
Autom Softw Eng (2018) 25:47–99
https://doi.org/10.1007/s10515-017-0219-0

Self-adaptive concurrent components

Erik Österlund1 · Welf Löwe2

Received: 15 July 2016 / Accepted: 27 July 2017 / Published online: 22 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Selecting the optimum component implementation variant is sometimes
difficult since it depends on the component’s usage context at runtime, e.g., on the
concurrency level of the application using the component, call sequences to the com-
ponent, actual parameters, the hardware available etc. A conservative selection of
implementation variants leads to suboptimal performance, e.g., if a component is con-
servatively implemented as thread-safe while during the actual execution it is only
accessed from a single thread. In general, an optimal component implementation vari-
ant cannot be determined before runtime and a single optimal variant might not even
exist since the usage contexts can change significantly over the runtime. We introduce
self-adaptive concurrent components that automatically and dynamically change not
only their internal representation and operation implementation variants but also their
synchronization mechanism based on a possibly changing usage context. The most
suitable variant is selected at runtime rather than at compile time. The decision is
revised if the usage context changes, e.g., if a single-threaded context changes to a
highly contended concurrent context. As a consequence, programmers can focus on
the semantics of their systems and, e.g., conservatively use thread-safe components
to ensure consistency of their data, while deferring implementation and optimiza-
tion decisions to context-aware runtime optimizations. We demonstrate the effect on

This research was supported by the Swedish Research Council Under Grant 2011-6185.

B Erik Österlund
erik.osterlund@oracle.com

Welf Löwe
Welf.Lowe@lnu.se

1 Oracle, Stockholm, Sweden

2 Software Technology Labs, Department of Computer Science, Linnaeus University, 351 06 Växjö,
Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-017-0219-0&domain=pdf
http://orcid.org/0000-0003-3686-8568

48 Autom Softw Eng (2018) 25:47–99

performance with self-adaptive concurrent queues, sets, and ordered sets. In all three
cases, experimental evaluation shows close to optimal performance regardless of actual
contention.

Keywords Context-aware composition · Self-adaptive components ·
Concurrent context

1 Introduction

A software component exposes its functionality via an application programming inter-
face (API) while hiding its implementation details. Selecting the right implementation
variant of a component for a given task can be tedious and time consuming. The com-
ponent implementation performing best in the worst case may perform worse in the
actual executions. Yet programmers tend conservatively optimize for the worst case,
e.g., they use the component implementations that scale best, even though scalability
is not an issue and, hence suboptimal, in the actual executions.

Components that can run safely in concurrent, i.e., contended, contexts1 have
become increasingly important since the rise of symmetric multiprocessing (SMP)
architectures. We refer to them as concurrent components. A common problem pro-
grammers face when implementing concurrent components is that the level of runtime
contentionof a component, i.e., the concurrency a component is exposed to, is unknown
at development time. If multiple (increasingly deep) layers of APIs depend on one
another, it becomes increasingly difficult to know which level of contention a compo-
nent will be exposed to in the end. Yet again, often a conservative approach is taken.
A thread-safe component is picked if there is a possibility that an API is used in a
concurrent context in some possible deployment, e.g., by amulti-threaded application.

However, if the actual contention was known, alternative component implemen-
tation variants may be preferable. If contention is high, it may be beneficial to use
an implementation based on lock-free or wait-free data structures rather than an
implementation using mutual exclusion locks. Likewise, if contention is low or syn-
chronization is not needed, implementations that block or disregard concurrencywould
be more beneficial. The contention is a property that can change throughout program
executions and the respectively optimal component implementation does so as well.

Since optimizing single thread performance in hardware got increasingly diffi-
cult the last decade, both hardware and operating system (OS) vendors added more
and more synchronization features, exposed at different levels of an application
stack, making the choice of synchronization mechanisms more difficult than ever
for programmers. The same component implementation might perform well in one
deployment environment and bad in a different one. With emerging cloud platforms,
that environment might not even be known until runtime.

1 The notions “context” and “context-aware” are overloaded: “context” often refers to the CPU state such as
registers and stackvariables or the calling context.Context-aware composition and self-adaptive components
use a generalized notion of a calling context and the present paper focuses on the contention context, i.e.,
the number of concurrent threads calling functions of a component.

123

Autom Softw Eng (2018) 25:47–99 49

A lot of research has focused on improving the synchronization mechanisms to
cope with varying contention. Adaptive spin locks (Pizlo et al. 2011) and biased lock-
ing (Russell and Detlefs 2006) partially addresses this issue by adapting to and, hence,
providing higher performance for contended and uncontended contexts, respectively.

However, the nature of mutually exclusive locking tends to imply scalability bot-
tlenecks. Specialized lock-free component implementations (Michael and Scott 1996;
Kogan and Petrank 2011; Herlihy et al. 2008; Fomitchev and Ruppert 2004) provide
even better concurrent performance, by limiting contention to actual data conflicts,
carefully hand tuning the algorithms to spatially distribute those data conflicts, as
well as even allowing some data conflicts not violating the consistency of the compo-
nents. These hand-crafted highly specialized concurrent component implementations
tend to scale best when available. However, due to the use of atomic instructions and
stricter memory models required for concurrent consistency, they are suboptimal in
uncontended contexts.

Even more research has been focused on universal “silver bullet” constructions like
transactional memory (TM) (Herlihy and Moss 1993) that would automatically turn
sequential components into scalable concurrent componentswithoutmutual exclusion.
First it was implemented in software (STM) (Herlihy et al. 2003; Saha et al. 2006;
Felber et al. 2008) to provide ease of use and scalable concurrent performance. Then
it was implemented in hardware (HTM) (Hammond et al. 2004; Ananian et al. 2005)
to get constants down, but it lost some ease of use such as transactional composition.
Hybrid variant (Damron et al. 2006) combined the transactional composition of STM
with the performance of HTM.

Existing sequential components were optimized for sequential contexts and never
had concurrency in mind. They did not minimize data dependencies and, e.g., delib-
erately rely on an updated size variable for each operation. They did not consider
making disjoint memory accesses whenever possible, which is required for good
concurrent performance. Therefore, after being automatically transformed using
TM, non-essential data dependencies have to be removed manually to scale well
in concurrent contexts. However, the removal of those data dependencies, e.g., by
adding re-computations of a size variable for each operation, makes them then
perform worse in sequential contexts. Even in the concurrent contexts they were
optimized for, transactional memory does not allow certain non-essential data con-
flicts to happen without aborting in the way that specialized lock-free data structures
do. Hence, they can not compete with lock-free data structures in the concurrent
contexts.

The dream of not having to manually pick component variants based on assumed
contention traces back to old components likeVector in the Java class library. Allmeth-
ods were “synchronized” so that programmers could assume thread-safety always.
Unfortunately, the approach had bad uncontended performance, and increasingly bad
concurrent performance as number of cores grew, due to the use of mutual exclusion
locks. Therefore, the dreamwas abandoned in later generations of the class library, and
the responsibility of picking the appropriate component variant became the burden of
programmers again.

This paper rejects the idea of a single “silver bullet” synchronization mechanism
that performs optimally on all levels of contention. Instead we suggest uniting the

123

50 Autom Softw Eng (2018) 25:47–99

different mechanisms with an architectural solution, self-adaptive concurrent com-
ponents, that allows them to coexist and complement each other and combines their
individual strengths. They regard contention as a context attribute and automatically
transform at runtime between different component implementation variants. This way
they provide superior uncontended performance and superior contended performance
at the same time, while exposing a single component API for programmers. Self-
adaptive concurrent components relieve the programmers from the burden of finding
the optimal solution for each actual context; this is done automatically behind their
interface. They encapsulate variants of its operation implementations (algorithms),
state representations (data structures) and synchronization mechanism behind a well-
defined interface and

1. Switchbetweendifferent algorithms and representationswithout changing its func-
tional behavior. Observed operation sequences at runtime determine and transform
to the expectedly best-fit algorithmic and data representation variants. This idea
was first introduced in (Österlund and Löwe 2013).

2. Switch between different synchronization mechanisms seamlessly without violat-
ing consistency. The default is optimistic biased locking that is essentially for free
when used by a single thread. Contention sensors that do not have any notice-
able performance impact automatically sense changes in concurrent contention.
At signs of higher contention, the components adapt by either switching to a more
fine-grained locking scheme that scales better or transform into a completely lock-
free solution for maximum scalability. This idea was first introduced in (Österlund
and Löwe 2014).

The focus of the present paper is on self-adaptive concurrent components. Hence,
it discusses how to switch correctly between different algorithms and representations
in a concurrent context and how to switch the synchronization mechanism, which is
only interesting in a concurrent context.

In our experiments, we evaluate self-adaptive concurrent components extending
Java concurrency data structures. We run them on our own modified OpenJDK and
HotSpot Java Virtual Machine (JVM) showing that these concurrent components per-
form (almost) as well as the best known component for each contention context.

The paper is organized as follows: Sect. 2 introduces self-adaptive components
using context-aware composition that at runtime selects the presumably optimal algo-
rithms and data representations for each usage context. Section 3 introduces three
standard synchronization mechanisms: locks, lock-free algorithms, and TM. Section 4
introduces self-adaptive concurrent components using context-aware composition also
based on contention as an additional usage context attribute. Section 5 shows how con-
tention can be monitored efficiently, Sect. 6 discusses how to consistently invalidate
an outdated component variant, and Sect. 7 shows how the actual component trans-
formation can be implemented efficiently. Section 8 introduces the Java concurrency
data structures used in the evaluation, highlights some implementation details and
finally describes the evaluation and the evaluation results. Section 9 discusses the
related work and Sect. 10 concludes the paper and points out directions of future
work.

123

Autom Softw Eng (2018) 25:47–99 51

OperationXAlgorithm
<<abstract>>
+ execute(…)

OperationXVariant 1
+ execute(…)

OperationXVariant k
+ execute(…)

operationXAlgorithm

Representation
+ clone(Representation)

representation

this

Transformation Component

- changeTo(repr)

- setOperationXAlgorithm()
+ operationX(…)

representation :=
repr -> clone(representation)

Representation Variant 1
+ clone(Representation)

Representation Variant k
+ clone(Representation)

this

Fig. 1 Transformation Component. UMLdiagram of the conceptual design pattern. Implementation design
could be different to optimize performance

2 Self-adaptive components

Self-adaptive components (or dynamically transforming data structures) as suggested
by Österlund and Löwe (2013) build on the previous work of Andersson et al. (2008),
Kessler and Löwe (2012) introducing context-aware composition and of Löwe et al.
(1999) suggesting transformation components as a general design pattern for data
structures with changeable representation and algorithm variants.

2.1 Transformation components

A transformation component consists of an abstract data representation and a set of
abstract operations o operating on this data. The abstract data representation allows for
different data representation variants, specialized for certain contexts. Each abstract
operation o of a component also allows for different algorithm variants. In general,
the same operation could come in different algorithm variants using the same data
representation, each optimized for different contexts.

Transformation components follow a general design pattern for data structures
with changeable representation and algorithm variants depicted in Fig. 1. It uses a
combination of the well-known bridge and strategy design patterns (Gamma et al.
1995).

A transformation component holds a reference to the current representation variant.
It could be any representation variant that is an instance of the abstract representation.
All state information of a component is contained in the data representation variant.

123

52 Autom Softw Eng (2018) 25:47–99

State migration between data representation variants allow a component to trans-
form its data representation. Therefore, each representation variant implements a
Representation clone(Representation) method accepting an instance of a previ-
ous (outdated, unknown) representation variant as a parameter and returning the new
actual representation variant instance.

The changeTo() operation of the transformation component invalidates the pre-
vious representation variant so that accesses to it will be trapped, creates a new
representation variant of a new type and populates it using the clone() method.

For each operation o the component also holds references to the current algo-
rithm variant implementing o on the current representation variant. Algorithm variants
are classes specializing an abstract operation class. The abstract class provides an
execute() method implemented (differently) by all algorithm subclasses. Calls to an
operation are delegated to the current algorithm variant.

In general, one representation variant might have several algorithm variants per
operation o and for each operation, a setOperation...Algorithm() method sets the
expectedly best algorithm for (a sequence of) calls to o. Then even a selection of the
algorithms adapted to the actual call context is possible and beneficial as shown by
Andersson et al. (2008).Without loss of generality, we assume here that the representa-
tion variant determines the algorithm variant for each operation and that the component
variants comprise both the representation and its associated set of algorithm variants.

In the transformation component pattern, the transition from one to another
component variant is triggered by an explicit call to the changeTo() or an setOp-
eration...Algorithm() method in the application code. Context-aware composition,
in contrast, automatically selects between different component variants based on the
actual usage context. Finding the expectedly best (algorithm and data representa-
tion) variant, requires the designer to define an optimization goal, e.g., minimize
execution time, and formal context attributes, e.g., problem size or number of pro-
cessors and amount of memory available, which are expected to have an impact on
the goal. Formal context attributes, i.e., the actual context, must be evaluable before
each call to an operation o; the property to optimize must be evaluable after each
call. Context-aware composition finds the expectedly best variant automatically using
profiling, analysis, and/or machine learning. Using profiling or analysis or a com-
bination thereof, the fitness of variants can be assessed for different selected actual
contexts. Using machine learning, dispatchers can be trained selecting the expectedly
best fitting variants of operations and representation implementation for each actual
context.

Note that best-fit-learning can be performed offline at design or deployment time, or
even online using feedback from online monitoring during program execution (Abbas
et al. 2010; Kirchner et al. 2015a, b).

2.2 Self-adaptive components as generalized transformation components

Implementing context-aware composition in the operations of transformation compo-
nents as an explicit dispatch makes the components self-adaptive. Then a call to an
operation of a self-adaptive component:

123

Autom Softw Eng (2018) 25:47–99 53

1. evaluates the actual context attributes,
2. decides, based on the actual context, whether a new component variant should be

selected and, if so, adapts the component using appropriate calls to the changeTo()
or setOperation...Algorithm() method,

3. calls the execute()method of the presumably best-fit algorithm on the presumably
best-fit data representation,

4. before returning a result and only in the case of online profiling and learning,
evaluates and captures the performance of the operation on the current component
variant for future, maybe revised decisions of best-fit component variants.

For integrating a set of existing variants implementing the same functional behavior
of a component to a self-adaptive component and for replacing these variants with this
self-adaptive component in an existing environment, certain potential pitfalls ought
to be regarded. Below we distinguish and discuss issues in sequential and concurrent
environments and how to handle them.

2.2.1 Self-adaptive components in sequential environments

If the internal data representation variant was exposed outside its component and
then adapted to a new variant, there could be outdated representations referenced in
the heap. Normally this does not happen as the internal representation should not be
exposed. Instead all accesses should go through the component interface. Iterators,
however, are an exception that needs to be explained more in detail.

