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Abstract As online services become more and more popular, incident management
has become a critical task that aims to minimize the service downtime and to ensure
high quality of the provided services. In practice, incident management is conducted
through analyzing a huge amount of monitoring data collected at runtime of a service.
Such data-driven incident management faces several significant challenges such as
the large data scale, complex problem space, and incomplete knowledge. To address
these challenges, we carried out 2-year software-analytics research where we designed
a set of novel data-driven techniques and developed an industrial system called the
Service Analysis Studio (SAS) targeting real scenarios in a large-scale online service
of Microsoft. SAS has been deployed to worldwide product datacenters and widely
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used by on-call engineers for incident management. This paper shares our experience
about using software analytics to solve engineers pain points in incident management,
the developed data-analysis techniques, and the lessons learned from the process of
research development and technology transfer.

Keywords Software analytics - Online service - Service incident diagnosis - Incident
management

1 Introduction

Software industry has been under the movement from traditional shrink-wrapped
software to online services (e.g., from shrink-wrapped Microsoft Office to online
Microsoft Office 365). Online service systems such as online banking systems and
e-commerce systems have been increasingly popular and important in our society.

Online services differ from traditional shrink-wrapped software in various aspects,
including their characteristics of continuously running along with aiming for 24x7
availability of services. However, during operation of an online service, there can
be a live-site service incident: an unplanned interruption/outage to the service or
degradation in the quality of the service. Such incident can lead to huge economic
loss or other serious consequences. For example, the estimated average cost of 1h
service downtime for Amazon.com is $180,000 (Patterson 2002). Online services
such as Amazon, Google, and Citrix have experienced live-site outages during the
past couple of years (Inf 2008; Hoover 2008).

Therefore, service providers have invested great efforts on service-quality manage-
ment to minimize the service downtime and to ensure high quality of the provided
services. For example, an important aspect of service-quality management is inci-
dent management!: once a service incident occurs, the service provider should take
actions immediately to diagnose the incident and restore the service as soon as possi-
ble. Such incident management needs to be efficient and effective in order to ensure
high availability and reliability of the services.

A typical procedure of incident management in practice (e.g., at Microsoft and
other service-provider companies) goes as follow. When the service monitoring system
detects a service violation, the system automatically sends out an alert and makes a
phone call to a set of On-Call Engineers (OCEs) to trigger the investigation on the
incident in order to restore the service as soon as possible. Given an incident, OCEs
need to understand what the problem is and how to resolve it. In ideal cases, OCEs
can identify the root cause of the incident and fix it quickly. However, in most cases,
OCE:s are unable to identify or fix root causes within a short time. For example, it
usually needs to take a long delay to fix the root causes (e.g., code defects), to conduct
regression testing of the new build, and to re-deploy it to datacenters. Such whole
process causes much delay before the service can be recovered and continue to serve
the users. Thus, in order to recover the service as soon as possible, a common practice
is to restore the service by identifying a temporary workaround solution (such as

! Incident management, http://en.wikipedia.org/wiki/Incident_management.

@ Springer


http://en.wikipedia.org/wiki/Incident_management

Autom Softw Eng (2017) 24:905-941 907

restarting a server component) to restore the service. Then after service restoration,
identifying and fixing the underlying root cause for the incident can be conducted via
offline postmortem analysis.

Incident management of an online service differs from the debugging of shrink-
wrapped software in three main aspects. First, incident management requires the
service provider to take actions immediately to resolve the incident, as the cost of
each hours service downtime is high (Patterson 2002). Second, as mentioned above,
temporary workaround solutions rather than root cause fixing are often taken in inci-
dent management in order to recover the service as soon as quickly. Third, due to
the requirement of continuously running, unlike shrink-wrapped software, when an
incident occurs in an online service, it is usually impractical to attach a debugger to
the service to diagnose the incident. Therefore, analyzing collected telemetry data is
the only way for OCEs to conduct incident diagnosis and management.

In practice, incident management of an online service heavily depends on moni-
toring data collected at runtime of the service such as service-level logs, performance
counters, and machine/process/service-level events. Such monitoring data typically
contains information to reflect the runtime state and behavior of the service. Based on
the monitoring data, service incidents are timely detected in the form of service anoma-
lies and quality issues. To collect such data, the service system is instrumented with
an instrumentation infrastructure (e.g., the System Center Operations Manager?) and
continuously monitored. For example, a service system at Microsoft under our study
generates about 12 billion lines of log messages each day for incident management.

