deadlocks. Then
the repair generator suggests repairs that can remove the detected errors. Usually, a
single error can be removed using different repairs. In order to find the best repair, the
suggested repairs need to be ranked. The third component is the repair ranking and
application part. Suggested repairs are ranked using the tendency model. According
to their ranks, a suitable repair can be selected and applied to the abstract machine,
leading to a repaired machine.

The innovation of the proposed B-repair method is that it combines model check-
ing and machine learning in order to repair faulty abstract machines. Model checking
techniques derive state graphs of abstract machines and then discover faulty states.
Thus, available repairs can be suggested in order to eliminate the faulty states. More-
over, machine learning techniques can learn features of transitions in the state graphs
and then evaluate the suggested repairs. If a repair can maintain the learnt features, it
will be considered a high-quality repair, and vice versa.

This study extends our previous study on B model repair (Cai et al. 2018). The
differences between this study and the previous one include the following aspects.
Firstly, this study provides both theoretical and empirical explanations of B-repair,
while the previous study focuses on empirical explanations. Secondly, this study pro-
vides a large scale evaluation that shows the overall performance of B-repair on large

123

656 Automated Software Engineering (2019) 26:653–704

models, while the previous study only provides preliminary results on small models.
Finally, this study demonstrates that B-repair can process the post-condition of an
operation and the relation between the pre- and post-conditions of an operation, while
the previous study does not. Contributions of our study are listed below.

– The B-repair method for repairing faulty abstract machines.
– The isolation and revision method for producing local repairs.
– The tendency model approach as a general criterion of repair ranking.

The rest of this paper is organised as follows. Section 2 provides the background
of this study. Section 3 presents a brief introduction to the important preliminary
knowledge, such as model checking and supervised learning. Section 4 introduces the
proposed B-repair method, especially the isolation and revision methods. Section 5
presents the repair ranking approach based on tendencymodels. Section 6 describes the
design and implementation of the B-repair tool. Section 7 presents a running example
on how B-repair works for a read world problem. Section 8 evaluates the B-repair
method using various faulty abstract machines. Section 9 discusses the findings and
compares the results with related work. Section 10 concludes the paper and outlines
the future directions.

2 Background

Automated reasoning plays a key role in computer-aided verification, because verify-
ing the correctness of a system is often considered a problemof proving the consistency
of a logical representation of the system, and thus the problem can be solved using
reasoning engines. Fundamental components of automated reasoning include propo-
sitional logic, first-order (predicate) logic and higher-order (predicate) logic (Huth and
Ryan 2004; Nipkow et al. 2002). Propositional logic represents problems using atomic
propositions, which are assigned True (T) and False (F), and logical connectives such
as negation (¬), conjunction (∧), disjunction (∨), implication (→) and equivalence
(↔). Natural deduction, which makes use of introduction rules and elimination rules
of the above logical connectives, can be used to solve problems of propositional logic.
Based on propositional logic, first-order logic uses universal quantifiers (∀), existen-
tial quantifiers (∃) and predicates, which consist of not only atomic propositions, but
also constants and variables, to represent more complex descriptions. A predicate is
of the form f (x1, x2, . . . , xn), where f is a functor and each xi (i = 1, 2, . . . , n) is an
argument. In first-order logic, only arguments can be quantified. Higher-order logic
extends first-order logic by allowing the quantification of functors. Moreover, term
manipulation algorithms, such as unification (Siekmann 1989) and rewriting (Baader
andNipkow1998), are used to process predicates. Unification is an algorithm that finds
possible substitutions of variables by matching terms in two predicates, and rewriting
is an algorithm that simplifies predicates by replacing their terms and sub-terms with
equivalent ones. In order to solve a problem of predicate logic, natural deduction, unifi-
cation and rewriting are iteratively applied to the problem, until it is proved to be True
or False. Further, temporal logics are often used to verify time-dependent properties
of systems. Two major branches of temporal logics are linear temporal logic (LTL)

123

Automated Software Engineering (2019) 26:653–704 657

(Pnueli 1977) and computational tree logic (CTL) (Clarke and Emerson 1981). LTL
can describe properties using temporal connectives such as “X” (next), “G” (globally),
“F” (future) and “U” (until). CTL can describe properties using path quantifiers that
include “A” (for all paths) and “E” (there exists a path), and the temporal connectives,
and thus CTL operators include AX , EX , AG, EG, AF , EF , AU and EU .

Model checking techniques, whichmakes use of the theory of automated reasoning,
are used to verify whether or not a design model of a system satisfies properties such
as safety, liveness, reachability and termination (D’Silva et al. 2008). There are a
number of well-developed model checking techniques. For instance, B is a formal
notation based on first-order predicate logic, which is built on ZF set theory (Abrial
2005; Behm et al. 1999). Currently, B has enabled the functional representations of
higher-order logic (Leuschel et al. 2009). Moreover, NuSMV is a model checker
supporting the verification of LTL and CTL assertions (Cimatti et al. 1999). It uses
binary decision diagram (BDD)-based symbolic model checking that can maximally
reduce the scale of state graphs by merging redundant states into sets. Thus, it is able
to checkmodels with over 1020 states (Burch et al. 1992). However, it does not support
set notations and predicate representations as complex as those of the B-method.

In the B-method (Abrial 2005), a system is described by an abstract machine that
consists of variables, an invariant, initialisation, operations and other optional compo-
nents. The variables are used to record states of the system. The initialisation assigns
initial values to the variables and produces an initial state(s) of the system. Starting
from the initial state(s), the operations are iteratively applied to existing states and
derive new states. The invariant describes properties that the system should satisfy,
i.e., true for all states of the system. Invariant checking and refinement checking are
main functions of the B-method. The goal of invariant checking is to ensure that all
states satisfy the invariant (and satisfy assertions that are extensions of the invariant),
and the goal of refinement checking is to ensure that a refined model satisfies all prop-
erties of an original model. Currently, the B-method is supported by the ProB tool
(Leuschel and Butler 2008). Additionally, Event-B, which is a variant of the classical
B, is supported by the Rodin tool (Abrial et al. 2010). The constraint solver of satisfi-
ability modulo theories (SMT) is one of the core components of both ProB and Rodin
(Krings and Leuschel 2016). Currently, the SMT solver of ProB can solve constraints
of Boolean values, integers, sets, relations and records. TheB-method has been applied
to many fields. A typical application of B was the verification of the automatic train
operating system in Paris (Behm et al. 1999). The system had safety critical proper-
ties that were described by a software requirement document, and the B-method was
used to ensure that the source code of the software fulfilled the document. Moreover,
refinement checking of the B-method was used to verify circuits designed in VHDL
(Boulanger et al. 2002). Ports of the circuits were considered to be variables, connec-
tions between ports weremodelled by invariants, and signal propagationwasmodelled
by operations. The goal of verification was to ensure that each refined circuit satisfied
conditions of the original circuit. Additionally, the B-method was used to model and
verify a real interaction protocol named the Contract Net Protocol in a multi-agent
system (Fadil and Koning 2005).

Supervised machine learning models, such as classification and regression trees
(CART), logistic models and residual networks (ResNet), are able to separate labelled

123

658 Automated Software Engineering (2019) 26:653–704

Fig. 2 Decision boundaries of
the machine learning models

data using decision boundaries. For example, a CART can recursively split data into
subtrees according to attributes of the data, and many CARTs with random attributes
can construct a random forest (Ho 1995; Breiman et al. 1984). As a result, these
CARTs can specify vertical decision boundaries that are able to separate the data into
different zones. A logistic model is able to specify plain decision boundaries. Given
multi-dimensional data points, the logistic model can learn to classify the data points
using hyperplanes in a multi-dimensional space (Cox 1958). Instead of hyperplanes, a
ResNet,which consists ofmany layers of neural networks and residual building blocks,
can use hypersurfaces to classify the data points (He et al. 2016). Figure2 shows how
the above machine learning models form decision boundaries in a two-dimensional
space.

3 Preliminaries

B-repair is based on model checking of B and supervised machine learning. In this
section, both aspects are briefly revisited. Readers could skip this section if they have
been familiarwith theBnotation, theProBmodel checker, classification and regression
trees, logistic models and residual networks.

3.1 The B notation and the ProBmodel checker

This section provides a brief introduction to theBnotation and the ProBmodel checker.
For full and rigorous descriptions of the B notation, please refer to the work by Abrial
(2005). An abstract machine of B can be constructed by the clauses listed below.

– The MACHINE clause indicates the name of the machine.
– The SETS clause indicates sets used by the machine, and each set includes a
number of distinct elements.

123

Automated Software Engineering (2019) 26:653–704 659

– The CONSTANTS clause indicates constants used by the machine, and each con-
stant is a set, a Boolean, an integer, a distinct element or a function.

– The PROPERTIES clause indicates properties that the constants should preserve.
The properties are formed as a conjunction of predicates.

– The VARIABLES clause indicates variables used by the machine, and each vari-
able is a set, a Boolean, an integer or a distinct element. The variables and their
values form a state of the machine.

– The INVARIANT clause indicates invariants that the variables should preserve.
The invariants are formed as a conjunction of predicates.

– The ASSERTIONS clause indicates assertions that are supposed to be preserved
by the machine. The assertions are formed as a conjunction of predicates.

– The INITIALISATION clause indicates a substitution that assigns initial values to
the variables. All states of the machine originate from the initialisation.

– The OPERATIONS clause indicates operations that are used to derive new
states from existing states. Each operation should have a pre-condition and a
post-condition. The pre-condition is a predicate, and the post-condition includes
substitutions. If the pre-condition is true for the current state, the operation will be
triggered and lead to a new state satisfying the post-condition.

– The END clause indicates the end of the machine.

The ProBmodel checker (Leuschel andButler 2008) is able to check the correctness
of abstract machines described by the B notation. Firstly, ProB initialises constants
via the CONSTANTS clause and the PROPERTIES clause. Then ProB initialises vari-
ables via the VARIABLES clause, the INVARIANT clause and the INITIALISATION
clause, deriving an initial state or a set of initial states. Next, ProB derives new states
via the OPERATIONS clause and checks (a) if each state satisfies the INVARIANT
clause, (b) if each state satisfies the ASSERTIONS clause and (c) if each state has at
least one outgoing transition. If a state does not meet one of the three requirements,
ProB will report the faulty state with (a) an invariant violation, (b) an assertion viola-
tion and (c) a deadlock respectively. Finally, a state graph will be outputted, recording
all derived states, all derived operations connecting the states and an annotation that
highlights the faulty state. Moreover, ProB has provided the SMT solver (Krings and
Leuschel 2016) that can solve constraints written in the B notation. Practically, the
SMT solver can be triggered using the “ANY s WHERE p THEN q END” syntax,
where s is a set of variables, p is a set of constraints that the variables should satisfy, and
q is a “container” that records any solutions satisfying the constraints. Additionally,
below are B’s terminologies frequently used in this work.

– PredicateA predicate is a statement that can be proved true or false, and it is of the
form f (x1, x2, . . . , xn), where f is a functor and each xi (i = 1, 2, . . . , n) is an
argument. In particular, the functor can be logical connectives such as negation (¬),
conjunction (∧), disjunction (∨), implication (→) and equivalence (↔).Moreover,
universal quantifiers (∀) and existential quantifiers (∃) can be used to quantify
arguments in predicates.

– Substitution A substitution is used to change the value of a variable. A primitive
substitution is denoted by v1 := x1, v2 := x2, . . . , vn := xn , where each vi (i =
1, 2, . . . , n) is a variable, and xi is a value or an expression that has the same

123

660 Automated Software Engineering (2019) 26:653–704

type as vi . A conditional substitution is denoted by p �⇒ (v1 := x1, v2 :=
x2, . . . , vn := xn), which means that the substitution happens only if the predicate
p is proved true.

– StateA state s is a conjunction that indicates a pattern of all variables. It is denoted
by v1 = s[v1] ∧ v2 = s[v2] ∧ · · · ∧ vn = s[vn]. Each vi (i = 1, 2, . . . , n) is a
variable, and each s[vi] is the value of vi .

– Pre-condition The pre-condition of an operation is a predicate, which has to be
proved true for the current state before the operation is triggered.

– Post-conditionThe post-condition of an operation is a substitution, which indicates
the next state after the operation is triggered.

– State transition A state transition is the derivation from an existing state sx to a
new state snew via an operation α. It is denoted by sx

α−→ snew. If sx satisfies the
pre-conditions of α, the substitutions of α will be applied to sx , and snew will be
created.

– PathApath p is a sequence of states connected by available operations. It is formed

as s0
α1−→ s1

α2−→ s2
α3−→ · · · αl−→ sl , where each si (i = 0, 1, 2, . . . , l) is a state and

each α j (j = 1, 2, . . . , l) is an operation.
– Invariant violation An invariant violation is triggered when a state s does not
satisfy one or more invariants.

– Assertion violation An assertion violation is triggered when a state s does not
satisfy one or more assertions.

– Deadlock state A deadlock state sdead is a state that no operation can be applied
to. There does not exist any pre-condition that sdead can satisfy.

3.2 Supervised learning

Supervised learning focuses on learning a function using input signals and correspond-
ing label signals. Given N training data that are of the form (xi , ti) (i = 1, 2, . . . , N),
where x is an input signal, and t is a label signal, the goal of learning is to train a
function t = F(x) that can map each xi to ti as far as possible. In Sects. 3.2.1 and
3.2.2, two types of supervised learning models are introduced.

3.2.1 Classification and regression trees

A CART can perform a regression function by the variance-based node impurity
(Breiman et al. 1984; Loh 2011). In the case of binary attributes (i.e., their values are
either 0 or 1), the variance-based node impurity (NI) can be defined as

N I (X , α) = num(Xα=0) · var(Xα=0) + num(Xα=1) · var(Xα=1)

num(Xα=0) + num(Xα=1)
(1)

where X is a set of training samples, each sample has a label and a number of attributes,
α is an attribute, Xα=p (p is 0 or 1) is the set containing all samples in X that satisfy
α = p, num(S) is the number of samples in a set S, and var(S) is the variance of
labels in S. The training of the CART starts from a root node with a set of training

123

Automated Software Engineering (2019) 26:653–704 661

samples X0. Firstly, N attributes {α1, α2, . . . , αN } are randomly selected. Then each
N I (X0, αi) (i = 1, 2, . . . , N) is computed. Suppose that αI leads to the minimum
NI. Splitting conditions are defined as αI = 0 and αI = 1. Next, a left node and a
right node are created using the splitting conditions. The left node contains all samples
satisfying αI = 0, and the right node contains all samples satisfying αI = 1. Finally,
the above steps are recursively applied to both left and right nodes, until the minimal
NI is smaller than a predefined limit N I0. After finishing the training, the CART can
be used to predict labels of samples. Starting from the root node, a sample x can find
a path from the current node to the next node by the splitting conditions, and x can
finally reach a leaf node V . Then the average of labels of the training samples in V
is considered a predicted label of x . Many CARTs can be combined together to form
a random forest, where each tree is trained using randomly selected X0 and N I0 (Ho
1995).