Iterators have a reference to the component’s internal representation. A trans-
formation triggered during (read) iteration interleaved with any write could lead to
inconsistencies. Data structures usually (for good reasons) forbid arbitrary writes dur-
ing iteration. However, the iterator itself may allow writes to the underlying internal
representation. Care must then be taken to handle this case by, e.g., (1) distinguishing
an external iterator object (similar to the component’s façade object itself) referencing
an internal one, and abandoning the internal iterator when its internal data represen-
tation is outdated and then constructing a new internal iterator after a transformation,
(2) not allowing the iterator access to the internal representation but always accessing
through the façade object, or (3) deferring transformation until after iteration.

It may also happen that a variant has side effects either directly or by invoking
callback methods in the environment outside the self-adaptive component. It must be
assured that all side effects and callbacks with side effects and exactly those happen
in the right order in all variants even if not needed in all of them. For instance, a
constructor with side effects might never be executed since the variant is not used or,
due to transformation, it might possibly be executed several times, or it is executed
in a different order with other methods with side effects. Also, a callback with side
effects might not occur in a variant but it does in another, or two callbacks with side
effects might occur in different orders in different variants.

Especially, in the presence of callbacks, e.g., to equals or hashCode methods
in Java, this cannot be guaranteed without knowing the usage environment. Then,
side effect free callbacks ought to be explicitly required in preconditions; they can
be enforced by conservative static analysis. It is worth noting that there should not

123

54 Autom Softw Eng (2018) 25:47–99

be a problem if the implementation of those methods follows the specification for
java.lang.Object (Oracle 2016) requiring that a contract must be followed such
that subsequent invocations of equals or hashCode are consistent.

2.2.2 Self-adaptive components in concurrent environments

Also for concurrent components, all operations may potentially trigger a transforma-
tion between variants and perform (lightweight) bookkeeping of usage histories in
order to make more informed transformation decisions in the future. This means that
even a read operation could cause a mutation while the corresponding read in any of
the existing variants (typically) does not. The usage context of a variant might assume
that reading operations do not need to be synchronized because there is no mutation.
In order for self-adaptive components to work correctly in existing concurrent usage
contexts this assumption ought to be regarded.

The solution to this problem could be (1) synchronizing even reading operations, or
(2) accepting that the self-adaptive component would make a suboptimal transforma-
tion decisions due to inconsistent bookkeeping. The latter is fine as long as it does not
happen too often and the amortized time over all operations is shorter. The consistency
of the actual data structure is never violated.

Another issue arises from using a variant as a monitor object to synchronize with.
The monitor object used has to be the self-adaptive component façade object encap-
sulating the internal variants, as this is what is exposed to the outside world. This
potentially requires code transformations in both the usage environment and the vari-
ants where references to this object need to be redirected to the façade object.

3 Synchronization mechanism variants

For concurrent execution environments, synchronizationmechanisms assure the atom-
icity of thread access to critical resources. Orthogonally to the component variants,
there are different variants of these mechanisms too. We describe three different syn-
chronization mechanisms used to implement concurrent components: (1) locks, (2)
lock-free synchronization using atomic instructions like compare-and-swap (CAS),
and (3) TM. We argue they all have their weaknesses and strengths, specifically, for
our main concern in this paper: performance. We discuss the theoretical pros and
cons of each synchronization mechanism in both (almost) sequential and (highly)
concurrent execution contexts.

3.1 Locks

A lock can be acquired by one and only one (owner) thread that may continue with its
execution. It blocks other threads trying to acquire the lock until the owner releases it
again. Locks are arguably the most common synchronization mechanism because of
their availability and ease of use. They are also flexible in the sense that the locking
granularity, i.e., locking the whole component instance at once (coarse grained) or
some of its objects individually (fine grained), can be varied to achieve scalability.

123

Autom Softw Eng (2018) 25:47–99 55

Problems connected to locks such as deadlocks will not be discussed here as we are
only interested in performance and not in programming and verification efficiency.

Sequential Context In an (almost) sequential execution context, coarse grained locks
around the complete sequential algorithms implementing an API are usually very effi-
cient. If it can be statically proven that objects never escape a thread (by manual or
automated escape analysis), locks can even be elided completely and the sequential
code can run at no additional overhead. Even if it is not provable statically that a lock
is always held by a single thread exclusively, the lock implementation may optimisti-
cally assume so using biased locking (Russell and Detlefs 2006; Pizlo et al. 2011).
Therefore, it installs the presumed owner thread the first time it is locked using CAS,
cf. Algorithm 1, with a dummy thread id NO_OWNER as the expected value indicating
that no other thread has claimed to own the lock before. If the owner stays the same,
locking and unlocking is performed with normal loads and stores without need for
atomics, and is very fast.

1 def CAS(expected_val , new_val , address)
2 atomic begin
3 actual_val = *address
4 if (actual_val == expected_val)
5 *address = new_val
6 return expected_val
7 else
8 return actual_val
9 end

10 end
11 end

Algorithm 1 The atomic compare-and-swap (CAS) operation compares the contents of a memory address
to an expected given value and, if and only if they are the same, modifies the contents of that memory
address to a given new value. The caller is notified of the success by either getting returned the expected
value (success) or the actual contents of the memory address (failure)

Concurrent Context In concurrent execution contexts, locks suffer from problems
predicted by Amdahl’s law (Amdahl 1967). Since locks fundamentally only allow one
thread to execute at a time, locked programs do not scale very well when the sequential
parts dominate the concurrent parts.

There are ways to mitigate this bottleneck by using a different locking scheme. One
solution is to use fine-grained locking where only some objects of a complex compo-
nent local to a change are locked instead of locking the whole component instance,
with a negative impact on programming and verification efficiency. For instance, only
some nodes in a tree are locked instead of locking the whole tree. Another solution
is to use readers-writer locks that allow multiple readers but only one writer at a
time.

Conclusion Locking is superior for (almost) sequential execution contexts but may
not be the best candidate for a (highly) concurrent one.

123

56 Autom Softw Eng (2018) 25:47–99

3.2 Lock-free synchronization

Lock-free algorithms (Michael and Scott 1996; Kogan and Petrank 2011; Herlihy
et al. 2008; Fomitchev and Ruppert 2004) were introduced to deal with the scalability
problems of locks. Synchronizing instructions are used only on memory locations
where there are actual data conflicts. They read and remember values from the mem-
ory locations, perform calculations and write the result back to these locations. Using
operations like CAS, they detect conflicts, i.e., if another thread has changed the
value in between. Then they try again (in a biased loop with branch prediction
optimized for the success, and not the try again branch). This allows concurrent
modification of components as long as there are no actual data conflicts and, thus,
somehow mitigates the problems of Amdahl’s law by allowing more work to be done
concurrently.

Besides the inherent complexity of these algorithms, not all sequential data struc-
tures have lock-free implementations yet. Also, a truly lock-free data structure requires
the underlying execution environment, including the memory manager to be lock-free
to retain its progress guarantee, which is difficult to assure. It requires, e.g., lock-free
garbage collection (Sundell 2005) or hazard pointers (Michael 2004). However, this
paper is not concerned with guaranteeing true lock-freedom or real-time properties.
Our interest is only the scalable performance characteristics of this class concurrent
component variants.

Sequential Context Lock-free algorithms are typically slower in (almost) sequen-
tial contexts because they are fundamentally designed to handle data conflicts, e.g.,
branches for loops retrying committing their changes, which is never necessary in
a sequential execution. Moreover, simple component attributes such as the size of a
collection are typically computed on demand in a lock-free implementation in order
to reduce data conflicts. In the example of the size attribute, this leads to an O(n)

instead of an O(1) operation of a corresponding sequential data structure that simply
maintains a size counter because it does not need to optimize for concurrency.

Beyond this principle issue of lock-free algorithms, their performance greatly
depends on the hardware and how fast its CAS instruction is compared to normal
memory accesses.

Historically, x86 implementedLOCK CMPXCHG (CAS)by locking thewholemem-
ory bus globally during the execution of the instruction. Newer implementations,
however, lock only the cache line where the CAS is executed. At least that is true for
the officially supported aligned atomics. Misaligned atomics, although not officially
supported, typically works still to support legacy software, and reverts back to the
older behaviour whenever the memory access crosses two cache lines.

The cost also typically depends on whether the CAS is contended or not. And when
it is contended, the cost typically depends on the locality of the thread causing the
contention, e.g., if it has shared L2 cache or not.

A CAS requires sequentially consistent semantics and hence needs to issue a full
memory fence. In certain architectures this might be a relatively expensive operation
requiring all write buffers and caches to be serialized. Some newer hardware can
speculate over fences and continue executing as store buffers are being flushed, but

123

Autom Softw Eng (2018) 25:47–99 57

rolling back in case cache coherence detects that the speculation was unsafe and
changes the observable outcome.

In the case of x86, which is considered strongly consistent, all aligned memory
accesses already have sequentially consistent semantics, and the LOCK CMPXCHG
instruction already implicitly issues a complete memory fence.

In other architectures such asPOWER,which isweakly consistent, the cost is higher.
Here, enforcing the sequentially consistent semantics requires: (1) an expensive heavy
weight sync memory fence instruction, (2) a lwarx (load link) and stwcx (store
conditional) in a loop until the instruction can return a valid result free from spurious
failures, (3) a more lightweight isync fence to serialize the pipeline. In the JVM,
the lightweight fence is conservatively replaced by another heavy weight sync, to
accommodate reordering between a potentially latent store conditional and subsequent
memory accesses after the specification, which, according to the specification, should
not be possible. Nevertheless, the OpenJDK implementation of CAS on POWER uses
the more conservative fencing than, e.g., C++11 to accommodate hypothetical broken
implementations of POWER.

On POWER, the CAS can also spuriously fail due to context switching between the
load link and store conditional. This is called a weak CAS—it admits false negatives
but never false positives. Normally, the stronger behaviour is desired by users of CAS
that do not care about such particularities. Therefore, generic CAS implementations
typically guarantee strong CAS semantics by checking for false negatives and then
retrying in a loop.

Lock-free algorithms can also rely on volatile memory accesses (other than CAS)
with acquire-release semantics whose performance may similarly depend on which
architecture it runs on. Machines with a total store order (TSO) typically do this
cheaply, whereas machines with relaxed memory ordering (RMO) need some kind of
lightweight fencing like lwsync on POWER.

Concurrent context is where the merits of lock-free programming become visible.
Lock-free components commit changes at linearization points, cf. (Herlihy and Wing
1990), using CAS. Optionally they lazily, i.e. asynchronously on any subsequent oper-
ations, update references that are not necessary for consistency, but for improving time
complexity. Therefore, only true data conflicts violating the consistency of the com-
ponent require operations to be restarted and delay the execution significantly. Other
data conflicts not necessary for maintaining the consistency can be tolerated and han-
dled lazily, i.e., without restarting the operation. This makes lock-free algorithms very
scalable in terms of performance and typically the best option if available in contended
contexts.

Conclusion Even though CAS is implemented more or less efficiently by different
hardware vendors, the performance of lock-free components is still inherently slower
than the performance of their sequential counterparts in the absence of concurrency.
However, when there is contention, this class of components provides the most fine-
grained synchronization fine-tuned by clever implementers.

123

58 Autom Softw Eng (2018) 25:47–99

3.3 Transactional memory

Analogous to database transactions, Transactional Memory (TM) (Herlihy and Moss
1993) guarantees sequences of load and store instructions to execute in an atomic
way. It is a universal construction for turning any sequential algorithm into a thread
safe algorithm. Some constructions can even turn them into lock-free (Shavit and
Touitou 1997) and wait-free (Moir 1997) algorithms without any deadlocks. Despite
this theoretical benefit, TM has yet to become widely adopted in practice mainly
due to performance reasons discussed below. Additionally and not discussed here in
detail, speculative TM (performing in-place writes) cannot always guarantee that a
transaction will ever end in case of contention since a speculative load could cause an
infinite loop never reaching the commit operation.

Sequential context Software TM (STM) (Herlihy et al. 2003; Saha et al. 2006; Fel-
ber et al. 2008) typically performs significantly worse in a sequential environment
compared to a normal sequential solution.

Performance depends on whether the algorithm uses write buffering versus undo
logging, pessimistic versus optimistic concurrency, cache line based versus object
based versus word based conflict detection etc. Saha et al. (2006) evaluated all these
trade-offs.

Hardware TM (HTM) (Hammond et al. 2004; Ananian et al. 2005) can accelerate
for instancewrite buffering in hardware and allows to elide locks. It can reduce the cost
compared to STM, but relies on hardware that may or may not be available. Biased
locking already shows better performance characteristics without special hardware
support in this case.

Concurrent context The idea of a universal construction that transforms sequential
code into concurrent code automatically without the need to re-engineer or re-design
fails because sequential code typically has sequential data dependencies everywhere
(since it was not optimized for concurrent use), which, in turn, causes rollback (abort
and restart the transaction) storms.

STM is considered to have higher constant cost but better scalability than coarse
grained locking. In previous publications, the break even point seems to be approxi-
mately four concurrent threads (Damron et al. 2006).

HTM has the same scalability properties as STM but provides better constants as
long as the hardware write buffers are large enough for the operations, lowering the
break even point to two concurrent threads (Damron et al. 2006).

However, carefully implemented lock-free algorithms typically outperform TM.
The problem is that TMaborts transactions for all data conflicts. A lock-free algorithm,
conversely, may know that a speculatively loaded value may become invalid or a lazily
updated reference may not be written, and it does not matter for the consistency of the
component and the correctness of the algorithm. Therefore, the lock-free algorithm
may continue whereas the TM based code has to restart the transaction.

Conclusion TM does exhibit good concurrent scalability when there is no known
lock-free component variant. TM provides decent sequential performance if hard-
ware support is available. However, when there is no hardware support or a lock-free
algorithm exists, other options are better.

123

Autom Softw Eng (2018) 25:47–99 59

4 Self-adaptive concurrent components

As discussed in the previous section, research in finding the ultimate synchronization
mechanism combining the best of them all has not found a conclusion yet. We must
admit that the best synchronization mechanism depends on the context including the
application runtime behavior and the runtime environment. The application could be
sequential or concurrent and its runtime behavior includes the operations invoked,
their read to write ratio to the data representation, the number of threads, and their
actual contention. The runtime environment includes properties of hardware, operating
system, and language runtime environment such as the memory consistency of the
architecture, the number of cores (and, hence, the need for scalability) whether there
is a single socket system or multiple socket system, the number of hardware threads
per core, the fairness of the scheduler, the fairness of the potential locking protocol
(unfairness potentially yields higher performance since translation lookaside buffer
(TLB) caches are already populated when reacquiring the lock), the availability (and
stability) of HTM, the size of its write buffers, the speed of CAS operations, the size
of caches, how caches are shared, what cache coherence protocol they employ, the
speed of the memory bus etc. Some of the properties are known at compilation time,
some at deployment time, and yet some vary dynamically at runtime.

