Automated Software Engineering (2019) 26:513-557
https://doi.org/10.1007/s10515-019-00255-5

®

Check for
updates

Requirements-driven evolution of sociotechnical systems
via probabilistic reasoning and hill climbing

Davide Dell’Anna’® - Fabiano Dalpiaz'® - Mehdi Dastani’

Received: 4 November 2018 / Accepted: 8 April 2019 / Published online: 22 April 2019
© The Author(s) 2019

Abstract

Sociotechnical systems (STSs) are defined by the interaction between technical sys-
tems, like software and machines, and social entities, like humans and organizations.
The entities within an STS are autonomous, thus weakly controllable, and the environ-
ment where the STS operates is highly dynamic. As a result, the design artifacts that
represent the requirements of an STS, such as requirements models, may end up being
invalid when the system operates, for the autonomous entities do not comply with
the requirements, or the environment changes. In this paper, we present a framework
that uses runtime execution data to support the runtime validation of requirements
models and to guide the evolution of an STS. We propose two types of evolution:
(i) manual: the analyst uses Bayesian inference to discover which assumptions in a
requirements model are invalid and manually adjusts the system or its model; and (ii)
automated: requirements are iteratively revised by an hill climbing algorithm search-
ing for requirements that maximize the achievement of the stakeholders’ objectives.
We evaluate the effectiveness of different revision heuristics on a smart traffic sim-
ulation applied to an exemplar from the self-adaptive systems literature. The results
show that our heuristics, informed by runtime execution data, outperform standard
uninformed heuristics, in terms of convergence speed, solution quality, and stability.
Moreover, the algorithms show good resilience to noise introduced into the execution
data.

Keywords Requirements engineering - Sociotechnical systems - Bayesian networks -
Requirements revision

B Davide Dell’ Anna
d.dellanna@uu.nl

Fabiano Dalpiaz
f.dalpiaz@uu.nl

Mehdi Dastani
m.m.dastani @uu.nl

I Utrecht University, Utrecht, The Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-019-00255-5&domain=pdf
http://orcid.org/0000-0002-1162-8341
http://orcid.org/0000-0003-4480-3887

514 Automated Software Engineering (2019) 26:513-557

1 Introduction

For over forty years, researchers and practitioners in software and requirements engi-
neering (RE) have proposed and experimented methods and tools to specify and evolve
the requirements of software systems (Lehman and Ramil 2003; van Lamsweerde et al.
1998). However, the increasing embedding of cyber-physical and sociotechnical sys-
tems (STSs) (Sommerville et al. 2012; Dalpiaz et al. 2013; Chopra et al. 2014) in our
lives poses new challenges for the RE discipline.

A smart city, for example, is an STS that includes heterogeneous entities such as
pedestrians, drivers, vehicles, bicycles, traffic lights and signs, speed cameras, and road
regulations. This STS is governed by the city council that can alter the road regulations
and control artifacts such as traffic lights to best achieve the system objectives (e.g.,
to reduce jams). However, many entities (humans and vehicles) are autonomous and
therefore weakly controllable (Chopra et al. 2014).

The autonomy of the participating entities and the dynamic, open nature of
STSs (Dalpiaz et al. 2013; Sommerville et al. 2012) entail that anticipating all the
possible states of the system and transitions between them is not an option (Whittle
et al. 2010; Lehman 2005) and the compliance of the system with its requirements
cannot be guaranteed. Runtime requirements monitoring and diagnosis are therefore
essential activities to determine system compliance with its requirements, which may
eventually trigger evolution or adaptation mechanisms.

Several frameworks (Wang et al. 2009; Robinson 2006; Fickas and Feather 1995)
have been proposed to support runtime requirement monitoring and diagnosis. Many
of such approaches represent requirements via requirements models (Bencomo et al.
2010; Wang et al. 2009), and analyze system execution data in terms of requirements
satisfaction.

The self-adaptive systems literature goes beyond diagnosis, and proposes solutions
to adapt a system when their requirements are threatened (Krupitzer et al. 2015; Ben-
como et al. 2013; De Lemos et al. 2013). Self-adaptive systems search for a new
system configuration that is expected to outperform the current one in achieving the
system requirements.

Unfortunately, state-of-the-art approaches implicitly rely on the correctness of the
requirements model. When designing a system, however, requirements engineers make
assumptions about requirements, their satisfaction conditions, and the environment in
which the requirements should be satisfied (Lehman and Ramil 2003; Lehman 2005;
Boness et al. 2008, 2011; Ali et al. 2011). This is even more true for STSs, due to the
autonomy of the participating entities and the volatility of the environment.

In this paper, we propose a framework (see Fig. 1) for the adaptation and evolution of
STSs that challenges the validity of the assumptions in a requirements model. We use
Bayesian Networks to learn the relationship between the satisfaction of requirements
and overall system objectives. Based on such information, the framework can be used to
(i) validate the assumptions in the model and let the analyst manually evolve the system
or its model; and (ii) automatically revise the requirements model by determining the
most appropriate requirements for the achievement of the overall system objectives.

Specifically, we make the following contributions to the literature:

@ Springer

Automated Software Engineering (2019) 26:513-557 515

guides the evolution of

1 e

Req. assump- I |
tions Validator

encoded into
»

= informs
P STS Supervisor Al <
A Requirements Requirements e
model Bayesian Network
abstracts populates

"A.‘ produces

Sociotechnical

System STS Log
instantiates =
specifies
Ctxliri,r23,.. 84 automatically revises
Ctx2:r1, r2, ... <
Ctx3:r2, r22, ...

STS Configuration

Fig.1 Overview of the framework for STS evolution presented in the paper

— We propose Requirement Bayesian Networks (RBN) as the runtime counterpart

of the requirements models created at design-time; an RBN is populated with
execution logs and apprehends the causal relationships between requirements and
overall system objectives in the different operating contexts;

— We explain how a human analyst can validate the design-time assumptions in a

requirements model through the use of an RBN;

— We present an automated requirements revision mechanism that can be used for

the system to identify sets of requirements that maximize the achievement of the
system objectives in each operating context. A first version of our heuristics was
presented in Dell’ Anna et al. (2018b), with a focus on identifying optimal norms
to govern the behaviour of a multiagent system. The approach employs a variant
of the hill climbing optimization technique to iteratively revise the norms based on
their effectiveness in achieving the overall objectives of the system. In this paper,
we extend this work along three dimensions: (i) we apply our heuristics to the case
of hierarchical requirements models, as opposed to flat norm sets; (ii) we formally
define the concepts of requirement variant, system configuration, and requirement
revision; and (iii) we present a substantial evaluation of our algorithms;

— Viaa smart traffic simulation applied to a mid-sized city, we evaluate how effective

our revision mechanisms are at finding good-enough requirements.

Organization Section 2 presents our research background. Section 3 introduces the
smart traffic working example that we use throughout the paper. Section 4 defines
RBNs and shows how to map requirements models to them. Section 5 presents dif-
ferent types of design-time assumptions and describes how to validate them based on

@ Springer

516 Automated Software Engineering (2019) 26:513-557

RBN information. Section 6 elaborates on our framework for automatic requirements
revision. Section 7 reports on our evaluation using a smart traffic simulator. Section 8
reports on related work. Section 9 discusses our work and sketches future work.

2 Background

We present the key background for this paper: (i) requirements models; and (ii)
Bayesian Networks for representing and learning knowledge.

2.1 Requirements models

Requirements models have been used and studied extensively in RE. As pointed out
by the IREB handbook of requirements modeling (Cziharz et al. 2016), such models
can be created with different purposes, including specifying a system, supporting
testing, and increasing clarity. Depending on the purpose, the analysts may decide to
represent the information structure, scenarios, goals and objectives, or other aspects
of the system under development and its environment.

Here, we focus on hierarchical requirements models, that organize the requirements
for a system as refinement trees, where high-level objectives—explaining the raison
d’étre for the requirements (Yu and Mylopoulos 1998)—are specified in terms of more
specific requirements and system functions. In particular, we take inspiration from the
rich literature on goal models (Van Lamsweerde 2009; Yu and Mylopoulos 1998;
Dalpiaz et al. 2016), but choose a general notation that does not commit to a specific
modeling language.

A small requirements model for a car wash service is shown in Fig. 2. We distinguish
between requirements and objectives. Requirements (rounded rectangles) define the
behavior that the designer expects the entities within the STS to perform. For example,
having cars cleaned, or doing so via a fully automated wash. Objectives (targets with
an arrow) express the conditions that denote stakeholder statisfaction with the system;
for example, Customer retention rate over 80% per year indicates that the car wash
owners do not simply want cars to be cleaned, but they aim at retaining most customers
to sustain their business.

We organize requirements in hierarchies via AND- and XOR-refinements. For an
AND-refined requirement to be satisfied, all of its sub-requirements need to be sat-
isfied. For example, in order to have cars cleaned, both the interior and the exterior
of cars should be cleaned, and positive opinions should be reported by the drivers. A
XOR-refined requirement describes possible mutually exclusive ways for its achieve-
ment. For example, exterior cleaning can be done either via a fully automated wash
or through a manual wash.

The expected impact of requirements on objectives is represented via aims at links,
which denote positive contributions from requirements to objectives (Giorgini et al.
2002). In Fig. 2, the designer expects that washing the car interior will support achiev-
ing an 80% customer retention rate.

@ Springer

Automated Software Engineering (2019) 26:513-557 517

Legend

Requirement | Optional ",
+ Requirement
Lt @/‘ Cars cleaned g
/ ()

E @ Customer retention <5% customers
Indicat -~ , rate over 80% complain each month
ndicator Objective N per YV ¢ \ '

42 D . Interior washed . (Exterior cleaned Positive opinion
D A t . . reported
amsat ndicator-based N o

satisfaction

-

OR-refinement

AND-refinement

Fig.2 A small requirements model for a car wash service

We use indicators to qualify the satisfaction of requirements. Requirements that
are not associated with an indicator (called regular requirements) are required to be
satisfied by every instance of the said requirement. For example, manual wash is
satisfied when all cars starting a manual wash are actually washed. Conversely, the
satisfaction of requirements that are associated with an indicator (called aggregate
requirements) is determined by aggregating a number of instances of that requirement.
For example, positive opinion reported is satisfied when less than 5% of the customers
complain. The analyst should specify the frequency for evaluating the indicator (e.g.,
monthly).

Finally, requirements can be optional (dotted border), indicating that they can either
be selected or not selected. For example, interior washed is not necessary for having
cars cleaned.

We formalize our requirements model in Definition 1, which is used in Sect. 4 to
explain how requirements models are mapped to Bayesian Networks.

Definition 1 (Requirements model) A requirements model is a tuple RM =
((R, ch,d), O, SC, cl, type, sc, opt), where

— (R, ch, d) is an AND-OR tree, where R = {Rj, ..., R, } is a set of requirements,
ch : R — 2R is a function that returns the children of a requirement, and d :
R — {AND, XOR} is partial function that determines the type of refinement of a
requirement with children;

- O ={0y,..., 0y} is aset of objectives;

- 8C = {SCy,...,SCyn} is a set of satisfaction conditions for requirements,
objectives, and indicators (see for instance Table 2);

— ¢l : R — 29 is a function that maps requirements to the objectives that they aim
at;

— type : R — {agg, reg} is a function determining whether a requirement is
aggregate or regular (all instances should be achieved);

@ Springer

518 Automated Software Engineering (2019) 26:513-557

—sc: RUO — SC is a function that determines the satisfaction condition of
requirements and objectives; and

— opt : R — {true, false} is a function determining whether or not a require-
ment is optional.

The requirements model in Fig. 2 can therefore be expressed according to Definition 1.
A partial formalization is the following:

— R = {cars cleaned, ..., positive opinion reported}

ch(cars cleaned) = {interior washed, exterior cleaned, positive opinion
reported}, ch(exterior cleaned) = {fully automated wash, manual wash}
d(cars cleaned) = AND, d (exterior cleaned) = XOR

— O = {customer retention rate over 80% per year}

cl(interior washed) = {customer retention rate over 80% per year}
opt(interior washed) = true, ...

2.2 Bayesian networks

Bayesian Networks have been widely used in many fields, ranging from medicine to
forensics, as knowledge representation structures for learning and reasoning about the
inter-dependencies between their nodes (Russell and Norvig 2010).

In software engineering, their applications include evaluating software reliabil-
ity (Doguc and Ramirez-Marquez 2009), estimating software effort (Mendes and
Mosley 2008), modeling software quality (Misirli and Bener 2014), and defect pre-
diction (Fenton et al. 2007). In RE, Bayesian Networks have been employed both for
the runtime verification of requirements (Filieri et al. 2012) and for decision mak-
ing (Bencomo et al. 2013).

Definition 2 (Bayesian network) A Bayesian network (Russell and Norvig 2010) B =
(X, A, P) is a directed acyclic graph, where:

— X is the set of all nodes, each corresponding to a random variable in probability
theory with a discrete or continuous domain (i.e., the set of possible values the
node can take).

— A is the set of directed links (arrows) connecting pairs of nodes. If there is an
arrow from node X to node Y, X is said to be a parent of Y. The set of parents of
anode Y is denoted as Parents(Y).

— P is aset of | X'| conditional probability distributions. Each node X € X is asso-
ciated with a conditional probability distribution P(X|Parents(X)) that quantifies
the effect of the parents on the node.

Note that in the context of Bayesian Networks we use the notation shown in Table 1.
The pair (X, A) is called the structure of the Bayesian Network (X, A, P). An evi-
dence e is a revealed (observed) assignment of values for some or all of the random
variables in the Bayesian Network, i.e.,e = {X,]|X € X} with X C & and v a possible
value in the domain of the variables.

Given the set X of all the nodes in a Bayesian Network 5 and a (possibly empty)
evidence e, reasoning with 3 generally means to determine the distribution P(X|e),

@ Springer

Automated Software Engineering (2019) 26:513-557 519

Table 1 A summary of the notation used for Bayesian networks

Notation Description

X, Y, ... Random variables (italic uppercase)

XY,... Set of random variables (bold uppercase)

V1, V2, ... Value in the domain of a random variable (italic lowercase)
X,Y, ... Assignment of values to a set of nodes (bold lowercase)
Xv (X = v), assignment of value v to a random variable X

Xy Assignment of value v to all nodes in X € X

Xact —Xgis = ~(X = disabled), the fact: X is not disabled

P Probability distribution

P Single probability

with X € X a set of nodes of which we want to discover the probability distribution
(e.g., P(X]Y,) is the probability distribution of the values of the random variable X,
given that value v is observed for variable Y).