3.2.2 Logistic models and residual networks

The logistic function is

logistic(u) = 1

1 + e−u
(2)

and the logistic model can be defined as

y = logistic(A · x + b) (3)

where A is an N -dimensional weight vector, b is a bias, x is an N -dimensional input
vector, and y is an output number (Cox 1958). The logistic model is one of the simplest
neural network architectures. In order tomodel more complex data, it can be combined
with multi-layer architectures such as residual networks (He et al. 2016). A residual
network is constructed by stacking a number of residual building blocks together. Each
block is defined as

y = F(x) + x (4)

where x is an N -dimensional input vector, F is a feed-forward neural network, and
y is an N -dimensional output vector. When many blocks are stacked together, the
output vector of each block is the input vector of the next block. In particular, the
output vector of the last block can be the input vector of another neural network such
as the logistic model. The training of the logistic model and the residual network can
be realised using stochastic gradient descent (Bottou 2012).

4 The B-repair method

In the following two sections, the B-repair method (Cai et al. 2018), including fault
localisation, isolation, revision and repair ranking, is introduced. Section 4 focuses on
fault localisation, isolation and revision, and Sect. 5 focuses on repair ranking.

123

662 Automated Software Engineering (2019) 26:653–704

4.1 Fault localisation

The correctness of models can be checked automatically via formal verification tech-
niques. However, the correction (repair) of a faultymodel is often a tedious andmanual
process. Users may spend a great amount of time understanding the cause of faults
and working out the possible repairs. To make the repair process more efficient, we
propose an approach that can automatically eliminate the faults in a formal design
model.

Our approach to model repair is based on the B-method (Abrial 2005) and its
associated tool named ProB (Leuschel and Butler 2008). Before repairing a faulty
model, the state space of the model is explored and used to localise faulty states. The
derivation of the state graph usually starts from an initialisation s0, and new states
are derived by applying available operations to the existing states. Once a state sl is
derived, its correctness can be checked. If no available operation can be applied to sl ,
then sl is a deadlock state. If an invariant or assertion is proved to be false for sl , then sl
triggers an invariant or assertion violation. In the above cases, sl is considered faulty.

4.2 Isolation

The basic concept of I solation is to remove a faulty state by changing the pre-
condition of a previous operation. It is a weak adaptation of the b-thread patching
algorithm (Harel et al. 2014). The main difference between the two methods is that
I solation performs a local repair by removing a single faulty state, while the b-thread
patching algorithm performs a global repair by removing all faulty states. Suppose

that sl is verified to be a faulty state and can be reached via s0
α1−→ s1

α2−→ s2
α3−→

· · · αl−1−−→ sl−1
αl−→ sl . sl can then be isolated by adding ¬sl−1 to the pre-condition

of αl . After making this change, the operation αl is no longer activated by sl−1,
because the pre-condition is false with respect to sl−1. Thus, the path is changed to

s0
α1−→ s1

α2−→ s2
α3−→ · · · αl−1−−→ sl−1, and sl has been removed. Formally, the I solation

method is defined as follows.

Definition 1 (The isolation method) If sp
α−→ sq is a state transition, and sq is a faulty

state, then α is changed to αI so via:

α =̂ PRE P THEN Q END

↓I solation

αI so =̂ PRE SIso ∧ P THEN Q END

(5)

In the above expression, SIso is a condition:

¬(v1 = sp[v1] ∧ v2 = sp[v2] ∧ · · · ∧ vn = sp[vn]) (6)

where vi (i = 1, 2, . . . , n) is a variable identifier, and sp[vi] is the value of vi in sp.

123

Automated Software Engineering (2019) 26:653–704 663

4.3 Revision

The basic concept of Revision is to correct a faulty state by changing the post-
conditions of a previous operation. Suppose that sl is verified to be a faulty state and

can be reached via s0
α1−→ s1

α2−→ s2
α3−→ · · · αl−1−−→ sl−1

αl−→ sl . sl can be revised via
a conditional substitution that rewrites sl to s′

l , where s′
l is a correct state found by

the SMT solver of ProB (Krings and Leuschel 2016). The conditional substitution
should be added to the end of αl . Let α′

l denote the resulting operation, thus, the path

is changed to s0
α1−→ s1

α2−→ s2
α3−→ · · · αl−1−−→ sl−1

α′
l−→ s′

l , and the faulty state sl is no
longer reached. Formally, the Revision method is defined as follows.

Definition 2 (The revision method) If sp
α−→ sq is a state transition, and sq is a faulty

state, then α is changed to αRev via:

α =̂ PRE P THEN Q END

↓Revision

αRev =̂ PRE P THEN Q ; TRev END

(7)

In the above expression, TRev is a conditional substitution:

IF

v1 = sq [v1] ∧ v2 = sq [v2] ∧ . . . ∧ vn = sq [vn]
THEN

v1 := sRev[v1] ; v2 := sRev[v2] ; . . . ; vn := sRev[vn]
END

(8)

where sRev is a revision state without any faults, vi (i = 1, 2, . . . , n) is a variable
identifier, sq [vi] is the value of vi in sq , and sRev[vi] is the value of vi in sRev .

The value of sRev should satisfy all constraints established by invariants and assertions,
and it should not be a deadlock state. This problem can be converted to a constraint
solving problem and can be solved using the SMT solver. Its solutions should satisfy
the following four constraints.

Definition 3 (Invariant constraint, IC) The invariant constraint of an abstract machine
is formed as a conjunction of all invariants. It is denoted by inv1 ∧ inv2 ∧ · · · ∧ invr ,
where invi (i = 1, 2, . . . , r) is an invariant.

Definition 4 (Assertion constraint, AC) The assertion constraint of an abstractmachine
is formed as a conjunction of all assertions. It is denoted by ast1 ∧ ast2 ∧ · · · ∧ asts ,
where asti (i = 1, 2, . . . , s) is an assertion.

Definition 5 (Liveness constraint, LC) The liveness constraint can guarantee that the
solutions are not deadlock states. It is formedas adisjunctionof the pre-conditions of all
operations. It is denoted by cond1∨cond2∨· · ·∨condt , where condi (i = 1, 2, . . . , t)
is the pre-condition of an operation.

123

664 Automated Software Engineering (2019) 26:653–704

Definition 6 (Distance constraint, DC) The distance constraint is used to restrict the
search space of the SMT solver. Note that the distance constraint is optional and only
used when the search space is huge. It is formed as dist(sq , sRev) ≤ Δmax , where
dist(sx , sy) is a distance function, and Δmax is the upper bound of the distance.

The distance function can be defined as the following absolute distance function.

Definition 7 (Absolute distance function) The absolute distance function of revising
a state sx to another state sy is defined as:

distabs(sx , sy) =
n

∑

i=1

Dist(sx [vi], sy[vi]) (9)

where Dist(u, v) is a polymorphic distance function:

– If u and v are sets, then Dist(u, v) = Card(u ∪ v − u ∩ v), where Card(S) is
the cardinality of a set S.

– If u and v are Boolean values, then Dist(u, v) =
{

0 , u = v

1 , u �= v
.

– If u and v are integers, then Dist(u, v) = Abs(u − v), where Abs(x) is the
absolute value of x .

– If u and v are distinct elements, then Dist(u, v) =
{

0 , u ≡ v

1 , u �≡ v
.

Based on these constraints, the SMT solver can find all solutions satisfying IC∧ AC∧
LC ∧ DC if they exist. These solutions satisfy the requirement of liveness and do not
trigger any invariant violations or assertion violations. Thus, they can be used as the
value of sRev .

4.4 An example of Isolation and Revision

Figure3 provides an example explaining how I solation and Revision repair a faulty
system. In this example, the precedence of operators (from the highest one to the lowest
one) is [(),=,∈,¬,∧,∨, :=, ;]. Suppose that the system has three boolean variables
p, q and r . Its invariant is p ∈ BOOL ∧ q ∈ BOOL ∧ r ∈ BOOL , its assertion is
(p ∨ q ∨ r) = True, and its initial state is p = True ∧ q = True ∧ r = True.
λ and δ are operations, and they are defined below.

λ =̂ PRE p = True

THEN p := q ; q := False ; r := False

END

(10)

δ =̂ PRE (p ∧ r) = False ∧ (p ∨ r) = True

THEN p := True ; q := True ; r := True

END

(11)

123

Automated Software Engineering (2019) 26:653–704 665

Fig. 3 An example of the I solation and Revision method

As S2 is a faulty state that violates the assertion and is a deadlock state, S1
λ−→ S2 is

considered a faulty state transition. If I solation is applied to this state transition, λ

will be changed to

λI =̂ PRE ¬(p = True ∧ q = False ∧ r = False)

∧ p = True

THEN p := q ; q := False ; r := False

END

(12)

and S2 will be removed. If Revision is applied to this state transition, and Δmax is
set to 4, the four constraints will be

– IC : p ∈ BOOL ∧ q ∈ BOOL ∧ r ∈ BOOL
– AC : (p ∨ q ∨ r) = True
– LC : p = True ∨ (p ∧ r) = False ∧ (p ∨ r) = True
– DC : distabs([False, False, False], [p, q, r]) ≤ 4

As p = False ∧ q = False ∧ r = True is a solution under these constraints, λ
can be changed to

λR =̂ PRE p = True

THEN p := q ; q := False ; r := False ;
IF p = False ∧ q = False ∧ r = False

THEN p := False ; q := False ; r := True

END

END

(13)

and S2 can be replaced with the revision state S′
2, which satisfies both the invariant and

the assertion and is not a deadlock state. S′
2 is not a deadlock state because it has a new

123

666 Automated Software Engineering (2019) 26:653–704

outgoing transition S′
2

δ−→ S0. According to Eq. (11), the transition is derived because
S′
2 satisfies the pre-condition of δ, and S0 satisfies the post-condition of δ. Note that S′

2
is just a special solution under the constraint IC ∧ AC ∧ LC ∧ DC . Thus, Eq. (13) is
a special case of revision, and there are alternative revision repairs for λ. For example,
p = True ∧ q = False ∧ r = False and p = True ∧ q = True ∧ r = True
are solutions different from S′

2 and can be used to construct revision repairs for λ as
well.

5 Repair ranking usingmachine learning

The isolation and revision method usually suggests many repairs, and only one repair
should be selected according to the ranking result. Although the distance function can
be used to rank revision repairs, different repairs may have the same distance value.
Moreover, this function is not able to estimate the distance value of an isolation repair.
Thus, a general-purpose function for estimating the quality of repair is needed. This
section introduces the quality estimation function with the machine learning-based
tendency models (Cai et al. 2018). It provides a general criterion for the ranking of
both isolation and revision repairs.

5.1 Quality estimation

Definition 8 (Tendency model) Suppose that M0 is the original abstract machine. A
tendency model of M0 is a function W(p, α, q) that reflects the likelihood that a
transition p

α−→ q is valid inM0. The input of this function includes two states p and
q and an operation α, and the output of this function is a real number. This function
must satisfy:

0 ≤ W(p, α, q) ≤ 1 (14)

The tendency model should reflect the likelihood that the given transition p
α−→ q is

a valid one in M0. In order to train the tendency model, training data are required.
In most cases, available training data can be extracted from M0 via the sampling
methods described in Sect. 5.2, and the learning algorithms described in Sects. 3.2
and5.4 can be used to train the tendency models. Based on the tendency model, the
quality estimation of a repaired abstract machine with respect to the original one can
be computed.

Definition 9 (Quality estimation) Suppose thatMR is the repaired abstract machine.
The quality estimation (QE) of MR is computed via

Q = Qval · Qinv (15)

where Qval is the quality estimation of valid state transitions inMR , and Qinv is the
quality estimation of invalid state transitions inMR . They are computed via

123

Automated Software Engineering (2019) 26:653–704 667

Qval =
p

α−→q
∏

p,α,q

W(p, α, q) (16)

and

Qinv =
¬(p

α−→q)
∏

p,α,q

(1 − W(p, α, q)) (17)

where p and q are any states including all reachable states and all unreachable states,

α is an operation, and
P(x)
∏

x
F(x) is the product of all F(x) such that P(x) is True.

The quality estimation consists of two parts, Qval and Qinv . As a transition p
α−→ q

is either valid or invalid in MR , the transition influences either Qval or Qinv . If the
transition is valid, then it influences Qval by the value of W(p, α, q). Otherwise, it
influences Qinv by the value of 1 − W(p, α, q). The meaning of the influence is that
if the tendency model indicates that W(p, α, q) is high, then p

α−→ q is likely to be a
valid transition in M0. If p

α−→ q is a valid transition in MR , then MR is similar to
M0 with respect to p

α−→ q. Consequently, p
α−→ q contributes a high value to Qval .

Moreover, if p
α−→ q is invalid in MR , then MR is dissimilar to M0 with respect

to p
α−→ q. As W(p, α, q) is high, 1 − W(p, α, q) is low. Consequently, p

α−→ q
contributes a low value to Qinv . On the contrary, if the tendency model indicates that
W(p, α, q) is low, then p

α−→ q is unlikely to be a valid transition in M0. If p
α−→ q

is a valid transition in MR , then MR is dissimilar to M0 with respect to p
α−→ q.

Consequently, p
α−→ q contributes a low value toQval . Moreover, if p

α−→ q is invalid
in MR , then MR is similar to M0 with respect to p

α−→ q. As W(p, α, q) is low,
1 − W(p, α, q) is high. Consequently, p

α−→ q contributes a high value to Qinv . The
above discussion indicates that if MR is similar to M0 with respect to p

α−→ q, then
p

α−→ q contributes a high value to Q, and if MR is dissimilar to M0 with respect
to p

α−→ q, then p
α−→ q contributes a low value to Q. Thus, Q is able to indicate the

similarity between MR and M0. Based on the above quality estimation function, a
general criterion of repair ranking can be defined as follows.