Since there is no single silver bullet that provides the best possible performance
in all these contexts, our approach is to understand the synchronization mechanism
as yet another component variant self-adapted to the actual context dynamically. We
refer to components adapting (among others also) their synchronization mechanism
to the actual context as self-adaptive concurrent components. Based on the changing
contention context, we strive to select the best performing component variant including
the best synchronization mechanism and the algorithm variant with the lowest time
complexity.

The contention attribute is orthogonal to other context attributes, e.g. size of actual
parameters and actual operation call sequences. However, contention is regarded the
most important dynamically changing context attribute. The rationale for this is that
whenever contention builds up on locks, the system experiences a massive slow down
due to the concurrency bottleneck that typically by far outweighs all other decisions,
similar to how thrashing should be avoided at (almost) all costs. Getting the right fit for
a given contention level gets the highest priority. Therefore, a straightforward layered
approach is used for the contention (first layer) and the other context attributes (second
layer).

A lock-free component variant is used whenever there is a lot of contention (first
layer). In practice, there are not many lock-free variants of one and the same lock-free
component.However, the number of processors used for storing the data representation
instances of the component and for algorithms operating on it can still vary based on
the number of processors actually available (second layer) according to Kessler and
Löwe (2012).

If there is little contention a component variant protected by locks is used (first
layer). If there are different sequential or parallel component variants, then transforma-
tions can happen to the (lock-based) component variant that has a presumably superior
time complexity (second layer), either instantlywith thefirst operation invoked (Ander-

123

60 Autom Softw Eng (2018) 25:47–99

sson et al. 2008; Kessler and Löwe 2012) or in a deferred way using biasing (Österlund
and Löwe 2013).

Of course, a more complex biasing could find tricky corner cases by simultaneously
employing contention and other context attributes, like size of data, application profile,
time complexity of operations used, hardware, and scheduling, to find more accurate
break-even points forwhat contention level should trigger transformation to a lock-free
component variant with potentiallyworse time complexity. This is less straightforward
and potentially costly for the common case as the cost for the logic deciding the
presumably best fitting solution increases. It only improves corner cases wheremanual
attention perhaps should be advised anyway for optimal performance. It is therefore
deferred to future work.

For the implementation of the first level adaptation of the synchronization variant,
we propose a single contention manager object for each self-adaptive concurrent com-
ponent object. It listens to contention level changes. If the current component variant is
considered inappropriate for the current level of contention, it is invalidated and a new
equivalent and presumably more appropriate component variant is instantiated. The
contention manager receives input from the specific active implementation variants in
completely different ways. The contention manager itself is invariant of how it gets
its information.

For the contention manager, we need to address three issues. We need to (i) assess
the contention context and decide whether changes in the contention should trigger a
change of the component variant or not. If so, we need to (ii) invalidate the current
component variant and, finally, we need to (iii) transform to the new component
variants safely. Obviously, the steps (i)–(iii) need to be performed online and they
contribute to the runtime overhead of self-adaptive concurrent components. Hence,
efficiency of context assessment and transformation is an important issue. We will
address (i)–(iii) in the subsequent three sections.

5 Continuous context feedback (i)

Continuous context feedback for contention, issue (i), is provided by a contention
sensor. The contention sensor is implemented differently for the three different syn-
chronization mechanisms. It provides a general interface, in essence hooks to code in
the contention manager, for dealing with adaptation when contention levels change.

For each contention sensor implementation, it is beneficial to log only the bad
uses of a certain synchronization mechanism. For instance, a lock would only notify
the contention manager of bad uses of locks such as when blocking was necessary.
Conversely, a message indicating that a biased lock was successfully acquired local
to one thread would never lead to any change. Hence, such a message would only be
an unnecessary overhead. The same principle applies to the contention sensors for all
synchronization mechanisms described below.

Note that signs of high contention are monitored promptly so that components can
eagerly transform into concurrent variants. The reason is that locks could be bottle-
necks hampering global progress of the system, requiring immediate transformation
into a concurrency friendly component.

123

Autom Softw Eng (2018) 25:47–99 61

Conversely, signalling low contention and transforming back into the lock based
component variant is deferred until there is sufficient evidence that contention has
indeed decreased to a single thread for a significant amount of time. The transformation
is typically not necessary to prevent a serious performance bottleneck in the sense
that scalability is prevented. It may however provide better performance if executed
frequently.

5.1 Locks

The contention sensor for locks is quite important as locks tend to be the biggest
bottlenecks in concurrent programs. Therefore, we must take extra care of minimizing
the cost of this contention monitoring.

Modern virtual machines (VMs) employ adaptive locking schemes with support for
biased locking.Wewill assume an ideal solution for us, presented by Pizlo et al. (2011)
in JikesRVM and Russell and Detlefs (2006) for HotSpot (OpenJDK), that performs
better when locking is done from a single thread, and adaptively spins when there is
actual contention. We hereby define three levels of contention for a lock: 1) biased
locking, 2) lightweight spin lock, 3) heavyweight blocking lock. Each level has its
own type of lock that needs to be installed. The ideas apply for any managed runtime,
but we will focus specifically on HotSpot, where our algorithms were implemented.

Note that our contention sensor just needs to understand that different locks are
installed corresponding to different contention level. In a way, the installation of dif-
ferent locks based on contention is a self-adaptation of the lock component, which is
below our general architecture for self-adaptive components done on the level of the
runtime environment of our components.

5.1.1 Contention level 1: biased locking

A lock is biased against the first thread that acquired it. This owner thread can acquire
and release the lock cheaper with normal loads and stores, avoiding heavier atomic
instructions (Russell and Detlefs 2006). The owner thread is established using an
atomic CAS operation to install a thread id in the object header. Once the owner has
been established, subsequent acquire and release operations are almost for free. It
also avoids allocating a lock data structure, by fitting all fields in the object header
instead.

Biased locking is a speculative optimization that makes locking fast when used by
a single thread. Therefore, it is optimized for very low contention levels. If it turns out
that multiple threads need to use the lock, then the bias must be revoked. This is done
by stopping the thread holding the bias using the same synchronization mechanism,
referred to as safepoint, as used by a garbage collector (GC) to stop threads for GC
pauses (all managed threads, referred to as mutators, need to be stopped during certain
critical GC operations called GC pauses). Once inside of the safepoint, the lock is
reacquired as a lightweight spin lock of level 2.

In detail, for revoking the biased lock of level 1 and promoting the lock to level
2 heuristics keep track of the cost of individual lock bias revocations. When the cost

123

62 Autom Softw Eng (2018) 25:47–99

exceeds a certain threshold, a bulk re-bias operation is performed for all locks on
objects of a certain type. This is done by maintaining bias epochs as counters for each
type that must match a corresponding counter for each lock on objects of that type.
A bulk re-bias operation issues a safepoint, changes the epoch counter of a type, and
reclaims all locks currently held. Once the threads start running again, the epochs no
longer match between the locks and their corresponding type. This way, the locks
that were not held in the safepoint can be re-biased with new owners at subsequent
acquire operations. This allows keeping more objects at level 1 and reduces spurious
promotions to level 2.

5.1.2 Contention level 2: lightweight spin lock

Once a lock gets promoted to a lightweight spin lock, some contention can be assumed.
In HotSpot these locks are implemented by having threads allocate some 8 bit aligned
stack space for their lock, loading the object header,writing it to the stack, and installing
the stack slot address into the object header using CAS. If the CAS succeeds, then the
lock is acquired.Otherwise it failed. This type of stack allocated lock is still lightweight
in that it does not need any heavyweight OS lock.

When locking fails, the lock can either spin and wait for a while before trying to
lock again, assuming that a small critical section is concurrently executing in another
thread that will release the lock soon. The naïve approach would be to just spin in a
loop until the lock is released. But that has a number of problems.

Doing spinning right is very difficult and can either speed up a program or make it
slower. An optimized spinning implementation in locks goes through the whole stack:
from the application layer (disregarded here), over the VM layer and the OS layer, all
the way to the hardware layer:

VM VMscan adaptively change the length of the spinning loop before retrying
by learning fromhistory. If it finds that spinning takes too long, it promotes
the lock to level 3.

OS Waiting for a lock to be released by spinning is only a good idea if it
is believed that the lock will be released soon. If a thread in a critical
section was to be preempted by the OS or blockingly waiting for IO, then
suddenly the spinning will waste many cycles in vain. Solaris allows to
check cheaply from userspace if the owner of a lock is running on the
processor or not. If it is not running, then spinning can be immediately
abandoned.

Hardware Modern processors typically have more than one hardware thread per
core to allow sharing execution units like arithmetic logic units (ALU)
within the core between different concurrently executing threads, to better
exploit thread level parallelism (TLP) when instruction level parallelism
(ILP) can not be exploited. On Intel chips it is normal to expect two
hardware threads per core, and on SPARC chips 8 hardware threads per
core. However, the hardware has no notion of priority once threads have
been scheduled to run. So if one thread is in a critical section performing
actual work, and a concurrent spinning thread is waiting for acquiring

123

Autom Softw Eng (2018) 25:47–99 63

the lock, then the spinning thread in the same core will use the resources
of the core and slow down the one thread performing actual work in the
critical section.
To combat this, Intel has a special pause instruction that is similar to a
nop but also flushes the pipeline with its speculations, uses less power,
and lets the other thread in the core (which might be running the critical
section) use the core better.
SPARC goes yet another step further and addresses the issue directly.
The header word can be loaded with a special load, and then a special
mwait register is set to wait a certain amount of time, or until the address
that was loaded is changed. Meanwhile the hardware is performing very
cheap spinning, while boosting the ILP of the other threads, and possibly
the threads executing the critical sections. When the lock is released, the
spinning threads will wake up and start executing again.

These spinning particularities may motivate performing transformations to new
component variants already at this lock contention level, if the environment is not
supporting spinning well enough throughout the technology stack. Especially, in envi-
ronments where the JVM is not the only heavy process running on the same machine
contending for cycles. With emerging deployment models where many JVMs are run-
ning on the same machine, spinning might be even more destructive than it usually is
because of intra JVM interference, and further motivate transforming to a lock-free
component earlier.

5.1.3 Contention level 3: heavyweight blocking lock

If bounded spinning on a lightweight lock was not enough, the lock is inflated to a
heavyweight lock of level 3 able to block to the OS. A monitor object is allocated and
installed into the header word (inflation) using CAS.

The heavyweight lock will also try spinning in a similar fashion as level 2, but once
that fails, it will block the thread so that other threadsmay run instead. It is in particular
this blocking event that contention sensors use to signal that locking probably is not
the best fitting strategy any longer and that the application should transform to a better
one.

The contention sensors need tomonitor changes betweendifferent contention levels.
Fortunately, since each contention level corresponds to a new type of lock being
installed into the cell header, the performance cost of such contention monitoring
is insignificant since it does not get invoked for each lock operation (especially fast
paths), but only for the slow paths when locks are promoted due to contention or
demoted due to lack of contention. In practice, we chose to only monitor blocking
events. because it occurs when the contention becomes noticeable. Also it makes sure
that the rest of the lockingmachinery has untouched performance having an extra code
path when monitoring has insignificant cost as the cost of blocking far exceeds that of
the monitoring code.

123

64 Autom Softw Eng (2018) 25:47–99

5.2 Lock-free

In a lock-free component, sensing the absence of contention would be useful. In order
to do this, we piggyback on a garbage collector (GC) and use an idea similar to normal
lock deflation, i.e., adaptive locking that decides to demote a level 3 type lock and
to install a lower level. The VM normally aggressively deflates locks that are not
held during garbage collection. Similarly, even lock-free component variants could
be transformed back to the locking variant optimized for a single-thread regardless of
the actual contention, for a chance to eventually revise the assumption that contention
is high. Obviously, this could be the wrong decision, causing an immediate (and
unnecessary) transformation back to the concurrency favoured variant again. However,
this only happens infrequently (once every GC cycle), and the amortized cost of such
bad transformations is low.

Alternatively, the lock-free component creates a probe object that is garbage on
creation (no references to it). Hence, the probe gets freed, i.e., finalized, by the garbage
collector at the next GC cycle. Its finalizer, however, checks the ownership of a lock-
free component. If the component indeed was exclusively owned by a single thread,
the probe did not sense any contention.

Checking this exclusive ownership when the probe finalizes can be done in two
ways. In the first approach, accurate probing, threads read a special volatile field
of a lock-free component for determining its owner thread. For each operation the
component checks if the owner is NONE. If so, the thread could attempt to install
itself as owner safely using CAS. If the CAS fails or the owner was not NONE, then
MULTIPLE is written to the owner field, symbolizing that the component is used by
multiple threads. Now the probe can see, when triggered by the GC finalizer, that the
status is either NONE, a single thread or MULTIPLE. This value stabilizes quickly and
its cache line can be shared with no conflicts.

In practice inaccurate probing is acceptable. Since monitoring is only providing
hints for when to transform, the field can be updated using normal memory accesses
for increased performance. This approximation could be a victim of data races and
hence provide inaccurate hints. However, that does not affect the consistency of the
component, only the hints used for the optimization.

The accurate and inaccurate probing techniques are similar to biased locking; they
workwell when a single instance is either contended or not. However, when contention
changes rapidly, this technique may detect the change to lower contention undesirably
late as it needs to wait until the next garbage collection cycle, which could take
arbitrarily long. Then it could be beneficial with active probing. This scheme calls
an introspection probe in the prologue of each operation of the data structure. For a
contended data structure, the cost of cache coherence traffic dominates. Therefore, the
extra time spent for performing local computations for probing is arguably cheap.

Our active probing mechanism maintains a ContentionStatus object in the
lock-free data structure. It has a high resolution timestamp describing when it was
created, and a pointer to the owner thread that created it. These two fields are set
at creation, and do not change thereafter. Another field, last_check, tracks the
when this probe was checked for contention the last time. If a RESOLUTION amount
of time has not yet passed since the last check, the monitoring routine exits. This is

123

Autom Softw Eng (2018) 25:47–99 65

the common path of the monitoring routine. The RESOLUTION constant is picked
so that the overheads of monitoring are kept minimal. We used 1024 nanoseconds
in our experiments. The last field, contended, describes whether other threads
have observed a ContentionStatus.When MONITORING_INTERVAL time has
elapsed, the current ContentionStatus is examined. If it was not found to be con-
tended, an exception is thrown to trigger invalidation and transformation to something
more suitable. Otherwise, a new ContentionStatus is installed using CAS. In
our experiments, a MONITORING_INTERVAL of 1 ms was used. The procedure is
described with pseudo code in Algorithm 2.