Given that incident management of online services is data-driven by nature, it is a
perfect target problem for software-analytics research. Software analytics (Zhang et al.
2008, 2013; Zhang and Xie 2012) has recently emerged as a promising and rapidly
growing research area for data-driven software engineering, with strong emphasis on
industrial practice. In particular, software analytics is to utilize data-driven approaches
to enable software practitioners to perform data exploration and analysis to obtain
insightful and actionable information for completing various tasks around software
systems, software users, and software development process. In software analytics, a
great amount of work on successful technology transfer has already been conducted at
the Software Analytics group of Microsoft Research Asia, e.g., performance debug-
ging in the large (Han et al. 2012), clone detection (Dang et al. 2012).

During the past several years, we have continuously studied real problems in this
area. We formulate incident management of an online service as a software-analytics
problem (Zhang et al. 2008; Zhang and Xie 2012), which can be tackled with phases of
task definition, data preparation, analytic-technology development, and deployment
and feedback gathering. The task of incident management is defined to consist of
two parts: (1) incident investigation and diagnosis, and (2) healing suggestion for
actions taken to recover the service as soon as possible. Data preparation aims to
collect monitoring data of the service for incident management. Analytic-technology
development is to develop an incident-management system by formulating problems
and developing algorithms and systems to explore, understand, and get insights from

2 Microsoft  SCOM, http://www.microsoft.com/en-us/server-cloud/products/system-center-2012-r2/
default.aspx.
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the data. During deployment and feedback gathering, feedback is gathered on how
practitioners use the developed system in their routine daily work, and then it is used
to guide further improvement of the system under consideration.

By tackling incident management with software analytics, we have developed the
first industrial system for incident management of online services and deployed the
system within Microsoft. Producing high impact on industrial practices, our system is
being used continuously since 2011 by Microsoft engineers for effective and efficient
incident management of Service X (we use an alias here due to confidentiality). Our
system for Service X incorporates various novel techniques that we have developed
for addressing significant real-world challenges of incident management posed in
large-scale online services.

Throughout the 2-year process of conducting software-analytics research for pro-
ducing such high-impact system, we have gained a set of lessons learned, which are
valuable for us and for the broad community of software engineering to carry out
successful technology transfer and adoption. We started the project on data-driven
performance analysis for online services in 2010. It took us 2 years to conduct algo-
rithm research, build the diagnosis system, and make the system indispensable for the
service-engineering team of Service X. After that, we continued our algorithm research
and put efforts to apply such technologies to several online services in Microsoft.

In this paper, we share our lessons learned in such a project of an industrial system
which are valuable for us and for the broad community of software engineering to
carry out successful technology transfer and adoption.

1.1 Content organization

This paper is an extension of our previous ASE conference paper (Lou et al. 2013).
Besides the content we have reported in (Lou et al. 2013), this paper includes our latest
extensions and thoughts about the system according to the feedback and requirements
in real usage from product teams in Microsoft along time:

1. New data source. Customer support ticket (i.e., reports) is a new and important data
source for service management, which contains feedback from real customers.
2. More algorithms.

— In order to help OCEs quickly narrow down their investigation on customer
reported issues, we designed a algorithm to automatically identify attribute
combinations that are highly related to an emerging issue, and help with prob-
lem localization.

— In our previous ASE paper, we only reported our issue retrieval technique
based on transactional logs, which is very effective for failure diagnosis. After
a certain stage of service operation, the service has become stable, and latency
and performance becomes another important aspect in service management.
Based on this, we moved our focus to request latency and performance analysis.
We found that transactional logs is not effective for latency issues. Then, we
designed a new HMREF algorithm based on system metrics to facilitate the
diagnosis of latency issues.
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— At the same time, for latency analysis, OCEs often want to understand the
overview of all system metrics (e.g., CPU utilization) changing over time.
In order to meet such requirement, we designed a fast time-series clustering
algorithm and an intuitive Ul to enrich the functionality.

3. New observation and experience from practices including a careful study on the
incidents that our tool cannot help a lot, thoughts on technologies and data qual-
ity.

The rest of the paper is organized as follows. Section 2 introduces Service X.
Section 3 presents our formulation of service-incident management as a software-
analytics problem. Section 4 presents the resulting SAS system and its techniques.
Section 5 discusses related work. Section 6 presents the lessons learned. Section 7
discussed some observations and implications we obtained from the project and Sect. 7
concludes the paper.