Definition 10 (General repair ranking) Suggested repairs can be ranked by quality
estimation. Suppose that the original abstractmachine isM0, and its quality estimation
is Q0. The ranking result is of the form

(R1,M1,Q1), (R2,M2,Q2), . . . , (RN ,MN ,QN) (18)

where each (Ri ,Mi ,Qi) (i = 1, 2, . . . , N) is a tuple including a repairRi , a repaired
machineMi and its quality estimation Qi . The tuples are sorted in descending order
of Qi .

The general ranking method requires that the quality estimation of each repaired
machine is computed after applying the repairs. The model checker needs to compute

123

668 Automated Software Engineering (2019) 26:653–704

state graphs for all repaired machines. If there are a huge number of possible repairs, it
will be unrealistic to finish the computation. Fortunately, a simplified ranking method
can be used to ease the computation.

Definition 11 (Simplified repair ranking with SQE) Isolation and revision repairs can

be ranked by the tendency model. Suppose that the faulty state transition is s0
ψ−→ s f ,

and W(p, α, q) is a tendency model. The ranking result is of the form

(R1, ̂Q1), (R2, ̂Q2), . . . , (RN , ̂QN) (19)

where each (Ri , ̂Qi) (i = 1, 2, . . . , N) is a tuple including a repairRi and its selective
quality estimation (SQE) ̂Qi . The tuples are sorted in descending order of SQE. The
SQE of an isolation repair is:

̂QI SO = 0.5 (20)

The SQE of a revision repair is:

̂QREV = W(s0, ψ, sr) (21)

where sr is a revision of s f .

The results of simplified repair ranking are equivalent to those of general repair
ranking. This statement is supported by the following two theorems.

Theorem 1 (The Order of Two Revision Repairs) Suppose that M0 is an abstract

machine, its quality estimation is Q0, and s0
ψ−→ s f is a faulty state transition. RA

and RB are two revision repairs that change the faulty state transition to s0
ψ−→ sA

and s0
ψ−→ sB respectively. The quality estimations of the two repairs areQA andQB

respectively, and their SQEs are ̂QA and ̂QB respectively. In this case, the following
statement holds.

QA ≥ QB ←→ ̂QA ≥ ̂QB (22)

Proof Equation (22) is a proof goal. By Eq. (15), we have

QA = Q0 · 1 − W(s0, ψ, s f)

W(s0, ψ, s f)
· W(s0, ψ, sA)

1 − W(s0, ψ, sA)
(23)

and

QB = Q0 · 1 − W(s0, ψ, s f)

W(s0, ψ, s f)
· W(s0, ψ, sB)

1 − W(s0, ψ, sB)
(24)

By Eq. (21), we have
̂QA = W(s0, ψ, sA) (25)

and
̂QB = W(s0, ψ, sB) (26)

123

Automated Software Engineering (2019) 26:653–704 669

Therefore, the proof goal becomes

Q0 · 1 − W(s0, ψ, s f)

W(s0, ψ, s f)
· W(s0, ψ, sA)

1 − W(s0, ψ, sA)

≥ Q0 · 1 − W(s0, ψ, s f)

W(s0, ψ, s f)
· W(s0, ψ, sB)

1 − W(s0, ψ, sB)

←→ W(s0, ψ, sA) ≥ W(s0, ψ, sB)

(27)

The above goal can be directly proved by Eq. (14). ��
Theorem 2 (The Order of an Isolation Repair and a Revision Repair) Suppose that

M0 is an abstract machine, its quality estimation is Q0, and s0
ψ−→ s f is a faulty

state transition. RI so is an isolation repair that removes the faulty state transition,

and RRev is a revision repair that changes faulty state transition to s0
ψ−→ sRev . The

quality estimations of the two repairs areQI so andQRev respectively, and their SQEs
are ̂QI so and ̂QRev respectively. In this case, the following two statements hold.

QI so ≥ QRev ←→ ̂QI so ≥ ̂QRev (28)

QI so ≤ QRev ←→ ̂QI so ≤ ̂QRev (29)

Proof Equations (28) and (29) are proof goals. By Eq. (15), we have

QI so = Q0 · 1 − W(s0, ψ, s f)

W(s0, ψ, s f)
(30)

and

QRev = Q0 · 1 − W(s0, ψ, s f)

W(s0, ψ, s f)
· W(s0, ψ, sRev)

1 − W(s0, ψ, sRev)
(31)

By Eq. (20), we have
̂QI so = 0.5 (32)

By Eq. (21), we have
̂QRev = W(s0, ψ, sRev) (33)

Therefore, the proof goal in Eq. (28) becomes

Q0 · 1 − W(s0, ψ, s f)

W(s0, ψ, s f)
≥ Q0 · 1 − W(s0, ψ, s f)

W(s0, ψ, s f)
· W(s0, ψ, sRev)

1 − W(s0, ψ, sRev)

←→ 0.5 ≥ W(s0, ψ, sRev)

(34)

This goal can be directly proved by Eq. (14). Similarly, the goal in Eq. (29) can be
proved. ��
As the statements in Eqs. (22), (28) and (29) are true, results of simplified repair
ranking are equivalent to those of general repair ranking. Thus, the SQE can be used

123

670 Automated Software Engineering (2019) 26:653–704

to rank repairs instead of the original QE. Another reason why the QE is not used is
that computing the QE of a large model is practically impossible. To compute the QE,
pairs of pre- and post-states need to be enumerated. As the states can be all reachable
states and all unreachable states, combinatorial explosions will occur if the model
has a large state space. Nevertheless, we are able to calculate the change of QE by
calculating QR/Q0, where Q0 is the QE of the original model M0, and QR is the
QE of the repaired modelMR . We can minimiseQR/Q0 by selecting a repair with a
highest SQE . This is the reason why the SQE is used instead of the QE.

5.2 Transition sampling

Major sampling is the process of extracting examples of state transitions from the
state graph of an abstract machine. Given an abstract machine M, major sampling
follows two steps. Firstly, the model checker is asked to generate a state graph G for
M. When developing the state graph, the model checker is asked to skip faulty states.
If a state violates invariants, assertions or the requirement of liveness, it will be added
into the state graph, but no successive operations will be applied to the state. Secondly,
positive samples and negative samples are extracted from G. The positive samples and
the negative samples are defined as follows.

Definition 12 (Positive sample) Given a state graph G, a positive sample is of the form
p

α−→ q such that p and q are states in G, and α is an operation transitioning p to q.

Definition 13 (Negative sample) Given a state graph G, a negative sample is of the
form ¬(p

α−→ q) such that p and q are states in G, and α is an operation that cannot
transition p to q.

Additional sampling is a process of extracting hidden state transitions that do not
occur in the state graph of the abstract machine. It can be used to increase the number
of samples. Given an abstract machine M, additional sampling follows three steps.
Firstly, states satisfying invariants and assertions ofM are randomly generated. These
states are considered to be initial states. Then the model checker is asked to derive
state transitions from these states. When deriving state transitions, the model checker
is asked to skip states that violate invariants, assertions or the requirement of liveness,
and results are collected into a state graph GA. Finally, positive examples and negative
samples are extracted fromGA. This process is used to sample a number of unreachable
transitions in M. Although the unreachable transitions are currently infeasible, they
may be feasible in the future, because a revision repair may turn an unreachable state
to a reachable state. Thus, we use a number of the unreachable transitions to train the
tendency models. In fact, if reachable transitions in M are sufficient for the training
of the tendency models, the unreachable transitions are not necessary. However, if the
reachable transitions are insufficient for the training, the resulting tendency models
will have poor performance, because the machine learning models such as residual
networks and random forests usually require a significant number of training data to
achieve a high accuracy. In this case, the unreachable transitions can provide more
training data for the tendency models.

123

Automated Software Engineering (2019) 26:653–704 671

5.3 Encodings

In order to use machine learning models to process samples, states of the samples
need to be vectorised. Suppose that p

α−→ q is a state transition. Both p and q can
be vectorised by encoding their variables using the following methods (Turian et al.
2010).

– Integer Before encoding integers, all integers occurring in the samples are collected
into base vector (b1, . . . , bN), where each bi (i = 1, 2, . . . , N) is an integer.
Then an integer x can be encoded as a vector (x1, . . . , xN), where each xi (i =
1, 2, . . . , N) is either 1 or 0. If x ≤ bi , then xi is 1. Otherwise, xi is 0.

– Distinct element A distinct element d ∈ τ (d is its name, and τ is its type) is
encoded as a vector (e1, . . . , eN), where τ is an enumerated set {t1, t2, . . . , tN },
and ei (i = 1, 2, . . . , N) is 1 when d is the i th element of τ , or it is 0 in other
cases.

– First-order set A first-order set s ⊆ τ (s is its name, and the power set of
τ is its type) is encoded as a vector (e1, . . . , eN), where τ is an enumerated
set {t1, t2, . . . , tN }, and each ei (i = 1, 2, . . . , N) is either 1 or 0. If ti (i =
1, 2, . . . , N) occurs in s, then ei will be 1. Otherwise, it will be 0.

– Boolean valueABoolean value is encoded as (1, 0)when it is true, or (0, 1)when
it is false.

5.4 Tendencymodels

The samples are encoded and used to train a tendency model. When training the
tendency model, the encodings of the samples are considered to be input signals.
Target signals of the positive samples are 1.00, and those of the negative samples are
0.00. The purpose of training is to make the tendency model be able to reflect the
likelihood that p

α−→ q is a valid transition in the original abstract machine M0. The
tendency model is a supervised learning model.

The tendency model can be a random forest that has a number of CARTs. The
CARTs are trained using variance-based node impurity (see Sect. 3.2.1) (Breiman
et al. 1984; Loh 2011). When training each CART, a certain number of training data
are randomly selected from all samples. The encodings of these data are considered
to be attributes for producing branches on the CART. Moreover, the CART is pruned
using a randomly selected limit of node impurity. When producing a branch, the node
impurity is decreasing. If the decreased node impurity is smaller than the limit, the
training on this branch will stop. After training the whole CART, it can be used to
predict SQE values. Given a transition p

α−→ q, the CART can find one and only
one leaf node that reflects the attributes of the transition. The leaf node will output
a predicted SQE value. As there are a number of CARTs in the random forest, the
average of their outputs is the SQE value of the transition.

Moreover, the tendency model can be a feed-forward neural network, such as a
logistic model and a residual network (see Sect. 3.2.2) (Cox 1958; He et al. 2016).
Figure 4 shows the architecture of the feed-forward neural network as a tendency
model. The model is able to take a transition as the input signal and output the SQE

123

672 Automated Software Engineering (2019) 26:653–704

Fig. 4 The feed-forward neural
network as a tendency model

value of the transition. Firstly, the transition is encoded as an N-dimensional vector via
the encoder. Then the N-dimensional vector is expanded to a K-dimensional vector
via the K × K linear layer, where K is a predefined dimensionality. The equation1

of the linear layer is simply y = W · x + b. Next, the K-dimensional vector is
propagated through a number of residual building blocks that each one consists of a
K × ReLU Layer and a shortcut connection (denoted by “+”). The equations of the
residual building blocks are y = relu(W · x + b) + x and relu(u) = max(0, u)

(Glorot et al. 2011). Finally, the propagated K-dimensional vector is converted to
an M-dimensional vector via the K × M logistic layer, where M is the number of
operations in the original abstract machine. The equations of the logistic layer are
y = logistic(W · x + b) and logistic(u) = 1/(1 + e−u). There are M elements
in the output vector. Each element is the SQE value of the corresponding operation.
The above model is a residual network for computing SQE values. Particularly, if the
linear layer and the residual building blocks are removed, and the last layer is an N ×
M logistic layer, then the model becomes a logistic model. Stochastic gradient descent
is used to train the residual network and the logistic model (Bottou 2012).

1 In the following equations, x is an input vector, y is an output vector, W is a weight matrix, and b is a
bias vector.

123

Automated Software Engineering (2019) 26:653–704 673

Fig. 5 The architecture of the B-repair system

6 The implementation of B-repair

Sections4 and5 has provided the theory of B model repair. Based on the theory, B-
repair has been implemented as a tool that consists of three modules, i.e., the learning
module, the isolation & revision module and the repair module, as shown in Fig. 5.

123

674 Automated Software Engineering (2019) 26:653–704

6.1 The learningmodule

The input of the learning module is a faulty abstract machine, and the output is a
trained tendency model, such as a logistic model, a residual network and a random
forest. The algorithms of logistic models and residual networks are described in Sects.
3.2.2 and5.4, and the algorithms of random forests are described in Sects. 3.2.1 and
5.4. Note that only one of the three tendency models is outputted according to users’
choice. This module consists of the four submodules listed below.

– Sampling machine generator It is used to generate sampling machines that allow
the model checker to derive state transitions within the scope of major sampling
or additional sampling.

– Model checker The ProB model checker (Leuschel and Butler 2008) can
compute state graphs for the sampling machines and output available state tran-
sitions in the state graph. These state transitions are considered to be transition
samples.

– Transition encoder It is the implementation of the encoding functions described
in Sect. 5.3. It is used to vectorise the transitions samples.

– Tendency model trainer It includes a random forest trainer and a neural net-
work optimiser. They are the implementation of the training algorithms described
in Sects. 3.2.1, 3.2.2 and5.4. The trainer is able to train three kinds of ten-
dency models, i.e., random forests of CARTs, logistic models and residual
networks.

6.2 The isolation & revisionmodule

The input of the isolation & revision module is the faulty abstract machine, and the
output includes an isolation repair and revision repairs. This module consists of the
four submodules listed below.

– Model checker The ProB model checker (Leuschel and Butler 2008) can compute
a state graph for an abstract machine and check invariants, assertions and liveness
of states. If a faulty state is detected, it will be annotated.

– Isolation generator It generates an isolation repair for the annotated faulty state
using Eqs. (5) and (6).

– Constraint generator It generates revision constraints IC ∧ AC ∧ LC ∧ DC
(see Sect. 4.3) for the annotated faulty state. These constraints are of the form of
B specifications that can be directly analysed using the constraint solver.

– Constraint solver The SMT solver of ProB (Krings and Leuschel 2016) can com-
pute solutions under the revision constraints. Then the solutions are converted to
revision repairs using Eqs. (7) and (8).

6.3 The repair module

The input of the repair module includes the trained tendency model, the faulty abstract
machine, the isolation repair and the revision repairs. The trained tendency model is

123

Automated Software Engineering (2019) 26:653–704 675

a logistic model, a residual network or a random forest. Note that only one of the
three tendency models is used during each repair process. Users need to choose an
appropriate tendency model before starting the repair process. The output is a repaired
abstract machine. This module consists of the five submodules listed below.