1 def active_probe(data_structure)
2 status = data_structure.

contention_status .load();
3 if !status.contended && status.owner

!= Thread.currentThread ()
4 # Checking the current thread is

cheap; on
5 # x86_64 , it is stored in the r15

register in
6 # HotSpot. This path is also

triggered at worst
7 # once per thread and

MONITORING_INTERVAL
8 status.contended = true;
9 end

10 # On x86_64 , nanoTime translates into
a rdtscp

11 # instruction. It serializes execution
and flushes

12 # e.g. store buffers. But so do the
atomic

13 # instructions in the lock -free data
structure to

14 # ensure TSO ordering of stores.
Therefore these

15 # costs piggybag on eachother in the
common case.

16 timestamp = System.nanoTime () & ~(
RESOLUTION - 1);

17 check_elapsed = timestamp - status.
last_check;

18 if check_elapsed <= RESOLUTION
19 return # The common case ends here.
20 end
21 status.last_checked = timestamp;

123

66 Autom Softw Eng (2018) 25:47–99

22 probe_elapsed = timestamp - status.
timestamp;

23 if probe_elapsed < MONITORING_INTERVAL
)

24 return
25 end
26 if !status.contended && check_elapsed

< MONITORING_INTERVAL)
27 # Uncontended monitor. Trigger

transformation
28 throw new TransformationException ()
29 end
30 # Ongoing contention. Install a new
31 # ContentionStatus object tracking

the next
32 # monitoring interval.
33 new_status = new ContentionStatus ()
34 data_structure.contention_status .CAS

(status , new_status)
35 end
36 end

Algorithm 2 Code for performing active probing on lock-free data structures

5.3 Transactional memory

Monitoring contention in TM is particularly trivial: simply count the number of trans-
actions free from data conflicts, which must be tracked anyway, and feed it into the
contention manager.

6 Safe component invalidation (ii)

Knowing that a particular component variant is not suitable is not enough; we also
need to address issue (ii) and invalidate the current unsuitable component variant safely
and efficiently. This component variant invalidation invalidates a component variant
in the sense that no operation (read or write) may complete or harm the consistency
of the component once invalidation has finished. We provide safe component variant
invalidation mechanisms separately for each synchronization mechanism.

Note that in order to instantiate and initialize a new more suitable component
variant, it must still be possible to read the state of the invalidated component variant.
If all reading methods throw exceptions it becomes impossible to read the last valid
state and, hence, installing a new component variant is not possible either. Therefore,
every component variant must provide a special yet general read-only version, e.g., a
read-iterator, which is only used when the component variant is rendered invalid and

123

Autom Softw Eng (2018) 25:47–99 67

does not need protection. This read-iterator is used in the methods, Representation
clone(Representation) copying the state of an invalidated representation to a new
representation variant.

6.1 Locks

A general and natural solution to invalidating a lock-based component variant is mak-
ing lock invalidation a part of the locking protocol. An invalidated lock will make
subsequent lock and unlock operations throw an exception taking the execution back
to the abstract component wrapper.

Lock invalidation is best done on inflated locks for two reasons. First, we do not
care about taking a slow path to the invalidated locks as lock invalidation is rare and
happens only when transformation is due. Second, we only invalidate locks due to
even higher contention when they have been inflated already.

1 #callback from contention manager
2 def invalidate_lock(object)
3 monitor = get_monitor(object)
4 monitor.owner = Thread.current () |

INVALIDATED
5 throw InvalidatedException
6 end
7

8 # slow path if biased locking fails
9 def slow_lock(object)

10 monitor = get_monitor(object)
11 if try_spin_lock(monitor)
12 # low contention
13 return
14 end
15 # even spin locking fails
16 blockingly_lock(monitor)
17 # signal high contention to the

contention manager
18 # while still holding the inflated

blocking lock
19 call_contention_manager (object)
20 end
21

22 def blockingly_lock(monitor)
23 loop
24 # we try to acquire the lock
25 prev_owner =
26 CAS(0, Thread.current (), &

monitor.owner)

123

68 Autom Softw Eng (2018) 25:47–99

27 if prev_owner == 0
28 # success , lock acquired
29 return
30 elsif (prev_owner & INVALIDATED) ==

INVALIDATED
31 # lock already invalidated
32 throw InvalidatedException
33 else
34 # park and wait for other thread

to wake us up
35 block(monitor)
36 # then we can retry to acquire the

lock
37 end
38 end
39 end

Algorithm 3 Lock invalidation makes subsequent lock and unlock calls throw an exception.

The pseudo code shown in Algorithm 3 sketches the implementation ideas. When a
lock is inflated (line 16) froma spin lock appropriate for contention level 2 to a blocking
lock for contention level 3, it can be changed safely, especially invalidated, once the
current thread is the owner established with CAS (lines 24–29). After the inflated
blocking lock is acquired while holding the lock, we call the contention manager (line
19). The self-adapting concurrent componentmanager will then trigger transformation
and invalidate the lock by calling the invalidation callback (lines 1–6). It changes the
owner from its own thread to a sentinel value corresponding to the real owner tagged
with a single extra bit that denotes that the monitor has been invalidated (line 4).

After invalidation, the faster JIT-compiled locking paths of other threads may opti-
mistically try biased locking or spinning to get the lock, but they always fail to acquire
the lock and ultimately all threads take the slow path because the owner field is never
cleared. In that slow path, they will ultimately see that the lock has been invalidated
because the owner field is tagged (line 30–32). By now all threads will fail to enter the
critical section, and instead compete for taking the transformation lock in the abstract
component wrapper to transform to a more suitable component variant.

6.2 Lock-free

For discussing lock-free algorithms, we first need to differentiate linearizing from
non-linearizing CAS operations. A linearizing CAS atomically commits the change
made by an operation at a linearization point (Herlihy and Wing 1990) and either
fails to commit due to contention (and hence making the wanted change not visible at
all to other threads) or succeeds (and hence making the new state of the component
completely visible to all other threads). There may be other, non-linearizing CAS
operations that update the component lazily and do not hamper the consistency of the
component.

123

Autom Softw Eng (2018) 25:47–99 69

Any non-linearizing CAS operation does not need to be visible at all as the consis-
tency of the data structure is not harmed by their succeeding or failing according to
the algorithm specification.

Operations of lock-free components are typically linearizable and we need to make
sure that state changes of succeedingoperations are copied to and that failingoperations
are repeated on the new component variant.

Linearizability is commonly defined in the following way:

Definition 1 All linearizable function calls have a linearization point at some instant
between their invocation and their response. All functions appear to occur instantly at
their linearization point, behaving as specified by the sequential definition.

Sequential consistency (Lamport 1979) ensures that the observable events in pro-
gram order are observed in the same order on all processors. Linearizability is strictly
stronger than sequential consistency. Each operation has a linearization point where
the operation logically either completely succeeds or completely fails, hence, making
the whole operation logically appear to happen instantaneously. Other processors will
never observe partially completed operations from other threads that violate consis-
tency. Forwriting operations, this linearization point is typically an atomic sequentially
consistent CAS operation (cf. Algorithm 1) that atomically either writes a new value,
hence, publishes the result of the whole operation, or fails, depending on whether
the previous value is as expected, as required for consistency. Similarly, for reading
operations, the linearization point is typically a load.

We exploit the linearization points of the lock-free component variants to invalidate
them. All the linearization points go through operations on atomic references. We
provide our own atomic reference class, that has special load and CAS operations used
as linearization points for lock-free data structures for all operations. These special
atomic references, can be irreversibly invalidated. Once an atomic reference has been
invalidated, any subsequent linearizing operation will throw an exception that takes
control back to the abstract component wrapper to handle the fact that the variant has
been invalidated, by restarting the whole operation in the new component variant once
transformation has finished. We assume lock-free data structures to be composed of
object nodes linked together with invalidatable atomic references. Values are captured
in value objects linked from (reference) object nodes with atomic references too.

By design, all atomic references transitively reachable from the root (data structure
wrapper node) to the leaves (references to the elements) are at all points in time com-
pletely encapsulated within the lock-free data structure and are never exposed outside
of the data structure. That is, no method on the data structure returns or otherwise
exposes any of the internal nodes used by the lock-free component variant outside of
itself. This is important for encapsulating the lock-free machinery from the outside
world.

Invalidating an atomic reference (cf. Algorithm 4) is itself a lock-free and lineariz-
able operation. A CAS tries to install an INVALIDATED sentinel value. This is the
linearization point of the operation—it either fails and retries or it succeeds and the
reference is invalidated. It continues in a loop until the atomic reference is invalidated
in a lock-free fashion.

123

70 Autom Softw Eng (2018) 25:47–99

1 def invalidate(atomic_ref)
2 loop
3 val = load(atomic_ref)
4 if val == INVALIDATED
5 return # Already invalidated
6 # CAS is a linearization point ,

atomic_ref is
7 # either successfully invalidated or

not
8 elsif CAS(val , INVALIDATED ,

atomic_ref) == val
9 atomic_ref.remembered_value = val

10 return
11 end
12 end
13 end

Algorithm 4 Invalidating atomic references.

When a reference has been invalidated, the value that was there before the inval-
idation is remembered and exposed through a special load_remembered() API
operation (cf. Algorithm 5) that can be used in the clone(Representation) method
to read the state of the reference, used only for the purpose of iterating through the
elements to construct the new component variant, once the whole data structure has
been invalidated.

1 def load_remembered(atomic_ref)
2 atomic_ref.remembered_value
3 end

Algorithm 5 Special load to get the value after invalidation.

Invalidation means that all subsequent load and linearizing CAS operations (cf.
Algorithm 6) on the atomic reference will throw exceptions and fail their operations.

Note that all loads used by the data structure operations,whether linearization points
or not, will throw an exception if the atomic reference has been invalidated, because
the INVALIDATED sentinel value can never be the expected value. Therefore, CAS
operations, whether linearizing (explicitly checking for invalidation) or not, will never
succeed after invalidation: a CAS can only succeed if the current value is also expected.
The INVALIDATED sentinel value is an encapsulated secret of the atomic reference
class; it is never exposed to the outside world. As a result, it is impossible even for a
non-linearizing CAS to ever succeed after invalidation. Therefore, invalidated atomic
references are immutable.

The reason we still distinguish between linearizing and non-linearizing CAS is that
even though they are similar in that they fail after invalidation, it is semantically subtly
different to report a failed CAS and throw an invalidation exception. An algorithm

123

Autom Softw Eng (2018) 25:47–99 71

could have a linearizing CAS in a loop that expects some value that was not loaded
from the atomic reference, e.g., sentinel values known by the algorithm or NULL. Such
an algorithm would get stuck in an infinite loop after invalidation unless a linearizing
CAS is used to explicitly break the loop after invalidation, rather than just reporting
failure to CAS. Typically, for CAS operations not used at linearization points, e.g., to
lazily update tail pointers in lock-free linked lists, do not even check the success of
their CAS; it does not matter if the CAS succeeded or not. Then it is more appropriate
to use a non-linearizing CAS to save a few instructions.

1 def load(atomic_ref)
2 val = load(atomic_ref)
3 if val == INVALIDATED
4 throw InvalidatedException
5 else
6 return val
7 end
8 end
9

10 def linearizing_cas(expected_val ,
new_val , atomic_ref)

11 val = CAS(expected_val , new_val ,
atomic_ref)

12 if val == INVALIDATED
13 throw InvalidatedException
14 elsif val == expected_val
15 return true
16 else
17 return false
18 end
19 end

Algorithm 6 Pseudo code for load and linearizing CAS (atomic write) for atomic references, to be used
by lock-free components.

Before transforming a lock-free component into another variant, we need to
ensure that all operations performed on the lock-free component variant will be
blocked by invalidated references. Therefore, all contained atomic references must
be invalidated. The data structures of lock-free components consist of objects (nodes)
accessed and connected via atomic references (edges). Invalidation is done by tracing
through the lock-free component’s data structures and invalidating all reachable atomic
references.

6.2.1 Consistency of lock-free invalidation

To guarantee consistency of the lock-free component once variant transformation was
decided, we must guarantee that, once tracing (and, hence, invalidation) has been

123

72 Autom Softw Eng (2018) 25:47–99

started, operations either successfully reach a linearization point, or fail and retry in
the new component variant when transformation has finished. We must also guarantee
that tracing (invalidation) will terminate, and that once it has terminated, it holds that
(1) all objects reachable from the data structure root node have been invalidated, and
(2) all subsequent operations on the invalidated data structure will fail and instead run
the operation on the new component variant once transformation has finished.

If the data structure was immutable or there were no concurrently executing threads
(serial tracing), tracing through such a data structure object graph in a consistent way
would be easy. Any depth-first search (DFS) or breadth-first search (BFS) algorithm
would do.

Guaranteeing consistency of the tracing while concurrent threads are executing is
more tricky. Tracing through the data structure to invalidate atomic references con-
currently to other threads executing an algorithm works analogously to GC tracing
through all live objects concurrently tomutators. InGC, on-the-flymarking advances a
wavefront of visited objects. Instead of marking found objects as live to separate them
from the garbage objects in GC, they are now marked as invalidated. This guarantees
a stable snapshot of the transitive closure of the data structure. Because of the strong
similarity to on-the-fly marking, we reuse Dijkstra’s tricoloring scheme (Dijkstra et al.
1978) for reasoning about this. It describes a framework of reasoning where nodes
can be in one of three states (colors), at any time during tracing.

White nodes have not been visited by the tracing algorithm yet, gray nodes have been
noted by the tracing algorithm, but their references have not been processed yet, i.e.,
in our case, their edges haven’t been invalidated. Black nodes have been visited by
the tracing algorithm and their references have been processed and, hence, they don’t
need to be visited by the tracing algorithm again.

Our tracing and invalidation algorithm can then be described like this: The first node
to be traced is the lock-free component variant itself. It is shaded gray and pushed to
a stack. In a loop, the stack top node is popped and visited until the stack is empty. A
node is visited iff it is not already black, i.e., visited before. For each node visited, all
its atomic references are invalidated and, iff the referents are white, they are shaded
gray and pushed to the stack (black referents do not need to be visited again and gray
referents will eventually be visited as they are on the stack already). Finally, it is shaded
black.

A GC tracing algorithm is complete if, upon termination, all reachable objects are
eventually visited (shaded black) and, hence, separated from garbage objects (shaded
white) that can be collected. This is a challenge if tracing and mutations of the object
graph happen concurrently. Note that our tracing for invalidating references of the
lock-free data structure also happens concurrently to mutating accesses to this data
structure. It was found by Pirinen (1998) that any concurrent tracing GC algorithm
that guarantees GC-completeness, enforces one of two invariants on the concurrent
execution to guarantee consistency of the tracing:

– The strong tricolor invariant: There is no edge from a black node to a white node.
– The weak tricolor invariant: All white nodes pointed to by a black node are also
reachable from a gray node through a chain of white nodes.