3 The CrowdNavExt smart traffic simulator

In this paper, we study the evolution of an STS through computer simulation, a powerful
tool for testing alternative configurations prior to changing the real environment, which
is particularly adequate to analyze the behavior of autonomous agents in a large-scale
real setting (Luke et al. 2005; Tsvetovat and Carley 2004; Wu et al. 2015).

We start from the CrowdNav smart traffic simulator, an exemplar from the self-
adaptive systems literature (Schmid et al. 2017) that simulates traffic scenarios in the
middle-sized city of Eichstidt, in Germany, with 450 streets and 1200 intersections.
We propose CrowdNavExt,! which introduces multiple types of navigation services
as well as different ways of managing junctions, in line with the requirements model
of Fig. 3, described in the following.

The city council of Eichstédt aims at improving the traffic by achieving two overall
objectives: ensuring an average trip overhead below 250% compared to the theoretical
traveling time without traffic, and guaranteeing less than 4 accidents per day. To
achieve such objectives, the city council plans to opportunely manage junctions in the
city and to offer to the cars a Centralized Navigation Service (CNS) in addition to the
cars’ personal navigation system. Due to the highly dynamic nature of the city, drivers
and vehicles can behave differenlty in different contexts. In this paper we consider
two contextual properties (Time and Weather), that can assume two values each: Time
can either take day or night, while Weather can either be normal or extreme.

Two top-level requirements, set by the city council to achieve the objectives, are
the following: at least 10% of the cars in the city shall always use the offered CNS
(the requirement NS in Fig. 3 and the associated indicator), and every junction in the
city is opportunely managed (requirement J).

! CrowdNavExt’s code repository: https://bitbucket.org/dellannadavide/crowdnavext.

@ Springer

https://bitbucket.org/dellannadavide/crowdnavext

520 Automated Software Engineering (2019) 26:513-557

5. G-

"""""""" \
G/ >10% cars use - - - - ST L @/; Less than 4 accidents i
g () ~ per day (A)
- [hesenice cars use the CNS' AR Junctions

Lessthan7 ™, | (NS) ;. Averagetrip overhead ~"TTT-mmomono- managed (J)

dropouts per N N . below 250% (ATO)

@/‘ week (D

Less than 21 \

\

..... o

complaints per N
week (C) " Cars receive route to Cars respect the >80% suggestions "' Smart junctions Cars respect
their destination received routes accepted © managed (SJ) . traffic rules
(NSD) ®S) 9 (TR)

Average trip
overhead cars

using CNS below /~ Routes received Routes received
250% (T) from an adaptive from a static
navigation service navigation service

(ANS) (SNS)

Smart junctions
employ priority lanes
signs (P)

Smart junctions
employ adaptive
traffic lights (ATL)

Smart junctions
employ static traffic
lights (STL)

Legend

.' Optional ‘- E @ @ C)E
Regquirement
Requlremem 4
________ Indicator Objective C}"Eﬂms at |ndicator-based

satisfaction AND-refinement OR-refinement

Fig.3 A requirements model for the smart traffic simulation

To satisfy the requirement NS, two sub-requirements are assumed to be necessary:
whenever a car starts a trip toward a destination, the car shall receive a route from
the Central Navigation Service (NSD) and at least 80% of all the route suggestions
given by the CNS are respected by the cars equipped with the CNS (RS). NSD can be
met by either employing a self-adaptive navigation service (ANS) (Schmid et al. 2017)
or a static navigation service (SNS). In our simulator, each car relies on a navigation
service to determine its route from origin to destination: 90% of the vehicles use their
personal navigation service (the default routing algorithm of the simulator), while the
remaining 10% are smart cars that can use a centralized navigation service. When
smart cars do not use the centralized navigation service, they use their own navigator
as normal cars.

The NSD requirement is assumed to help achieve three additional objectives con-
cerning the satisfaction of the users of the navigation service: less than 21 complaints
perweek (C); less than 7 dropouts per week (D), i.e., cars that decide to stop using the
CNS; and average trip overhead cars using CNS below 250% (T), for some cars using
the CNS will be suggested paths to explore in order for the CNS to identify optimal
paths.

To satisfy the requirement J, two sub-requirements are assumed to be necessary:
every junction that is equipped with smart panels (called smart junctions) shall display
on the panel the prescribed traffic rule (SJ), and every car shall respect the traffic rules
prescribed by the junctions in the city (TR). SJ can be met by either displaying on
the panels traffic lights that adapt their timing according to the traffic (ATL), or by
displaying regular traffic lights (STL), or by displaying which of the lanes in the
junctions has priority (P). When no management is prescribed for smart junctions, the
vehicles approaching the junctions follow the default priority-to-the-right rule.

@ Springer

Automated Software Engineering (2019) 26:513-557 521

Table 2 Satisfaction conditions of the requirements and objectives in our scenario

Obj/req Satisfied Evaluated every
NS > 10% vehicles in the city is using the CNS Time instant
NSD Every time a CNS-equipped car starts a trip, it receives a route from the CNS Trip

ANS Every time a CNS-equipped car starts a trip, it receives a route from an ANS Trip

SNS Every time a CNS-equipped car starts a trip, it receives a route from a SNS Trip

RS > 80% of all CNS suggestions has been accepted Week

J All sub-requirements are satisfied Time instant
SJ Every smart junction displays the traffic rules on its panel Time instant
ATL Every smart junction displays adaptive traffic lights Time instant
STL Every smart junction displays regular traffic lights Time instant

P Every smart junction displays priority lanes signs Time instant
TR Every time a car crosses a junction, it satisfies the displayed traffic rule Car at junction
ATO The average trip overhead of all the vehicles has been below 250% Week

A The number of accidents is below 28 Week

C The number of complaints received is below 30 Week

D The number of dropouts is below 7 Week

T The average trip overhead of vehicles using the CNS has been below 250% Week

Table 2 describes precisely the conditions for requirement monitors to determine
requirements and objectives satisfaction.

4 From requirements models to Bayesian networks

In this section, we define the type of Bayesian Network (called Requirement Bayesian
Network, or RBN) that we use for supporting requirements evolution, and we explain
how to automatically generate the structure of an RBN from requirements models as
presented in Definition 1.

4.1 Requirement Bayesian Network

LetCP = {CP;, ..., CPy} be a set of monitorable contextual properties of the STS
system (i.e., monitorable environmental variables that determine the operating context
of the system, e.g., Time, Weather), each associated with a domain of values (e.g.,
Weather can be either normal or extreme).

Definition 3 (Requirement Bayesian Network) A Requirement Bayesian Network
RBN = (X, A, P) is a Bayesian Network where:

— X = RUOUC is a set of nodes, representing random variables in probability
theory. The sets R, O and C are disjoint.

@ Springer

522 Automated Software Engineering (2019) 26:513-557

— R consists of requirement nodes. Each node R € R corresponds to a require-
ment and has a discrete domain of 3 possible values: obeyed, violated and
disabled.

— O consists of objective nodes. Each node O € O corresponds to a boolean
objective and has a discrete domain of 2 values: frue and false.

— C consists of context nodes. Each node C € C corresponds to a contextual
property CP; € CP and can have discrete or continuous domain.

- ACRxR) U (CxR) U (CxO0) U (R x O) is the set of arrows connecting
pairs of nodes. If there is an arrow from node X to node Y, X is said to be a parent
of Y.

— P is a set of conditional probability distributions, each one associated with a node
in X and quantifying the effect of the parents on the node.

An evidence c for all the context nodes C is an observation for a certain context (e.g.,
Time has value day and Weather has value normal). For simplicity, we call context
also the associated evidence in the RBN.

Note that when we refer to nodes of a specific type, unless otherwise specified, we
use the corresponding notation convention, e.g., R refers to a node in R, ¢ refers to an
assignment of values of nodes in C, Ry, refers to an assignment of value violated to
a set of requirement nodes R, etc.

4.2 From requirements models to requirement Bayesian networks

We introduce the function RM2BNS that generates the structure of an RBN (Defini-
tion 3) from a requirements model R M (Definition 1). RM2BNS maps a requirements
model R M and a set of contextual properties CP to an RBN structure (X, A). Note
that the probability distributions P of an RBA do not depend on the source require-
ments model, but are populated from the system’s execution log at run-time. Therefore,
‘P will not be considered in this section.

As a preliminary notion, we denote the set of requirements contributing to (aim-
ing at) an objective O in RM as cont_desc(O). A requirement R contributes to an
objective O if R is a descendant of O and it is either a leaf requirement, or it is of type
aggregate but has no ancestor of type aggregate:

cont_desc(O)
= (desc(0) \ {R'|R' € desc(R), R € desc(O), type(R) = agg})\ (1)
{R|ch(R) # ¥, type(R) # agg}

where desc(R) is the set the descendant of R (similar for O). For instance, in the
requirements model of Fig. 3, cont_desc(D) = {ANS, SNS}.

Definition 4 (RM2BNS) Given a requirements model RM = ((R, ch, d), O, SC, cl,
type, sc, opt) and a set of contextual properties CP, the function RM2BNS returns
the structure of a Requirement Bayesian Network; formally, RM2BNS(RM,CP) =
(X, A), where

@ Springer

Automated Software Engineering (2019) 26:513-557 523

NS ATO J A
obeyed B> true < e, true
disabled false disabled false

NSD RS SJ TR
obeyed obeyed obeyed obeyed
violated violated violated violated
ﬁi\ disabled disabled
avs | SNS e
ATL STL P

obeyed
violated

obeyed obeyed obeyed
violated violated violated
disabled disabled disabled

3
Weather j J

normal
extreme

jolate
disabled

true
false

Cc

true
false

T Time
true « day
false night

Fig.4 The RBN structure defined by RM2BNS applied to the requirements model of Fig. 3

- X=RUOUCP

- A={(R, 0) | R € cont_desc(0)} U
{(R1, R2) | Ry € ch(R2)} U
{(C,R)|C €CP,ReR,(type(R) =agg Vv ch(R) =¥)} U
{(C,0)|C eCP,0 €0

Intuitively, .4 contains (i) an arrow from a requirement node R to an objective O if
R is a contributing descendant of O (see function cont_desc above), (ii) an arrow from
a sub-requirement R to its parent requirement R», (iii) an arrow from a context node
C to each requirement node R that represents either a leaf requirement (ch(R) = ¥)
or arequirement with an indicator, and (iv) an arrow from each context node C to each
objective O.

Figure 4 reports the structure of the R BN that is generated by applying Definition 4
to the requirements model of Fig. 3.

Besides reflecting the requirements model’s topology, the network also introduces
the context variables. The resulting structure of the Requirement Bayesian Network,
which consists of requirement, objective and context nodes, allows to analyze the
assumptions in different operating contexts (see Sect. 5). In an RBN, every context
node is parent of all the objective nodes. This indicates that the achievement of objec-
tives is not only due to the satisfaction (or presence) of requirements, but also to events
that occur in the environment. Context nodes are also parents of all the requirement
nodes whose satisfaction is not exclusively determined by their hierarchical structure
in the AND/OR tree, but can also be affected by the context in which they are applied.

We choose a three-values discrete domain for the requirement nodes to make
the network more versatile: while the obeyed and violated values allow to evaluate
assumptions about the satisfaction or violation of requirements (e.g., the requirement
satisfiability assumption in Sect. 5), the disabled value supports XOR-refined require-
ments. To update the conditional probability distribution of a node, it is necessary to

@ Springer

524 Automated Software Engineering (2019) 26:513-557

Table 3 Part of the dataset used to train the BN of Fig. 4 and obtained from monitoring the execution of
the system in Sect. 3

Weather Time NS NSD . TR ATO A C D T
norm night viol ob . ob T T T T F
norm day ob ob . ob F F T F T
norm day ob ob . ob F F T F F
extr night viol ob . ob T T T T F
extr day ob dis . ob T F T T F
extr day ob ob . ob T F T T T

Columns ANS, SNS, RS, J, SJ, ATL, STL and P are omitted due to space reasons

provide evidence for both the node and all of its parents. In case of a XOR-refined
requirement, we obtain evidence only for one of the parents (sub-requirements) at a
time. The disabled value allows therefore to perform the update also in such case.

4.3 Populating the RBN: data collection

Table 3 reports a sample dataset that can be obtained from monitoring the requirement
and objective satisfaction from the log for the working example of Sect. 3. The values
that each of the variables assumes belongs to its domain as specified in Sect. 4.1 (e.g.,
obeyed, violated, disabled for requirement nodes, true or false for objective nodes).
Such dataset can be used to train the RBN of Fig. 4 and learn the set of conditional
probability distributions P.

A discussion of learning techniques (e.g., classical Bayesian learning) is out of the
scope of this paper; we refer the interested reader to the existing literature (Russell
and Norvig 2010; Spiegelhalter et al. 1993). Also, we do not analyze requirements
monitoring mechanisms [e.g., EEAT (Robinson 2006)]. In the following, we assume
to have a trained RBN.

5 Design-time assumptions and their validation

Requirements models contain assumptions that might be, or become, invalid in prac-
tice (Ali et al. 2011; Lehman and Ramil 2003; Lehman 2005). In this section, we
describe six types of assumptions made by the designer of a system during the def-
inition of a requirements model (as per Definition 1), and we propose a mechanism
to determine the validity of such assumptions by using an RBN trained with system
execution data. As shown in Fig. 1, this information can be used by the analysts to
guide the evolution of an STS.

We introduce the notion of degree of validity (§ in the following) for an assumption
as a real number in the range [—1, +1]. § = +1 denotes a fully valid assumption,
6 = —1 indicates a fully incorrect assumption, and the intermediate values describe
an assumption with partial validity.

@ Springer

Automated Software Engineering (2019) 26:513-557 525

8 is computed as a difference between two probabilities, representing the collected
positive and negative evidence for the validity of that assumption, respectively. Thus,
if the collected positive evidence is close to 1 and the negative evidence is close to O,
8 will be close to + 1. Values around 0 show that the assumption is only partly valid
since the positive and negative evidences for the validity have similar strength.

5.1 Types of design-time assumptions

We take as a baseline the types of assumptions by Ali et al. (2011) and extend the list
to support the structure of our requirements models. Note that the assumptions defined
below are made implicitly by defining the structure of a requirements model. Therefore,
even though they can be associated with a certain element of the requirements model
(e.g., with an arrow or a node of the model), they are not explicitly represented in the
model [unlike, e.g., the work by Boness et al. 2011].

Requirement satisfiability assumption The hypothesis that in a specific operating
context, a requirement is satisfied (e.g., in context day-extreme, the requirement RS
is satisfied). Figure 3 contains 11 requirement satisfiability assumptions (each one
associated with a requirement) for each of the four possible operating contexts.