2 Background introduction: Service X

Service X is a web-based, external-facing Microsoft service. Similar to other online
services, Service X is expected to provide high-quality service on 24x7 basis. During a
certain period of time when running the service, the Service X teams were facing great
challenges in improving the effectiveness and efficiency of their incident management
in order to provide high-quality service. We set up our goals to help the Service X
teams solve the incident-management problems. In addition, because the architecture
of Service X is representative of typical multi-layer online services, we expect that our
techniques designed for Service X are general enough to be applied to other similar
online services.

2.1 Overview of Service X

Service X is a geographically distributed, web-based service serving millions of
users simultaneously. Figure 1 illustrates the architecture of Service X. There are
more than 10 different types of server roles in the system, including web front end
servers, application servers serving various application services, and database servers,
etc.

In order to provide high-quality service, Service X is instrumented at development
time and continuously monitored at runtime. The monitoring data collected for Service
X mainly consists of three types: performance counters, events from the underlying
Windows operating system, and the logs created by various components of Service X.
The monitoring data is used to detect service incidents in the form of availability or
latency issues. When a service incident is detected, the monitoring system of Service
X would automatically send an alert email and make a phone call to a team of service
engineers, namely On-Call Engineers (OCEs), to trigger the investigation of the inci-
dent. The monitoring data would then be used by the OCEs to diagnose the incident
and help decide on what actions to take in order to restore Service X as quickly as
possible.
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Fig. 1 System overview of Service X

2.2 Pain points and challenges

Incident management is a challenging task because OCEs are under great time pressure
to restore the service. From the communication with the OCEs, we learned the follow-
ing challenges faced by them in incident management. Although these challenges are
from the OCEs of Service X, such challenges are general to engineers of other online
services because of high resemblance of Service X to general online services.

Large-volume and irrelevant data The monitoring data is the primary sources for
OCE:s to diagnose a service incident and identify the restoration actions. The volume
of the monitoring data is huge due to the large scale of the Service X system. For
example, currently, about 12 billion log entries are generated each day by various
service components. The amount will increase rapidly as the number of users increases
and/or the number of user requests increases. In addition, most of the monitoring data
is irrelevant to a particular incident. From the diagnosis perspective, there is a huge
amount of irrelevant data. OCEs would have to manually sift through the huge amount
of monitoring data in order to identify the portions relevant to the underlying incident.
Sometimes OCEs would not even have a clue on where to start. This process is just
like finding a needle in a haystack.

@ Springer
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Highly complex problem space There are many potential causes that may incur a
service incident, such as hardware failures, networking issues, resource competition,
code defects, and incorrect configurations. In general, various types of monitoring data
need to be collected in order to gather enough information that reflects the symptoms
of complex causes, because each type of data usually reflects only certain aspects of
the service system. For example, performance counters are helpful when diagnosing
service issues caused by resource competition. In the case of Service X, as aforemen-
tioned, performance counters, system events, and logs are collected as monitoring data.
When working on incident management, OCEs would not only need to manually ana-
lyze each type of the monitoring data, but also need to be able to correlate different
types of data in order to obtain thorough understanding of the service incident. It is
inefficient to manually look for answers in such a highly complex problem space.

Incomplete and disaggregated knowledge Diagnosing service incidents often needs
decent knowledge about the service system. However, in practice, such kind of knowl-
edge is often not well organized or documented. A large-scale online service system
usually consists of many components. These components are usually developed by
different teams. Very few engineers have detailed knowledge about the entire sys-
tem. Therefore, the experts of the service system usually become the bottleneck for
incident management. We indeed have such observation with the Service X teams.
In addition, from the communication with the OCEs of Service X, we also learned
that there was no systematic mechanism for them to share knowledge learnt from past
service incidents. Although each incident was recorded in a database, there was no
support on reusing the information of those incidents except manual work. Due to the
constraints of incomplete and disaggregated knowledge, service engineers are often
slow to resolve service incidents, resulting in long Mean Time to Restore (MTTR) for
the service.

In the case of Service X, the service engineers used to suffer from the aforemen-
tioned pain points during a certain period of time when they were running Service X.
Their MTTR was about 2 h during that time, and 90% of the time was spent on manual
inspection of the monitoring data in order to diagnose problems and identify the right
restoration actions.