123

Autom Softw Eng (2018) 25:47–99 73

Algorithms enforcing the strong tricolor invariant disallow new edges from black
nodes to white nodes to guarantee GC-completeness, while the weak tricolor invariant
allows new edges from black nodes to gray nodes as long as those white object are
somehow reachable later in the tracing.

Our algorithm enforces the strong tricolor invariant. If concurrent threads try to
write any edge at all from a black node with the linearizing CAS (cf. Algorithm 6),
then it will fail to commit and an invalidation exception would be thrown. Therefore,
the scenario where an edge from a black node to a white node is concurrently written,
can trivially not happen because black nodes have become immutable.

Our tracing algorithm for invalidating all reachable nodes in a lock-free data struc-
ture is complete in the sense that the tracing, once terminated, has shaded all reachable
nodes black regardless of concurrent mutation (attempts) to the data structure. This
can be shown analogously to already established and since long understood theoret-
ical frameworks for concurrent tracing by a GC. In particular, Dijkstra et al. (1978)
proved that their tracing algorithm could guarantee GC-completeness, provided that
the strong tricolor invariant is enforced by GC and mutators. Barriers (mutator code
run when writing references to the heap, referred to as actions in the paper) for muta-
tors were described that would enforce the invariant, and it was then proven that this
invariant on the concurrent execution makes tracing correct and complete. It was later
mechanically verified (Hawblitzel and Petrank 2009; Gammie et al. 2015) that barriers
of practical GC algorithms really do enforce these tricolor invariants, and then proved
by extension that some example tracing algorithms are GC-complete and correct.

For the interested reader, there are formal proofs of invalidation termination, inval-
idation completeness, and data structure consistency in the Appendix A. These proof
are sketched below.

The termination of invalidation is guaranteed iff the data structure instance is not
concurrently extended endlessly, as reference cycles are broken by not pushing black
and gray referents on the stack again. The trick in proving termination is to recognize
that the atomic references are completely encapsulatedwithin the lock-free component
variant. Therefore, all subsequent operations after the root has been invalidated will
fail, and only latent operations that started before invalidation has started need to be
dealt with. This is formalized in Section A. I.

The proof of invalidation completeness is analogous to the proofs of GC-
completeness of theGC tracing algorithms: (1) black nodes cannot change as it requires
changing outgoing atomic references that are all invalidated, (2) gray nodes still can
change while being on the stack or being visited but, changing competes with attempts
to invalidate them in an endless loop and eventually all outgoing references are inval-
idated and cannot change, (3) a wavefront of gray then black coloring will eventually
color all nodes black making the whole data structure immutable. This is formalized
in Section A. II.

The consistency of the whole data structure instance is guaranteed by the design
of the lock-free data structure type. Operations and algorithms are designed to be
correct if reads and writes fail at liniarization points; they just don’t make progress
then. Once invalidation has been initiated, they all will fail eventually. Black nodes
are guaranteed to block all subsequent linearization points by concurrent threads. All
their operations that have failed, i.e., didn’t logically finished atomically, will wait for

123

74 Autom Softw Eng (2018) 25:47–99

the transformation to complete and then eventually retry on a new component variant.
This is formalized in Section A. III.

6.2.2 Lock-free invalidation implementation

While the principles of invalidation have been discussed before, we still need to fit
them into the object-oriented framework of self-adaptive components. Lock-free com-
ponents are built using our own IAtomicReference<T> that can be invalidated. It has
specialget() and load()methods (the implementation principles are described inAlgo-
rithm 6) that will throw an exception when invalidated to block linearization points as
previously described.

The generic type argument T is required to be a subclass of Object. An inter-
nal atomic reference assumes theObject type, and load() casts the internal load from
Object toT. A special internal class Invalidated<T> represent invalidated references,
and load()will trigger a class cast exception (since Invalidated<T> is not a T) indicat-
ing that the reference has become invalid. Similarly, the linearizingCAS() operation
returns immediately if the internal CAS worked, otherwise it checks if it failed due
to invalidation by loading the current value and checking if it is an Invalidated<T>
object.

An invalidate() method in IAtomicReference<T> invalidates a reference by
installing an Invalidated<T> object containing the original value using CAS in a
loop that terminates when CAS succeeds. To invalidate a complete lock-free compo-
nent variant, it is traversed as described above using invalidate() calls on all existing
references. When the whole representation variant has been traversed, it is certain that
the component variant is logically invalidated in the sense that any linearization point
for any operation will fail and throw an exception.

Like for the other synchronization mechanisms, there must be a read-only variant
that will not throw exceptions, allowing copying of the old invalidated representation
variant and create a new one. This is done with the special T loadRemembered()
method (cf. Algorithm 5) implemented in IAtomicReference<T> used to implement
the clone(Representation) methods for changing the representation variants.

6.3 Transactional memory

Implementing safe component variant invalidation for TM is done by simply insert-
ing a data dependency in the beginning of the transactions, checking a flag if the
representation variant is invalid. If so it throws an exception, otherwise, it continues
executing. When the component variant is invalidated, the flag is set causing current
transactions to fail. In a strongly consistent TM the flag is set normally, while in a
weakly consistent TM the setting of the flag is itself wrapped in a transaction. If the
flag checking operation’s transaction failed, it checks if the invalid flag is set. If so it
throws an exception like in the locking approach. Unlike the locking invalidation, we
unfortunately do not know how to make this free of charge in the common case as
infusing a data dependency is integral for making the transaction fail.

123

Autom Softw Eng (2018) 25:47–99 75

7 Safe component transformation (iii)

For all synchronization mechanisms, we can sense inappropriate component variants
due to changing contention (i) and safely invalidate them (ii). Finally, this section
addresses issue (iii) and discusses how to transform components safely.

In order to complete the transformation there must be a way of handling trans-
formation races. We simply solve that uniformly for all synchronization mechanisms
by wrapping the actual transformation in a synchronized block with a transformation
lock owned by the contention manager. Alternatively, we could employ the lock-free
GC copying algorithm by Österlund and Löwe (2015). However, we argue that if
contention is so heavy that this lock would become a bottleneck itself, then

1. Choosing to transform away from a locking component variant is probably a good
decision anyway. The lock of the component is the actual bottleneck that is even-
tually removed by the transformation.

2. Choosing to transform away from a lock-free component variant is probably a bad
decision in the first place and the contention manager should simply not trigger
this transformation.

To safely transform to a new component variant, a special read-only transformation
iterator is used in the Representation clone(Representation) methods to iterate
over all the elements of the old component variant and add them one-by-one to the
new component variant.

The read-only transformation iterator has its own implementation for each compo-
nent variant, depending on what measures were taken to invalidate the state of the data
structure. The read-only transformation iterator must be able to read this invalidated
state.

7.1 Lock-based component variants

For the locking,clonemay simply use a normal iteratorwithout a lock for the read-only
transformation iterator. Apart from the transformation lock, no other lock is necessary
to read the state since, the data structure is immutable once invalidated.

7.2 Lock-free component variants

Once a lock-free component variant has been invalidated, any normal access to the
invalidated atomic references will throw an exception. Therefore, the read-only trans-
formation iterator walks through the data structure accessing the state using the special
loadRemembered() method instead of the normal load (that would throw excep-
tions), in order to read the invalidated state.

7.3 Transactional memory component variants

Assuming write-buffered TM, the read-only transformation iterators and, hence, the
clone methods are implemented by using plain memory read operations.

123

76 Autom Softw Eng (2018) 25:47–99

8 Evaluation

All benchmarks were run on a 2 socket Intel® Xeon® CPU E5-2665 with 2.40 GHz,
16 cores, 32 hyperthreads, 256 KiB L2 cache (per core), 20 MiB L3 cache (shared),
8 x 4 GiB DIMM 1600 MHz, running on Linux kernel version 4.4.0-31. Benchmarks
were run on our own modified OpenJDK 9.

By default biased locking would not get activated until too late. Therefore, it was
forced to start immediately. Escape analysis was disabled because using static analysis
to elide locks in the benchmarks would be unfair. In practice, our transformation
components would benefit from such optimizations. The JVM arguments were:

-XX:+UseBiasedLocking
-XX:BiasedLockingStartupDelay=0
-XX:-DoEscapeAnalysis.

Each data series in each chart has executed in a separate JVM to make sure the
JIT-compiled code of each data structure is not negatively affected by another data
structure. Each data series first starts with ten warmup iterations, followed by ten
subsequent recorded iterations.

Each data point in the charts represents the geometric mean of those recorded itera-
tions, and has error bars representing the standard deviation of the recorded iterations.
The data points all represent throughput as operations per millisecond, displayed in
the primary (left) y-axis. Each chart states how many operations were executed per
data point, but the number of threads used to drive the work varies. A thin dashed line
represents the level of concurrency and its value is read on the secondary y-axis on
the right.

Note that for the sequential scenario, the single thread favoured implementations
would win even more if the size() method was run since they only return the loaded
value of a field. Lock-free components have to traverse the data structure and calculate
the total size. This makes transformation even more motivated. Yet, we chose not to
show such benchmarks because the gain is proportional to the size of the data structure.
Such a biased benchmark is of little value.

8.1 Components and their variants

Three different components were implemented: queues, sets, and ordered sets. Open-
JDKalready comeswith concurrent implementations of these in the concurrency pack-
age: ConcurrentLinkedQueue, ConcurrentHashMap and ConcurrentSkipList,
all implemented by Doug Lea. We added transformation components of these and
evaluated them experimentally.

8.1.1 Queue

Concurrent queues are used in many applications. Therefore, we chose to evaluate the
performance of a transforming concurrent queue as one of our candidates. Initially,
it assumes little contention using a coarse-grained lock and a normal LinkedList

123

Autom Softw Eng (2018) 25:47–99 77

implementation protected by a lock. At the first blocking operation for the lock, it
transforms into a lock-free queue, i.e., aConcurrentLinkedQueue. A transformation
back to the normal LinkedList is optionally supported using invalidatable references
combined with random, accurate or active probing.

The lock-based solution uses a double-linked list. By using a cyclic linked list with
a sentinel header node connecting the endpoints, branches to check for null endpoints
can be omitted.

The lock-free queue is based on (Michael and Scott 1996) and uses CAS for syn-
chronization. It is only single-ended because maintaining double-ended linked lists is
difficult (although not impossible). The core idea is to CAS the next references of the
linked list as linearization point, and then CAS the tail lazily using helper methods.
Nodes are logically removed by changing the element of an internal node to null. They
are then lazily removed physically from the linked list.

8.1.2 Set

The second component we analyze implements sets. In particular, we focused on
hash tables. The ConcurrentHashMap from the Java concurrency package, splits
multiple locks over multiple buckets. The size of the table is scaled up by the number
of expected threads (which is 8 unless otherwise stated) to make cache interference
and synchronization less common.

Although memory footprint was not a constraint of this paper and is not shown in
benchmark results, keep in mind that they use more memory. The hash table is split
into different segments, each individually functioning like a hash table. The segment
is locked when inserting and deleting. Therefore, this implementation is not lock-free
but more fine-grained in its locking scheme for scalable performance. When a thread
performs contains() on a segment, it tries a bounded number of times without locking
and then resorts to locking the segment.

Our TransformingHashSet starts as a basic hash table (without tree buckets like
HashMap) with a lock. It transforms to aConcurrentHashMap representation when
there is contention.

8.1.3 Ordered set

The last example component implements ordered sets. For the single thread optimized
implementation, we used normal red black trees with a coarse grained lock (synchro-
nized TreeSet).

There is an inherent difficulty of making lock-free algorithms for trees since
they have two children that may mutate arbitrarily. Therefore, the tree-like skip
list was picked instead for the concurrent case (ConcurrentSkipList). The Concur-
rentSkipList is lock-free and based on CAS for linearization points. It basically works
like a multi-level lock-free linked list where the number of levels picked for each node
inserted is picked from a random distribution rather than deterministically balanced.
The concurrent skip list inserts dummy marker nodes to denote a node has been logi-
cally deleted that are then lazily deleted physically.

123

78 Autom Softw Eng (2018) 25:47–99

Fig. 2 Throughput for 10,000,000 randomly distributed enqueue/dequeue operations on a single thread.
Average size of the data structures is 1000 elements

The transforming variant starts as a red black tree, and then transforms into a
ConcurrentSkipList for improved concurrency at signs of actual contention.

8.2 Case 1: concurrent queues

In order to evaluate the performance of our queue, a micro benchmark was used. A
number of threads pick operations enqueue and dequeue according to a random
distribution and execute them n times. The results for one thread are shown in Fig. 2
and the corresponding benchmark results for multiple threads, linearly increasing
contention for each iteration, are shown in Fig. 3.

We observe that the sequential queue without thread safety performs as well as the
variant with biased coarse grained locks in absence of concurrency. We note that the
performance of using synchronized vs. not using it is negligible since the biased lock
is exclusively owned by one thread. The BlockingLinkedQueue uses theReentrant-
Lock class that does not have a biased locking scheme, and requires atomic updates
to a counter; this explains the poor performance on one thread. The Lock-free queue
is based on the queue described by Michael and Scott (1996). Its performance is con-
siderably worse than the single thread optimized double linked list when there is no
contention. This is partially due to branches not being necessary in doubly linked lists
with a sentinel node, while a single linked list has special cases if the queue is empty.
The use of CAS also makes it slower.

Finally, theTransformingQueue optimistically starts as a synchronized linked list.
When the lock is inflated (level 3), it transforms to a concurrent linked queue. Since
the overhead of checking whether transformation is necessary is triggered only upon
lock inflation, it performs well on one thread as seen in Fig. 2.

As contention grows with the number of concurrent threads, the Lock-free queue
shows the best performance (Fig. 3). The enqueue and dequeue operations that are

123

Autom Softw Eng (2018) 25:47–99 79

Fig. 3 Throughput for a total of 10,000,000 randomly distributed enqueue/dequeue operations for 1 . . . 32
threads. Average size of the data structures is 1000 elements

O(1) and the synchronization overheads are dominating performance. Locks require
two CAS instructions: one to lock and one to unlock. The Lock-free queue, however,
requires only one and a half CAS on average for each operation, exploiting a lazy
updating trick for tail references. Since it both has higher concurrency (by not having
to do everything sequentially) and uses less synchronization overhead, it always has
higher throughput when there is contention.

Once again, unsurprisingly, we see that theTransformingQueue follows the Lock-
free queue closely. It shows high performance on all levels of contention.