Given a context ¢ and a requirement node R, the degree of validity of the associated
requirement satisfiability assumption in context ¢ is

8s(R,¢) = P(Rop | ©) — P(Ryior | ©) 2

Objective achievement assumption The hypothesis that in a specific operating
context, an objective is achieved (e.g., in context day-extreme, the objective ATO is
achieved). Figure 3 contains 5 objective achievement assumptions (each one associ-
ated with an objective) for each of the four possible operating contexts.

Given a context ¢ and an objective node O, the degree of validity of the associated
objective achievement assumption in context ¢ is

80(0,¢) = P(Onue | ©) = P(Ofaise | © 3)

Contribution assumption The hypothesis that in a specific operating context, there
is a positive synergy between the satisfaction of a requirement and the achievement
of an objective connected via an aims at link (e.g., in context day-extreme, there is a
positive synergy between the satisfaction of requirement NS and the achievement of
the objective ATO). Figure 3 contains 6 contribution assumptions (each one associated
with an aims at link) for each operating context.

Given a context ¢, a requirement node R and an objective node O, the degree of
validity of a contribution assumption is:

SC(O’ R, C) = P(Otrue | Rop N C) - P(Otrue

Ryiol N C) (4)

@ Springer

526 Automated Software Engineering (2019) 26:513-557

Notice that the degree of validity of negative contribution assumptions, if considered
in the requirements model (omitted in this paper), due to the boolean nature of the
objective nodes, can be calculated as —4c.

Refinement assumption The hypothesis that in a specific operating context, the
satisfaction of an AND-refined requirement depends on the satisfaction of all its
sub-requirements (e.g.,in context day-extreme, to satisfy the requirement NS both the
requirements NSD and RS shall be satisfied), and a XOR-refined requirement is sat-
isfied only when one and only one of its sub-requirements is satisfied (e.g.,in context
day-extreme, the requirement NSD is satisfied when either ANS or SNS are satisfied).
Figure 3 contains 2 AND-refinement assumptions and 2 XOR-refinement assumptions
(each one associated with a refinement) for each of the 4 operating contexts.

Given a context ¢, arequirement node R and the set R’ € R of its requirement nodes
parents, let r be the disjunction of all possible assignments of values to variables in R’
excluding the assignment R’,;, let r1ob be the disjunction of all possible assignments
of values to variables in R’ such that only one variable takes value obeyed, and let ro
be the disjunction of all possible assignments of values to variables in R’ excluding
the assignments in rlob.

SAND(R,¢) = P(Rop | R%p A€) — P(Rpp | T A) (5)
dxoRr(R,¢) = P(Ryp | Tlob A ¢) — P(Ryp | TO A €©) (6)

For example, the degree of validity of the AND-refinement assumption of the
requirement NS in Fig. 3 unfolds as follows:

SAND(NS,¢) = P(NSop | NSDop A RSop N €)

— P(NSop | 7(NSDop A RSpp) A €) M
Adoptability assumption The hypothesis that in a specific operating context, there is
a positive synergy between the satisfaction of a requirement and the satisfaction of each
one of its sub-requirements separately (e.g., in context day-extreme, there is a positive
synergy between the satisfaction of the requirement SNS and the satisfaction of the
requirement NSD). Figure 3 contains 9 adoptability assumptions (each one associated
with a link between a sub-requirement and a requirement) for each operating context.
Notice that, while refinement assumptions concern one-fo-many relationships (i.e.,
between one requirement and all of its children), adoptability assumptions concern
one-to-one relationships (i.e., between a requirement and each of its sub-requirements
separately).
Given a context ¢ and two requirement nodes R and R’ such that R’ is parent of R,
the degree of validity of the associated adoptability assumption in context ¢ is

8aD(R, R',¢) = P(Rop | Ry, A€) — P(Rop | Ry A ©) ®)

vio

Requirement necessity assumption The hypothesis that in a specific operating con-
text, the activation of a specific requirement is necessary condition for achieving all

@ Springer

Automated Software Engineering (2019) 26:513-557 527

the objectives (e.g., in context day-extreme, to achieve the five objectives ATO, A, C, D,
T together, the requirement ANS must be activated). Figure 3 contains 11 requirement
necessity assumptions (each one associated with a requirement) for each operating
context.

This assumption concerns the activation of a requirement, regardless of its satis-
faction; i.e., it is the hypothesis that, in order to achieve the objectives, it is better to
keep active a requirement rather than disabling it.

Given a context ¢, a requirement node R and a set of objective nodes O, the degree
of validity of the associated requirement necessity assumption in context c is

N (R’ 0, C) = P(Otme | Raer N €) — P(Otrue | Rais A ©) (9)

5.2 Validating assumptions

The requirements model of Fig. 3, despite its simplicity, contains 184 assumptions (46
for each operating context, as described above) that the requirements engineer who
constructed it has implicitly made. This calls for automated mechanisms that assist
requirements engineers in validating such many assumptions.

Table 4 reports an evaluation of the validity of the assumptions for the requirements
model of Fig. 3 when executing the simulator of Sect. 3. Specifically, we ran the
simulator in all the operating contexts and we collected from the simulation logs a
dataset of about 4.6 millions rows, part of which is reported in Table 3. We created an
RBN for our scenario using the mapping function RM2BNS;; this led to the network
shown in Fig. 4. Then, we trained such network using the dataset obtained from the
smart traffic simulation. For the learning, we relied on the functionality offered by the
bnlearn R package (Scutari 2009). At this stage, we could evaluate the assumptions.

The calculated degree of validity of the assumptions underlying the requirements
model can be used by the designer of the system as a support to determine how to
evolve the STS. We provide some examples from Table 4.

The objective ATO is hardly achieved in context day-normal, i.e., the degree of
validity of the objective achievement assumption o (AT O, dn) is below 0 (—0.273).
This happens because of the higher number of vehicles driving during the day. The
designer may therefore introduce different requirements to help achieve the objective,
for instance, replacing the current centralized navigation service with a more intelligent
one, or by changing the environment, e.g., by closing some roads to traffic.

Also, requirement ANS is harmful in context night-normal: the degree of valid-
ity of the requirement necessity assumption Sy (AN S, O, nn) is —0.7867, indicating
that using ANS is detrimental to satisfying the objectives, which are quite positively
satisfied when ANS is not employed. In the simulator, this happens for the adaptive nav-
igation service uses some vehicles as “explorers” to find less congested roads (Schmid
et al. 2017). This strategy appears to be harmful during the night since less vehicles
drive in the city and roads are not congested. The designer may therefore disable the
navigation service in such context.

The degrees of validity listed in the table can be also visualized directly on the
original requirements model using a color overlay (see Dell’ Anna et al. 2018a for an

@ Springer

528

Automated Software Engineering (2019) 26:513-557

Table 4 The degree of validity of the assumptions made in Fig. 3 in the four different operating contexts
day-normal weather (dn), day-extreme weather (de), night-normal weather (nmn), night-extreme weather

(ne)

Assumption c=dn c=de c=nn ¢ =ne
S8s(NS,¢) 0.0580 0.1073 0.0473 0.0676
8s(NSD,¢) 0.1007 0.0983 0.0988 0.0946
3s(ANS, ¢) 0 0 0 —0.0001
8s(SNS,¢) 0.1003 0.0980 0.0989 0.0940
85(RS, ¢) 0.0596 0.0598 0.0582 0.0581
85(J,¢) 0 0 0 0
85(SJ,¢) 0 0 0 0
S8s(ATL,c) 0 0 0 0
8s(STL,c) 0 0 0 0
8s(P,¢) 0 0 0 0
8s(TR, ¢) 0 0 0 0

80 (AT O, ¢) —0.2730 0.6591 0.9998 0.9999
S0 (A, ¢) 0.1119 —0.0379 0.8374 0.8181
80(C,0) 0.5079 0.5954 0.9605 0.9998
so(D,c) 0.9933 1 0.9998 0.9998
So(T,¢) 0.3155 0.5604 0.7472 0.9737
8c(ATO,NS,) —0.0744 —0.2470 0.0002 0
8c(ATO, J,¢) 0 0 0 0

Sc(A, J,¢) 0 0 0 0
8c(C,NSD,¢) —0.0137 0.3960 0.5105 0.4777
8c(D,NSD,c) 0.4337 0.5454 0.5383 0.4998
8c(T,NSD,c) 0.0704 0.3773 0.2412 0.5180
SAND(NS, ¢) 0.0187 0.0226 0.0362 —0.0376
danp(J. ©) 0 0 0 0
SxoRr(NSD,¢) 0.1003 0.0980 0.0988 0.0940
SXOR(S], c) 0 0 0 0
SAp(NS,NSD, ¢) —0.1008 —0.1033 —0.1008 —0.0019
SAp(NS, RS, ¢) 0.0025 0.0043 0.0025 0.0025
SAop(NSD,ANS, ¢) 0.3542 —0.1548 0.3542 —0.0253
SAp(NSD,SNS, ¢) 1 1 1 0.6684
dap(J,SJ,¢) 0 0 0 0
8AD(J, TR,c¢) 0 0 0 0
Sap(SJ,ATL,c) 0 0 0 0
84p(SJ,STL,c) 0 0 0 0
SAD(SJ, P,c) 0 0 0 0
SN(NS,0,c¢) —0.0068 —0.0029 —0.0022 0

@ Springer

Automated Software Engineering (2019) 26:513-557 529

Table 4 continued

Assumption c=dn c=de c=nn ¢ =ne
SN(NSD, O, c¢) —0.0040 —0.0056 0.0017 0.0029
SN(ANS, 0, ¢) —0.1003 —0.2498 —0.7867 —0.7336
SN(SNS,0,c¢) —0.0033 —0.0036 —0.0005 0.0024
SN(RS,0,¢) —0.0018 0.0075 0.0018 —0.0015
SnN(J,0,¢) 0.1006 0.2502 0.7870 0.8967
SN(SJ,0,¢) —0.0005 —0.0008 0 0.0005
SN(ATL, O, ¢) 0.0093 —0.2501 —0.7865 —0.8968
SN(STL,0,¢) 0.0004 0.0003 0 0.0003
SN (P,0,¢) 0.0005 0.0013 —0.7864 0.0001
SN(TR,0,¢) 0.1003 0.2501 0.7867 0.6191

example of such visualization). This may help the designer to quickly analyze the
behavior of the system and to determine whether an intervention is required.

6 Automated requirements revision

In Sect. 5, we have described mechanisms for analysts to determine—assisted by an
RBN thatis populated with system execution logs—the validity of the assumptions that
a requirements model implicitly contains. Such techniques help the analysts identify
systems’ behaviors that are not aligned with expectations, so that human evolution of
the system requirements can be made.

Here, we present a control loop for the automated adaptation of an STS (Sect. 6.2),
which leverages the information concerning assumptions validity learned at runtime,
in order to revise the STS requirements aiming to maximize the system’s objectives
achievement. Prior to explaining the control loop, we define in Sect. 6.1 some key
terms that concern our conceptual framework.

6.1 Requirement variant, system configuration, and requirement revision

The adaptation mechanisms presented in this section require the introduction of three
basic notions: those of a requirement variant (Definition 5), system configuration
(Definition 6) and requirement revision (Definition 7).

Definition 5 (Requirement variant) Consider a set O of stakeholders objectives in a
requirements model RM, and a set C of all possible contexts in which the system
operates. We call requirement variant V a sub-graph of R M that is defined by pruning
RM as follows:

1. for every XOR-refined requirement in RM, V contains exactly one sub-
requirement;

@ Springer

530 Automated Software Engineering (2019) 26:513-557

Table 5 The 12 requirement variants of the smart traffic scenario

Var. Description Requirements

Vi Static navigation system and static traffic lights NS, NSD, SNS, RS, J, SJ, STL, TR
A% Adaptive navigation system and static traffic lights NS, NSD, ANS, RS, J, SJ, STL, TR
%) Only static traffic lights J,SJ, STL, TR

V4 Only priority lanes signs J,SJ, P, TR

Vs All panels disabled J, TR

Ve Only static navigation system NS, NSD, SNS, RS, J, TR

V7 Only adaptive navigation system NS, NSD, ANS, RS, J, TR

Vg Static navigation system and adaptive traffic lights NS, NSD, SNS, RS, J, SJ, ATL, TR
Vo Adaptive navigation system and adaptive traffic lights NS, NSD, ANS, RS, J, SJ,ATL, TR
Vio Only adaptive traffic lights J,SJ,ATL, TR

Vi1 Static navigation system and priority lanes signs NS, NSD, SNS, RS, J, SJ, P, TR
Vi2 Adaptive navigation system and priority lanes signs NS, NSD, ANS, RS, J, SJ, P, TR

O N K
@‘ Less than 4 accidents | (/) Less than 4 accidents |
A per day (A)] AN per day (A) !
. ShE Junctions =~ Junctions
Average trip overhead =777 ===---m- managed (J)
below 250% (ATO) /
©

managed (J)
Less than 7

dropouts per
(@/“) week(®)

. Smart junctions "+

Average trip overhead T T====-------

below 250% (ATO) @/o

Less than 7

dropouts per
(@‘) week©) -7

. Smart junctions "

Cars respect
traffic rules

Cars respect
traffic rules

Less than 21 " managed (SJ) . (TR) Less than 21 1_ managed (SJ) /.‘ R
complaints per ' L complaints per . A
week (C) week (C)
9/‘ Smart junctions
employ priority lanes
Average trip Smart junctions Average trip signs (P)
overhead cars employ static traffic overhead cars
using CNS below lights (STL) using CNS below
250% (T) 250% (T)
(a) (b)

Fig.5 A graphical representation of the requirement variants V3 and V4

2. for every optional requirement in R.M, that requirement can either be included in
or excluded from V.

3. if a requirement in RM is excluded from V through clauses 1. or 2., then all the
descendants of that requirement are also pruned.

The requirements model of Fig. 3 results in a set V of twelve requirement variants
(listed in Table 5) that satisfy the top-level requirement, computed by activating or
disabling the optional requirements NS and SJ, and by making choices for the XOR-
refined requirements NSD and SJ. Figure 5a and b report, as an example, a graphical
representation of variants V3 and V4.

Definition 6 (System configuration) Given the set of requirement variants) and the set
of operating contexts C = {Cy, ..., Cy}, a system configuration assigns a requirement

@ Springer

Automated Software Engineering (2019) 26:513-557 531

variant to each operating context. Formally, a system configuration is a set of pairs
{(Cl, Vi), e, (Cj, Vk>, e, (Cm, Vp>} such that V;, Vg, ..., Vp e V.

Given the four possible contexts day-normal, day-extreme, night-normal, night-
extreme, and given the set)V of possible requirement variants, an example of
system configuration is {(day-normal, V3), (day-extreme, Vi), (night-normal, Vs),
(night-extreme, V10)}.