3 Incident management as software analytics

As mentioned in Sect. 1, incident management of an online service by nature relies on
analysis of various telemetry data collected from the service system, where the core
problem is how to effectively and efficiently analyze the huge amount of monitoring
data in order to come up with the diagnosis and restoration actions. In our project,
we formulate the incident-management problem as a software-analytics problem. We
utilized the four-step approach of developing software analytics projects (Zhang et al.
2008; Zhang and Xie 2012) to define the objectives of our project, conduct data collec-
tion, develop analytics techniques and an analysis system leveraging those techniques,
as well as deploying the analysis system and getting feedback. The analysis system
that we developed is named as the Service Analysis Studio (SAS). In SAS, we try to
address the set of practical challenges in the incident management of Service X.
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In this section, we present the four steps of developing SAS. We first define the
objectives of SAS. Then we illustrate the different types of monitoring data used for
analyzing service incidents. We further discuss the four primary analysis techniques
that we developed. Finally, we discuss the user interface design of SAS and collection
of user feedback in real deployment.

3.1 Design goal

We defined four main objectives for SAS, in order to help the OCEs of Service X to
overcome the practical challenges in their incident-management effort.

Automating analysis SAS should have the capability to automatically identify the
information relevant to the cause of the incident under investigation from the huge
amount of monitoring data. The identified information should provide insightful clues
for OCEs to determine the problematic site of the incident, therefore significantly
reducing the investigation effort.

Handling heterogeneity SAS should be able to analyze the various types of moni-
toring data collected from different data sources. In the case of Service X, the types of
monitoring data included performance counters, system events, and logs generated by
different service components. Each data source provides the diagnostic information
of Service X from a certain aspect. Different from all previous work (Bodik et al.
2010; Cohen et al. 2004, 2005; Zhang et al. 2005) that focused on only a single type
of data source (e.g., system metrics), SAS aims to provide a comprehensive analysis
of the various types of data from all data sources to support the diagnosis of service
incidents.

Accumulating knowledge SAS should provide a mechanism to accumulate and
leverage the knowledge about the incidents. Similar to other services in the real world,
the same incident of Service X may reoccur due to various reasons. For example,
the bug fix for the root cause of the incident has not yet been deployed, a temporary
workaround solution stops to take effect, or the service suffers repetitively from high
workload and resource competition. Accumulating the knowledge about past incidents
can help improve the effectiveness and efficiency of incident management. If OCEs
can quickly determine that a new incident is similar to a previous one, then they will
be able to quickly restore the service by leveraging the diagnosis effort of the previous
one. SAS is targeted to accumulate the knowledge of past incidents by constructing a
historical incident repository, and to leverage such knowledge to resolve new incidents.

Supporting human-in-the-loop (HITL) SAS should provide flexible and intuitive
user interfaces in order to enable OCE:s to effectively and efficiently interact with
the analysis results and the monitoring data. The diagnosis of a service incident is
a complex decision-making process. Given the complexity and diversity of service
incidents, it is too ambitious and not realistic in practice to build and deploy a fully
automatic diagnosis system in real production environments. Therefore, rather than
making incident management fully automatic, we keep the OCEs in the loop to make
decisions on the diagnosis and identification of restoration actions. Meanwhile, we
fully utilize the power of data-analysis algorithms to provide as much information as
possible to facilitate the decision making of the OCEs.
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3.2 Monitoring data of Service X

As introduced in previous sections, different types of data are collected in order to
monitor the quality of Service X, as well as diagnosing service incidents. In this
section, we discuss each type of the monitoring data in detail. We also explain how
the quality of Service X is measured and how service incidents are detected.

Key Performance Indicators (KPI) Detecting incidents during service operation is
often based on the KPIs, such as the average request latency and request-failure rate. In
the case of Service X, for each user request, the response time is recorded at the service
side (as the request duration) along with the HTTP status code (http-status-code) of the
response to the request. The http-status-code indicates the returned status of a given
web request, e.g., 200 refers to “OK” and 500 refers to “Internal Server Error”. The
duration indicates the total response time, e.g., duration > 10 s indicates that the user
has experienced very slow response. These two attributes are used to calculate the KPIs
for Service X. Each KPI is calculated once per time epoch (i.e., 5 min in the system of
Service X). For example, for each time epoch, the 95-percentile latency is calculated
based on the duration values of all requests within the time epoch. KPI values are
monitored to provide an overall description about the health state of Service X from
users perspective. In practice, the values of KPIs are checked against certain specified
Service Level Objective (SLO). The SLO is defined to be the acceptable value ranges
of KPIs. When Service X is running, if a KPIs value (e.g., average latency) violates
the SLO, a KPI violation, i.e., service incident, is detected, and alerts are sent out to
notify that the service is in a SLO-violation state. The diagnosis of a service incident
is to find out the problematic site that causes the service to violate the SLO.