So far, random probing was used as strategy for transforming back to the uncon-
tended component variant. This strategy works well when components turn out to be
either contended or not. We quantified the costs of using atomic references that can
be invalidated in conjunction with accurate probing and random probing. In the con-
current contexts, the TransformingQueue shows a performance loss of 1.9% and of
1.5% on average due to accurate probing and random probing, respectively. This is an
insignificant cost and will hence not be investigated more in subsequent experiments.

However, as can be seen in Fig. 4, random probing can be suboptimal when con-
tention rapidly oscilates, as a GC cycle may not have passed in time to update the
contention level and subsequently transform back to an uncontended component vari-
ant.

The first four iterations are uncontended, and the throughput of the Transform-
ingQueue is on par with the best available uncontended component variant. For the
next four iterations, there are two threads contending, which triggers a transformation
to a lock-free component variant, that continues maintaining throughput on par with
the best available contended component variant. However, the next four iterations are
uncontended again, but random probing does not catch the change of contention in
time. As a result, the throughput is now suboptimal for a while.

123

80 Autom Softw Eng (2018) 25:47–99

Fig. 4 Throughput for a total of 1,000,000 randomly distributed enqueue/dequeue operations for oscillating
levels of contention. Average size of the data structures is 1000 elements

Fig. 5 Throughput for a total of 1,000,000 randomly distributed enqueue/dequeue operations for oscillating
levels of contention. Average size of the data structures is 1000 elements

The active probing strategy deals well with this, as can be seen in Fig. 5. Similar to
the previous example in Fig. 4, the first four iterations are uncontended, and the per-
formance of our TransformingQueue is on par with the best single threaded variant.
For the next four iterations, there is contention between two threads. This triggers a
transformation to a lock-free queue which is on par with the best contended queue.
And then, for the next four iterations, contention stops again. This is discovered by
active probing after approximately one millisecond of there consistently being no con-
tention, and then a transformation is triggered back to the uncontended component
variant. Then throughput is restored to similar levels as the best uncontended compo-
nent variant again. The monitoring costs for the contended component variant were
so small they are not noticeable.

123

Autom Softw Eng (2018) 25:47–99 81

Fig. 6 Average throughput over time with oscilating contention from Fig. 5

In fact, the average throughput over time of the TransformingQueue was higher
than for any of the other component variants as documented in Fig. 6. The reason for
this is that the other variants demonstrated suboptimal throughput in every other phase,
whereas the TransformingQueue maintains a high performance in every phase.

The time spent for transformations to lock-free component variants with active
probing was 71 µs on average with a standard deviation of 35. Similarly, the time
spent for transformations back into the lock-based component variants was 421 µs on
average with a standard deviation of 89. This transformation cost is cheap considering
there are tens of thousands of operations executed per millisecond.

8.3 Case 2: concurrent sets

We measured the results of running a benchmark with the operations add (33%),
remove (33%) and contains (33%), randomly distributed on a number of threads. The
results of the single threaded version context are presented in Fig. 7 and the results of
a multi threaded version, with linearly increasing levels of contention, are presented
in Fig. 8.

The ConcurrentHashMap is the Java concurrency hash table.
The HashSet is simply a normal hash set (although with some logic to turn large

buckets into trees rather than linked lists at certain thresholds for better worst time
complexity. The SynchronizedHashSet is a simple hash map wrapped in synchro-
nized blocks, butwithout the logic for “treefying” buckets, explaining its slightly better
performance. The TransformingHashSet starts as a (memory efficient) hash set and
then transforms into a concurrent hash map when the lock gets inflated.

In the single threaded benchmark (Fig. 7) the observed throughput differences are
not large. This is understandable since a concurrent hash set is essentially a larger hash
set usingfine grained locking. Still it is slower than the single thread optimized variants,
and also has largermemory overheads. TheTransformingHashSet does not turn large
buckets into trees and does not indirectly use a HashMap, and is hence slightly lower
in performance compared toHashSet but outperforms the ConcurrentHashMap on
average.

123

82 Autom Softw Eng (2018) 25:47–99

Fig. 7 Throughput for 10,000,000 randomly distributed add (33%), remove (33%) and contains (33%)
operations on a single thread. Average size of the data structures is 1000 elements

Fig. 8 Throughput for 10,000,000 randomly distributed add (33%), remove (33%) and contains (33%)
operations for 1 . . . 32 threads. Average size of the data structures is 1000 elements

For locking, the ConcurrentHashMap variant uses the ReentrantLock class
which is slower than native biased locking. This is why it is slower than the syn-
chronized hash set in the uncontended case. It also has a slightly more expensive
hash function that improves hashing with respect to both segments and buckets in
segments.

In the concurrent benchmark, the improved concurrency of the concurrent hash
set becomes obvious. Since 33% of the operations are contains(), which rarely need
locking, and then only for a single segment, the concurrency is increased. Even the
add and remove operations need to lock only one (randomly distributed) segment.

123

Autom Softw Eng (2018) 25:47–99 83

Fig. 9 Throughput for 1,000,000 randomly distributed add (33%), remove (33%) and contains (33%)
operations on oscillating contention levels. Average size of the data structures is 1000 elements

Even more obvious than in the previous experiment withs queues, the transforming
set variant once again follows closely the implementation optimized for concurrency.
Again, performs well regardless of the contention, while in this case also keeping
lower memory footprints when there is no contention.

So far, the set experiments used increasing contention and random probing. The
results of running oscillating contention with random probing can be seen in Fig. 9.

The first four iterations are uncontended, and throughput is on par with the best
available uncontended component variant. For the next four iterations, there are two
threads contending, which triggers a transformation to a lock-free component variant,
which still maintains throughput on par with the best available contended component
variant. The next four iterations are uncontended again, but random probing can not
catch the change of contention in time. Fortunately, the ConcurrentHashMap still
seems to be performant.

However, for the sake of completeness, the active probing strategy can be seen
in Fig. 10. It shows very similar performance characteristics as random probing and
seems to be doing consistently well in all contention contexts.

Note also that the transforming hash set recovers the improved uncontended per-
formance better than the synchronized hash set after contended periods. The reason is
that the biased lock of the synchronized hash set remains tainted when contention van-
ishes. The transforming hash set on the other hand transforms to a new synchronized
hash set with a new lock that successfully becomes biased.

Finally, the average throughput over time of the transforming hash set was higher
than for the two other component variants as shown in Fig. 11 as it performs well in
low and high contention phases.

The time spent for transformations to lock-free component variants was 203 µs on
average with a standard deviation of 131. Similarly, the time spent for transformations
back to lock-based component variants was 82µs on average with a standard deviation

123

84 Autom Softw Eng (2018) 25:47–99

Fig. 10 Throughput for 1,000,000 randomly distributed add (33%), remove (33%) and contains (33%)
operations on oscillating contention levels. Average size of the data structures is 1000 elements

Fig. 11 Average throughput over time with oscilating contention from Fig. 10

of 35. This is cheap considering there are tens of thousands of operations executed per
millisecond.

8.4 Case 3: concurrent ordered sets

The same benchmark as for the normal sets was run and results are shown in Fig. 12
for the uncontended and in Fig. 13 for the contended case.

For the uncontended benchmark (Fig. 12), the red black tree with its synchronized
counterpart is faster than the concurrent skip list. The explanation ismost likely that the
biased locks do not need atomic CAS instructions once the bias has been established,
while the concurrent skip list performs CAS all the time. Moreover, a lazy deletion
scheme is used for the ConcurrentSkipList: a special marker node is created and
installed in the list to signify deletion has occurred. This requires memory to be
allocated when deleting and some extra traversal to be done, ignoring the deletion

123

Autom Softw Eng (2018) 25:47–99 85

Fig. 12 Throughput for 10,000,000 randomly distributed add (33%), remove (33%) and contains (33%)
operations on a single thread

Fig. 13 Throughput for 10,000,000 randomly distributed add (33%), remove (33%) and contains (33%)
operations for 1 . . . 32 threads

marker nodes. Also, the balancing of the concurrent skip list is random and possibly
suboptimal while the red black tree follows rules with a worst case depth of the tree.
This also explains the large error bar for the concurrent skip list.

Finally, we note that the transforming variant performs as well as the red black tree.
This is not surprising because red black tree is the initial variant picked.

In the concurrent case (Fig. 13) the point of using the concurrent skip list becomes
obvious. The coarse grained lock solution is much slower because it allows no concur-
rency, while the concurrent skip list allows all threads to perform lookups and updates
on disjoint data concurrently.

As before, the performance of the transforming variant consistently follows the
performance of the concurrent skip list achieved by transforming to a concurrent

123

86 Autom Softw Eng (2018) 25:47–99

Fig. 14 Throughput for 1,000,000 randomly distributed add (33%), remove (33%) and contains (33%)
operations on oscilating contention levels. Average size of the data structures is 1000 elements

skip list when the lock becomes inflated and the system identifies the concurrency
bottleneck.

These ordered set experiments used increasing contention and random probing.
The results of running these components under oscillating contention with random
probing can be seen in Fig. 14.

The first four iterations are uncontended, and the transforming variant performs on
par with the best available variant for the respective contention contexts. For the next
four iterations, there are two threads contending, which triggers a transformation to a
lock-free component variant, that still maintains throughput on par with the best con-
tended component variant available. The next four iterations are uncontended again,
but random probing can not catch the change of contention in time. The throughput
becomes suboptimal.

The active probing strategy can be seen in Fig. 15, and it remedies the situation a
little bit. It is doing reasonably well in all contention contexts.

Again, the average throughput over time of the transforming tree set was higher
than for the other component variants, cf. Fig. 11 achieved by being competitive in all
phases with their different contention levels (Fig. 16).

The time spent for transformations to lock-free component variants was 154 µs
on average with a standard deviation of 79. Similarly, the time spent for transfor-
mations back into the lock-based component variants was 103 µs on average with a
standard deviation of 37. This transformation cost is cheap considering there are tens
of thousands of operations executed per millisecond.

9 Related work

While general components are reusable in many contexts, the performance costs of
this generality are sometimes unacceptable. Hence, specializing the components to
specific usage contexts is desirable. Component specialization and the selection of or

123

Autom Softw Eng (2018) 25:47–99 87

Fig. 15 Throughput for 1,000,000 randomly distributed add (33%), remove (33%) and contains (33%)
operations on oscillating contention levels. Average size of the data structures is 1000 elements

Fig. 16 Average throughput over time with oscilating contention from Fig. 15

the transformation to the best-fitting special variant has been a great concern in the
composition community for many years.

9.1 Variant specialization and adaptation in sequential contexts

The semantics of certain high level languages don’t allow programmers to be precise in
their choice of data structures. JavaScript, for instance, has an associative array used
as both an array with indices and as an associative collection with key/value pairs.
These more abstract data structures implemented as part of programming languages
also benefit from component sepcialization and a dynamic selection of the internal
implementation depending on how it is used (Schonberg et al. 1979).

For object-oriented languages, Schultz et al. (1999) propose different approaches
to automatically specialize applications using advices from the developers. Löwe et al.
(1999) assume that the programmer will select specialized algorithms and data repre-

123

88 Autom Softw Eng (2018) 25:47–99

sentation variants dynamically. Their design of such a data structure uses bridge and
strategy design patterns for exchanging the representation implementation and the
algorithms, repectively. However, the specialization selection operations are assumed
to be public at the data structures’ interface and specializations are triggered explicitly
by calls form application code.

Svahnberg et al. (2005) present a taxonomy of techniques for variability realiza-
tion and specialization.Within this framework, self-adaptive (concurrent) components
constitutes a variability realization technique for variant binding during runtime.

Self-adaptive (concurrent) components may be considered as a generalization of
the dispatch mechanism in object-oriented languages. Context Oriented Programming
(COP) (von Löwis et al. 2007) offers generic, language level, mechanisms suitable for
implementing context-aware optimizations at runtime.

Autotuning in domain-specific library generators achieves adaptive optimizations.
Profiling data gathered during off-line training is used to tune key parameters, such as
loop blocking factors to adapt to, e.g., cache sizes. Examples include ATLAS (Wha-
ley et al. 2001) for linear algebra computations, SPIRAL (Moura et al. 2000) and
FFTW (Frigo and Johnson 2005) for Fast Fourier Transforms (FFT) and signal pro-
cessing computations.

Li et al. (2004) implement a library generator using dynamic tuning to adapt to
the target machine. A number of context attributes such as the size and the distribu-
tion of the input and hardware environment properties such as cache size are input
to a machine-learning algorithm. The resulting dispatcher is able to select the most
appropriate algorithm for a context. In contrast to our approach, auto-tuning is domain
specific and data representations are not changed dynamically.

There are several approaches to automatic optimization of algorithm selection,
resource allocation, or scheduling at runtime aiming at parallel targetmachines. Again,
these are often for specific domains, and dynamic selection of the data representation
is not considered. We refer to (Kessler and Löwe 2012) for a detailed discussion of
approaches for parallel machines.

Context-aware composition (Andersson et al. 2008; Kessler and Löwe 2012) is the
principle approach used for self-adaptive (concurrent) components. Using online or
offline profiling and different machine-learning approaches, the implementation of
operations as well as data structures could be adapted to meet different usage con-
texts. Österlund and Löwe (2013) extended context-aware composition by regarding
call sequences of operations as context attributes. Not always optimizing individual
operation calls avoids oscillating transformations between variants that create more
costs than benefits. Therefore, this approach can also decide for changing to a variant,
which only amortizes over a number of operations.

Sound and adaptive replacement of Java collections data structures was introduced
by Xu (2013). Their concept is closely related to context-aware composition: offline
and online machine learning approaches find the best implementation variants in dif-
ferent contexts and transform to these variants at runtime. Xu (2013) focuses on the
automated generation of code for transforming data structures while Österlund and
Löwe (2013) focus more on avoiding oscillation.

123

Autom Softw Eng (2018) 25:47–99 89

9.2 Variant specialization and adaptation in concurrent contexts

Dig et al. (2009) presented a static analysis that could refactor sequential into thread
safe data structures andKjolstad et al. (2011) presented a similar analysis for converting
mutable objects to immutable objects.

A number of approaches to STM (Herlihy andMoss 1993; Saha et al. 2006; Herlihy
et al. 2003; Dice et al. 2006) were attempted as universal static transformations for
turning any sequential algorithm into an algorithm running in a concurrent context.
They have yet to be adopted practice. Similar ideas were presented for HTM (Ananian
et al. 2005; Hammond et al. 2004) and hybrid TM (Damron et al. 2006). HTM became
more popular with the introduction of the Intel Haswell processors employing HTM.
However, they have bounded write buffers and their availability can not be guaranteed.

All these static approaches are orthogonal and complementary to our approach that
dynamically transforms instances of these functionally equivalent data structures with
different synchronisation behaviour.