A certain requirement R is said to be active in a context C; if (C;, V;) is in the
system configuration and R € V;. Otherwise R is said disabled.

The concepts of requirement variant and system configuration are essential for
us to define the notions of requirement revision, which is the basic action that the
STS Supervisor performs when adapting the STS, on the basis of the learned runtime
information concerning assumptions validity.

Definition 7 (Requirement revision) Given a requirements model R M, and a require-
ment variant V; of R M, arevision of arequirement R with respect to V; is an operation
that returns a different variant V; of RM with i # j. We distinguish the following
types of revisions of a requirement R:

— Disabling R € V; returns a V; that does not contain R 2

— Activating R ¢ V; returns a V; that contains R.

— Relaxing R € V; returns a V; such that, given the set D of descendants of R in V;,
the set of descendants of R in V; is D' C D.

— Strengthening R € V; returns a V; such that, given the set D of descendants of R
in V;, the set of descendants of R inV; is D" D D.

— Altering R € V; return a V; such that, given the set D of descendants of R in V;,
the set of descendants of R in V; is D’ such that D’ % D and D' N'D # @.

Table 6 shows the revisions applied to each of the requirements (NS, NSD, etc.) in
the requirements model of Fig. 3, in order to obtain the twelve possible requirement
variants starting from V. For example, the requirement variant 13 (see Table 5) is
obtained from V) by disabling the requirement NS and by consequence also all of its
descendants. On the other hand, the requirement variant) is obtained from V| by
altering NS by replacing the descendant requirement SNS with ANS. In requirement
variant Vs, the requirement J is relaxed w.r.t. variant V), for its descendants SJ and
STL are in V| but not in V5. Notice that if we had started from V5 instead (not shown
in the table), the same requirement J would have been strengthened in variant V.
Finally, requirement P is activated in V4, for it was not present in V.

Definition 8 lifts the notion of revision from an individual requirement (Definition 7)
to an entire requirement variant.

Definition 8 (Requirement variant revision) Given a requirements model RM, and
given two requirement variants V;, V; of RM, V; is a revision of V; if and only if
V; # V;. A requirement variant revision can be of three types:

— Relaxation: for each requirement R in RM, either R is not revised between V;
and V;, or it is relaxed or disabled;

2 Clause 3 of Definition 5 ensures that all the descendants of R in RM are also not in V -

@ Springer

532 Automated Software Engineering (2019) 26:513-557

Table 6 Revisions of the requirements in Fig. 3 that are performed from requirement variant V to the other
eleven requirement variants

Vi W V3 V4 Vs Ve 1% V8 Vo Vio Vi Vi2

NS - alt dis dis dis - alt - alt dis - alt
NSD - alt dis dis dis - alt - alt dis - alt
SNS - dis dis dis dis - dis - dis dis - dis
ANS - act - - - - act - act - - act
RS - - dis dis dis - - - - dis - -

J - - - alt rel rel rel alt alt alt alt alt
SJ - - - alt dis dis dis alt alt alt alt alt
STL - - - dis dis dis dis dis dis dis dis dis
ATL - - - - - - - act act act - -

P - - - act - - - - - - act act
TR _ _ _ _ _ _ _ _ _ _ _ _

V1 - alt rel alt rel rel alt alt alt alt alt alt

The requirements whose nodes are in V; are underlined. The last row describes the variant revision type
from V) to the other requirement variants. Value “~” indicates that no revision is applied

— Strengthening: for each requirement R in RM, either R is not revised between V;
and V;, or it is strengthened or activated;
— Alteration: when V; is neither a relaxation or a strengthening of V;.

The lastline of Table 6 determines the type of variant revision based on the individual
requirements revisions. For example, Vs is a relaxation of V1, for the only requirement
revision type that is applied is disabling (NS, NSD, SNS, and RS). V; is instead an
alteration of)y, for the applied requirement revisions do not define neither a relaxation
nor a strengthening.

6.2 The STS supervisor control loop

The notions introduced in Definitions 5-8 are used to explain the STS Supervisor (first
mentioned in Fig. 1) that guides the adaptation of an STS. The control loop of the STS
Supervisor is shown in Fig. 6 and described in the following.

At design-time, an initial system configuration (as per Definition 6) is selected by
the analyst according to the available domain knowledge, and it is stored in the System
Configuration component.

At runtime, the Monitoring component collects information about the satisfaction
or violation of the requirements and about the operating contexts in which they are
evaluated. The overall objectives are also evaluated, typically with lower frequency
and relying on aggregate information. This knowledge (the STS log) is used to learn,
by means of a Requirement Bayesian Network (described in Sect. 2.2), correlations
between the satisfaction of the requirements and the achievement of the objectives in
the different contexts.

@ Springer

Automated Software Engineering (2019) 26:513-557 533

P m— o ———— -
1

Revision Engine

Reyision unsat objectives : ’
Trigger > Diagnoser
5
1
1
. v
1
Requirement | used by '

Bayesian > selector
Network

1
1
1
A STS log ! *
1
1

Revision £]
actuator

revised

input for configuration 1
Monitoring £] =p System B S .
Configuration |

1
1
1
1
1
1
1
1
1
1
Revision @ :
1
1
1
1
1
1
1
1
1
1

Fig.6 The main components of the STS Supervisor

A Revision Trigger component (Sect. 6.2.1) uses the learned knowledge to deter-
mine whether some requirements should be revised. The requirements revision process
is executed by the Revision Engine component that generates as output a (possibly)
new system configuration, replacing the current one in the System Configuration com-
ponent. The sub-components of the Revision Engine are detailed in Sects. 6.2.2-6.2.4.

The STS Supervisor control loop implements a variant of the hill climbing opti-
mization algorithm. A system configuration is treated as a solution in the space of all
possible solutions. We say that the hill climbing optimization process (Supervisor’s
control loop) performs a step every time a requirement revision process is triggered by
the Revision Trigger. A new solution (system configuration) is then selected among the
solutions in the neighborhood of the current system configuration. The neighborhood
of a system configuration is defined by our Revision Engine component by making
use of the requirements model’s structure and of the RBN. In particular, in Sect. 6.2.3
we describe two different algorithms for the selection of a requirements’ revision that
can be used as informed heuristics for the definition of a neighborhood of a system
configuration. In Sect. 7 we will then evaluate such heuristics by comparing them with
uninformed ones that do not leverage runtime execution data about the validity of the
assumptions underlying a requirements model.

6.2.1 Revision trigger

The Revision Trigger determines if a requirements revision is necessary. If so, the
Diagnoser (Sect. 6.2.2) is invoked; otherwise, no revision of requirements is triggered.

Let e be an event representing network stability: changes in the probability distri-
butions in the Requirement Bayesian Network are not significant anymore (i.e., the
variations in the distribution when a new sample is given are below a specified thresh-
old). Assuming a consistent behavior of the system, such event will occur after some
time.

Lett,, be athreshold defining the minimum objectives achievement joint probability
(i.e., the probability oa that all the objectives are achieved together) desired by the
system designer. A revision (i.e., a new step of the hill climbing procedure) is triggered

@ Springer

534 Automated Software Engineering (2019) 26:513-557

every time e occurs and f,, is not met with the current system configuration (i.e.,
oa < t,, with the current system configuration). For example, oa > 0.95 indicates a
threshold #,, of 95% for the objectives achievement joint probability.

Revisions are triggered based on an analysis of the objective achievement assump-
tions. The revision trigger calculates the joint degree of validity of the objective
achievement assumption for all the objectives. A revision is triggered when such
value is below 7, — (1 — 154).

Please note that, as above described, at any time instant a certain system con-
figuration C; is chosen. The objectives achievement joint probability oa, therefore,
depends on the chosen configuration. For instance, for the running example, if C; =
{{(day-normal, V3), (day-extreme, Vi), (night-normal,Vs), (night-extreme, V1¢)},
then oa needs to be calculated as follows:

oa = P(Oyye|l dn A v3)P(dn) + P(Oypye| de A v4) P(de)

4+ P(Oyyel nm A v5) P (nn) 4+ P(Oypye| ne A v10) P(ne) (10)
with dn, de, nn, ne evidences for the contexts day-normal, day-extreme, night-normal,
night-extreme, respectively (e.g.,dn = (Timegqy AWeatherormar)), and v3, v4, v5, v10
evidences for the values of the requirements in the requirement variants V3, Vs, Vs, V1o,
respectively (e.g., V3 = (Juer A STaer A STLger A TRyer A V3Dyis), where V3D is the
set of remaining requirement nodes disabled in V).

Analogously, any probability that needs to be calculated on the Requirement
Bayesian Network w.r.t. a certain context should take into account the currently cho-
sen system configuration. In order to ease the reading, however, in the rest of the
paper we do not explicitly represent (unless differently specified) the evidence for the
requirement nodes. We implicitly assume, instead, that in a certain context ¢ the given
evidence informs also about the active/disabled requirements in the requirement vari-
ant currently chosen for context ¢. For instance, if V3 is currently chosen for context ¢,
and we want to calculate the objectives achievement joint probability in such context
¢, instead of writing P (Oyye| ¢ A v3) (with v3 defined as above) we simply write
P (Orryel ©).

6.2.2 Diagnoser

When a revision is triggered, the Diagnoser component is invoked to determine the
reasons why the objectives are not achieved. To do so, it uses the Requirement Bayesian
Network to determine the most problematic operating context in which the objectives
are not achieved.

Let all be the set of all possible assignments of a value to each of the context
variables in the Bayesian Network (e.g., for the Bayesian Network reported in Fig. 4,
all = {{Timegqy, Weathernormat}, - - ., {Timenign, Weather exyreme}}). The most prob-
lematic context (denoted with mpc) is the assignment resulting from Eq. 11.

mpc = argmaxeeal P (Ofaise | €) (11)

@ Springer

Automated Software Engineering (2019) 26:513-557 535

6.2.3 Revision selector

Let Vinpc be the requirement variant assigned to the most problematic context mpe in
the current system configuration. The Revision Selector determines the most ade-
quate requirements revisions to perform to requirements in Vpyppe SO to increase
P(Oyye | mpe). Our framework includes two heuristic algorithms: PUREBN (PB)
and STATEBASED (SB). We report here their working principles, and refer the reader
to Dell’ Anna et al. (2018b) for more details.

PB and SB first identify the relationship between the requirement and the objective
nodes in the Bayesian Network by performing an analysis of some of the design-time
assumptions described in Sect. 5.

Requirements can be either useful for the achievement of the overall objectives
or harmful. Useful requirements can be further divided into requirements that are
more useful when obeyed and requirements that are more useful when violated. Useful
requirements can also be either often obeyed when the objectives are not achieved or
often violated.

Let us formalize this classification in terms of probability theory. Let R be the set of
all requirement nodes in a Requirement Bayesian Network. In the rest of this section,
for simplicity, let R = {X, Y, Z}.

Harmful requirements The set of requirements such that, when all disabled,
guarantee a better objectives achievement joint probability than when at least
one of them is activated. Let da be the set of all possible assignments of val-
ues in the set {dis, act} to all nodes R (e.g., given R = {X,Y, Z}, then da =

{{Xdisv Ya’is» ZdiS}s ey {Xact» Yacta Yact}})
Let h be the assignment of Eq. 12 (e.g., h = {Xyis, Yacr, Zact})-
h = argmaxrecda P(Opelr A mpce) (12)

Let D C R be the set of nodes that have value dis in h, and A be the set R\ D
(e.g.,D = {X} and A = {Y, Z}). Harmful requirements are all the requirements such
that the corresponding nodes in the Bayesian Network are in D. Useful requirements
are instead all the requirements such that the corresponding nodes in the Bayesian
Network are in A.

Note that an harmful (useful) requirement is one whose associated requirement
necessity assumption is negative (positive).

Requirements that are more useful when obeyed (violated) The set of requirements
that are most useful for the objectives achievement joint probability when active, either
when obeyed or violated.

Let ov be the set of all possible assignments of values in the set {0b, viol} to
all nodes in the set of useful requirements A (e.g., given A = {Y, Z}, then ov =
{Yobs Zob}s {Yobs Zviot}, {Yviot, Zov}s {Yviols Zvioi}}). Let ube the assignment resulting
from Eq. 13 (e.g., u = {Yyp, W,,l}).

u = argmaxreov P(Opyelt A mpe A Dyis) (13)

@ Springer

536 Automated Software Engineering (2019) 26:513-557

Requirements that are more useful when obeyed (violated) are all the requirements
whose nodes in the Bayesian Network have value ob (viol) in u (e.g., Y is more useful
when obeyed, while Z is more useful when violated).

Determining whether a requirement is useful when obeyed or when violated cor-
responds to evaluate if the associated contribution assumption is positive or negative.
When a requirement has no aims at link to an objective in R M, we are evaluating a
hypothetical link between the two elements.

Useful requirements often obeyed (violated) when Oy, The set of useful require-
ments that are most likely to be obeyed (violated) when the objectives are not achieved.
Let mle be the assignment of Eq. 14 (e.g., mle = {Y,;, Z,5}). We call such assignment
most likely explanation for Ogys. in mpe.

mle = argmaxrcoy P (r |Opyrse A mpe A Dyy) (14)

Useful requirements that are often obeyed (violated) when Oy, are those whose
corresponding nodes in the Requirement Bayesian Network have value ob (viol) in
mle (e.g., both nodes Y and Z are often obeyed when Oygyge).

The most likely explanation mle for Oz in mpe is determined by computing
the most likely degree of validity of the requirement satisfiability assumptions of the
requirements that are not harmful. The most likely value of a requirement R is obeyed
if the most likely degree of validity ds(R, (mpc, Ofyse)) is positive, otherwise the
most likely value is violated.

Algorithm PB After identifying the relationship between requirements and over-
all objectives, as just described, this algorithm applies the following procedure, also
illustrated by the decision tree of Fig. 7:

1. Disable/Relax harmful requirements.

2. Relax useful requirements that are more useful when violated.

3. Strengthen/Alter useful requirements that are more useful when obeyed but they
are often violated when Oygjge.

4. Keep all other requirements unrevised, or strengthen them.

For example, given R as above described, PB suggests to disable/relax X, to relax Z
and to either leave unaltered Y or to strengthen it.

Algorithm SB This algorithm implements a different strategy for the revision selec-
tion, for it analyzes the relationship between the average requirements satisfaction
(calculated as the mean) and the objectives achievement joint probability of the cur-
rent system configuration. Figure 8 plots five examples of system configurations in
four states with respect to the average requirements satisfaction and the objectives
achievement joint probability.