– Repair encoder It can vectorise the repairs using the encoding functions described
in Sect. 5.3. Its input is the isolation repair and the revision repairs, and its output
is a list of repair features.

– Quality estimator It computes the SQEs of repairs using the tendency model and
Eqs. (20) and (21). Its input includes the list of repair features and the trained
tendency model, and its output is a list of SQEs.

– Sorting function It sorts the repairs according to their SQEs. The input of this
function is the list of SQEs, and the output is a list of repair rankings.

– Repair selector It includes amanual selector and an automatic selector. Themanual
selector enables users to view the detected faulty state, the repairs and their SQEs,
so that the users can select a suitable repair. The automatic selector always selects
the repair with the highest ranking.

– Machine rewriter It can automatically apply a selected repair to an appropriate
position of the faulty abstractmachine, and the result is a repaired abstractmachine.

The three modules, including the learning module, the isolation & revision module
and the repair module, construct the whole B-repair system. In the following two
sections, the implemented B-repair system is evaluated via a case study and a number
of experiments.

7 Case study

In this section, an “Accommodation Management System” example illustrates how
B-repair repairs a faulty abstract machine. According to Sect. 6, the tendency model
can be a logistic model, a residual network or a random forest of CARTs. As the
interpretability of CARTs is higher than that of logistic models and residual networks,
we use CARTs to explain how the tendency model works for B-repair. The example
demonstrates the following.

– The tendency model can learn the post-condition of an operation.
– The tendency model can learn the relation between the pre- and post-conditions
of an operation.

– B-repair can repair the faulty abstract machine using I solation, Revision and
the tendency model.

7.1 The original abstract machine and the state transitions

The accommodation management system is modelled as the following abstract
machine.

123

676 Automated Software Engineering (2019) 26:653–704

MACHINE
Accommodation_Management_System

SETS
S = {TV, Fridge, SONY_TV, SONY_PS3}

VARIABLES
Attr

INVARIANT
Attr : POW(S) &
not(TV : Attr & SONY_TV : Attr)

INITIALISATION
Attr := {}

OPERATIONS
Add_Fridge =
PRE not(Fridge : Attr)
THEN Attr := Attr \/ {Fridge}
END ;

Add_SONY =
PRE not(SONY_TV : Attr) & not(SONY_PS3 : Attr)
THEN Attr := Attr \/ {SONY_TV,SONY_PS3}
END ;

Add_TV =
PRE not(TV : Attr)
THEN Attr := Attr \/ {TV}
END ;

Remove_Fridge =
PRE Fridge : Attr
THEN Attr := Attr − {Fridge}
END ;

Remove_SONY =
PRE SONY_TV : Attr & SONY_PS3 : Attr
THEN Attr := Attr − {SONY_TV,SONY_PS3}
END ;

Remove_TV =
PRE TV : Attr
THEN Attr := Attr − {TV}
END

END

The abstract machine has a variable Attr that is a set of attributes owned by a room,
and the attributes are of appliances such as a Fridge, a normal TV and a suite of
a SONY Play Station 3 (PS3) and a SONY TV. Moreover, it has three operations,
including Add_Fridge, Add_SONY and Add_T V that can add attributes and three
operations, including Remove_Fridge, Remove_SONY and Remove_T V that can
remove attributes. For instance, if the current value of Attr is {T V }, then Add_Fridge
can change it to {T V , Fridge}, and Remove_T V can further change it to {Fridge}.
Additionally, the abstract machine has an invariant requiring that the room does not
have both the normal TV and the SONY TV at the same time.

Table1 shows state transitions that can be derived using the operations of the abstract
machine. Each operation is of the form spre

α−→ spost , where α is an operation, spre is a
state satisfying the pre-condition of α, and spost is a state satisfying the post-condition
of α.

123

Automated Software Engineering (2019) 26:653–704 677

Table 1 State Transitions of the “accommodation management system” abstract machine

State Transition

{} Add_Fridge−−−−−−−−→ {Fridge}
{SONY_PS3} Add_Fridge−−−−−−−−→ {Fridge, SONY_PS3}
{} Add_SONY−−−−−−−−→ {SONY_T V , SONY_PS3}
{Fridge} Add_SONY−−−−−−−−→ {Fridge, SONY_T V , SONY_PS3}
{} Add_T V−−−−−−→ {T V }
{Fridge} Add_T V−−−−−−→ {T V , Fridge}
{Fridge} Remove_Fridge−−−−−−−−−−−→ {}
{Fridge, SONY_PS3} Remove_Fridge−−−−−−−−−−−→ {SONY_PS3}
{Fridge, SONY_T V , SONY_PS3} Remove_SONY−−−−−−−−−−→ {Fridge}
{SONY_T V , SONY_PS3} Remove_SONY−−−−−−−−−−→ {}
{T V } Remove_T V−−−−−−−−→ {}
{T V , Fridge} Remove_T V−−−−−−−−→ {Fridge}
. . .

(totally 30 state transitions)

Table 2 State transitions of Add_SONY

spre spost Feature

{} {SONY_PS3, SONY_T V } [−1,−1,−1,−1,−1, 1, 1, −1]
{Fridge} {Fridge, SONY_PS3, SONY_T V } [1,−1,−1,−1, 1, 1, 1,−1]
{T V } {SONY_PS3, SONY_T V , T V } [−1,−1,−1, 1, −1, 1, 1, 1]
{T V , Fridge} {Fridge, SONY_PS3, SONY_T V , T V } [1,−1,−1, 1, 1, 1, 1, 1]

7.2 Training a decision tree

This section uses the “Add_SONY ” operation and a decision tree as an example to
explain how to train a tendency model and what can be learnt by the tendency model.

Table2 shows state transitions available for Add_SONY . Each operation is of

the form spre
Add_SONY−−−−−−−→ spost , where spre is a state satisfying the pre-condition of

Add_SONY , and spost is a state satisfying the post-condition of Add_SONY . Each
state consists of only one variable Attr . The elements of the set Attr and their posi-
tion annotations are Fridge/0, SONY_PS3/1, SONY_T V /2 and T V /3, where
x/p means that x is an element, and p is its position annotation. Using these position
annotations, each state can be encoded as a four-dimensional vector (v0, v1, v2, v3).
If x ∈ Attr , then vp = 1. Otherwise, vp = −1. Both spre and spost can be vec-
torised, and they can be concatenated as a state feature. For instance, {Fridge}

123

678 Automated Software Engineering (2019) 26:653–704

Table 3 Training examples Feature (V) Label

Positive training examples

[−1,−1,−1,−1,−1, 1, 1, −1] Yes

[1,−1,−1,−1, 1, 1, 1,−1] Yes

[−1,−1,−1, 1, −1, 1, 1, 1] Yes

[1,−1,−1, 1, 1, 1, 1, 1] Yes

Negative training examples

[1,−1,−1,−1, −1, 1, 1, −1] No

[1,−1,−1, 1, −1, 1, 1, 1] No

[1,−1,−1,−1, 1, 1, 1, 1] No

[1,−1,−1, 1, 1, 1, 1,−1] No

[−1,−1,−1,−1,−1, 1,−1,−1] No

[−1,−1,−1,−1,−1, −1, 1,−1] No

[1,−1,−1,−1, 1, 1, −1,−1] No

[1,−1,−1,−1, 1,−1, 1, −1] No

can be encoded as (1,−1,−1,−1), and {Fridge, SONY_T V , SONY_PS3}
can be encoded as (1, 1, 1,−1), so that the feature of {Fridge} Add_SONY−−−−−−−→
{Fridge, SONY_T V , SONY_PS3} is [1,−1,−1,−1, 1, 1, 1,−1].

Table3 shows the training examples that are used to train the decision tree. The state
transitions in Table 2 are used to produce positive training examples. Each example is
of the form (U ,Yes), where U is the feature and is of the form [u0, u1, . . . , u7], and
Yes means that it is a positive training example. Moreover, negative training examples
are produced by generating invalid state transition. Invalid state transitions are those
that cannot be derived by Add_SONY . For instance, {SONY_PS3} � {Fridge}
is an invalid state transition. Each negative training example is of the form (U , No),
where U is the feature and is of the form [u0, u1, . . . , u7], and No means that it is a
negative training example.

Figure6 shows how the decision tree learns the post-condition of the Add_SONY
operation. We use AttrPre and AttrPost to denote the attribute set Attr before and
after the execution of Add_SONY respectively. The post-condition of Add_SONY
is AttrPost = AttrPre ∪ {SONY_T V , SONY_PS3}. It implies that SONY_T V
and SONY_PS3 should be members of AttrPost . The first branch of the decision
tree learns to split the examples by SONY_PS3. If SONY_PS3 ∈ AttrPost is true,
the examples will be put into the left node. Otherwise, they will be put into the right
node. As a result, two negative examples are in the right node, and the remaining
examples are in the left node. Similarly, the second branch of the decision tree learns
to split the examples by SONY_T V . If SONY_T V ∈ AttrPost is true, the examples
will be put into the left node. Otherwise, they will be put into the right node. As
a result, two negative examples are in the right node, and the remaining examples
are in the left node. Thus, the resulting tree is able to find examples that satisfy
SONY_PS3 ∈ AttrPost ∧ SONY_T V ∈ AttrPost . As this condition can be implied

123

Automated Software Engineering (2019) 26:653–704 679

∈

∈

Fig. 6 Learning the post-condition of Add_SONY

by the post-condition of Add_SONY , it means that the decision tree has partially
learnt the post-condition.

Figure7, which is the subsequence of Fig. 6, shows how the decision tree continues
to learn the relation between the pre- and post-conditions of the Add_SONY opera-
tion. The pre-condition is¬(SONY_T V ∈ AttrPre)∧¬(SONY_PS3 ∈ AttrPost),
and the post-condition is AttrPost = AttrPre ∪ {SONY_T V , SONY_PS3}. They
imply that the operation does not change the status of Fridge. State transitions pro-
duced by the operation should satisfy either Fridge ∈ AttrPre ∧ Fridge ∈ AttrPost
or Fridge /∈ AttrPre∧Fridge /∈ AttrPost . The first branch of the decision tree learns
to split the examples by AttrPre. If Fridge ∈ AttrPre is true, the examples will be put
into the left node. Otherwise, they will be put into the right node. The second branch
of the decision tree learns to split the examples by AttrPost . If Fridge ∈ AttrPost
is true, the examples will be put into the left node. Otherwise, they will be put into
the right node. Thus, the resulting decision tree is able to find examples that satisfy
Fridge ∈ AttrPre ∧ Fridge ∈ AttrPost . As mentioned before, this condition can
be implied by the pre- and post-conditions of the operation, which means that the
decision tree has partially learnt the relation between the pre- and post-conditions.

123

680 Automated Software Engineering (2019) 26:653–704

∈

∈

Fig. 7 Learning the relation between the pre- and post-conditions of Add_SONY

7.3 Ranking suggested repairs using a random forest

A random forest of CARTs can be trained using the training algorithms described in
Sect. 3.2.1. Different from the single CART in Sect. 7.2, the random forest is a set of
trees with randomly selected node impurities and training data. The advantage of the
random forest is that it is more robust than the single CART. When training a single
CART, a few features of data may be omitted if the node impurity is too low, or a
few features may dominate decision processes if the node impurity is too high. To
overcome this phenomenon, many CARTs with randomly selected node impurities
are used instead of a single one. Moreover, if all training data are used to train a single
CART, it may suffer from overfitting. To ease the overfitting, the CARTs are trained
using randomly selected subsets of the data instead of all the data. After training,
the random forest can provide SQE values for repair ranking, and each SQE value is
computed by averaging outputs of the CARTs.

Table4 shows suggested repairs for the operation Add_SONY and their SQE
values provided by a trained random forest with 256 CARTs. In order to repair
Add_SONY , two epochs of repairs were required. During the first epoch, the

faulty state transition was {T V , Fridge} Add_SONY−−−−−−−→ {T V , Fridge, SONY_T V ,

SONY_PS3}. The best repair was a revision repair changing {T V , Fridge,
SONY_T V , SONY_PS3} to {Fridge, SONY_T V , SONY_PS3}. The second
best repair was a revision repair removing both T V and Fridge. The first one was
better than the second one, because Add_SONY should not change the status of

Fridge. During the second epoch, the faulty state transition was {T V } Add_SONY−−−−−−−→
{T V , SONY_T V , SONY_PS3}. In this case, the best repair was a revision repair
removing T V from {T V , SONY_T V , SONY_PS3}.

123

Automated Software Engineering (2019) 26:653–704 681

Table 4 Suggested repairs for Add_SONY

Revision SQE

Epoch 1—faulty state transition

{T V , Fridge} Add_SONY−−−−−−−−→ {T V , Fridge, SONY_T V , SONY_PS3}
{Fridge, SONY_T V , SONY_PS3} 0.555

{SONY_T V , SONY_PS3} 0.505

—Borderline of isolation— 0.500

{Fridge, SONY_T V } 0.262

{SONY_T V } 0.231

{T V , Fridge, SONY_PS3} 0.087

{T V , SONY_PS3} 0.087

{SONY_PS3} 0.075

{Fridge, SONY_PS3} 0.067

{T V , Fridge} 0.012

{T V } 0.012

{Fridge} 0.012

{} 0.012

Epoch 2—faulty state transition

{T V } Add_SONY−−−−−−−−→ {T V , SONY_T V , SONY_PS3}
{SONY_T V , SONY_PS3} 0.598

—Borderline of isolation— 0.500

{Fridge, SONY_T V , SONY_PS3} 0.497

{SONY_T V } 0.274

{Fridge, SONY_T V } 0.239

{T V , SONY_PS3} 0.106

{SONY_PS3} 0.102

{T V , Fridge, SONY_PS3} 0.059

{Fridge, SONY_PS3} 0.055

{} 0.028

{T V } 0.024

{T V , Fridge} 0.016

{Fridge} 0.016

Table5 shows suggested repairs for the operation Add_T V and their SQE val-
ues provided by the random forest. In order to repair Add_T V , two more epochs of
repairs were required. The results of the third and fourth epochs were similar to those
of the first and second epochs. During the third epoch, the best repair was a revision
repair removing SONY_T V from {T V , Fridge, SONY_T V , SONY_PS3}. Dur-
ing the fourth epoch, the best repair was a revision repair removing SONY_T V
from {T V , SONY_T V , SONY_PS3}. Both repairs only changed the status of
SONY_T V , but did not influence other attributes.