System metrics Besides KPIs, performance counters and system events, which are
collectively named as system metrics, are also collected for the diagnosis purpose.
System metrics record the measurement results of the system, including the resource
usage of processes and machines (e.g., the CPU utilization, disk queue lengths, and I/O
operation rate), request workload (e.g., the number of requests), SQL-related metrics
(e.g., the average SQL lock waiting time), and application-specific metrics (e.g., the
cache hit ratio, the number of throttled requests). These metrics are collected via OS
facilities (e.g., Windows Management Instrumentation (WMI)) and stored in a SQL
database. Similar to KPIs, each system metric is also aggregated over time epochs. For
example, two metric values are calculated for the CPU-usage metric over an epoch:
the average (or median) value and the maximum value of CPU usage within the epoch.
There are more than 1200 different types of metrics collected in Service X.

Transactional logs Another important type of data collected in Service X is trans-
actional logs. Transactional logs are generated during system execution, and they
record detailed information about the systems runtime behaviors when processing
user requests. Each log entry contains the following fields: the timestamp, request ID
(TxID), event ID, and detailed text message.

— Arequest ID is a Global Unique Identifier (GUID) representing a request instance.
Service X can serve multiple requests simultaneously using concurrent threads.
These threads write log entries to the same file as they execute, resulting in a log
file with interleaving entries of different requests. The log entries can be grouped
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into different sequences using request IDs. In this way, each group represents the
log sequence produced when serving a particular request.

— An event ID is a unique identifier representing an event-logging statement in the
source code. The event ID in a log entry indicates which logging statement prints
out this entry. The event ID bridges the logs with the source code given a log
sequence represented by a request ID, the execution path of modules and functions
in the source code can be identified. Usually, different types of requests generate
different log sequences due to different program logics. Sometimes the same type
of requests can also generate different log sequences due to different input and
configuration values, etc.

Customer support tickets Besides the data source we mentioned in our previous ASE
conference paper (Lou et al. 2013), customer support reports were introduced to enrich
the analysis of the tool during the past years. Whenever customers encounter an issue,
they may report the issue to us and ask for supports. An issue can be caused by various
reasons including software, hardware, and configuration problems at service side,
client side, or the networking path from client to service. Despite immense efforts spent
on software quality assurance, various types of issues still may occur in service systems
in actual operations. As a large scale online service provider, we receive a large number
of issue reports from our customers over a period of time. A typical issue report consists
of many categorical attributes, such as TenantType, ProductFeature, ProductVersion,
SubscriptionPackage, DataCenter, Country, UserAgent, ClientOS, and so on. Each
attribute has associated values. An issue report also includes a time stamp recording
the time at which the report was received. Therefore, the issue report data can be treated
as multi-dimensional, time series data. It is also a responsibility of OCEs (along with
customer support engineers) to address the problems from our customers and improve
the experience of customers.

After data preparation, we need to design a set of data-driven analysis techniques
targeting at the real scenarios in Service X. These techniques can automatically extract
the information from the monitoring data and guide OCEs to find out the problematic
site of an incident.

4 Technical detail

A set of data-driven techniques for diagnosing service incidents have been developed
in SAS for incident diagnosis in Service X. Each of these techniques targets at a
specific scenario and a certain type of data. After our first ASE conference paper(Lou
et al. 2013), we further enriched our techniques (e.g., in Sects. 4.4 and 4.6) to handle
new data sources and meet new requirements. In this section, we briefly go through
some analysis techniques designed for different types of data, along with the SAS user
interfaces and deployment-time feedback.

Because poor predictions are produced by just directly applying standard clas-
sification algorithms or state-of-the-art information-retrieval techniques without
considering characteristics of logs in our scenario (Ding et al. 2012; Fu et al. 2012), we
designed and extended our techniques based on carefully considering domain-specific
characteristics of software-generated data to achieve satisfying performance.
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4.1 Identification of performance beacon

When engineers diagnose incidents of online services, they usually start from hunt-
ing for a small subset of system metrics that are symptoms incurred by the causes of
the incidents. We name such kind of metrics as service-incident beacons. A service-
incident beacon is formed from a combination of metrics with unusual values that
produce a symptom. It could help directly pinpoint the potential incident causes or
could provide intermediary useful information leading engineers to locate the causes.
For example, when a blocking and resource-intensive SQL query blocks the execution
of other queries accessing the same table, symptoms can be observed on monitor-
ing data: the waiting time on the SQL-inducing lock becomes longer, and the event
“SQL query time out failure” is triggered. Such metrics can be considered as incident
beacons. There are more than 1200 system metrics in Service X. We developed an anal-
ysis technique that helped OCEs effectively and efficiently identify service-incident
beacons from such huge number of system metrics.