Configurations in state A sufficiently satisfy the requirements, but this does not lead
to sufficient objectives achievement. State B has insufficient requirements satisfaction
and objectives achievement. State C indicates that the objectives are achieved even
though the requirements are not satisfied. State D is the ideal area: the requirements

@ Springer

Automated Software Engineering (2019) 26:513-557 537

(argmazredaP(Otme]r A mpc)]

s %

yo

disable or relax

[argmaxreovP(Otmeir A mpc A Ddis)]

%‘
[argmaerOVP(r |Ofalse AcC A Ddis)]

o4

N

@

[strengthen or alterj (no revision or strengthen]

Fig.7 Decision tree used by algorithm PB for determining a suitable type of revision

Fig.8 Plotting system 1
configurations (points) in four
states (A-D) according to the
average requirements
satisfaction and objectives
achievement joint probability. ;5
and t,, denote the desired
average requirements
satisfaction and objectives
achievement joint probabilities,
respectively

A D °

,,

Avg Requirements Satisfaction
=~
S
1Y

0 toa 1
Avg Objectives Achievement

are satisfied and the objectives are achieved. Algorithm SB aims to revise the system
configuration and move the system into state D by applying the following procedure:

1. Calculate average requirements satisfaction probability.

2. Calculate objectives achievement joint probability.

3. Disable harmful requirements, if any. Else, go to point 4.

4. If the system configuration is in state A: Relax useful requirements that are
more useful when violated but often obeyed when Oy, if any. Otherwise,
Strengthen/Alter all useful requirements.

5. If the system configuration is in state B: Strengthen/Alter useful requirements that
are more useful when obeyed but often violated when Oy and Relax useful
requirements that are more useful when violated.

6. If the system configuration is in state C: Relax useful requirements that are
more useful when violated and often violated when Ofyge, if any. Otherwise,
Strengthen/Alter useful requirements that are more useful when obeyed but often
violated when Ofyqe.

For example, given R as described above, SB only suggests to disable X, for such
requirement is harmful.

PB and SB adopt different strategies for the revision of requirements. While PB
determines for all the requirements the most opportune revision to perform (if any),
SB considers the global state of the system and suggests to revise only a certain type

@ Springer

538 Automated Software Engineering (2019) 26:513-557

of requirements at every iteration. This difference leads to a different definition of the
neighborhoods of the configurations during the hill climbing process (see Sect. 6.2.4),
and this leads to different results (as will be visible in Sect. 7). We refer the reader to
our previous work (Dell’ Anna et al. 2018b) for more details about the implementation
of the algorithms.

6.2.4 Revision actuator

This component adopts a new requirement variant in the mpe. Given a list of sug-
gested revisions for requirements in the requirement variant Vipe currently assigned
to context mpc in the system configuration, the Revision Actuator selects a require-
ment variant VV; that is as much aligned as possible with the direction provided by the
suggestion.

For example, consider Vi, and assume the Revision Selector suggests to alter the
requirement NS. Then, the Revision Actuator has to find other requirement variants
where NS is altered from V; (e.g., V2, V7, Vo or V1o, see Table 6). The obtained set
of variants defines the neighborhood of the current system configuration in the hill
climbing optimization process.

If the neighborhood contains multiple variants, different distance metrics can be
defined, e.g., the similarity with the current variant, or the sensitivity of the objectives
to the change of the selected requirements. Here, we adopt the number of revisions of
requirements needed to obtain VV; from Viypc. For instance, four revisions are necessary
to obtain V; from V), seven revisions are necessary to obtain V7 from Vi, etc.

After selecting the new requirement variant)}, the current system configuration is
updated to map the context mpec to the new V; instead of Vipe.

If there is no new variant that is aligned with the provided suggestion (i.e., the
neighborhood is empty or it contains only already-attempted variants), the Revision
Actuator randomly selects a system configuration never tried before, if any. This makes
our implementation of hill climbing different from traditional ones, and guarantees
convergence to an optimal solution.

7 Evaluation
We report on an evaluation of the proposed supervision mechanism; in particular, we

conduct an experiment that investigates the process through which the Supervisor’s
control loop identifies an optimal system configuration.

7.1 Scope, context, and hypotheses

The object of our study consists of the requirement revision heuristics. We compare
two sets of dependent variables:

i. Informed heuristics: the two algorithms PB and SB described in Sect. 6.2.3 imple-
mented in our Revision Engine; and

@ Springer

Automated Software Engineering (2019) 26:513-557 539

ii. Uninformed heuristics: three baseline algorithms that do not leverage knowledge
about the validity of the design-time assumptions:

1. Maximum distance 8 (D8) defines a neighbourhood composed of all the system
configurations that are obtained by revising at most 8 requirements;”

2. Maximum size 10 (S10) defines a neighborhood composed of the 10 closest
system configurations to the current one;

3. Maximum size 20 (S20) defines a neighborhood composed of the 20 closest
system configurations to the current one.

We identify four independent variables for studying the process through which the
Supervisor’s control loop identifies an optimal system configuration:

1. Convergence speed: the number of steps (i.e., revisions triggered by the Revision
Trigger, as described in Sect. 6.2) and the number of explored system configu-
rations that the Supervisor’s control loop requires before it identifies an optimal
system configuration;

2. Quality: the probability that the system configurations explored satisfy the system
objectives;

3. Stability: the number of requirements revisions that are performed while identify-
ing an optimal system configuration.

Furthermore, for the informed algorithms alone, we evaluate 4. Noise tolerance: the
degree to which the amount of noisy input data (imperfect monitors) affects con-
vergence speed, quality, and stability. Noise tolerance does not affect uninformed
algorithms, for they do not take into account any information about requirements
satisfaction.

Our experiment is run through CrowdNavExt, the simulation environment that
instantiates the smart traffic example presented in Sect. 3. Within the context of such
simulation environment, we formulate the following hypotheses:

— Hj: our informed heuristics provide a higher convergence speed than the unin-
formed heuristics;

— H»: our informed heuristics allow to higher-quality system configurations than the
uninformed heuristics;

— Hj: our informed heuristics allow to perform less revisions than the uninformed
heuristics while finding an optimal system configuration;

— Hj: noisy input data has a marginal effect on convergence speed, quality, and
stability of the Supervisor’s control loop when using our informed heuristics.

7.2 Design and instrumentation

SASS (Supervisor of Autonomous Software Systems)* is our implementation of the
Supervisor’s control loop described in Sect. 6 as a modified version of hill climbing.

3 The value of 8 was chosen via experimentation with CrowdNav. Revising one requirement leads to a
distance of 4-5 from the original system configuration, and each system configuration has 10-20% of all
system configurations in its neighborhood.

4 SASS’ code repository: https://bitbucket.org/dellannadavide/sass.

@ Springer

https://bitbucket.org/dellannadavide/sass

540 Automated Software Engineering (2019) 26:513-557

The supervisor performs a local search and stops when either (i) all the system config-
urations have been tried; or (ii) a local optimum (system configuration) is found that
has objectives achievement joint probability oa above the desired threshold 7,,. This
probability is determined from simulation data (see Sect. 6.2.1) as the joint probabil-
ity of achievement of all the objectives, given the chosen system configuration. We
call optimal the last system configuration chosen, since either it is above the desired
threshold or there is no other better configuration.

CrowdNavExt has 12% = 20, 736 possible system configurations, i.e., assignments
of one of the twelve variants to each of the four contexts (see Definition 6). To keep
our simulation time manageable, we chose 81 system configurations via test case
generation techniques. We first applied pairwise testing: for each pair of variables, we
obtained all their possible discrete combinations. Our variables are: time of the day
(day, night), weather (normal, extreme), the alternative requirements for the navigation
service (none, adaptive, static), and the alternatives for managing smart junctions
(none, adaptive lights, static lights, priority lanes). This led to 3 different variants for
each of the 4 operating contexts, using pairwise testing. We generated all combinations
of the four groups of variants (each system configuration includes four variants, one per
each operating context). Finally, we introduced three additional system configurations
more distant from the others (in terms of number of required revisions, as described
in Sect. 6.2.4). Two of them are the best-scoring system configurations. Therefore, in
our experiments, we study 84 system configurations (reported in Table 7).

Table 8 describes all the simulation parameters of our experiments. We run simu-
lations with three possible values of #,,: 0.35, 0.3, and 0.25. These values have been
determined manually, based on the objectives achievement joint probability oa of the
84 system configurations (shown in Fig. 9), so that the three different values deter-
mine, as also reported in Table 8, three levels of difficulty for the search of an optimal
configuration in terms of percentage of system configurations above the threshold.

We test SASS with the two informed algorithms described in Sect. 6 (PB and SB)
as heuristics for defining the neighborhood of a system configuration, i.e., the set
of all the other system configurations that satisfy the suggestions provided by the
suggestion selector with the help of the trained Bayesian Network. Moreover, we test
the three additional uninformed heuristics D8, S20, S20 above described for use as
baseline. Note that, in terms of Supervisor’s control loop, the uninformed heuristics
differ from the informed ones in that they do not use the Revision Engine to select a
new system configuration. Since the rest of the control loop is common, for the sake of
readability, we mention a certain heuristic algorithm (e.g., SB) to refer to the version
of the Supervisor’s control loop that uses such algorithm (e.g., the Supervisor’s control
loop with the SB heuristic).

In order to obtain significant data, due to the stochastic nature of the simulation data,
SASS has been executed starting from all of the 84 possible system configurations
with all the five tested heuristics.

We use the following metrics to determine whether our hypotheses hold:

— Convergence speed (Hy, detailed in Sect. 7.3.1)

1. Number of steps: the average number of steps that an algorithm attempts before
stopping (i.e., before finding a configuration above the desired threshold #,,).

@ Springer

Automated Software Engineering (2019) 26:513-557 541

Table 7 The 84 system configurations employed for the experiments

Conf nn dn ne de conf nn dn ne de conf nn dn ne de
1 Vi Vi Vi Vg 29 Vo Vi Vi Vi 57 Vo Vi Viz Vs
2 Vi Vi Viz Vi 30 Vo Vit Viz Vs 58 Vo Vi Vio W
3 Vi Vi Viz Vs 3l V»» Vit Vio V8 59 Vo Vi Vio Vi
4 Vi Vit Vio Vs 32 V» Vit Vio Vi 60 Vo Vi Vio Vs
5 Vi Vi Vo Vi 33 Vo Vii Vo Vs 6l Vo Vi V4 W8
6 Vi Vii Vio Vs 34 Vo Vii Wy Vg 62 Ve Vii. W Vi
7 Vi Vi W Vg 35 Vo Vi Wy Vi 63 Ve Vii. W Vs
8 Vi Vi W Vi 36 Vo Vi W Vs 64 Ve Vo Vi2 Vg
9 Vi Vii Wa Vs 37 Vo Vg Vio Vg 65 Vs Vo Vio Vi
10 ViV Vi Vg 38 Vo Vg Vi Vi 66 Vs Vo Vi2 Vs
11 Vi VWV Vi Vi 39 Vo Vg Vi Vs 67 Ve Vo Vio W

12 Vi VWV Vi2 Vs 40 Vo Vg Vio Vg 68 Ve Vo Vio W
13 Vi VWV Vio Vg 41 Vo Vo Vio Vi 69 Ve Vo Vio Vs
14 Vi VWV Vio Vi 42 Vo Vg Vio Vs 70 Ve Vo 2 Vg
15 Vi Vg Vio Vs 43 \Z R 2 Vy Vg 71 Ve Vo Vy Vi
16 Vi Vg Va Vg 44 \Z R 2 Va Vi 72 Ve Vo Vi Vs
17 Vi Vg Vy Vi 45 Vo Vo Vi Vs 73 Ve V3 Vi Vg
18 Vi Vg V4 Vs 46 Vo W3 Vi Vg 74 Ve V3 Vi Vi
19 VoW Vio Vg 47 Vo W3 Vio Vi 75 Ve %) Vi Vs
20 Vi W Vi Vi 48 Va2 W3 Vi Vs 76 Ve %) Vio W
21 Vi W Vi2 Vs 49 Vo W3 Vio Vs 77 Ve %) Vio W
22 Vi W Vio Vg 50 Vo W3 Vio Vi 78 Ve %) Vio Vs
23 Vi W3 Vio Vi 51 Vo W3 Vio Vs 79 Ve V3 2 Vg
24 Vi W3 Vio Vs 52 Vo W3 Vi Vg 80 Ve V3 2 Vi
25 Vi W3 Vy Vg 53 Vo W3 V4 Vi 81 Ve V3 Vi Vs
26 Vi W3 Vy Vi 54 Vo V3 Vi Vs 82 Vi V3 Vs Vg
27 Vi W V4 Vs 55 Vo Vi1 Vi Vg 83 3 %) Vs Vg
28 Vo Vii V2 Vg 56 Vo Vi1 V2 Vi 84 Vii. Wi Ve V3

nn, dn, ne, derespectively represent the contexts night-normal, day-normal, night-extreme and day-extreme

2. Number of explored configurations: the average percentage of system config-
urations that an algorithm attempts before stopping.

— Quality (H,, detailed in Sect. 7.3.2)

1. Final conf: the average objectives achievement joint probability (i.e., the aver-
age oa) of the final solutions determined by an algorithm.

2. oay: the average oa of all the configurations tried by an algorithm A before
stopping.

3. 044 a5t the average oa of all the configurations tried by an algorithm A until
all algorithms terminate all the 84 executions. Note that, if A terminates before

@ Springer

542 Automated Software Engineering (2019) 26:513-557

Table 8 Simulation parameters for our experiment with CrowdNavExt

Parameter Value Description
Time day 600 vehicles in the city
night 300 vehicles in the city
Weather normal Speed limits as per CrowdNav
extreme Speed limits reduced by 25%
Objective achievement threshold 0.35 3.5% system configurations above the threshold
0.3 7% system configurations above the threshold
0.25 17.8% system configurations above the threshold
Hill climbing heuristic D8 Uninformed, neighbors max 8 revised revisions
S10 Uninformed, up to 10 neighbors
S20 Uninformed, up to 20 neighbors
PB Informed, PUREBN
SB Informed, STATEBASED
P S E— L.
e 0a2>0.35 °
041 160.3 < 0a<0.35 B B
0.25 < 0a < 0.3 ces
02kl |® oa < 0.25 .o.o...o.o.oOoo |
’ e 0o o e 0o 0
0 0000000 90000 0 0° 00
® 0 ® g0 060 00 0 909 0 0 00 00
or bl S bR | | | | |
0 10 20 30 40 50 60 70 80 90

Fig.9 Objectives achievement joint probability (y-axis) for all the 84 system configurations (x-axis)

other algorithms, the average will count, for the remaining steps, the oa of the
last (optimal) configuration found.