123

682 Automated Software Engineering (2019) 26:653–704

Table 5 Suggested repairs for Add_T V

Revision SQE

Epoch 3—faulty state transition

{Fridge, SONY_T V , SONY_PS3} Add_T V−−−−−−→ {T V , Fridge, SONY_T V , SONY_PS3}
{T V , Fridge, SONY_PS3} 0.519

—Borderline of isolation— 0.500

{T V , SONY_PS3} 0.410

{T V , Fridge} 0.398

{T V } 0.324

{Fridge, SONY_T V } 0.019

{SONY_T V , SONY_PS3} 0.015

{SONY_T V } 0.015

{Fridge, SONY_T V , SONY_PS3} 0.011

{Fridge} 0.011

{Fridge, SONY_PS3} 0.008

{} 0.008

{SONY_PS3} 0.004

Epoch 4—faulty state transition

{SONY_T V , SONY_PS3} Add_T V−−−−−−→ {T V , SONY_T V , SONY_PS3}
{T V , SONY_PS3} 0.515

—Borderline of isolation— 0.500

{T V } 0.422

{T V , Fridge, SONY_PS3} 0.371

{T V , Fridge} 0.285

{SONY_T V , SONY_PS3} 0.019

{SONY_T V } 0.019

{} 0.011

{Fridge, SONY_T V } 0.011

{SONY_PS3} 0.008

{Fridge, SONY_T V , SONY_PS3} 0.008

{Fridge} 0.008

{Fridge, SONY_PS3} 0.004

7.4 Results of repair

The faulty operations, including Add_SONY and Add_T V , could be repaired by the
best revision repairs. The repaired operations are shown below.

123

Automated Software Engineering (2019) 26:653–704 683

Add_SONY =
PRE not(SONY_TV : Attr) & not(SONY_PS3 : Attr)
THEN Attr := Attr \/ {SONY_TV,SONY_PS3} ;
IF Attr = {TV,Fridge,SONY_TV,SONY_PS3}
THEN Attr := {Fridge,SONY_TV,SONY_PS3}
END ;
IF Attr = {TV,SONY_TV,SONY_PS3}
THEN Attr := {SONY_TV,SONY_PS3}
END

END ;
Add_TV =
PRE not(TV : Attr)
THEN Attr := Attr \/ {TV} ;
IF Attr = {TV,Fridge,SONY_TV,SONY_PS3}
THEN Attr := {TV,Fridge,SONY_PS3}
END ;
IF Attr = {TV,SONY_TV,SONY_PS3}
THEN Attr := {TV,SONY_PS3}
END

END ;

The best revision repairs were chosen according to the best SQE values in
Tables4 and 5. Two revision repairs were applied to Add_SONY , changing
{T V , Fridge, SONY_T V , SONY_PS3} to {Fridge, SONY_T V , SONY_PS3}
and changing {T V , SONY_T V , SONY_PS3} to {SONY_T V , SONY_PS3}. The
meaning of the repaired operation was that if Add_SONY was triggered, a SONYTV
and a SONY PS3 would be added into the room, and if a TV was in the room, the TV
would be removed. Moreover, two revision repairs were applied to Add_T V , chang-
ing {T V , Fridge, SONY_T V , SONY_PS3} to {T V , Fridge, SONY_PS3} and
changing {T V , SONY_T V , SONY_PS3} to {T V , SONY_PS3}. The meaning of
the repaired operation was that if Add_T V was triggered, a TV would be added into
the room, and if a SONYTVwas in the room, the SONYTVwould be removed. After
repairing Add_SONY and Add_T V using the revision repairs, the system was free
of faults.

Moreover, the faulty operations could be repaired by the isolation repairs. The
repaired operations are shown below.

Add_SONY =
PRE not(SONY_TV : Attr) & not(SONY_PS3 : Attr) &
not(Attr = {TV,Fridge}) &
not(Attr = {TV})

THEN Attr := Attr \/ {SONY_TV,SONY_PS3}
END ;

Add_TV =
PRE not(TV : Attr) &
not(Attr = {Fridge,SONY TV,SONY PS3}) &
not(Attr = {SONY TV,SONY PS3})

THEN Attr := Attr \/ {TV}
END ;

According to Tables4 and 5, the isolation repairs were not the best repairs, because the
SQE values of the isolation repairs were slightly lower than those of the best revision
repairs. Nevertheless, users could manually select the isolation repairs and ignore the

123

684 Automated Software Engineering (2019) 26:653–704

revision repairs. Two isolation repairs could be applied to Add_SONY , disabling the
faulty transitions from {T V , Fridge} and {T V }. The meaning of the repaired opera-
tion was that Add_SONY could be triggered only if there was no TV, SONY TV and
SONY PS3 in the room, and after triggering Add_SONY , a SONY TV and a SONY
PS3 would be added into the room. Moreover, two isolation repairs were applied to
Add_T V , disabling the faulty transitions from {Fridge, SONY_T V , SONY_PS3}
and {SONY_T V , SONY_PS3}. The meaning of the repaired operation was that
Add_T V could be triggered only if there was no TV and SONY TV in the room,
and after triggering Add_T V , a TV would be added into the room. After repairing
Add_SONY and Add_T V using the isolation repairs, the system was free of faults.

In summary, the case study has shown that B-repair is able to repair the “Accommo-
dationManagement System” abstractmachine.During the repair process, the tendency
model was able to learn the post-condition of the operation and the relation between
the pre- and post-conditions of the operation. Using the learnt features, the tendency
model was able to provide SQE values of the repairs suggested by I solation and
Revision, and the repairs that fitted the learnt features could gain higher SQE values
than the others. By applying the repairs with high SQE values to the faulty operations,
B-repair was able to change the original machine to a new machine that was free of
faults and could reasonably maintain the features of the original machine. Moreover,
we explained how the CARTs worked for B-repair, but did not provide an explanation
for neural networks such as logistic models and residual networks, because the inter-
pretability of CARTs is the highest one. The interpretability of the neural networks,
however, is not as high as that of CARTs, so that a single case study is not sufficient to
demonstrate whether or not the neural networks are efficient for B-repair. In order to
demonstrate this point, in the next section, large scale experiments are used to evaluate
the performance of the neural networks and CARTs.

8 Evaluation

In this section, we evaluate the overall performance of B-repair using a number of
experiments. This section consists of two subsections: (1) primary evaluation using
our own dataset and (2) further evaluation using public datasets.

8.1 Primary evaluation

In this subsection, we evaluate the performance of B-repair using four categories of
models and focus on answering the following questions.

– RQ1: How accurately can the B-repair method repair models?
– RQ2: How well does the B-repair method repair different kinds of faults?
– RQ3: Do the types of tendency models influence results of repair?
– RQ4: Do the differences introduced by faults influence results of repair?

Experimental settings and results are presented in the following two subsections.

123

Automated Software Engineering (2019) 26:653–704 685

8.1.1 Settings

The experiments were conducted on a machine with Intel(R) Core(TM) i5-4670 CPU
(4 cores, 3.40 GHz) and 8GB memories. The goal of the experiments was to count
the accuracies of repair. In order to establish an objective criterion of accuracies, the
following methodology was used. Firstly, a correct system A was built, and it was
considered a standard answer that had met all requirements. Then a number of faults
were injected into A, changing it to a faulty system P . Next, B-repair was used to repair
P , resulting in a repaired system P ′. Finally, P ′ was compared with A. Transitions in
P ′ would be considered accurate if theywere exactly the same as those in A. Otherwise,
they would be considered inaccurate. The dataset2 contained four subsets that were
intentionally designed for the evaluation of B-repair. The motivation of designing our
own datasets was that there were no existing datasets that could be directly used to
evaluate B-repair. We searched others’ studies related to B-model repair, but only
found a well-formed model in the work by Schmidt et al. (2018). (This model is tested
in Sect. 8.2.) Thus, we designed new models to evaluate B-repair. We tried our best
to include essential features of the B-method into these models, and their descriptions
were listed below.

– Accommodationmanagement system (AMS) It was a reservation system for accom-
modations. Users could add new appliances into a room or remove existing
appliances from the room. Moreover, the price of the room was calculated accord-
ing to the appliances. This model included 2 variables, 3 invariants, 1 assertion
and 22 operations with distinct elements, set computations, integer computations,
Boolean computations, pre-conditioned substitutions and conditional substitu-
tions.

– Lift control system (LCS) It was a lift controller that enables the lift to move
up, move down, stop moving, open its door and close its door according to sig-
nals sent by users. This model included 7 variables, 7 invariants, 8 assertions
and 8 operations with distinct elements, set computations, integer computations,
Boolean computations, existential quantifications, pre-conditioned substitutions,
conditional substitutions and non-deterministic substitutions.

– Tennis player agent (TPA) It was an agent of tennis players that can use different
actions such as serving, receiving, running and jumping. This model included
9 variables, 13 invariants, 3 assertions and 8 operations with distinct elements,
set computations, integer computations, Boolean computations, pre-conditioned
substitutions, conditional substitutions and non-deterministic substitutions.

– Course management system (CMS) It was a course management system guiding
students to arrange select courses and check if the students met the requirement of
each selected course. This model included 5 variables, 7 invariants, 5 assertions,
12 mappings and 6 operations with distinct elements, set computations, integer
computations, Boolean computations, existential and universal quantifications,
pre-conditioned substitutions and non-deterministic substitutions.

Each subset contained nine faulty state transition systems and a correct one. The faulty
state transition systems were made by injecting faults into the correct one. Injected

2 The dataset is available at https://github.com/cchrewrite/B-ALTC-36.

123

https://github.com/cchrewrite/B-ALTC-36

686 Automated Software Engineering (2019) 26:653–704

faults included invariant violations (IV), assertion violations (AV) and deadlocks (DL),
and these faults made the faulty state transition systems partially different from the
correct one. The difference between two state transition systems was computed via

Di f f (s1, s2) = Card(s1 − s2) + Card(s2 − s1) (35)

where s1 and s2 were sets containing all transitions of the two systems respectively,
“−” was used to compute the difference between two sets, and Card(s) was the
cardinality of a set s. For each type of faults, three faulty state transition systems were
made, and the difference between each faulty system and the correct onewasmore than
1%, 5% or 10% of the number of available transitions in the correct one. Each faulty
system was repaired using B-repair and different tendency models including logistic
models (Logistic), residual networks (ResNet) and random forests of classification and
regression trees (CART). The correct state transition systemwas considered a standard
answer.When repairing a faulty system, the goal of repairwas to remove all faults in the
system and make the difference between the repaired system and the standard answer
as small as possible. After repairing each system, the difference between the repaired
system and the standard answer was computed, and the performance of B-repair was
measured via the accuracy of repair

Acc(sa, s f , sr) = Max(0, 1 − Di f f (sa, sr)/Di f f (sa, s f)) (36)

where sa was the standard answer, s f was the faulty system, sr was the repaired system,
and Max(x, y)was the maximum of x and y. Particularly, the maximum function was
used to avoid negative numbers.

8.1.2 Results

Table6 shows the results of evaluation. The first column of the table shows the name
of each correct state transition system and its size, and the size is measured by the
number of transitions in the system. The second column shows fault types. The third
column shows the difference [i.e., Eq. (35)] between each faulty system and the stan-
dard answer, and the remaining columns show the difference between each repaired
system and the standard answer. Particularly, the bold results have led to accura-
cies more than 90%. The results revealed that after the systems were repaired, many
repaired transitions could fit those of the standard answer. Particularly, a significant
number of repaired systems could perfectly fit the standard answer, and many repaired
systems could partially fit the standard answer. Although many transitions did not
fit the standard answer, they were still correct, because there was only one standard
answer, but there might be many alternatives that can meet the users’ requirements.
These available answers, however, did not reduce the difference. Moreover, the sys-
tems with deadlocks were relatively easy to be repaired. After removing deadlocks
from these systems, their differences were reduced to zero. In most of these systems,
the pre-conditions of operations were relatively weak, so that there were only a few
possible deadlock states in these systems. As a result, the tendency models had not
learnt strong information to support revision repairs, so that they tended to suggest

123

Automated Software Engineering (2019) 26:653–704 687

Table 6 Results of repair

System Fault Difference Difference After Repair

<Size> Type Before repair Logistic ResNet CART

AMS <6424> IV 84 42 1 0

396 198 61 24

844 422 221 422

AV 114 56 0 57

445 141 121 141

652 261 262 262

DL 163 0 0 0

375 28 16 0

661 49 11 70

LCS <6768> IV 70 66 0 0

486 456 190 0

1004 980 4 0

AV 96 86 23 16

444 341 0 334

1266 436 8 1

DL 80 0 0 0

448 0 0 0

926 0 0 0

TPA <11,386> IV 128 64 48 46

640 320 446 165

2240 1120 1172 1120

AV 248 3130 94 35

737 3805 384 0

3504 2356 131 2356

DL 194 138 138 138

610 0 0 0

1040 448 448 448

CMS <11,402> IV 265 140 140 140

676 440 168 0

1320 790 683 480

AV 430 11,400 233 226

860 5331 1157 442

1314 1717 4056 1077

DL 198 0 198 195

648 0 0 0

1296 0 0 0

123

688 Automated Software Engineering (2019) 26:653–704

Fig. 8 Error bars of repair accuracies with respect to tendency models

isolation repairs. For the accommodation management system, the lift control system
and the course management system, isolation repairs could remove their deadlocks
and reduce their difference to zero. For the tennis player agent, however, isolation
repairs were not able to reduce the difference to zero in most cases, because it required
revision repairs. Additionally, the difficulties of repairing different systems are differ-
ent from each other. For instance, repairing the tennis player agent is more difficult
than repairing the other systems.

Figure8 shows error bars of repair accuracies with respect to the tendency models.
The figures revealed that the CARTs had the best overall performance, and the residual
networks had the second best overall performance. In comparison to the residual
networks and the CARTs, the logistic models had the worst performance. This was
probably because it was difficult for the logistic models to model complex relations.
Revisit the equations of logistic models in Sect. 3.2.2. The equations include a linear
function [i.e., A · x + b in Eq. (3)] computing the weighted sum of features and a
logistic function [i.e., Eq. (2)] mapping the sum to a real number between 0 and 1,
meaning that the modelling ability of logistic models is mainly depended on the linear
function. Different from the logisticmodels, the residual building blocks [(i.e., Eq. (4)]
is amodel that consists ofmanyweighted sum computations, nonlinear activations and
short-cut connections, so that they have the ability to model more complex relations.
As logical relations in the state transition systemsmight be complex, this was probably
the reason why the residual networks had better performance than the logistic models.
Additionally, the CARTs were tree structures with attributes of data, so that they were
able to model complex relations as well, as explained in Sect. 7.2. This might be the
reason why the CARTs had better performance than the logistic models.