Our analysis technique consists of three steps. First, using anomaly detection, we
discretize the values of system metrics to indicate normal or abnormal states of those
metrics. The reason is that a service-incident beacon often has exceptionally high
or low values that are significantly out of its normal value range during the period
of the incident. Second, we apply correlation analysis to identify incident beacons
from suspicious metrics using the historical monitoring data. In particular, with the
discretized metric values and the SLO states (indicating whether the SLO is violated
or not) of a KPI in each epoch, we mine all the possible association rules between
the abnormal metrics and the service violations by leveraging an algorithm for mining
Class Association Rules (CARs) (Li et al. 2001). These mined CARs are stored as
incident-beacon candidates for the diagnosis purpose. Third, given a newly detected
service incident and its corresponding metrics and KPIs during the time period of the
incident, we calculate the log likelihood for each CAR candidate obtained in Step 2 to
assess how likely it is related to the underlying service incident. The metrics involved
in the CARs with top rankings are provided as ser-vice-incident beacons to the OCEs.
The technical details of our analysis technique can be found elsewhere (Fu et al. 2012).

We tested some state-of-the-art algorithms proposed to solve similar problems
(Bodik et al. 2010; Cohen et al. 2004, 2005), found that they did not work well
for Service X because of the following two main characteristics of incidents of Ser-
vice X, and then designed our own analysis technique to deal with such characteristics.
First, most incidents of Service X last less than 2 h. Each incident contains only a small
number of epochs. When a model is learned for each incident, the previously proposed
learning algorithms (Bodik et al. 2010; Cohen et al. 2004, 2005) would suffer from
the over-fitting problem due to the insufficient amount of training data. Our technique
reduces the chance of over-fitting because incident beacons are selected from the can-
didates that are significant rules mined out of the entire historical data set. Second,
in practice, a false negative (i.e., a real incident beacon not being reported) can often
incur high investigation cost for OCEs, because OCEs would have to go through all the
metrics to find the relevant ones. Unlike classification-based techniques that identify a
single model (Bodik et al. 2010; Cohen et al. 2004, 2005) for each incident, our CAR-
mining technique can discover all rules that satisfy given requirements including the
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minimal support, confidence, and lift values. Therefore, our technique can help reduce
the false-negative ratio when there are coupling effects (Fu et al. 2012) in the under-
lying incidents. The profound differences between classification and association-rule
mining (Freitas 2000) can help illustrate why a mining-based technique works for
Service X.

4.2 Mining suspicious execution patterns

Besides system metrics, the transactional logs also provide rich information for diag-
nosing service incidents. When scanning through the logs, OCEs usually look for a
set of log events that show up together in the log sequences of failed requests but not
in the ones of the succeeded requests. Such a set of log events are named as suspicious
execution patterns. A suspicious execution pattern could be very simple, e.g., an error
message that indicates a specific fault in the execution. It could also be a combination
of log events of several operations. For example, a normal execution path looks like
task start, user login, cookie validation success, access resource R, do the job, logout.
In contrast, a failed execution path may look like task start, user login, cookie not
found, security token rebuild, access resource R error. The failure occurred because
resource R cannot recognize the new security token when the old cookie was lost. The
code branch reflected by cookie not found, Security token rebuild, access resource X
error indicates a suspicious execution pattern.

As discussed in previous sections, a huge number of logs are generated at any time
when Service X is running. It is critical to automatically identify suspicious execution
patterns in order to free OCEs from manually scanning the logs. We propose a mining-
based technique to automatically identify suspicious execution patterns. The basic
idea behind our technique is that, given a set of logs for failed requests and succeeded
requests, respectively, execution patterns shared by more failed executions and fewer
succeeded executions are more suspicious than others. The details of our technique
can be found elsewhere (Ding et al. 2012) . Our technique mainly consists of two
steps.