4. 0a firs: the average oa of all the configurations tried by an algorithm A until
the fastest algorithm terminates all the 84 executions (note that A is not nec-
essary the fastest algorithm).

5. 0a A, mres: the average oa of all the configurations tried by an algorithm A
until the fastest algorithm reaches the threshold 7,, (note that this does not
necessary mean that the fastest algorithm has terminated all its executions, nor
that algorithm A has reached the threshold).

— Stability (H3, detailed in Sect. 7.3.3)

1. Revisions per step: the average number of requirements revisions performed
by an algorithm at each step before to reach the final solution.

2. Total revs: the average total number of revisions performed for a given algo-
rithm to reach the final solution.

— Noise tolerance (Hs, only for PB and SB and detailed in Sect. 7.4): the variation in
performance (speed, quality, stability) when noisy data concerning requirements
satisfaction are used to train the Requirement Bayesian Network.

@ Springer

Automated Software Engineering (2019) 26:513-557 543

In the rest of the section, we present and discuss the results obtained in our experi-
mentation w.r.t. the metrics and hypotheses described above.

7.3 Informed versus uninformed heuristics: speed, quality, and stability

Table 9 summarizes the results concerning H1—H3 obtained with the five tested heuris-
tics. The table presents the results for the three tested thresholds of #,, and reports the
values (average and standard deviation) obtained from the 84 simulation runs for each
of the metrics described in the previous section. As stated earlier, the baseline unin-
formed heuristics are denoted as D8, S10 and S20, while our informed heuristics are
denoted as PB and SB.

7.3.1 Convergence speed (H;)

Number of steps With all the thresholds, our informed heuristics consistently out-
perform the uninformed algorithms in terms of number of steps: see the # steps column
of Table 9 and the bar chart of Fig. 10, both reporting the average number of steps that
each algorithm attempted before stopping.

With 7,, = 0.35, the three uninformed heuristics DS, S10, S20 take on average
67.8 steps. Our PB and SB heuristics, instead, explore on average only 43.05 system
configurations. In this scenario, the few (3 out of 84) optimal system configurations
are slightly more distant (in terms of number of necessary revisions) from the non-
optimal ones: while the average distance between the 81 system configurations is 16,
that with the remaining 3 is 20. This affects the number of steps required to find one
of them, for all the algorithms give priority to the closest system configurations in the
neighborhood. Despite this difficulty, however, PB and SB deliver an improvements
of 36.5% = 1 — (43.05/67.8) over the uninformed heuristics in terms of required
steps.

With ¢,, = 0.3, the improvement over uninformed heuristics is even higher:
55.7% = 1 — (13.4/30.27), and the efficiency gain increases further with #,, = 0.25:
75.5% = 1 — (3.69/15.09). Notably, with this last threshold, SB requires on average
only 1.77 steps, i.e., it finds an optimal system configuration after only one or two
revisions.

In Fig.11, we show the percentage of steps required by the algorithms in order to
terminate the first, second and third quartiles (respectively 25, 50 and 75%) of the 84
execution and the first 95% of them. It is worth noting that, in the case of 7,, = 0.35
(and similarly for the other thresholds), SB terminates the 95% of all the executions
before any other uninformed heuristic terminates the first quartile.

When we compare our two informed heuristics, SB outperforms PB. PB suggests
different revision types for different requirements. The selection of a requirement vari-
ant that satisfies the given suggestions, however, depends on the number of available
variants (only 12 in our working example). The suggestions of SB affect, instead,
requirements in the same quadrant of Fig. 8, thereby moving the current system con-
figuration step-by-step toward the high requirements satisfaction and high objective
achievement area. This strategy, which in almost all cases proved to be very efficient,

@ Springer

Automated Software Engineering (2019) 26:513-557

544

PIOYSAIY) Yora Y)Im dLNAW Yora Joj wiproJ[e Suruioyrad 1saq 9y 9JeIIPUL SAN[BA PO "SUONIR[NUILS JUIJJIP 8) JOAO IFLISAL AU} AT SAN[LA [[Y

SI9 $0°6 19 09% 900 00 SO0 ST0 €00 80 II'0 8T0 €00 670 00 €00 vl LL1 s
1€°0€ 6v'¥e T Loe €00 LI'O €00 0C0 %00 LZO OI'0 ¥I0 €00 670 L0'0 800 809 9°¢ ad
8T Sy €668 981 68'¢ 00 €Io <o €ro 80 IO 00 Cro Y00 0€0 Iro <o €96 £¥'81 0CS
SLYE SIys eL'T 8Y'E 00 €I'0 o €I'0 900 €0 0I'0 €10 Y00 6C°0 600 SI'0 ore srer OIS
LL'YE S19¢ 891 &¥e o0 €I'o o €ro Loo0 v¥co 110 ¥I°0 ¥0'0 0€°0 0ro 910 188 69°¢l 8d

STo="%
PS'Gl 9¢°8¢ 8¢'1 8LCT ¥00 ITO 900 €20 900 0€0 II'0 910 S00 ¥£0 600 ST°0 €8 98I 4as
wLE 9081 860 C0¢€ €00 €0 v00 ¥T0 SO0 6C0 IO 8I'0 Y00 PE0 0ro 9ro 6L'6 STl ad
vr6L 8S°S91 ocr vy <00 €10 +v00 ¥I'0 LOO <CTO II'0 SI'0 €00 €€0 6I'0 €0 9TLI TOLE 0TS
6879 08'¢Cl SI't - v8¢ ¢00 LI'O SO0 8I'0 LOO %20 OI'0 9I0 00 €0 oro v£0 Oo¥st 100€ OIS
9T Sy 8676 80T 0L¢€ ¢0'0 LI'O 900 8I'0C 800 920 0I'0C 910 00 €€0 cro L0 16001 LL€T 8d
€0="%
LY'€S 89°L6 9¢'0 I¥FC 900 0T0 CI'0 €€0 €10 9¢€0 110 LIO w00 6¥0 8I'0 0 6Ll €9°LE 4as
9999 06891 vL0 8T¢E 00 00 O0I'0 820 <TI0 Ce0 110 8I'0 €00 6v0 or'o 6¥0 ¥LSI 9S°8Y ad
0€'€9 ¥T'68C 88°0 9tV ¢00 910 600 ITO ¥I'O 9C0 II'0 LIO w00 6¥0 9I'o ¢,L0 oI'vl SO¥9 0CS
w99 W0T9T 6L0 96'¢ ¥00 LI'0O 800 IT0 €I'0 9C0 1I'0 910 w00 6¥0 SI'o 890 60°GI T8¢€9 OIS
§6'€9 6C10¢ 9L'0 ¥8'¢ ¥00 8I'0 €00 8I'0 0OI'0 <¢C0 11I'0 LIO w00 6¥0 SI'0 9L0 6LSI L9CL 8d
SE0="%

0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x

doys 1ad s3yuod

SAQI [€)0], SUOISTAY $2441°Y po 1S4V po V1Y po Voo Juoo [eur paiordxa 9, sdoys #

Ainqeig Anend poads 14

SPIOYSAIY) JUIWAAJIYOL JA1D[qO 2211 o) Y)m swiIoS[e oy jo uostedwo) ¢ ajqel

pringer

As

Automated Software Engineering (2019) 26:513-557 545
Fig. 10 Average number of steps 80 F .
(y-axis) required to find an 0 ps
optimal solution for each of the 60 - Os1o
3 tested thresholds (x-axis) " Osz
% 40 |- Ors
7 IsB
20 - HH
ol [fil..
T T T toa
0.35 0.3 0.25
10082 -
—— D8
80 - — - S| —S10
60 1 - 1 |—s20
40 - b ——PB
20 |- 4 |—sB
| | 1 1 Q
% 0.25 05 0.75 0.051 oruns
() toq = 0.35
step
60 f P D8
——s10
40) 4 |——s20
20l e { |—PB
_— — SB
— T I I I
% 0.25 05 0.75 0051 Joruns
(b) toe = 0.30
ste
40 e —— D8
301 — | |—s10
20 |- - || ——s20
- S — — PB
10 _— - SB
s 1 1 |
Y% 0.25 05 0.75 0.051 o runs
(€) toa = 0.25

Fig. 11 The number of steps (y-axis) required by the tested heuristics to terminate the first (0.25), second
(0.5), third (0.75) quartiles and the 95% (0.95 in the plot) of all the 84 executions (x-axis)

may however result less appropriate when bigger variations in the full set of require-
ments are needed. For instance, Fig.11 shows that, in case of 7,, = 0.35, SB could
not find the optimal solution for two particular executions without trying almost all
the possible system configurations (see SB in Fig. 11a between 0.95 and 1).

Configurations exploration In terms of the percentage of explored system configu-
rations (reported in the % explored config column of Table 9), the results show that the
informed strategies explore a smaller portion of the possible system configurations
than the informed strategies. Notably, in case of 7,, = 0.35, SB results in a 39%
improvement over the best uninformed strategy (S10). For #,, = 0.25, such improve-
ment increases to 78% over S10. In other terms, in order to find one of the 17.8%
optimal solutions, SB needs to explore, on average, only about 3% of the system
configurations.

Interpretation The results of our simulations support Hj: the informed heuristics
converge quicker than uninformed heuristics, both in terms of number of steps and

@ Springer

546 Automated Software Engineering (2019) 26:513-557

percentage of explored system configurations. This entails that probabilistic reasoning
about monitored requirements seems to deliver an added value over the uninformed
distance-based heuristics, in terms of convergence speed.

7.3.2 Quality (H,)

Quality of the final solution All the tested algorithms stop searching for new sys-
tem configurations when a system configuration that meets the desired threshold is
identified. As such, the average objectives achievement joint probability of the final
solution is always above the threshold 7,,. All tested heuristics provide on average
similar results in terms of average objectives achievement joint probability of the final
solution; the Final conf column of Table 9 reports such value. For #,, = 0.35, all algo-
rithms provide an average value of the final solution that is close to the overall best
possible solution: the quality of the final solution is, on average, 0.49, which is 0.14
higher than the threshold. The average quality of the identified solutions decreases with
the lower values for #,,, and we do not see differences between the algorithms. This
is an expected behavior, for hill climbing algorithms employ local search techniques
that stop as soon as an optimal solution is found.

Quality throughout the process As described at the beginning of the section, we use
different metrics for the analysis of the quality of the heuristics throughout the process
of finding an optimal solution.

Figure 12 illustrates the trend of the average objectives achievement during the
optimization process, until all algorithms terminated all the 84 executions. A value
in the plots for an algorithm A at step i represents the average value (w.r.t. all the 84
executions) of the objectives achievement joint probability oa of the configurations
tried at step i.

If we consider metric oa4 (i.e., the average quality of the solutions tried by an
heuristic A before stopping, reported in column oa 4 of Table 9), the best heuristic
is PB, which in all cases provides on average better solutions throughout the process
(see also the red line in Fig. 12. When we consider, instead, the initial phases of
the optimization process (the first 5-6 steps in the three sub-figures), we see that SB
outperforms PB, selecting higher-quality solutions. This, as seen in Sect. 7.3.1 in the
case of t,, = 0.25, allows to find a solution above the threshold in very few steps. Due
to this behaviour, SB is always the fastest heuristics at reaching the desired threshold,
outperforming the other strategies (and in particular the uninformed ones) also in terms
of 0a A, nres (reported in column o0d 4 s Of Table 9).

Figure 13 reports the average avg?:1 Pai, where pa; = avg§i]0a Ai 1s the average
objectives achievement joint probability for the configurations tried by algorithm A at
simulation step i, and n is defined as follows:

— Figure 13a: the step when all algorithms terminate all executions: 92 for #,, = 0.35,
59 for t,, = 0.30, 37 for t,, = 0.25.

— Figure 13b: the step when the first algorithm ends all its executions, i.e., 75 for
toa = 0.35, 23 for t,, = 0.30, and 7 for ¢,, = 0.25.

— Figure 13c: the step when the first algorithm meets the threshold i.e., 34 for ,, =
0.35, 19 for t,, = 0.30, and 3 for ¢,, = 0.25.

@ Springer

Automated Software Engineering (2019) 26:513-557 547

average oa

average oa

average oa

0 5 10 15 20 25 30 35
(©) toa =0.25

Fig. 12 The trend of the average objectives achievement joint probability (y-axis) of the solutions selected
during the optimization process. The x-axis indicates the steps made by the hill climbing algorithm

The bar charts in Fig. 13 confirm the superiority of the informed algorithms when
considering the average objective satisfaction rate throughout the process. The
improvements are visible in all conditions, and become manifest if we consider the
step when the first algorithm ends (metric 0a 4 iy, illustrated in Fig. 13b and reported
in column od4 firs of Table 9): for #,, = 0.35, the informed algorithms provide a
gain of about 37-50% over the non-informed algorithms, and for 7,, = 0.25, the gain
delivered by SB over the average of the uninformed algorithms is about 88%.

Concerning 0d 4, 45 (Fig. 13a and column 0a 4 45 of Table 9), since SB terminates
the majority of the solutions early in the optimization process, its value of 0aa s
(which includes in the average also the oa of the executions already terminated) is
generally higher than other metrics. However, due to the overall high quality of the
solutions explored by PB, in some cases its performance is slightly better than SB. In
general, Fig. 12 highlights that PB exhibits a more stable behavior in terms of quality
of explored system configuration, if compared to SB.

@ Springer

548 Automated Software Engineering (2019) 26:513-557

03l B 0.3 - —
3 g
= [| & 0.2 —
302 =
5 S H
0.1] 0.1] HHH .
0 T T T 0 T T T
0.3 0.3

taa toa
0.35 0.25 0.35 0.25
(a) When all algorithms end (b) When the first algorithm ends

0.2 - B A

§ [s

Z Osi0

g Ol B 0 s20

0rs

Iss

0 tO(L

T T T
0.35 0.3 0.25

(¢) When the first algorithm meets the threshold

Fig. 13 Average objectives achievement joint probability (y-axis) throughout the process of finding an
optimal solution, for all the 3 tested thresholds (x-axis)

Interpretation The results of our simulations partially support Hy: while the quality of
the final solution is not affected greatly by the algorithm, the informed heuristics show
a higher objectives achievement joint probability throughout the process of finding an
optimal system configuration.

7.3.3 Stability (H3)

As reported in Sect. 7.3.2, despite SB and PB are comparable when it comes to
the average objectives achievement joint probability, PB exhibits a more consistent
behavior than SB, which instead leads to more intense oscillations, due to the more
heterogeneous definition of the neighborhood.