Figure9 shows error bars of repair accuracies with respect to the differences before
repair. When the tendency models were the residual networks, the best accuracies
occurred in the “> 10%” cases. When the tendency models were CARTs, the best

123

Automated Software Engineering (2019) 26:653–704 689

Fig. 9 Error bars of repair accuracies with respect to the differences before repair

Fig. 10 Error bars of repair accuracies with respect to fault types

accuracies occurred in the “> 5%” case. When the tendency models were the logistic
models, the accuracies were lower than their counterparts. This phenomenon meant
that the differences were a factor that impacts the accuracies. Moreover, the residual
networkswere able to dealwithmore differences than theCARTs and the logisticmod-
els. Additionally, although the accuracy of CARTswas decreasingwhen the difference
increased, the accuracy was significantly higher than that of the logistic models.

Figure10 shows error bars of repair accuracies with respect to fault types.When the
tendency models were the logistic models, the accuracies of removing deadlocks were
significantly higher than those of removing invariant violations and assertion viola-
tions. However, when the tendencymodels were the residual networks and CARTs, the
accuracies of removing the three types of faults were close to each other. The above
phenomenon indicated that the residual networks and the CARTs had significantly
better performance than the logistic models when dealing with invariant violations
and assertion violations. A possible explanation for this phenomenon was that the
logistic models had not learnt strong information to suggest revision repairs for these
deadlocks, so that they tended to suggest isolation repairs. The effect of isolation
repairs and revision repairs were different, as the isolation repairs did not create new
transitions, while the revision repairs did. As a result, the new transitions decreased
the repair accuracy. If the revision repairs fitted the standard answer, the accuracy
would increase, and sometimes the increase would be significant. However, if the
revision repairs did not fit the standard answer, new transitions that would decrease
the accuracy might be created. By contrast, the isolation repairs would not create new

123

690 Automated Software Engineering (2019) 26:653–704

transitions, but theymight remove existing and correct transitions. Thus, both isolation
and revision had side-effects.

In summary, we have the following findings that can answer the research questions
(i.e., RQ1 to RQ4) at the beginning of Sect. 8.

– RQ1: The average accuracy of repair could reach 70% if the tendency models
were the residual networks and the CARTs, and the average accuracy of repair
could reach 50% if the tendency models were the logistic models. For different
state transition systems, the accuracies of repair were different. In many cases, the
accuracies of repair could reach a level close to 100% if the tendency models were
the residual networks and the CARTs.

– RQ2: If the tendency models were the residual networks and the CARTs, the
accuracies of repair could surpass 60% when dealing with deadlocks, invariant
violations and assertion violations. If the tendencymodelswere the logisticmodels,
the accuracy could surpass 80%when repairing deadlocks, but the accuracies were
lower than 40% when dealing with invariant violations and assertion violations.

– RQ3: The types of tendency models could influence the results of repair. The
residual networks and CARTs had better performance than the logistic models.
The residual networks had slightly better performance than the CARTs.

– RQ4: The differences introduced by faults could influence the results of repair.
The difficulty of repair was rising when the number of differences increased. The
residual neural networks were able to deal with more differences than the CARTs
and the logistic models, and the CARTs were able to deal with more differences
than the logistic models.

8.2 Further evaluation on public datasets

In this subsection, we evaluate B-repair on a number of public datasets that have been
used in previous studies on the B-method. We focuses on answering more specific
research questions as follows.

– RQ5: How accurately can the B-repair method repair public models?
– RQ6:Does the mechanism of tendency models outperform a baseline mechanism
(i.e., random choices without using any tendency models)?

– RQ7: Are the top-ranked repairs more accurate than the other repairs?
– RQ8: Is one type of repair more effective on a particular system?

8.2.1 Settings

Datasets.To the best of our knowledge, therewere no benchmark datasets that could be
directly used to evaluateBmodel repair tools.Nevertheless, a number of public datasets
of B models, which had been used in a number of previous studies, were available in
the ProB Public Examples Repository.3 We examined all abstract machines in the “B”
directory and selected representative machines via the following steps.

3 The ProB Public Examples Repository was downloaded from https://www3.hhu.de/stups/downloads/
prob/source/.

123

https://www3.hhu.de/stups/downloads/prob/source/
https://www3.hhu.de/stups/downloads/prob/source/

Automated Software Engineering (2019) 26:653–704 691

– Machines with invariants were selected, because the constraint solvingmechanism
of the repair search process must be based on invariants.

– ProBwas used to verify themachines.Well-formedmachines, which were without
any invariant (and assertion) violations, deadlock states and syntax errors, were
selected.

– ProB was used to count the number of transitions in each machine. Machines that
derived finite state spaces within 30,000 ms and had at least 100 transitions were
selected.

– Datatypes of the machines were analysed, and machines without any higher-order
sets and dynamic variables were selected, because our algorithms focused on first-
order sets and static variables.

– If a number of machines were repetitions or approximations of each other, then
only one of them was selected.

– In order to balance the number of tests in each subject and avoid memory exhaus-
tion, we changed the scale of machines when necessary. All resulting machines
must have at least 500 and at most 10,000 deterministic transitions.

– Machines that included other machines were excluded, because these machines
were mostly parts of large systems, but system level repair was out of the scope
of our study.

– Machines without actual significance were excluded.

Machines that satisfy all the above conditions were selected, leading to 15 representa-
tive models. Table7 shows these models with subject IDs, lines of code (LOC), scales
(i.e., the number of states and transitions), source file names in the public datasets and
descriptions. These models were all correct models without any invariant violations,
assertion violations or deadlocks. In order to evaluate B-repair, we created 10 faulty
models by randomly seeding 200 faulty transitions into each correct model. Among
the faulty transitions, half of them were made by randomly replacing the post-states
of 100 correct transitions with faulty states, and the remaining half of them were made
by randomly inserting 100 faulty transitions. As a result, 150 faulty models were cre-
ated, and each of them was expected to be repaired via 100 revision repairs and 100
isolation repairs. Standard answers of repair were those that can make each repaired
model derive the same state diagram as the correct model.

In order to make faulty models and standard answers, we developed an automatic
fault injection program that can randomly inject faulty transitions into a given model.
It can inject two types of faulty transitions into a model M . The first type of faulty
transitions corresponds to revision repairs, and these transitions are injected intoM via
the following steps. Firstly, it randomly selects a correct transition p

α−→ q in the state
graph of M , where p is a pre-state, q is a post-state and α is an operation. Secondly,
it analyses M’s invariants, assertions and pre-conditions and finds a faulty state r .
Thirdly, it replaces p

α−→ q with p
α−→ r . Lastly, a standard answer [“revision”, p α−→

r , q] is produced. The second type of faulty transitions corresponds to isolation repairs,
and these transitions are injected into M via the following steps. Firstly, it analyses
M’s invariants, assertions and pre-conditions and finds a faulty state t . Secondly, it
randomly selects a correct state s and an operation γ in the state graph of M . Thirdly,

123

692 Automated Software Engineering (2019) 26:653–704

Table 7 Public models

Subject LOC Scale Source file name Description

S-01 47 3587 ParallelModelCheckTest.mch Two parallel counters

S-02 48 7705 POR_TwoThreads_WithSync.mch A process with two threads

S-03 55 8705 progress.mch Managing employees

S-04 56 7797 monitor2.mch Monitoring users of a room

S-05 60 7220 InvolvedSequences2.mch Sequences of operations

S-06 75 9480 club.mch Managing club members

S-07 85 3587 ADD4.mch Testing a calculator

S-08 85 8311 TestBZTT3.mch Array assignments

S-09 90 13,533 scheduler6.mch A process scheduler

S-10 109 7732 BinomialCoefficientConcurrent.mch Binomial coefficients

S-11 119 7808 Lift2.mch A lift controller

S-12 203 1479 Mikrowelle.mch A microwave controller

S-13 211 1569 CSM.mch A Petri net model

S-14 215 14,403 GSM_revue.mch A file manager

S-15 482 27,056 Cruise_finite1.mch Volvo cruise controller

it adds a new transition s
γ−→ t . Lastly, a standard answer [“isolation”, s γ−→ t] is

produced.
Evaluation metrics As isolation and revision are different repair operators, they

need to be evaluated using different metrics. The effectiveness of isolation repairs is
evaluated using the Isolation Success Rate (ISR) that is defined as:

I SR = Card
(

SSugI so ∩ SAns
I so

)

/Card
(

SAns
I so ∪ SAns

I so

)

(37)

where SSugI so is a set containing all suggested isolation repairs, SAns
I so is a set containing

all standard answers of isolation repairs, and Card(S) is the cardinality of a set S.
The intuition of the above formula is that the higher ISR means that the more correct
isolation repairs are suggested. The ISR must satisfy 0 ≤ I SR ≤ 1. In the best case,
all suggested isolation repairs match the standard answers, so that the ISR is 1. In the
worst case, all suggested isolation repairs are different from the standard answers, or
no isolation repairs are suggested, so that the ISR is 0.

The effectiveness of revision repairs is evaluated using theRevisionValueAccuracy
(RVA) that is defined as:

RV A = NCor
Rev / N Ans

Rev (38)

where NCor
Rev denotes the number of correct values in suggested revision repairs with

reference to the standard answers, and N Ans
Rev denotes the total number of values in the

standard answers of revision repairs. The intuition of the above formula is that the
higher RVAmeans that the more values in faulty states are correctly revised. The RVA
must satisfy 0 ≤ RV A ≤ 1. In the best case, all revised values match the standard
answers, so that the RVA is 1. In the worst case, all revised values are different from the

123

Automated Software Engineering (2019) 26:653–704 693

standard answers, or no revision repairs are suggested, so that the RVA is 0. The reason
why the RVA is chosen to be an evaluation metric is that the RVA can measure the
distance between a partially correct repair and its answer. For example, if only one fault
is injected into a model such that a correct post-state (w = 0, x = 0, y = 0, z = 0) is
replaced with a faulty state (w = 1, x = 2, y = 3, z = 4), then the answer for revising
the faulty state will be (w = 0, x = 0, y = 0, z = 0), and N Ans

Rev = 4. If a revision
repair suggests (w = 0, x = 1, y = 0, z = 0), then NCor

Rev = 3, and RV A = 0.75.
If a revision repair suggests (w = 0, x = 1, y = 1, z = 0), then NCor

Rev = 2, and
RV A = 0.50. Both the revision repairs do not perfectly fit the answer, but their
distances from the answer are different. The revision (w = 0, x = 1, y = 0, z = 0) is
closer to the answer because only the value of x disagrees with its counterpart of the
answer, while (w = 0, x = 1, y = 1, z = 0) has two values of variables, including x
and y, that disagree with their counterparts of the answer.

Based on ISR and RVA, repairs suggested by B-repair with different tendency
models, including the logisticmodel, theResNets and theCARTs,were comparedwith
the standard answers. In order to investigate whether or not the tendency models had a
beneficial effect, they were compared with a baseline mechanism that all repairs were
randomly chosen without using any tendency models. Besides, in order to investigate
whether or not the top-ranked repairs weremore accurate than the other repairs, repairs
ranked from 2nd to 10th were compared with the standard answers as well.

8.2.2 Results

Table8 shows B-repair’s ISRs and RVAs on the public B-models. B-repair repaired
these B-models with the three tendency models: the logistic model (Logistic), the
residual network (ResNet) and the random forest of classification and regression trees
(CART). For the purpose of comparison, results of the baseline mechanism, abbre-
viated as “Random”, were obtained as well. These result revealed that both the ISRs
and RVAs were impacted by the tendency models. When the tendency models were
absent, repairs were randomly ranked and selected. As each faulty transition corre-
sponded to exactly one isolation repair and a large number of revision repairs, most
selected repairs were revision repairs, leading to ISRs close to 0. When the tendency
models were used to rank the repairs, the ISRs increased. On average, the CART ran-
dom forest led to the best ISR (i.e., 0.541), whichmeant that more than half of isolation
repairs were successful. On specific subjects such as S-03, S-04, S-06 and S-09, the
ISRs of the random forest were lower than their counterparts of the logistic model or
the residual network. This was probably because an overfitting phenomenon occurred
during the learning process of the random forest, resulting in a bias that could give a
number of unexpected revision repairs higher ranks than expected isolation repairs.
Regarding RVAs, the CART random forest obtained the best results. On average, its
RVA achieved 0.875, which meant that the top-ranked revision repairs suggested by
the random forest were mostly correct. On specific subjects such as S-04 and S-06,
the residual network led to better results than the random forest.

Table9 shows the numbers of top-ranked isolation repairs and revision repairs
suggested by the different tendency models. It was clear that most tendency models

123

694 Automated Software Engineering (2019) 26:653–704

Table 8 ISRs and RVAs on the public B-models

Subject Isolation success rate (ISR) Revision value accuracy (RVA)

Random Logistic ResNet CART Random Logistic ResNet CART

S-01 0.005 0.644 0.670 1.000 0.194 0.268 0.763 0.831

S-02 0.000 0.971 0.970 1.000 0.021 0.016 0.121 0.924

S-03 0.006 0.306 0.060 0.184 0.075 0.297 0.870 0.921

S-04 0.001 0.185 0.222 0.002 0.044 0.237 0.825 0.614

S-05 0.001 0.000 0.186 0.714 0.164 0.150 0.717 0.926

S-06 0.000 0.092 0.133 0.001 0.026 0.206 0.834 0.656

S-07 0.003 0.000 0.449 0.915 0.385 0.302 0.926 0.948

S-08 0.003 0.000 0.654 0.683 0.403 0.598 0.882 0.920

S-09 0.003 0.000 0.125 0.000 0.102 0.151 0.838 0.895

S-10 0.002 0.157 0.441 0.966 0.128 0.068 0.499 0.853

S-11 0.006 0.641 0.094 0.749 0.308 0.358 0.829 0.947

S-12 0.008 0.001 0.011 0.167 0.355 0.617 0.651 0.862

S-13 0.000 0.167 0.069 0.237 0.385 0.374 0.724 0.927

S-14 0.001 0.000 0.465 0.982 0.648 0.722 0.936 0.944

S-15 0.002 0.002 0.044 0.516 0.547 0.394 0.827 0.949

Average 0.003 0.211 0.306 0.541 0.252 0.317 0.749 0.875

Table 9 Numbers of top-ranked repairs

Subject # Top-ranked isolation repairs # Top-ranked revision repairs

Random Logistic ResNet CART Random Logistic ResNet CART

S-01 5 683 701 1040 1995 1317 1299 960

S-02 0 1012 1033 1041 2000 988 967 959

S-03 6 318 64 193 1994 1682 1936 1807

S-04 1 197 234 2 1999 1803 1766 1998

S-05 1 0 196 748 1999 2000 1804 1252

S-06 0 95 141 1 2000 1905 1859 1999

S-07 3 0 469 962 1997 2000 1531 1038

S-08 3 0 684 721 1997 2000 1316 1279

S-09 3 0 132 0 1997 2000 1868 2000

S-10 2 162 466 1024 1998 1838 1534 976

S-11 6 678 99 775 1994 1322 1901 1225

S-12 9 1 11 177 1991 1999 1989 1823

S-13 0 176 73 251 2000 1824 1927 1749

S-14 1 0 488 1029 1999 2000 1512 971

S-15 2 2 46 543 1998 1998 1954 1457

Total 44 3326 4837 8506 29,956 26,674 25,163 21,494

123

Automated Software Engineering (2019) 26:653–704 695

Fig. 11 Curves of ISR and RVA subject to the rank of repair

suggested more revision repairs than isolation repairs. This phenomenon was reason-
able, because in each ranking list, there were a large number of candidate revision
repairs, but only one candidate isolation repair. Considering the large number of can-
didate repairs, the effect of the tendency models was to give expected repairs higher
ranks. When no tendency models were used (i.e., the “Random” case), ranks were
randomly assigned to the repairs, so that isolation repairs only had a small chance to
be top-ranked repairs. When the tendency models were used, isolation repairs had a
significantly larger chance to be top-ranked repairs. Associating the numbers of top-
ranked isolation repairs with the ISRs in Table 8, it was demonstrated that the tendency
models had positive effects on the selection of high-quality repairs.