First, we mine execution patterns by modeling the trunk/branch relations of
program-execution paths with a Formal Concept Analysis (FCA)® technique. Given
a set of transactional logs, we treat each request as an object, the set of events (cor-
responding to this request) as attributes, and then we apply FCA to obtain a lattice
graph. Each node in the graph is a concept. Each concept, denoted as ¢, contains two
elements: intent and extent. /nt(c) (denoting the intent of concept ¢) is an event set,
and Ext(c) (denoting the extent of concept c) is a request set. In the graph, each parent
concept contains the common path of its children, and each child concept contains a
different branch structure in code paths. Then, we further extract a complementary set
AEg = Int(c) \ Int(p) (the log events that are in node ¢ but not in node p) for every
parent-child node pair (p, c) in the graph. All extracted complementary sets AE; are
stored as candidates of suspicious execution patterns for further evaluation.

3 Formal Concept Analysis, http://en.wikipedia.org/wiki/Formal_concept_analysis.
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Second, we use a score named as Delta Mutual Information (DMI) to measure
the suspicious level of each execution pattern. DMI is defined as DM I (AE;) =
M(X.,Y)-M(X,,Y),where M(X., Y)and M (X, Y) represent mutual information
defined on X, (a Boolean random variable defined on concept ¢, with the variable value
as 1 if the request belongs to Ext(c) and as 0 otherwise) and Y (the fail/success status
of a given request, e.g., 1 if the request is failed). Theoretical analysis has shown
that DMI can properly measure the contribution of A E for failure correlation (Ding
et al. 2012). By walking through all edges in the lattice graph, we select all AE; as
suspicious execution patterns if each of them has a large DMI value, and then present
them to OCE:s for diagnosis.

In the practice of Service X, several patterns appeared in incidents in long term, such
as ones related to SQL timeout or user-authentication rejection. Some patterns were
live in short term, specific to some versions of software, or improper configurations;
these patterns disappeared after software upgrade.

4.3 Detection of malfunctioned role instance

In addition to analyzing the system metrics and transactional logs, based on the
characteristics of the system architecture of online services, we also developed a
statistics-based technique to help with incident management.

As discussed in Sect. 2, usually there are multiple server roles in a large-scale
online service system, e.g., front end server and SQL server. There are often a number
of instances for each role running on different servers, under the control of a load
balancer that distributes the workload among the peer instances. The configurations
of these peer servers with the same role are usually homogeneous for simplicity and
robustness. Therefore, when the service is at a healthy state, different instances of the
same role should have similar behaviors. If the behavior of one instance deviates far
from its peer instances, then this instance is likely to act in an abnormal state. Such
behavioral differences can help us quickly detect the instances of malfunctioned server
roles.

The detection algorithm consists of two steps. First, a metric (denoted as V') reflect-
ing the health state of a role is selected, and its values are monitored for each role
instance. For a specific role, we calculate its values across all the instances in the time
epoch of investigation, and learn a probabilistic model from the calculated metric val-
ues. In SAS, for simplicity, we use Gaussian distribution N (1, o) to model the metric.
The parameters (i, o) are estimated using a robust estimation method to reduce the
interference of outliers (e.g., an estimation of a median value is much more robust
than an average):

u = median(V)

o =148 x median(|v — u|,Yv € V) M

Second, we identify the role instances whose corresponding metric values are far
from the distribution N (u, o).

In SAS, we use the preceding technique to detect the malfunctioned instances of
three roles: the front end server, application server, and SQL server. This technique
is simple, and yet we have found it highly effective in real practice. It can often
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locate the problematic servers with high accuracy, thus effectively narrowing down
the investigation scope for OCEs. This technique is not limited to Service X, being
general and applicable to common online services.

4.4 Problem localization with multi-dimension analysis

As mentioned in Sect. 3, we added customer issue reports as a new data source for our
analysis. Customers’ issue report data is multi-dimensional, time series data. Most of
the time, the team receives a relatively stable number of issue reports every day. As
mentioned in Sect. 1, sometime the number of issue reports could suddenly increase.
Such a burst means that there is a common issue encountered by a segment of user
population due to major feature changes, mis-configuration, incompatible clients, envi-
ronmental incidents, or software bugs. For example, Fig. 2 shows an emerging issue
detected in 2013. Before December 8, 2013, the support team received an average of 70
issue reports per day. Starting from December 8, the volume of issue reports rose to over
300 per day. Among the issue reports received on December 8 and onwards, many
share the following attribute combination: Country=“India”; TenantType=“Edu”;
DataCenter="“DC6”. We call these issues as “emerging issues”. The emerging issues
have negative impact on a large number of users, therefore, they should be addressed
with a high priority.