Some researchers argue that the optimal approach is to build a manually fine tuned
library of reusable concurrent components without locks. Many such lock-free data
structures have been implemented (Michael and Scott 1996; Herlihy et al. 2008;
Fomitchev and Ruppert 2004; Michael 2002). With the publication of methodolo-
gies for constructing wait-free data structures (Kogan and Petrank 2012) it became
straight forward to also make previously lock-free components wait-free (Kogan and
Petrank 2011;Timnat et al. 2012).However, their performance is suboptimal, constants
may be higher, and the progress guarantees depend on the progress of the underlying
memory management. Our concurrent queues used in the evaluation build on the work
of Michael and Scott (1996), Kogan and Petrank (2011). While their data structures
have good concurrent performance, they are suboptimal in less contended contexts.

Felber et al. (2008) presented an adaptively fine tuning synchronization strategy in
word-based STMs, yielding better STM performance than before by adapting to the
context. Pizlo et al. (2011) presented an adaptive locking protocol, Fable, for monitors
in Jikes RVM. This provided better performance by adapting and learning from the
context. These two papers only adapt the synchronization details, not the component
implementation variants exploiting synchronization mechanisms.

The idea of self-adaptive concurrent components was first introduced by Österlund
and Löwe (2014). The present paper puts it into the context of general self-adaptive
components and adds architecture, design, and implementation details and gives evi-
dence for transformation consistency.

10 Conclusions and future work

Self-adaptive components relieve programmers from deciding which component vari-
ant is fitting best in the actual usage context. Context includes the hardware and
OS environment, the number of unused cores/processors, the thread contention of the
component operations, the sequences of component operation calls, the size and distri-
bution of operation parameters etc. Component variants include different data structure

123

90 Autom Softw Eng (2018) 25:47–99

representations, algorithms, synchronization mechanisms, processor allocations and
schedules etc.

Self-adaptive components select a presumably best fitting variant automatically
behind the visible interface of the component. This way they can even outperform
carefully manually selected component variants, as it is often impossible to know the
execution contexts at compile time and which component variant becomes optimal
at runtime. The execution context and, hence, optimal component may even change
throughout the execution of a program such that any static decision gets suboptimal.

In the present paper, we focus on the self-adaptive concurrent components and
on the thread contention context determining the respectively optimal component
synchronization mechanism variant. We introduced a framework for building such
components. It bridges the gap between the best performing component variants in a
sequential context and the best performing component variants in a concurrent con-
text by automatically transforming between them dynamically and transparently for
the application. These component variants can be implemented using completely dif-
ferent synchronization mechanisms, e.g., lock-based, lock-free or TM. Contention
managers sense contention changing at runtime and transform to concurrency friendly
component variants as actual contention increases. They may revise the decision and
eventually transform back to sequential component variants if contention eases.

The approach was evaluated using transforming queues, sets and ordered sets
exposed to different contention levels. The transforming components show perfor-
mance on par with the best solutions for each contention context, and even better
performance than all alternative variants when the contention levels oscillate.

The main merit of self-adaptive concurrent components is that programmers do not
have to think about picking the right component for the right contention and can focus
on other tasks instead, knowing that the component is thread-safe yet always performs
(almost) as well as possible. It automates a design and optimization task which, in
general, neither a component designer nor a component user nor a static compiler can
effectively perform.

Open issues addressed by future work are discussed below.

Deferred transformation using GC The cost of transforming from one component
variant to another is typically Ω(n), which is expensive. If an operation with the cur-
rent variant is O(n) and the operation in the potential target variant is O(1), then
it may be suitable to perform the transformation immediately. When the difference
between the operations on different variants is just a constant, eager transformation
could be counter-productive. Instead transformation should amortize over a sequence
or concurrent calls of several operations and, hence, be deferred if such a sequence/-
contention can be expected in the future. Currently, we use observed sequences and
the actual contention to heuristically predict the future usage context.

Knowing when it is worth to transform is crucial and future work will improve
deferred transformation: we could flag that a component benefits from changing its
variant but, not perform the transformation immediately. Instead, it could be done
when it is more suitable, piggybacking on a copying garbage collector. Since it has to
go through all objects, copying them from from-space to to-space, it would be possible
to let the transformation happen during this transition. A pure copying GC performs an

123

Autom Softw Eng (2018) 25:47–99 91

identity transformation that replicates the object graph as it is, without changing it. It
could as well perform a semantic identity transformation of object sub-graphs that are
representations of self-adaptive components. This way, transformation would become
cheap as part of garbage collection happening anyway, and remove the problem of
oscillating transformations completely.

A GC could also help with keeping the constant time required by the self-adaptive
component framework down. More specifically, there is a need for a level of indi-
rection between the component façade and the implementation variant and dynamic
binding/dispatch to get to the actual implementation variant. This costs was measured
as a 10% overhead in the worst case of an add in an array implementation variant of an
ArrayList component (Österlund and Löwe 2013). This is a high cost for performance
portability, especially, if the programmer already knows this is what’s optimal in spe-
cial cases. A GC could forward pointers to the current component versions, i.e., letting
references point directly to the actual representation as part of garbage collection and,
hence, reduce even these indirection and dispatch costs.

Adding off-line intelligence to the on-line dispatcher The current solution optimizes
based on contention (and other context attributes) that are observed on-line. However,
sometimes static analysis can quite accurately predict contention (and other context
attributes) if not over the complete run of a program then at least over programphases or
as long as certain conditions hold. Merging static conservative but inaccurate analyses
and with dynamic optimistic but accurate assessment could allow to automatically
move some of the online decisions to more efficient offline decisions without loosing
accuracy.

Experimental evaluation Measurements show a 5.19% increase in performance (on
average) on the DaCapo multi processor benchmark suite when just replacing a single
data structure ArrayListwith a self-adaptive locking component (Österlund and Löwe
2013). DaCapo is a standard benchmark; for the applications contained, data structure
implementations were probably statically selected with care but they cannot adapt to
dynamically changing usage contexts. More work needs to be invested in evaluation:

– It would be interesting to combine the sequential ArrayList variants using locks
with a lock-free variant and evaluate the overall performance gain when the
self-adaptive concurrent component varies over algorithm, data structure and syn-
chronization mechanism. Also, the combination of contention and other context
attributes, e.g., available cores/processors, should be evaluated more in detail.

– In general, more self-adaptive concurrent components need to be implemented and
performance evaluated in realistic benchmarks and real world application contexts.

Other optimization goals The current solution looksmainly at one single optimization
goal, the runtime execution time. Maybe there could be other conflicting goals to
optimize for, such as memory usage and energy consumption. Future work could
describe how to manage these potentially conflicting goals.

Acknowledgements We would also like to thank the anonymous reviewers of ASE’13 and ASE’14 for
their insightful feedback that helped to improve this paper.

123

92 Autom Softw Eng (2018) 25:47–99

Appendix A: Lock-free invalidation correctness proof

A. I Invalidation termination

To prove termination of invalidation, we require three lemmata:

Lemma 1 Every node visited by the tracing is unique.

Proof Reference cycles are broken by not pushing black referents on the stack again.
That is, visited (black) nodes are not visited again. Multiple pointers to the same
referent are not followed by not pushing gray referents on the stack again. That is,
(gray) nodes are only occurring once on the stack. ��
Lemma 2 There is a finite set of nodes to be visited.

Proof At the point when the root node has been successfully invalidated, referred to
as root invalidation time, there may be at most t concurrently executing operations
to mutate the shape of the data structure, where t is the number of threads operating
on the data structure. At root invalidation time, let the snapshot of reachable nodes
(with propagation paths from the root) be the set of nodes N . Let the nodes created
by the t potentially concurrently executing threads be the set of nodes L . The L nodes
may be committed by creating edges from gray and white nodes that the concurrent
invalidation has not reached yet.

All operations started subsequent to root invalidation time, will always fail, because
all atomic references linking the data structure together are completely encapsulated in
the lock-free component variant. Therefore the only way of performing the operation
is to go through the root node and its atomic references, that have been invalidated.
Therefore, only the finite L nodes due to latent operations may be added after root
invalidation time.

During concurrent tracing, the latent operations that had already started at root
invalidation time, could either be removing nodes in N with white or gray predecessor
so that they are no longer transitively reachable, or adding nodes from L to gray or
white nodes in the data structure so that they become reachable. This is a race between
the latent operations of the t mutating threads and the tracer. If the mutators are faster
than the tracer, they have the potential to change a few edges, but that does not block
the tracer. Conversely, if the tracer is faster at coloring nodes black, then the latent
mutator operations get aborted.

Therefore, in the worst case, the nodes to be visited by the invalidation is at most
N ∪ L , which is finite. Therefore, the data structure can not be extended endlessly
concurrent to invalidation. ��
Lemma 3 The tracing progresses for each visited node.

Proof At root invalidation time, the set of black (visited) nodes, V , is a set of size
1 containing only the root node r , and then the set of unvisited nodes, U is in the
worst case N ∪ L \ {r}.U will contain gray nodes immediately reachable from V and
white nodes. Each time a unique gray node from U is visited, it is moved from U to
V . Therefore, U monotonically decreases for each visit, until either U is empty or
contains only unreachable (white) objects. ��

123

Autom Softw Eng (2018) 25:47–99 93

Theorem 1 Invalidation of a component variant will terminate.

Proof Since it was proven that invalidation visits unique (cf. 1) and finitely many (cf.
Lemma 2) nodes, and the tracing progresses through those nodes (cf. Lemma 3), it
follows that the invalidation will terminate when there are eventually no more nodes
to visit. ��

A. II Invalidation completeness

To prove completeness of invalidation, we require three more lemmata:

Lemma 4 No edge from a black node may ever change.

Proof References out of black objects are invalidated and therefore immutable. Any
CAS invocation, linearizing or not, needs to expect the INVALIDATED sentinel value
for its CAS to succeed, which is impossible; the INVALIDATED sentinel value is
privately encapsulated in the atomic reference class. ��

This invariant is strictly stronger than then the strong tricoloring invariant, cf.
Lemma 5, which is sufficient to prove completeness. However, Lemma 4 makes the
proof easier and easier to follow.

Lemma 5 [Strong tricoloring invariant] There is no edge from a black node to a white
node.

Proof Anode is colored black (andmoved to V) once all immediately reachable nodes
in U have been shaded gray. At that point, the edges may refer to either gray or black
nodes. Mutating threads cannot subsequently add new (white) referents to black nodes
as they are invalidated and therefore immutable. ��
Lemma 6 Every black node is part of the transitive closure C of the root r .

Proof It can be proven by induction that there exists a path of predecessors from every
black node that goes all the way back to the root r .

Base caseAt the root invalidation point, the set of black (visited) nodes, V , consists of
only r . The root r is by itself part of the transitive closure of R by definition. Also all
successor nodes of r in U are gray. Once a node has been colored black (and moved
to V), its out edges will not change (cf. Lemma 4), and therefore those gray objects
will permanently have r as a predecessor.

General caseA gray node u ∈ U being visited at a point in time has at least one black
predecessor node v ∈ V . All immediately reachable successor nodes from u in U
are shaded gray during that visit, then u is shaded black and moved to V . Therefore,
every such visited node u added to V was at some point (when colored black) directly
reachable froma predecessor black node v ∈ V . Because of Lemma4, that predecessor
will remain the same throughout the tracing and u will remain to be the successor of
v throughout the tracing, too. Therefore, Lemma 6 is proven by induction. ��

123

94 Autom Softw Eng (2018) 25:47–99

Theorem 2 Upon termination of invalidation, the whole data structure is invalidated.

Proof Tracing terminates when U is either empty or contains only white nodes.
Because of Lemma 5, there are no edges from V (only black nodes) to any node
in U . Therefore, upon termination, the nodes in U are not reachable from any of the
nodes in V . Together with Lemma 6, the remaining nodes in V are the transitive clo-
sureC of r , i.e.,C = V . Since all nodes in V are black, hence, invalidated, it holds that
all reachable nodes are invalidated and, hence, the whole data structure is invalidated.

��

A. III Component consistency

The consistency of the whole data structure instance is guaranteed by the design of
the linearizable lock-free data structure types. Operations and algorithms are designed
to be consistent if reads and writes fail at liniarization points; they just do not make
progress then, like a failed transaction. Linearizability is a consistency property that
is up to implementors of lock-free components to prove. Once proven, consistency of
the data structure is guaranteed. Either operations succeed, or fail safely. By safely we
mean that they do not have side effects that compromise the consistency of the data
structure. Any operation that fails safely, will wait for the component to transform into
a new component variant, and then restart the operation there.

Lemma 7 In a concurrently invalidating component variant, all subsequent opera-
tions after root invalidation time will fail safely.

Proof All subsequent linearizable operations that start after root invalidation time will
need to access the data structure root edges to perform any meaningful operation on
the data structure, as the linearization points are all defined in the atomic references.
The root node is black, and therefore its successor edges will all throw exceptions
once accessed, causing any such operation to immediately fail safely. ��
Lemma 8 In a concurrently invalidating component variant, all latent operations
that started before root invalidation time will either fail or succeed safely.

Proof There could be up to t latent operations that had already started at root invalida-
tion time, where t is the number of threads concurrently accessing the data structure.
Such operations could consist of either:

– Reading elements (following edges)
– Adding edges to new nodes
– Removing edges to old nodes

In all of those scenarios, the operations could at any point before the linearization
point come across an invalidated reference, in which case the operation is invalidated.
But since a linearization point had not been reached, this fails safely by definition.

However, any such operations could also make it to the linearization point. The
linearization may succeed if performed on edges of white or gray nodes (ahead of

123

Autom Softw Eng (2018) 25:47–99 95

invalidation), in which case the operation is made completely observable at that lin-
earization point (according to definition).

The operation could fail at an invalidation point either due to conflicts with other
latent operations, or due to conflicts with invalidation. If it is a conflict with other latent
operations, then the operation will be retried (without violating any consistency due to
linearizability). When linearization points fail due to accessing invalidated references
(the invalidation tracer caught up), the operation will fail safely (without retrying
in the old component variant) due to the exception thrown, effectively blocking the
linearization point. ��
Lemma 9 In a concurrently invalidating component variant, any latent operation
that succeeds at a linearization point in the source component variant c1, will have
its successful operation reflected in the target component variant c2.

Proof A successful linearization point during concurrent tracing can only be reached
when the linearization point is reading or writing edges of a white or gray node. That
is, it is ahead of the invalidation tracer and operating on nodes the tracer has not yet
reached. Tracing will eventually reach all transitively reachable objects (cf. Theo-
rem 2), and therefore the successful operations will eventually have their operations
reflected in the invalidated data structure and the corresponding state changes gets
transformed to c2. ��
Lemma 10 In a concurrently invalidated component variant, all latent operations
that started after invalidation terminated, will fail safely.