Figure11 shows the curves of ISR and RVA subject to the rank of repair, i.e., in each
ranking list, instead of the 1st repair, the 2nd to 10th repairs are chosen respectively.
The data for plotting the curves were the average ISRs and RVAs of the CART random
forest on all the 15 subjects. It was clear that the curve of ISR dropped to a level close
to 0 when the rank of repair was greater than 1, which meant that the tendency model
had crucial effects on the selection of isolation repairs. Regarding RVAs, the curve was
gradually dropping when the rank of repair increased, which meant that top-ranked
revision repairs were usually more accurate than others.

Based on the above experimental results, we are able to answer the research ques-
tions at the beginning of Sect. 8.2.

– RQ5: On the public models, B-repair was able to accurately suggest revision
repairs at the average accuracy of 87.5%, and it was able to accurately suggest
isolation repairs at the average success rate of 54.1%. On a number of specific
models, both the accuracy of revision and the success rate of isolation could achieve
a level above 90%.

– RQ6: Themechanism of tendency models significantly outperformed the baseline
mechanism. Without the tendency models, the B-models could not be accurately
repaired. Among the three tested tendency models, the CART random forest had

123

696 Automated Software Engineering (2019) 26:653–704

the best predictive performance. On a few specific models, the residual network
could outperform the random forest.

– RQ7: Probabilistically, for both isolation and revision repairs, the top-ranked
repairs were more accurate than the other repairs.

– RQ8:On a particular system, one type of repair could be more effective. Consider
the repairs ranked using the CART random forest. On systems such as S-01, S-
02, S-07, S-10 and S-14, both isolation and revision repairs were effective and
could achieve accuracies above 80%. On systems such as S-03, S-05, S-08, S-09,
S-11, S-12, S-13 and S-15, revision repairs were more effective and could achieve
accuracies above 85%, while isolation repairs seemed not accurate.

8.3 Threats to validity

In this subsection, we discuss threats to validity. Threats to internal validity include the
generality of the evaluation datasets and the efficiency of the model checker. Threats
to external validity include the access to real defeats of B-models and the size of
fault.

8.3.1 Threats to internal validity

The generality of the evaluation datasets is a potential threat to validity. The evaluation
datasets include 4 models built by the authors and 15 public models built by other
researchers. These models may not cover all features of B-model design. Although
we have tried our best to obtain more test data, available test data are still limited.
The reason why the test data are limited is that our research topic, i.e., B-model
repair, is an emerging topic proposed by Schmidt et al. (2016) and further studied
by Schmidt et al. (2018) in recent three years. The above two studies only provided
two models for case study purposes, and the two models are not suitable and not
sufficient for an empirical evaluation. Consequently, we had to collect more models
used in past studies and build our own evaluation datasets. However, most models
used in past studies are designed for evaluating various functions of the B-method
such as bounded model checking, refinement checking, SMT solving, etc., so that
only a limited number of models can be used to evaluate B-repair. Particularly, S-
09 in Table 7 has been used in the previous work of interactive B-model repair and
synthesis (Schmidt et al. 2018). However, it is difficult to systematically compare
our evaluation results with their results, because their premise and goal of evaluation
are different from ours. Their premise is that users can provide a number of I/O
examples and can interact with their model repair tool, and their goal is to synthesise
new operations that work for the examples. Our premise is that users do not interact
with B-repair, and our goal is to eliminate faulty transitions by changing existing
operations.

Regarding the model checker, it is one of the most important and time consuming
components in B-repair. Although it is able to verify the correctness of a model with
more than 27K states and transitions (i.e., S-15 in Table7), verifying larger models
using limited computational resourcesmay be a difficult task. As themodel checking is

123

Automated Software Engineering (2019) 26:653–704 697

a prerequisite of model repair, the efficiency of B-repair is restricted by the efficiency
of the model checker. Previous experiences show that B-repair may be inefficient
if a large model occupies most memory space during the model checking process.
Besides, B-repair can repair models with static variables and the four fundamental
datatypes, but cannot deal with complex datatypes and dynamic variables. Although
this problem can be solved by decomposing complex datatypes into fundamental
datatypes and replacing dynamic variables with static variables, repairing models
with a large number of static variables and fundamental datatypes is still difficult. The
reason is that the model checker naturally requires more time to complete the tasks of
model checking and constraint solving for larger models.

8.3.2 Threats to external validity

A potential threat to validity is the access to real B-models and defeats. Most real
B-models are used in industrial projects. For example, a number of automatic railway
control systems in North America and Europe have been developed using B (Behm
et al. 1999; Benaïssa et al. 2016). Moreover, a number of industrial PLC controllers
(Barbosa and Déharbe 2012) and the security properties of a microkernel (Hoffmann
et al. 2007) has been verified using B. However, most industrial B-models are not
public. Consequently, we are not able to access most of the industrial models except
the Vovol cruise controller model (i.e., S-15 in Table 7). Besides, it is difficult to
obtain real defeats of B-models and corresponding human-made repairs via version
control platforms such as GitHub. When evaluating automated program repair (APR)
tools for popular programming languages such as Java, people can download different
versions of a program from version control platforms such as GitHub, consider the
differences between the two versions as feasible repairs and observe whether or not
an APR repair tool is able to produce the same repairs (Le et al. 2016b). However,
this methodology seems not suitable for the evaluation of B-repair, because it is dif-
ficult to find appropriate B-models on the version control platform due to the fact
that the community of B is considerably smaller than the community of the popular
programming languages. Consequently, most models and defeats used in our work are
artificial.

Another potential threat to validity is the size of fault. In the second part of our
evaluations, multiple faults were randomly injected into a model. As each fault created
exactly one erroneous transition, the size of fault was 1. However, in the real world,
there are two more cases. The first case is that a fault creates two or more erroneous
transitions, so that the size of fault is greater than 1. In this case, B-repair is still able
to eliminate the fault, and the number of suggested repairs is exactly the same as the
number of erroneous transitions. On the other hand, a human expert may eliminate the
fault using only one repair, which means that the repair suggested by the human expert
is better than those suggested by the algorithm. The second case is that an erroneous
transition is created by multiple faults, so that the size of fault is smaller than 1. In
order to eliminate these faults, a comprehensive analysis is required in order to localise
faults and calculate candidate repairs, which is still a challenging task for both humans
and computers.

123

698 Automated Software Engineering (2019) 26:653–704

9 Related work

In Sects. 4–8, we proposed B-repair, which can automatically suggest repairs for faulty
abstract machines of B, rank the suggested repairs and apply suitable repairs to the
machines. The three key aspects, including the I solation and Revision method,
repair ranking using tendency models and the evaluation of B-repair using several
examples, have been investigated in previous sections.

Our work is relevant to a number of previous studies on the repair of state transi-
tion systems. For example, Schmidt et al. (2018) have proposed an interactive method
for repairing state transition systems of B. This method can remove deadlock states
and invariant violations using the program synthesis technique proposed by Jha et al.
(2010). To remove deadlock states, it strengthens the pre-conditions of previous oper-
ations or synthesises new operations that resolve the deadlock states. To remove
invariant violations, it strengthens the pre-conditions of previous operations or relaxes
the violated invariants. This method has been used to repair faulty models of Event-B
as well (Schmidt et al. 2016). Moreover, Babin et al. (2016) have proposed a refine-
ment checking-based method for repairing state transition systems of Event-B. If a
failure occurs in a system, failed states will be replaced with successful states using
substitutions, and the behaviours of the original system will be preserved using refine-
ment checking. Further, Alrajeh andCraven (2014) have suggested the use of inductive
logic programming to discover repairs that can remove violation runs and deadlocks
from systems andmaintain the behaviours of the systems. This method will suggest all
possible minimal repairs and require users to select one. Besides, our work is relevant
to previous studies on residual networks and CARTs. He et al. (2016) have suggested
that the residual networks, which are feed-forward neural networks with shortcut con-
nections, seem to have stronger abilities of modelling complex features than the plain
feed-forward neural networks. Kurt et al. (2008) have compared different supervised
machine learning models and found that CARTs are able to model complex relations.

In our work on B-repair, the most important parts are I solation, Revision and
the tendency models. Similar to the fault removal method proposed by Schmidt et al.
(2016) and Schmidt et al. (2018), I solation is able to remove faulty transitions by
strengthening the pre-condition of the last operation. The difference between the
I solation method and the fault removal method is that the former one produces
a repair that can remove a single transition, while the later one produces a repair
that can remove a set of transitions. Similar to the system substitution mechanism
of Event-B proposed by Babin et al. (2016), Revision is able to replace faulty tran-
sitions with correct ones via conditional substitutions. The difference between the
Revision method and the system substitution mechanism is that the former one relies
on the checking of invariants and assertions, while the later one relies on refinement
checking. More importantly, B-repair uses probabilistic machine learning techniques
to build tendency models and uses them to rank repairs, so that repair selection pro-
cesses can be automated. It is different from the repair selection methods proposed by
Alrajeh and Craven (2014) and Schmidt et al. (2018), which require users’ feedback
to select repairs.

The tendency models play an important role of improving the accuracy of repair.
They are able to learn features of state transition systems and rank repairs according

123

Automated Software Engineering (2019) 26:653–704 699

to the learnt features. Different tendency models lead to different ranking results,
and consequently, they lead to different accuracies of repair. The residual networks
often lead to better accuracies than the logistic models. A possible explanation for this
phenomenon is that the residual networks are able to model more complex features
than the logistic models, and this argument can be supported by previous work on
the use residual learning to model image features (He et al. 2016). Moreover, the
CARTs outperform the logistic models. As explained in Sect. 7.2, the CARTs are
able to exclude the impact of irrelevant attributes and model the post-conditions and
the relations between the pre- and post-conditions according to a number of certain
attributes. On the other hand, it is difficult for the logistic models to exclude irrelevant
attributes andmodel complex relations of these attributes, as they are based on a simple
weighted sum function that considers all attributes together. Similar evidences, which
show that CARTs usually outperform logistic models on tasks of modelling complex
relations, can be found in the work by Kurt et al. (2008).

Our work is related automated program repair (APR) as well. APR is a subfield
of program synthesis, aiming to assist programmers in finding faulty components in
programs and producing patches (Gazzola et al. 2019). Similar to B-model repair,
APR usually has three steps: fault localisation, repair synthesis and repair selection.
Spectrum-based fault localisation is one of the most widely used fault localisation
methodology (Abreu et al. 2009). It makes use of a set of input-output pairs to test
the correctness of a program and produce traces of successful executions and failed
executions, and find suspicious faulty components by analysing the occurrences of the
components in the traces. Usually, faulty components tend to occur in the traces of
failed executions andnot to occur in the traces of successful executions.After localising
faults, a vast number of candidate repairs are produced using various repair synthesis
techniques such as mutation repair, template-based repair and genetic programming.
Mutation repair techniques, which apply atomic repairs to the Abstract Syntax Tree
(AST) of a program, are supported by various APR tools such as CAPGEN (Wen et al.
2018), GenProg (Le Goues et al. 2012), CASC (Wilkerson and Tauritz 2010), etc.
Template-based repair techniques, such as the history driven program repair method
proposed by Le et al. (2016b) and the SearchRepair tool developed by Ke et al. (2015),
focus on using repairs extracted from version control platforms and those produced
by programmers to eliminate common bugs in programs. Genetic programming is a
repair synthesis technique that mixes existing repairs together to generate new repairs
and has been supported by GenProg (Le Goues et al. 2012), CASC (Wilkerson and
Tauritz 2010), etc. The above repair synthesis techniques can synthesise a vast number
of candidate repairs, so that repair ranking functions are usually needed in order to
obtain high-quality repairs.

Repair ranking functions are crucial for a number of APR methods. Similar to the
tendency models of B-repair, the repair ranking functions are able to map candidate
repairs to numbers so that the candidate repairs can be ranked. For example, Le et al.
(2016b) have proposed a repair ranking function based on historical data of program
repair. The historical data are collected from version control platforms such as GitHub,
and repair templates are produced by comparing different versions of a program. The
repair templates are used to synthesise candidate repairs for a given faulty program,
and the candidate repairs are ranked by the frequencies of their patterns occurring in the

123

700 Automated Software Engineering (2019) 26:653–704

historical data. The idea of using a frequency function to rank repairs has been used
in CAPGEN as well (Wen et al. 2018). In CAPGEN, candidate repairs are ranked
by the product of suspicious values, frequencies of mutation operators and context
similarities. The suspicious values are calculated using a fault localisation technique
that indicates faulty lines of code. The frequencies ofmutation operators are calculated
based on historical data of successful mutation repairs. The context similarities are
calculated by comparing neighbouring nodes of original AST nodes with those of
repaired AST nodes. The above repair ranking functions have been demonstrated
to be effective for the repair of JAVA programs. A common feature of these repair
ranking functions is that they act on programs at the syntactic level. Repair ranking
functions can act on programs at the semantic level as well, and Le et al. (2016a)
have argued that the combination of the syntactic and semantic levels can lead to
better repairs. For instance, in S3 (Le et al. 2017) both syntactic features and semantic
features are used to rank repairs. The syntactic features include AST structures, the
vectorisation of ASTs and locality of variable and constants, and the semantic features
include the satisfiability of particular formulae, the coverage of input-output pairs and
counterexamples.