To better understand these differences and similarities, we focus on stability met-
rics in terms of the number of performed requirement revisions. This metric matters,
for each revision may incur some costs (e.g., to deploy the necessary sensors for
monitoring requirements compliance), which the system designer wants to minimize.
Figure 14 reports the trend of the average number of revision performed at each step
of the optimization process. Note that the lines for an individual algorithm end when
all the 84 executions of that algorithm terminate. The figure reports, at a given step i,
the average number of revisions performed w.r.t. the executions that are still running
at step i. Conversely, the executions that already terminated are not considered when
computing the average. An approximation of the number of executions still running
at a certain step i can be seen in Fig. 11.

The total number of revisions for SB to find an optimal solution is lower than the
other algorithms in all cases (see the Total revs column of Table 9). This is particularly

@ Springer

Automated Software Engineering (2019) 26:513-557 549

revisions

revisions

(© toa =025

Fig. 14 Average number of revisions (y-axis) performed at each step (x-axis) of the optimization process

evident with the lowest threshold #,, = 0.25, since SB finds a solution in very few
steps, leading to an average total number of revisions of 9.05.

Concerning the average number of revisions performed at each step (column Revi-

sions per step in Table 9), note that all algorithms are comparable with thresholds
toa = 0.35 and 7,, = 0.3, which require more steps than #,, = 0.25. However, in the
initial phases of the optimization process (first steps), SB performs an higher num-
ber of revisions per step, compared to the other algorithms. This explains why, with
t,q = 0.25, it reaches an optimal solution faster than the others.
Interpretation The results of our simulations support H3: the total number of revisions
that informed heuristics make is lower than the number for uninformed heuristics.
However, to do so, the informed algorithms make—in some cases—more revisions
per step than the uninformed heuristics.

7.4 Noise tolerance for the informed algorithms (Hs)

The performance of the informed heuristics depends on the quality of the data anal-
ysed. So far, we assumed our system can monitor the satisfaction of the requirements

@ Springer

550 Automated Software Engineering (2019) 26:513-557

variation % ‘

e I 0 pBs
I 0 sBs

0% |- D ,,,,,,,,,,,, | OrB10
D I UsB1o

B rB20

—1% - . 0l sB20

T T T toa
0.35 0.30 0.25

Fig. 15 The variation of the percentage of system configurations explored (y-axis) when introducing 5%,
10% and 20% of noise in the input data (respectively identified with PB5 and SB5, PB10 and SB10 and
PB20 and SB20), for each of the 3 tested thresholds (x-axis)

variation %

2%

0%

— PB5 PB10 —— PB20
—2% - |——SB5 SB10 ---- SB20
T

I T I L | L L 1 step
0 10 20 30 40 50 60 70 80 90

Fig. 16 The trend of the variation of the average objectives achievement joint probability (y-axis) over the
steps of the optimization process (x-axis) in case of 7o, = 0.35 when noise is introduced

perfectly. We now relax this assumption to analyze how the algorithms perform in the
presence of noisy data about requirements satisfaction.

We compare the performance when a certain percentage p of the information
acquired from the Monitoring component is incorrect. In particular we analyze results
with p = 5%, 10%, and 20%. To do so, we modified our dataset by uniformly altering
p% of the data concerning active requirements satisfaction. Specifically, we changed,
with probability p, every value obeyed and violated in Table 3, respectively into vio-
lated and obeyed.

Figure 15 reports the results for the variation of the percentage of explored system
configurations by the two informed heuristics PB and SB when introducing noise. Even
with 20% of noise, with 7,, = 0.30 and ¢,, = 0.25, the algorithms presents almost no
difference in the system configurations selected. In case of #,, = 0.35, when more sys-
tem configurations need to be explored, the maximum detected variation is of about the
1% in terms of system configurations explored, when perturbing 20% of the input data.

Figure 16 shows the impact of noise on the average objectives achievement joint
probability over the steps of the optimization process in case of #,, = 0.35, the only
threshold level at which the introduced noise had some noticeable impact. The figure
shows no impact during the early phases of the optimization process, while the effect is
visible after several steps of optimization, due to the presence of an increasing quantity
of noisy data. The effects, however, are within the 2% range. The line chart also helps
understand why the algorithms are not impacted with lower thresholds: the effect of
noise occurs after multiple steps, while our algorithms return before such effects are
visible.

@ Springer

Automated Software Engineering (2019) 26:513-557 551

Interpretation The results of our simulations support Hj: the informed heuristics
seem to have high tolerance to degrees of noise up to 20%. However, it must be noted
that data was perturbated in a uniform manner, and this may have positively affected
the ability to tolerate noise.

7.5 Threats to validity

The implementation of the prototype of the control loop described in Sect. 6.2 could be
incorrect, which would render the results invalid. We reduced the potential impact of
this threat by performing an extensive testing of the implementation and by applying
it to different problems.

The chosen topology of the Requirement Bayesian Network, reflecting the structure
of a requirements model, may influence the conclusions drawn via probabilistic infer-
ence. The choice of such topology is a threat to construct validity. For example, we do
not capture causal relationships between sibling requirements or between objectives,
which may help better explain when and why the requirements and the objectives are
achieved. Different mappings between a requirements model may be tried to overcome
this limitation.

The interpretation of the results is subject to the size and type of the set of system
configurations tested. To mitigate this threat, we paid attention to our interpretation
and the wording of the implications, and we deliberately omitted tests for statistical
significance due to the use of a single case.

The notion of degree of validity is based on the assumption that the collected positive
and negative evidence have the same statistical significance. The choice of such method
to evaluate the assumptions affects construct validity. Additional probabilistic learning
techniques should be explored and tested.

Finally, our conclusions have only limited generalizability. It is possible that the
proposed algorithms behaves differently on different problems. This threat to conclu-
sion validity is partly mitigated by our previous work (Dell’ Anna et al. 2018b), where
we applied the same approach to a different problem, obtaining analogous results.

8 Related work

The intrinsic dynamism of modern software systems leads to high runtime uncer-
tainty (Whittle et al. 2010; Lehman 2005), which makes adaptation a necessity.
Researchers argue for the necessity of evaluating the assumptions made during the
design of a system in order to support software evolution. In their seminal works
(Lehman and Ramil 2003; Lehman 2005), Lehman et al., identify invalid assump-
tions as one the main causes for software evolution. They highlight how the—implicit
or explicit—presence of assumptions in (E-type) software is inevitable and follows
from the fact that real-world software and the environment in which it operates have
a potentially unbounded number of properties.

Several approaches for the evaluation of assumptions have been proposed over
the years. Boness et al. (2008, 2011) explicitly represent assumptions when defining

@ Springer

552 Automated Software Engineering (2019) 26:513-557

requirements within a goal oriented framework. They use such concept to help the
system designers to assess, during requirement analysis, the confidence in (and the
risk due to) the set of elicited requirements. In order to do so they integrate expert
knowledge, argumentation techniques and propagation of confidence values through
the goal graph. In our work, we consider assumptions that are implicit in the structure
of a requirements model (rather than explicitly represented as in Boness et al. 2011)
and we calculate (and make use of) their degree of validity at runtime by means of
probabilistic reasoning on a Bayesian Network trained with data obtained during the
execution.

The availability of a requirements model during execution (Blair et al. 2009; Ben-
como et al. 2010) is crucial to build a framework that supports the runtime evolution
of the system requirements. Several frameworks exist that use such models to support
the monitoring and diagnosis of requirements (Fickas and Feather 1995; Wang et al.
2009; Robinson 2006). Such approaches are powerful and allow the identification of
deviations from the requirements. However, they do not challenge the validity of the
requirements (models) themselves.

Ali et al. (2011) illustrate the advantages of monitoring requirements at runtime to
detect when design-time assumptions concerning requirements satisfaction become
invalid. They also discuss the importance of keeping track of the relationship between
context and requirements at runtime (Ali et al. 2013). Paucar et al. (2017) propose
techniques to reassess the assumptions about the priority of non-functional require-
ments.

Models at runtime are often used for guiding the adaptation of the system. Souza
et al. (2011) define awareness requirements as meta-requirements to drive adap-
tations. Non-functional requirements (NFRs) have been used to trigger and guide
self-adaptation; for example, contributions to objectives can help identify those sys-
tem configurations that maximize NFR satisfaction (Salehie and Tahvildari 2012;
Dalpiaz et al. 2013).

These approaches constitute our baseline: our framework uses requirements models
at runtime (Blair et al. 2009; Bencomo et al. 2010), can rely on existing monitoring
frameworks (Wang et al. 2009; Robinson 2006), and implements the idea of recon-
sidering design assumptions at runtime (Ali et al. 2011). The distinguishing features
of our approach are the focus on sociotechnical systems, the use of Bayesian learn-
ing, and the employment of an hill climbing approach to identify an optimal system
configuration.

In order to support the automated requirements evolution, Whittle et al. (2010) pro-
pose the notion of requirements revision. They present a requirements language for
self-adaptive systems (RELAX) that allows to specify relaxed versions of a require-
ment during the elicitation phase. Existing requirements revision approaches mainly
focus on re-assessing the weights of non-functional requirements (Almeida et al. 2015;
Bencomo 2015). Knauss et al. (2016) discuss the mining of optimal contexts for pre-
viously defined contextual requirements, and propose a revision of the contextual
condition of applicability of the requirements.

The normative multiagent systems (NorMAS) literature offers techniques for the
dynamic update of norms that regulate a multiagent systems. Aucher et al. (2009)
introduce a dynamic context logic that describes the operations of contraction and

@ Springer

Automated Software Engineering (2019) 26:513-557 553

expansion of theories by introducing or removing new rules. Governatori and Rotolo
(2010) investigate the legal consequences of applying theory revision to reason about
legal abrogations and annulments. Alechina et al. (2014) show how to formally obtain
an approximated version of a norm to cope with imperfect monitors for the original
norm. Since norms are an important type of requirements for STSs (Singh 2013;
Chopra et al. 2014), NorMAS research is a rich cross-fertilization tool for the RE
discipline.

Inprevious work (Dell’ Annaet al. 2018a), we proposed Bayesian Networks as a tool
to learn, from runtime data, the correlation between the satisfaction of requirements
and the achievement of the overall system objectives in different operating contexts. In
Dell’ Anna et al. (2018a) we show that such information can be used to validate some
assumptions made in a goal model. In this paper, we embedded our requirements
assumptions validation technique within a holistic framework for the evolution of
STSs; in particular, the validity of the assumption is used by our heuristic algorithms
that perform runtime requirements revision.

Cailliau and van Lamsweerde (2013) present a technique for the quantitative assess-
ment of requirements-related risks. Their framework uses KAOS goal models extended
with a probabilistic layer to evaluate the consequences of explicit obstacles on the
satisfaction of goals. The concept of obstacles is similar to the concept of harmful
requirements presented in this paper; however, we do not consider requirements that
are known to be harmful a priori. We focus, instead, on techniques for discovering at
runtime whether some requirements are useful or not and in which contexts.

Our requirements revision types (relaxation, strengthening, disabling, etc.) are simi-
lar to the strategies presented by van Lamsweerde et al. (1998) to resolve goal conflicts.
In their work, such strategies are applied in the early stages of requirements elicitation
(at design time) and they rely on the available domain knowledge. Our framework
focuses on the runtime analysis of the requirements and of the assumptions made at
design time. A deeper study of the relationship of our work with runtime conflict
resolution techniques is left for future work.

9 Discussion and future work

We introduced a novel framework for guiding the evolution of sociotechnical systems.
Our approach uses requirements models to represent system objectives, requirements,
and their relationships. The framework supports both the manual evolution of the
STS, by revealing the validity of the assumptions in a requirements model, and the
automated adaptation, by revising the requirements in order to quickly identify an
optimal system configuration.

This work employs two techniques from artificial intelligence: (i) Bayesian
Networks as a tool to learn and reason about the relationship between contexts, require-
ments and objectives based on evidence from system execution; and (ii) hill climbing
algorithms as a technique to explore the space of alternative configurations of the STS
and identify optimal configurations that maximize the satisfaction of the objectives.

Our experiments with a smart traffic simulator show promising results for our
automated requirements revision algorithms. Both the PB and SB heuristics that we

@ Springer

554 Automated Software Engineering (2019) 26:513-557

propose outperform uninformed hill climbing heuristics. The requirement revisions
are guided, in our algorithms, by the information retrieved from runtime execution
data about the validity of the assumptions made in a requirements model. The results
show that using that information allows to accelerate convergence to an optimal con-
figuration by guiding the requirement revision process. Our heuristics provided, in
certain cases (see Sect. 7.3.1), an efficiency gain of about 75% compared to unin-
formed heuristics, in terms of number of the explored configurations of requirements.
The heuristic SB was able to terminate 95% of all its executions before all the baseline
uninformed heuristics could reach their first quartile. In one experimental setting, SB
was able to find, on average, an optimal configuration in less than 2 steps, exploring
about 3% of possible configurations of requirements in order to find one of the 17.8%
optimal ones.

The results revealed that our informed algorithms positively affect the quality of
the attempted system configurations. When considering the average stakeholders’
objective satisfaction rate throughout the optimization process, our informed heuristics
provided an improvement, compared to uninformed ones, ranging from 37 to 88% (see
Sect. 7.3.2 for more details).

Our analysis of the stability of the algorithms, in terms of number of revisions,
showed also that our informed heuristic SB suits well those problems for which an
optimal solution needs to be found quickly with a small total number of revisions
along the process. Compared to the other tested algorithms, however, SB includes
steps in which it performs a high absolute number of revisions (see, for instance, the
initial peaks in Fig. 14). Should there be a limit on the maximum number of acceptable
requirement revisions, other heuristics could be preferable. A possible reason why this
factor may matter is that revising requirements may pose some challenges for humans
to adapt to the new requirements (e.g., think of revising the speed limits of all streets
at the same time).

Finally, our proposed algorithms exhibited a high tolerance to possible noise in
the data used to train the Bayesian Network: a uniform perturbation of 20% of the
input data by introducing erroneous information about requirements satisfaction lead
only to a variation of about 1% in terms of number of system’s configurations explored
during the optimization process and impacted less than 2% on the average stakeholders’
objectives satisfaction.