Proof After invalidation has terminated, the transitive closure of the root r is invali-
dated (cf. Theorem 2). Therefore, all atomic references transitively reachable from r
are invalidated, and any subsequent linearization point will fail safely. ��
Theorem 3 All operations on a component transforming from component variant c1
to c2 will finish in c1 before invalidation and in c2 after invalidation.

Proof We consider three cases: (i) the invalidation has not yet started, (ii) it has started
but not terminated, and (iii) the invalidation has finished.

Case (i): all operations will finish in c1 because no atomic references in the com-
ponent variant have been invalidated and hence will work as normal.

Case (ii): Lemma 10 proved that the remaining latent operations that started before
invalidation finished, but had not yet finished after invalidation finished,will fail safely,
and restart their operation in c2. Transformation eventually shifts all operations to the
new component variant.

Case (iii): Lemma 7 proved that all subsequent operations started after invalidation
finished will, fail safely and start operating on c2. ��
Theorem 4 Operations on components undergoing transformation preserve consis-
tency such that all operations, invariantly of the stage of the transformation, have a
total ordering that is consistently observed across all threads and homomorphic to a
sequential execution with the same component-specified semantics preserved.

123

96 Autom Softw Eng (2018) 25:47–99

Proof We distinguish the cases of Theorem again.
Case (i): all operations work as usual because no atomic reference has been invali-

dated yet. Their operations finish in linearization points with a total ordering that can
be projected to consistent sequential executions, as required by linearizability that the
lock-free component variants guarantee.

Case (ii a): all operations started after root invalidation time will fail safely and
restart their operations in the target component variant c2 (cf. Lemma 7). When an
operation fails safely, it did not commit its operation at its linearization point, and,
hence, linearizability guarantees that it has not left any traces of half-completed oper-
ations that compromises the consistency of the component, i.e., it restarts in the target
component variant c2 once transformation has finished, without leaving any trace in
c1. All potential target components c2 guarantee consistency, i.e., we only transform
between component variants that are thread safe on their own, disregarding transfor-
mation. Therefore, operations that fail safely in c1 and are restarted in c2 have a total
order homomorphic to consistent sequential executionwith corresponding component-
specified semantics.

Case (ii b): latent operations were started before root invalidation time but did not
yet finish. It was proven in Lemma 7 that those operations either complete successfully
in the source component variant c1 or fail safely and restart in c2 after transformation.
As already argued, operations that fail safely and restart in c2 after transformation
guarantee the desired consistency. Lemma 9 proved that those operations that succeed
in c1 will have their side effects observable in c2 after transformation. The latent
operations may compete with each other as usual, and get a total ordering in the
linearization points. Once an operation succeeds at a linearization point, it is ahead
of the invalidation wavefront. Once the invalidation tracing catches up, it will be as
if those latent operations that succeeded had already succeeded at root invalidation
time, and any potential state change due to such successful latent operations will be
reflected in the invalidated component variant once the invalidation is completed. This
invalidated component variant c1 is then transformed to be semantically equivalent in
c2, and, hence, the effect of those successfully completed latent operations in c1 have
successfully transferred to c2 and maintained the same total ordering that they had
in c1. Again, this total ordering is homomorhic to a consistent sequential execution
with intended data structure specified semantics, because it has the same cloned state
as the valid execution in c1 that committed at linearization points that according to
linearizability guarantee those properties. It is as if invalidation of the whole data
structure happened instantaneously right after the last latent operation succeeded at
its linearization point.

Case (iii): all new operations that start after invalidation terminated, or latent opera-
tions that did not finish before invalidation finished, will retry in the target component
variant c2 (cf. Theorem 4) once transformation has finished. The total ordering of those
operations can, hence, be guaranteed if such guarantees hold in c2 and, again, we only
use component variants that can guarantee total ordering. Therefore, those operations
will have such a total ordering and be homomorphic to a consistent sequential execu-
tion with corresponding component-specified semantics. ��

123

Autom Softw Eng (2018) 25:47–99 97

References

Abbas, N., Andersson, J., Löwe, W.: Autonomic software product lines (ASPL). In: Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume, ACM, New York, NY,
USA, ECSA ’10, pp. 324–331 (2010). doi:10.1145/1842752.1842812

Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In:
Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, ACM, AFIPS ’67 (Spring),
pp. 483–485 (1967). doi:10.1145/1465482.1465560

Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded transactional memory.
In: High-Performance Computer Architecture, 2005. HPCA-11. 11th International Symposium on,
IEEE, pp. 316–327 (2005)

Andersson, J., Ericsson,M.,Keßler,C.W.,Löwe,W.: Profile-guided composition. In: SoftwareComposition,
pp. 157–164 (2008)

Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid transactional mem-
ory. In: Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ACM, New York, NY, USA, ASPLOS XII, pp. 336–346 (2006).
doi:10.1145/1168857.1168900

Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Distributed Computing, Springer, pp. 194–208
(2006)

Dig, D., Marrero, J., Ernst, M.D.: Refactoring sequential java code for concurrency via concurrent libraries.
In: Proceedings of the 31st InternationalConferenceonSoftwareEngineering, IEEEComputerSociety,
pp. 397–407 (2009)

Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-the-fly garbage collection:
an exercise in cooperation. Commun. ACM 21(11), 966–975 (1978). doi:10.1145/359642.359655

Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software transactional mem-
ory. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, ACM, pp. 237–246 (2008)

Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proceedings of the Twenty-Third
Annual ACM Symposium on Principles of Distributed Computing, ACM, pp. 50–59 (2004)

Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005).
Special issue “Program Generation, Optimization, and Platform Adaptation”

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns—Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading (1995)

Gammie, P., Hosking, A.L., Engelhardt, K.: Relaxing safely: verified on-the-fly garbage collection for
x86-TSO. SIGPLAN Not. 50(6), 99–109 (2015). doi:10.1145/2813885.2738006

Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B., Prabhu, M.K., Wijaya, H.,
Kozyrakis, C., Olukotun, K.: Transactional memory coherence and consistency. In: ACM SIGARCH
Computer Architecture News, IEEE Computer Society, vol. 32, pp. 102 (2004)

Hawblitzel, C., Petrank, E.: Automated verification of practical garbage collectors. SIGPLAN Not. 44(1),
441–453 (2009). doi:10.1145/1594834.1480935

Herlihy,M.,Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures, vol. 21.
ACM (1993)

Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst. TOPLAS 12(3), 463–492 (1990)

Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for dynamic-sized
data structures. In: Proceedings of the Twenty-SecondAnnual Symposium on Principles of Distributed
Computing, ACM, pp. 92–101 (2003)

Herlihy, M., Shavit, N., Tzafrir, M.: Hopscotch hashing. In: Distributed Computing, Springer, pp. 350–364
(2008)

Kessler, C., Löwe, W.: Optimized composition of performance-aware parallel components. Concurr. Com-
put. Pract. Exp. 24(5), 481–498 (2012). doi:10.1002/cpe.1844

Kirchner, J., Heberle, A., Löwe, W.: Evaluation of the employment of machine learning approaches and
strategies for service recommendation. In: Service Oriented and Cloud Computing—4th European
Conference, ESOCC 2015, Taormina, Italy, Sept 15–17, 2015. Proceedings, pp. 95–109 (2015a)

Kirchner, J., Heberle, A., Löwe, W.: Service recommendation using machine learning methods based on
measured consumer experiences within a service market. Int. J. Adv. Intell. Syst. 8(3&4), 347–373
(2015b)

123

http://dx.doi.org/10.1145/1842752.1842812
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1168857.1168900
http://dx.doi.org/10.1145/359642.359655
http://dx.doi.org/10.1145/2813885.2738006
http://dx.doi.org/10.1145/1594834.1480935
http://dx.doi.org/10.1002/cpe.1844

98 Autom Softw Eng (2018) 25:47–99

Kjolstad, F., Dig, D., Acevedo, G., Snir, M.: Transformation for class immutability. In: Proceedings of the
33rd International Conference on Software Engineering, ACM, pp. 61–70 (2011)

Kogan, A., Petrank, E.: Wait-free queues with multiple enqueuers and dequeuers. ACM SIGPLAN Not.
46(8), 223–234 (2011)

Kogan, A., Petrank, E.: A methodology for creating fast wait-free data structures. ACM SIGPLAN Not.
ACM 47, 141–150 (2012)

Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Trans. Comput. C–28(9), 690–691 (1979). doi:10.1109/TC.1979.1675439

Li, X., Garzarán, M.J., Padua, D.: A dynamically tuned sorting library. In: Proceedings of the International
Symposium on Code Generation and Optimization (CGO’04), IEEE Computer Society, pp. 111ff
(2004)

Löwe,W.,Neumann,R., Trapp,M.,Zimmermann,W.:Robust dynamic exchangeof implementation aspects.
In: TOOLS (29), pp. 351–360 (1999)

Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets. In: Proceedings of
the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures, ACM, pp. 73–82
(2002)

Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects. IEEE Trans. Parallel
Distrib. Syst. 15(6), 491–504 (2004)

Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms. In: Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed
Computing, ACM, pp. 267–275 (1996)

Moir, M.: Transparent support for wait-free transactions. In: Distributed Algorithms, Springer, pp. 305–319
(1997)

Moura, J.M.F., Johnson, J., Johnson, R.W., Padua, D., Prasanna, V.K., Püschel, M., Veloso, M.: SPIRAL:
Automatic implementation of signal processing algorithms. In: High Performance Embedded Com-
puting (HPEC) (2000)

Oracle: Object (Java Platform SE 8). (2016). https://docs.oracle.com/javase/8/docs/api/java/lang/Object.
html. Online, Accessed 13 July 2016

Österlund, E., Löwe, W.: Dynamically transforming data structures. In: Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on, IEEE, pp. 410–420 (2013)

Österlund, E., Löwe, W.: Concurrent transformation components using contention context sensors. In:
Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering,
ACM, New York, NY, USA, ASE ’14, pp. 223–234 (2014). doi:10.1145/2642937.2642995

Österlund, E., Löwe, W.: Concurrent compaction using a field pinning protocol. SIGPLAN Not. 50(11),
56–69 (2015). doi:10.1145/2887746.2754177

Pirinen, P.P.: Barrier techniques for incremental tracing. In: Proceedings of the 1st International Symposium
on Memory Management, ACM, New York, NY, USA, ISMM ’98, pp. 20–25 (1998). doi:10.1145/
286860.286863

Pizlo, F., Frampton, D., Hosking, A.L.: Fine-grained adaptive biased locking. In: Proceedings of the 9th
International Conference on Principles and Practice of Programming in Java, ACM, pp. 171–181
(2011)

Russell, K., Detlefs, D.: Eliminating synchronization-related atomic operations with biased locking and
bulk rebiasing. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, ACM, New York, NY, USA, OOPSLA ’06, pp.
263–272 (2006). doi:10.1145/1167473.1167496

Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM: a high performance
software transactional memory system for a multi-core runtime. In: Proceedings of the Eleventh ACM
SIGPLANSymposium on Principles and Practice of Parallel Programming, ACM, pp. 187–197 (2006)

Schonberg, E., Schwartz, J., Sharir, M.: Automatic data structure selection in SETL. In: Proceedings of
the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, ACM, pp.
197–210 (1979)

Schultz, U.P., Lawall, J.L., Consel, C., Muller, G.: Towards automatic specialization of Java programs.
In: Proceedings of the 13th European Conference on Object-Oriented Programming (ECOOP’99),
Springer, pp. 367–390 (1999)

Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2), 99–116 (1997)
Sundell, H.:Wait-free reference counting andmemory management. In: Parallel and Distributed Processing

Symposium, 2005. Proceedings. 19th IEEE International, IEEE, pp. 24b (2005)

123

http://dx.doi.org/10.1109/TC.1979.1675439
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://dx.doi.org/10.1145/2642937.2642995
http://dx.doi.org/10.1145/2887746.2754177
http://dx.doi.org/10.1145/286860.286863
http://dx.doi.org/10.1145/286860.286863
http://dx.doi.org/10.1145/1167473.1167496

Autom Softw Eng (2018) 25:47–99 99

Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques. Softw. Pract. Exp.
35(8), 705–754 (2005). doi:10.1002/spe.652

Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists. In: Principles of Distributed
Systems, Springer, pp. 330–344 (2012)

von Löwis, M., Denker, M., Nierstrasz, O.: Context-oriented programming: beyond layers. In: Proceedings
of the International Conference onDynamic Languages (ICDL’07), ACM, pp. 143–156 (2007). doi:10.
1145/1352678.1352688

Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of software and the ATLAS
project. Parallel Comput. 27(1–2), 3–35 (2001). http://citeseer.ist.psu.edu/article/whaley00automated.
html

Xu, G.: Coco: sound and adaptive replacement of java collections. In: 27th European Conference, Mont-
pellier, France, July 1–5, 2013. Proceedings, Springer, Berlin, pp. 1–26 (2013)

123

http://dx.doi.org/10.1002/spe.652
http://dx.doi.org/10.1145/1352678.1352688
http://dx.doi.org/10.1145/1352678.1352688
http://citeseer.ist.psu.edu/article/whaley00automated.html
http://citeseer.ist.psu.edu/article/whaley00automated.html

	Self-adaptive concurrent components
	Abstract
	1 Introduction
	2 Self-adaptive components
	2.1 Transformation components
	2.2 Self-adaptive components as generalized transformation components
	2.2.1 Self-adaptive components in sequential environments
	2.2.2 Self-adaptive components in concurrent environments

	3 Synchronization mechanism variants
	3.1 Locks
	3.2 Lock-free synchronization
	3.3 Transactional memory

	4 Self-adaptive concurrent components
	5 Continuous context feedback (i)
	5.1 Locks
	5.1.1 Contention level 1: biased locking
	5.1.2 Contention level 2: lightweight spin lock
	5.1.3 Contention level 3: heavyweight blocking lock

	5.2 Lock-free
	5.3 Transactional memory

	6 Safe component invalidation (ii)
	6.1 Locks
	6.2 Lock-free
	6.2.1 Consistency of lock-free invalidation
	6.2.2 Lock-free invalidation implementation

	6.3 Transactional memory

	7 Safe component transformation (iii)
	7.1 Lock-based component variants
	7.2 Lock-free component variants
	7.3 Transactional memory component variants

	8 Evaluation
	8.1 Components and their variants
	8.1.1 Queue
	8.1.2 Set
	8.1.3 Ordered set

	8.2 Case 1: concurrent queues
	8.3 Case 2: concurrent sets
	8.4 Case 3: concurrent ordered sets

	9 Related work
	9.1 Variant specialization and adaptation in sequential contexts
	9.2 Variant specialization and adaptation in concurrent contexts

	10 Conclusions and future work
	Acknowledgements
	Appendix A: Lock-free invalidation correctness proof
	A. I Invalidation termination
	A. II Invalidation completeness
	A. III Component consistency

	References