The similarities between B-repair and the APR techniques include the following
three aspects. Firstly, they require faulty localisation techniques to find suspicious
faulty components in programs. Secondly, they require repair synthesis techniques
to produce a large number of candidate repairs. Thirdly, they require repair ranking
functions to rank the candidate repairs and obtain high-quality repairs. The differences
between B-repair and the APR techniques include the following four aspects. Firstly,
B-repair localise faults using the model checker, while the APR tools usually localise
faults based on test suites. Secondly, a number of APR tools such as S3 and CAPGEN
make use of (symbolic) machine learning techniques to discover candidate repairs
from historical data, while these techniques are not used in B-repair. Thirdly, B-
repair’s tendency models are based on (probabilistic) machine learning and do not
rely on historical data, while the repair ranking functions of S3 and CAPGEN are
built upon historical data. Lastly, B-repair focuses on eliminating invariant violations,
assertion violations and deadlocks, while APR focuses more on making a program
consistent with test suites.

In summary, the novelty of B-repair is that it makes use of probabilistic machine
learning to learn features of abstract machines and makes use of the learnt features to
acquire high-quality repairs. Combining with model checking techniques, B-repair is
able to automate model repair processes and gain high accuracies of repair. Thus, this
study suggests that B-repair can be used to improve the efficiency of state transition
system design. Firstly, a user needs to design an initial abstract machine that describes
a state transition system and properties of the system. Then a tendency model learns
from the state transition system. Regardless of whether or not the system satisfies the
properties, the tendency model can learn relations hidden in operations of the system.
Next, the model checker checks whether or not the system satisfy the properties. If not,
then I solation and Revision are used to suggest repairs. After that, the suggested
repairs are ranked using the tendency model. Finally, the user can enable B-repair to
automatically select the repair with the highest rank or manually select a satisfactory
repair, and the selected repair will be automatically applied to a suitable position in

123

Automated Software Engineering (2019) 26:653–704 701

the initial abstract machine. As a result, the user only needs to consider whether or
not the applied repair meets design requirements, but does not need to consider how
to work out possible repairs or how to manually apply the repairs to the abstract
machine.

10 Conclusion

B-repair is an automated model repair approach that combines model checking, con-
straint solving and probabilistic machine learning. It makes use of the model checker
to find faults in abstract machines, the SMT solver to suggest repairs and various
machine learning models to select repairs. Using B-repair, the repair of abstract
machines can be done by changing the pre- and post-conditions of operations. More-
over, the behaviours of abstract machines, which are described by operations with
pre- and post-conditions, can be learnt by the machine learning models, so that
the machine learning models can help the users improve the quality of repaired
machines.

The implementation of B-repair has been evaluated on the tasks of repairing a
number of state transition systems. It has been found that B-repair is able to accurately
suggest revision repairs that satisfy users’ requirements and remove thousands of faulty
transitions in the systems. Moreover, it has been found that the machine learning
techniques can significantly influence the results of repair, and random forests seem
to be the best machine learning technique for B-repair.

To the best of our knowledge, B-repair is the first system that attempts to use
probabilistic machine learning to improve the repair of abstract machines, providing
a new solution to improve the efficiency of system design. As a result, users can
design an initial system that may contain faults. This means that they can focus on
developing required functions and do not need to pay much attention to minor faults.
After designing the initial system, they can use B-repair to detect faults, suggest
possible repairs, evaluate the quality of the repairs and revise the initial system. This
means that they only need to consider whether or not the suggested repairs meet their
requirements, but do not need to consider how to work out possible repairs and how
to apply the repairs to the system.

In the future, our work will target the following limitations of B-repair. Firstly, the
current B-repair only suggests repairs that repair single transitions. These repairs may
be replaced with an abstract repair that combines complex expressions to cover more
than one transition. Secondly, the current B-repair cannot repair abstract machines
that do not pass refinement checking, which is another component of B. Thirdly, we
will design a benchmark that contains a number of B-models of classical algorithms,
i.e., those in textbooks of algorithms and data structures. We will use a version control
tool to archive development processes of these models. After that, we will be able to
obtain real defeats and use them as a benchmark. Finally, the current B-repair does
not deal with temporal logics that are widely used in model checking. To solve these
limitations, we will develop repair merging algorithms, parallel repair algorithms and
model repair algorithms with refinement checking and temporal logics.

123

702 Automated Software Engineering (2019) 26:653–704

Acknowledgements We would like to thank the anonymous reviewers, whose valuable comments have
contributed to the clarification of many ideas presented in the paper.

References

Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.C.: A practical evaluation of spectrum-based fault
localization. J. Syst. Softw. 82(11), 1780–1792 (2009)

Abrial, J.: The B-book—Assigning Programs toMeanings. Cambridge University Press, Cambridge (2005)
Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for

modelling and reasoning in Event-B. Int. J. Softw. Tools Technol. Transfer 12(6), 447–466 (2010)
Alrajeh, D., Craven, R.: Automated error-detection and repair for compositional software specifications.

In: 12th International Conference Software Engineering and Formal Methods, SEFM 2014, Grenoble,
France, September 1–5, 2014. Proceedings, pp. 111–127 (2014)

Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Babin, G., Ameur, Y.A., Singh, N.K., Pantel, M.: A system substitution mechanism for hybrid systems

in Event-B. In: Proceedings 18th International Conference on Formal Engineering Methods Formal
Methods and Software Engineering, ICFEM2016, Tokyo, Japan, November 14–18, 2016, pp. 106–121
(2016)

Bagaria, J.: Set theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, winter 2017 edn.
Stanford University, Stanford (2017)

Barbosa, H., Déharbe, D.: Formal verification of PLC programs using the B method. In: Abstract State
Machines, Alloy, B, VDM, and Z—Proceedings Third International Conference, ABZ 2012, Pisa,
Italy, June 18–21, 2012, pp. 353–356 (2012)

Behm, P., Benoit, P., Faivre, A., Meynadier, J.: Météor: A successful application of B in a large project.
In: FM’99 - Formal Methods, World Congress on Formal Methods in the Development of Computing
Systems, Toulouse, France, September 20–24, 1999, Proceedings, Volume I, pp. 369–387 (1999)

Benaïssa, N., Bonvoisin, D., Feliachi, A., Ordioni, J.: The PERF approach for formal verification.
In: Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and
Certification—First International Conference, RSSRail 2016, Paris, France, June 28-30, 2016, Pro-
ceedings, pp. 203–214 (2016)

Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G. (ed.) Neural Networks: Tricks of the Trade,
2nd edn, pp. 421–436. Springer, Berlin (2012)

Boulanger, J.L., Aljer, A., Mariano, G.: Formalization of digital circuits using the b method. WIT Trans.
Built Environ. https://doi.org/10.1002/9781119002727.ch6 (2002)

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Routledge,
Wadsworth (1984)

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 10–20 states
and beyond. Inf. Comput. 98(2), 142–170 (1992)

Cai, C., Sun, J., Dobbie, G.: B-repair: Repairing B-models using machine learning. In: 23rd International
Conference on Engineering of Complex Computer Systems, ICECCS 2018, Melbourne, Australia,
December 12–14, 2018, pp. 31–40 (2018)

Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic model verifier. In: 11th
International Conference Computer Aided Verification, CAV ’99, Trento, Italy, July 6-10, 1999, Pro-
ceedings, pp. 495–499 (1999)

Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time
temporal logic. In: Logics of Programs, Workshop, Yorktown Heights, New York, USA, May 1981,
pp. 52–71 (1981)

Cox, D.R.: The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B (Methodol.) 20, 215–242
(1958)

D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for formal software veri-
fication. IEEE Trans. CAD Integrated Circuits Syst. 27(7), 1165–1178 (2008)

Fadil, H., Koning, J.: A formal approach to model multiagent interactions using the B formal method. In:
AdvancedDistributed Systems: 5th International School and Symposium, ISSADS 2005, Guadalajara,
Mexico, January 24–28, 2005, Revised Selected Papers, pp. 516–528 (2005)

123

https://doi.org/10.1002/9781119002727.ch6

Automated Software Engineering (2019) 26:653–704 703

Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE Trans. Softw. Eng. 45(1),
34–67 (2019)

Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale,
USA, April 11-13, 2011, pp. 315–323 (2011)

Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based program repair using SAT. In: 17th Inter-
national Conference, TACAS 2011, Held as Part of the Joint European Conferences on Theory and
Practice of Software Tools and Algorithms for the Construction and Analysis of Systems, ETAPS
2011, Saarbrücken, Germany, March 26–April 3, 2011. Proceedings, pp. 173–188 (2011)

Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of safety and liveness violations in reactive
programs. Trans. Comput. Collective Intell. 16, 1–33 (2014)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016,
pp. 770–778 (2016)

Ho, T.K.: Random decision forests. In: Third International Conference on Document Analysis and Recog-
nition, ICDAR 1995, August 14–15, 1995, Montreal, Canada. Volume I, pp. 278–282 (1995)

Hoffmann, S., Haugou, G., Gabriele, S., Burdy, L.: The b-method for the construction of microkernel-based
systems. In: B 2007: Formal Specification and Development in B, 7th International Conference of B
Users, Besançon, France, January 17–19, 2007, Proceedings, pp. 257–259 (2007)

Huth, M., Ryan, M.D.: Logic in Computer Science—Modelling and Reasoning About Systems, 2nd edn.
Cambridge University Press, Cambridge (2004)

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering—Volume 1,
ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pp. 215–224 (2010)

Ke, Y., Stolee, K.T., Le Goues, C., Brun, Y.: Repairing programs with semantic code search (T). In: 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE,
USA, November 9-13, 2015, pp. 295–306 (2015)

Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models. In: Integrated Formal
Methods—12th International Conference, IFM2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings,
pp. 361–375 (2016)

Kurt, I., Ture,M.,Kurum,A.T.: Comparing performances of logistic regression, classification and regression
tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl. 34(1), 366–374
(2008)

Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and semantic-guided repair synthesis
via programming by examples. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4–8, 2017, pp. 593–604
(2017)

Le, X.D., Le, Q.L., Lo, D., Le Goues, C.: Enhancing automated program repair with deductive verifica-
tion. In: 2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016,
Raleigh, NC, USA, October 2–7, 2016, pp. 428–432 (2016a)

Le, X.D., Lo, D., Le Goues, C.: History driven program repair. In: IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14–18,
2016—Volume 1, pp. 213–224 (2016b)

Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software repair. Software Qual. J.
21(3), 421–443 (2013)

Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for automatic software
repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method. Int. J. Softw. Tools
Technol. Transfer 10(2), 185–203 (2008)

Leuschel, M., Cansell, D., Butler, M.J.: Validating and animating higher-order recursive functions in B. In:
Rigorous Methods for Software Construction and Analysis, Essays Dedicated to Egon Börger on the
Occasion of His 60th Birthday, pp. 78–92 (2009)

Loh, W.: Classification and regression trees. Wiley Interdisc. Rew. Data Min. Knowl. Discov. 1(1), 14–23
(2011)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. Lecture
Notes in Computer Science, vol. 2283. Springer, Berlin (2002)

123

704 Automated Software Engineering (2019) 26:653–704

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October–1 November 1977, pp. 46–57 (1977)

Schmidt, J., Krings, S., Leuschel, M.: Interactive model repair by synthesis. In: Abstract State Machines,
Alloy, B, TLA, VDM, and Z—5th International Conference, ABZ 2016, Linz, Austria, May 23–27,
2016, Proceedings, pp. 303–307 (2016)

Schmidt, J., Krings, S., Leuschel,M.: Repair and generation of formalmodels using synthesis. In: Integrated
Formal Methods—14th International Conference, IFM 2018, Maynooth, Ireland, September 5–7,
2018, Proceedings, pp. 346–366 (2018)

Siekmann, J.H.: Unification theory. J. Symb. Comput. 7(3/4), 207–274 (1989)
Turian, J.P., Ratinov, L., Bengio, Y.:Word representations: a simple and general method for semi-supervised

learning. In: ACL 2010, Proceedings of the 48th AnnualMeeting of the Association for Computational
Linguistics, July 11–16, 2010, Uppsala, Sweden, pp. 384–394 (2010)

Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.: Context-aware patch generation for better automated
program repair. In: Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27–June 03, 2018, pp. 1–11 (2018)

Wilkerson, J.L., Tauritz, D.R.: Coevolutionary automated software correction. In: Genetic and Evolutionary
Computation Conference, GECCO 2010, Proceedings, Portland, Oregon, USA, July 7–11, 2010, pp.
1391–1392 (2010)

Yang, G., Khurshid, S., Kim, M.: Specification-based test repair using a lightweight formal method. In:
FM 2012: Formal Methods—18th International Symposium, Paris, France, August 27–31, 2012.
Proceedings, pp. 455–470 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Automatic B-model repair using model checking and machine learning
	Abstract
	1 Introduction
	2 Background
	3 Preliminaries
	3.1 The B notation and the ProB model checker
	3.2 Supervised learning
	3.2.1 Classification and regression trees
	3.2.2 Logistic models and residual networks

	4 The B-repair method
	4.1 Fault localisation
	4.2 Isolation
	4.3 Revision
	4.4 An example of Isolation and Revision

	5 Repair ranking using machine learning
	5.1 Quality estimation
	5.2 Transition sampling
	5.3 Encodings
	5.4 Tendency models

	6 The implementation of B-repair
	6.1 The learning module
	6.2 The isolation & revision module
	6.3 The repair module

	7 Case study
	7.1 The original abstract machine and the state transitions
	7.2 Training a decision tree
	7.3 Ranking suggested repairs using a random forest
	7.4 Results of repair

	8 Evaluation
	8.1 Primary evaluation
	8.1.1 Settings
	8.1.2 Results

	8.2 Further evaluation on public datasets
	8.2.1 Settings
	8.2.2 Results

	8.3 Threats to validity
	8.3.1 Threats to internal validity
	8.3.2 Threats to external validity

	9 Related work
	10 Conclusion
	Acknowledgements
	References