Limitations and future work A thorough evaluation of the scalability, usefulness and
generality of our proposal is imperative. So far, we have focused on smart traffic simu-
lations because this is an example of an STS that has numerous simulator frameworks.
Our current Bayesian Network assumes a consistent behavior of the STS population
over time. Dynamic Bayesian Networks (Russell and Norvig 2010) should be con-
sidered to support more dynamic STSs, in which we cannot make such assumption.
Furthermore, the two revision algorithms that we introduced do not store any infor-
mation concerning the effects of the requirement revisions applied. Refined revision
algorithms shall be developed with a larger memory than just the current configuration;
possible techniques include Q-Learning (Rummery and Niranjan 1994) and Dynamic
Decision Networks (Russell and Norvig 2010). Moreover, we plan to develop algo-
rithms that can guide software evolution by providing additional information on the

@ Springer

Automated Software Engineering (2019) 26:513-557 555

most critical and significant assumptions. To do so, we plan to employ other analysis
techniques for Bayesian Networks, such as sensitivity analysis (van der Gaag et al.
2007) or qualitative reasoning (Wellman 1990). Visualization tools, which are missing
in this paper, are necessary to support human analysts in visualizing the validity of the
assumptions in a requirements model, as discussed in Reddivari et al. (2014), and to
help them in deciding about the manual evolution of an STS. A starting point could
be the visualization we developed in earlier work (Dell’ Anna et al. 2018a). Finally,
while this work focuses on the revision of requirements by exploring the space of
alternatives within a model, it would be interesting also to explore the possibility to
synthesize new requirements that are not included in the given model.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect monitors. In: Proceedings of the
13th International Conference on Autonomous Agents and Multiagent Systems, pp. 117-124 (2014)

Ali, R., Dalpiaz, F., Giorgini, P., Souza, V.E.S.: Requirements evolution: from assumptions to reality. In:
Proceedings of the EMMSAD, pp. 372-382 (2011). https://doi.org/10.1007/978-3-642-21759-3_27

Ali, R., Dalpiaz, F., Giorgini, P.: Reasoning with contextual requirements: detecting inconsistency and
conflicts. Inf. Softw. Technol. 55(1), 35-57 (2013). https://doi.org/10.1016/j.infsof.2012.06.013

Almeida, A., Bencomo, N., Batista, T.V., Cavalcante, E., Dantas, F.: Dynamic decision-making based on
NEFR for managing software variability and configuration selection. In: Proceedings of the 30th Annual
ACM Symposium on Applied Computing, pp. 1376—1382 (2015). https://doi.org/10.1145/2695664.
2695875

Aucher, G., Grossi, D., Herzig, A., Lorini, E.: Dynamic context logic. In: Proceedings of the 2nd International
Workshop on Logic, Rationality, and Interaction, pp. 15-26 (2009)

Bencomo, N.: Quantun: Quantification of uncertainty for the reassessment of requirements. In: Proceedings
of the 23rd IEEE International Requirements Engineering Conference, pp. 236-240 (2015). https://
doi.org/10.1109/RE.2015.7320429

Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements reflection: requirements as
runtime entities. Proc. ICSE 2, 199-202 (2010)

Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision networks for decision-making in self-adaptive
systems: a case study. In: Proceedings of the SEAMS, pp. 113-122 (2013). https://doi.org/10.1109/
SEAMS.2013.6595498

Blair, G., Bencomo, N., France, R.B.: Models@ run. time. Computer 42(10), 22-27 (2009)

Boness, K., Finkelstein, A., Harrison, R.: A lightweight technique for assessing risks in requirements
analysis. IET Softw. 2(1), 4657 (2008). https://doi.org/10.1049/iet-sen:20070068

Boness, K., Finkelstein, A., Harrison, R.: A method for assessing confidence in requirements analysis. Inf.
Softw. Technol. 53(10), 1084-1096 (2011). https://doi.org/10.1016/j.infsof.2011.05.003

Cailliau, A., van Lamsweerde, A.: Assessing requirements-related risks through probabilistic goals and
obstacles. Requir. Eng. 18(2), 129-146 (2013). https://doi.org/10.1007/s00766-013-0168-5

Chopra, A.K., Dalpiaz, F., Aydemir, F.B., Giorgini, P., Mylopoulos, J., Singh, M.P.: Protos: Foundations
for engineering innovative sociotechnical systems. In: Proceedings of the 22nd IEEE International
Requirements Engineering Conference, pp. 53-62 (2014)

Cziharz, T., Hruschka, P., Queins, S., Weyer, T.: Handbook of requirements modeling according to the IREB
standard. Handbook, International Requirements Engineering Board (2016)

Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive socio-technical systems: a requirements-based approach.
Requir. Eng. 18(1), 1-24 (2013). https://doi.org/10.1007/s00766-011-0132-1

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-21759-3_27
https://doi.org/10.1016/j.infsof.2012.06.013
https://doi.org/10.1145/2695664.2695875
https://doi.org/10.1145/2695664.2695875
https://doi.org/10.1109/RE.2015.7320429
https://doi.org/10.1109/RE.2015.7320429
https://doi.org/10.1109/SEAMS.2013.6595498
https://doi.org/10.1109/SEAMS.2013.6595498
https://doi.org/10.1049/iet-sen:20070068
https://doi.org/10.1016/j.infsof.2011.05.003
https://doi.org/10.1007/s00766-013-0168-5
https://doi.org/10.1007/s00766-011-0132-1

556 Automated Software Engineering (2019) 26:513-557

Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 language guide. arXiv:1605.07767 [cs.SE] (2016)

De Lemos, R., Giese, H., Miiller, H.A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., Tamura, G.,
Villegas, N.M., Vogel, T., et al.: Software engineering for self-adaptive systems: a second research
roadmap. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-
Adaptive Systems II, pp. 1-32. Springer, Berlin (2013)

Dell’ Anna, D., Dalpiaz, F.,, Dastani, M.: Validating goal models via Bayesian networks. In: Proceedings
of the International Workshop on Artificial Intelligence for Requirements Engineering (AIRE’18)
(2018a)

Dell’ Anna, D., Dastani, M., Dalpiaz, F.: Runtime norm revision using Bayesian networks. In: Proceedings
of the 21st International Conference on Principles and Practice of Multi-Agent Systems (2018b)
Doguc, O., Ramirez-Marquez, J.E.: A generic method for estimating system reliability using Bayesian

networks. Rel. Eng. Syst. Saf. 94(2), 542-550 (2009). https://doi.org/10.1016/j.ress.2008.06.009

Fenton, N.E., Neil, M., Marsh, W., Hearty, P.S., Marquez, D., Krause, P., Mishra, R.: Predicting software
defects in varying development lifecycles using Bayesian nets. Inf. Softw. Technol. 49(1), 3243
(2007). https://doi.org/10.1016/j.infsof.2006.09.001

Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Second IEEE International
Symposium on Requirements Engineering, March 27-29, 1995, York, England, pp. 140-147 (1995).
https://doi.org/10.1109/ISRE.1995.512555

Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software: continuous assurance of
non-functional requirements. Form. Asp. Comput. 24(2), 163-186 (2012). https://doi.org/10.1007/
s00165-011-0207-2

Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal models. In: Proceedings
of the 21st International Conference on Conceptual Modeling, Vol. 2, pp. 167-181 (2002)

Governatori, G., Rotolo, A.: Changing legal systems: legal abrogations and annulments in defeasible logic.
Logic J. IGPL 18(1), 157-194 (2010). https://doi.org/10.1093/jigpal/jzp075

Knauss, A., Damian, D., Franch, X., Rook, A., Miiller, H.A., Thomo, A.: Acon: a learning-based approach
to deal with uncertainty in contextual requirements at runtime. Inf. Softw. Technol. 70, 85-99 (2016).
https://doi.org/10.1016/j.infsof.2015.10.001

Krupitzer, C., Roth, EM., VanSyckel, S., Schiele, G., Becker, C.: A survey on engineering approaches for
self-adaptive systems. Pervasive Mob. Comput. 17, 184-206 (2015)

Lehman, M.M.: The role and impact of assumptions in software development, maintenance and evolution.
In: IEEE International Workshop on Software Evolvability (Software-Evolvability’05), pp. 3—14. IEEE
(2005)

Lehman, M.M., Ramil, J.E.: Software evolution—background, theory, practice. Inf. Process. Lett. 88(1-2),
33-44 (2003). https://doi.org/10.1016/S0020-0190(03)00382-X

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multiagent simulation environment.
Simulation 81(7), 517-527 (2005)

Mendes, E., Mosley, N.: Bayesian network models for web effort prediction: a comparative study. IEEE
Trans. Softw. Eng. 34(6), 723-737 (2008). https://doi.org/10.1109/TSE.2008.64

Misirli, A.T., Bener, A.B.: A mapping study on Bayesian networks for software quality prediction. In: 3rd
International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering, RAISE
2014, Hyderabad, India, June 3, 2014, pp. 7-11 (2014). https://doi.org/10.1145/2593801.2593803

Paucar, L.H.G., Bencomo, N., Yuen, K.K.F.: Juggling preferences in a world of uncertainty. In: Proceedings
of the RE, pp. 430-435 (2017)

Reddivari, S., Rad, S., Bhowmik, T., Cain, N., Niu, N.: Visual requirements analytics: a framework and
case study. Requir. Eng. 19(3), 257-279 (2014). https://doi.org/10.1007/s00766-013-0194-3

Robinson, W.N.: A requirements monitoring framework for enterprise systems. Requir. Eng. 11(1), 17-41
(2006). https://doi.org/10.1007/s00766-005-0016-3

Rummery, G.A., Niranjan, M.: On-Line Q-Learning Using Connectionist Systems, vol. 37. University of
Cambridge, Cambridge (1994)

Russell, S.J., Norvig, P.: Artificial Intelligence—A Modern Approach, 3, internat edn. Pearson Education,
London (2010)

Salehie, M., Tahvildari, L.: Towards a goal-driven approach to action selection in self-adaptive software.
Softw. Pract. Exp. 42(2), 211-233 (2012). https://doi.org/10.1002/spe.1066

Schmid, S., Gerostathopoulos, 1., Prehofer, C., Bures, T.: Self-adaptation based on big data analytics: a
model problem and tool. In: Proceedings of SEAMS, pp. 102-108 (2017). https://doi.org/10.1109/
SEAMS.2017.20

@ Springer

http://arxiv.org/abs/1605.07767
https://doi.org/10.1016/j.ress.2008.06.009
https://doi.org/10.1016/j.infsof.2006.09.001
https://doi.org/10.1109/ISRE.1995.512555
https://doi.org/10.1007/s00165-011-0207-2
https://doi.org/10.1007/s00165-011-0207-2
https://doi.org/10.1093/jigpal/jzp075
https://doi.org/10.1016/j.infsof.2015.10.001
https://doi.org/10.1016/S0020-0190(03)00382-X
https://doi.org/10.1109/TSE.2008.64
https://doi.org/10.1145/2593801.2593803
https://doi.org/10.1007/s00766-013-0194-3
https://doi.org/10.1007/s00766-005-0016-3
https://doi.org/10.1002/spe.1066
https://doi.org/10.1109/SEAMS.2017.20
https://doi.org/10.1109/SEAMS.2017.20

Automated Software Engineering (2019) 26:513-557 557

Scutari, M.: Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817
(2009)

Singh, M.P.: Norms as a basis for governing sociotechnical systems. ACM Trans. Intell. Syst. Technol. 5(1),
21:1-21:23 (2013). https://doi.org/10.1145/2542182.2542203

Sommerville, L., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.Z., McDermid, J.A., Paige,
R.F.: Large-scale complex IT systems. Commun. ACM 55(7), 71-77 (2012). https://doi.org/10.1145/
2209249.2209268

Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness requirements for adaptive
systems. In: Proceedings of the SEAMS, pp. 60-69 (2011). https://doi.org/10.1145/1988008.1988018

Spiegelhalter, D.J., Dawid, A.P., Lauritzen, S.L., Cowell, R.G.: Bayesian analysis in expert systems. Stat.
Sci. 8, 219-247 (1993)

Tsvetovat, M., Carley, K.M.: Modeling complex socio-technical systems using multi-agent simulation
methods. KI 18(2), 23-28 (2004)

van der Gaag, L., Renooij, S., Coupé, V.: Sensitivity analysis of probabilistic networks. Adv. Probab. Graph.
Models 214, 103-124 (2007)

Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to Software, vol.
10. Wiley, Chichester (2009)

van Lamsweerde, A., Darimont, R., Letier, E.: Managing conflicts in goal-driven requirements engineering.
IEEE Trans. Softw. Eng. 24(11), 908-926 (1998). https://doi.org/10.1109/32.730542

Wang, Y., Mcllraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing software requirements. Autom.
Softw. Eng. 16(1), 3-35 (2009). https://doi.org/10.1007/s10515-008-0042-8

Wellman, M.P.: Fundamental concepts of qualitative probabilistic networks. Artif. Intell. 44(3), 257-303
(1990). https://doi.org/10.1016/0004-3702(90)90026-V

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.: RELAX: a language to address uncertainty
in self-adaptive systems requirement. Requir. Eng. 15(2), 177-196 (2010). https://doi.org/10.1007/
s00766-010-0101-0

Wu, PPY., Fookes, C., Pitchforth, J., Mengersen, K.: A framework for model integration and holistic
modelling of socio-technical systems. Decis. Support Syst. 71, 14-27 (2015)

Yu, E., Mylopoulos, J.: Why goal-oriented requirements engineering. In: Proceedings of the 4th International
Workshop on Requirements Engineering: Foundations of Software Quality, vol. 15, pp. 15-22 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/0908.3817
https://doi.org/10.1145/2542182.2542203
https://doi.org/10.1145/2209249.2209268
https://doi.org/10.1145/2209249.2209268
https://doi.org/10.1145/1988008.1988018
https://doi.org/10.1109/32.730542
https://doi.org/10.1007/s10515-008-0042-8
https://doi.org/10.1016/0004-3702(90)90026-V
https://doi.org/10.1007/s00766-010-0101-0
https://doi.org/10.1007/s00766-010-0101-0

	Requirements-driven evolution of sociotechnical systems via probabilistic reasoning and hill climbing
	Abstract
	1 Introduction
	2 Background
	2.1 Requirements models
	2.2 Bayesian networks

	3 The CrowdNavExt smart traffic simulator
	4 From requirements models to Bayesian networks
	4.1 Requirement Bayesian Network
	4.2 From requirements models to requirement Bayesian networks
	4.3 Populating the RBN: data collection

	5 Design-time assumptions and their validation
	5.1 Types of design-time assumptions
	5.2 Validating assumptions

	6 Automated requirements revision
	6.1 Requirement variant, system configuration, and requirement revision
	6.2 The STS supervisor control loop
	6.2.1 Revision trigger
	6.2.2 Diagnoser
	6.2.3 Revision selector
	6.2.4 Revision actuator

	7 Evaluation
	7.1 Scope, context, and hypotheses
	7.2 Design and instrumentation
	7.3 Informed versus uninformed heuristics: speed, quality, and stability
	7.3.1 Convergence speed (H1)
	7.3.2 Quality (H2)
	7.3.3 Stability (H3)

	7.4 Noise tolerance for the informed algorithms (H4)
	7.5 Threats to validity

	8 Related work
	9 Discussion and future work
	References