In order to detect emerging issues, OCEs need to identify a particular attribute
combination that can characterize the issues. The attribute combination can help
isolate reports of an issue from other reports, provide hint for finding the root
cause of the issue. For example, given the effective combination in Fig. 2, sup-
port engineers can quickly find out that these issue reports were related to a software
configuration error, which fails to create accounts for customers in India, who are
subscribed to the service through the EDU package. Therefore, many customers
contacted the Microsoft support team asking for help. We call such an attribute
combination “effective combination” since it characterizes an emerging issue. The
effective combination associated with the emerging issue provided useful informa-
tion for support engineers to isolate the problem and locate the potential cause of the
issue.

We designed an algorithm to automatically and efficiently identify the effective
attribute combinations that can characterize emerging issues for OCEs. Without
this technique, OCEs have to identify potential effective combinations by manually
exploring different attribute combinations with pivoting tools. The major challenge
of effective-combination identification is its huge search space. If there are many
attributes and each attribute has many different values, there will be an explosive
number of possible attribute combinations, which makes the identification process
very expensive or even impossible. In addition, the effective attribute combinations
may be missed during manual exploration, since the coverage of manual exploration
cannot be very high. Furthermore, detecting emerging issues could be very diffi-
cult, because the burst of an emerging issue can be easily lost within the background
noisy issue reports and no clear burst can be observed in the overall trend of all
reports.
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Fig. 2 An example of emerging issue

The core algorithm of our technique is to effectively reduce the search space without
missing the effective combinations. In order to achieve this goal, we have designed
the following three search space pruning strategies.

— Impact based pruning Each effective combination should be related to a large
volume of issue reports, which means that it has impacted a large number of
customers. We adopt an impact-based strategy to prune the attribute combinations
associated with small numbers of issue reports. Here, the impact of an attribute-
combination is defined as the number of its related issue reports.

— Spike detection based pruning Effective combinations should be able to reflect
significant volume increases of issue reports. Therefore, in the search process, we
prune off the attribute combinations that exhibit small or no spike in issue-report
volume. The underline intuition is that a real serious issue always causes a bust of
issue-report volume.

— Isolation power based pruning An effective combination is the node that can
exactly split the entire dataset into two parts: with and without a significant spike
of report volume. In other words, an effective combination should be able to isolate
the attribute combinations that exhibit a volume spike from the other combinations
that do not. We propose the notion of Isolation Power to measure such kind of
isolating capability for an attribute combination. During the search process, if the
current set has a higher isolation power than its direct supersets and subsets, then
the current set is an effective attribute combination. In this case, all its subsets will
not be searched. We use this strategy to remove the possible redundancy in the
identified effective combinations, and to make the results concise and compact.
The detail of Isolation Power can be found in our other paper (Lin et al. 2016).

With our technique, OCEs can quickly detect an emerging problem that may influ-
ence the experience of a large number of customers based on the reports. At the same
time, the discovered attribute values in an effective combination can provide rich infor-
mation for OCEs to locate the source of the problem. As an extension of SAS, we
have successfully applied this technique to Service X in production.
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4.5 Leveraging previous effort for recurrent incidents

Similar incidents may reoccur due to reasons discussed in Sect. 3.1. Therefore, leverag-
ing the knowledge from pastincidents can help improve the effectiveness and efficiency
of incident management. The key here is to design a technique that automatically
retrieves the past incidents similar to the new one, and then proposes a potential
restoration action based on the past solutions.

There is rich information associated with each service incident, e.g., timestamp,
monitoring data, and text describing the symptoms, diagnosis, taken actions, and
results, etc. The monitoring data is the most important because it faithfully reflects
the states of the service system during the incident. Therefore, we use the monitoring
information to derive signatures to represent the incidents for the retrieval purpose. As
we have mentioned in Sect. 3, there are mainly two kinds of monitoring data, which
are system metrics and system logs.

In practice, we found that system logs are often more suitable for troubleshooting
availability issues (e.g., an unplanned interruption of the service). When an availability
issue happens, engineers usually inspect the transactional logs to determine whether
there is any clue of the underlying problem. On the other hand, system metrics are often
more useful on investigating latency issues (e.g., unplanned degradations of average
response time in the service). The reason is that, each component of the system has
collected a set of performance counters including latency, work load, resource usage,
and these performance counters often contain sufficient information for latency-issue
investigation. Therefore, for availability incidents, we use log as the source information
for incident retrieval, and for latency incident, we use performance counters as the
source information for incident retrieval. It is our future work to correlate and integrate
the suspicious signatures and beacons to determine root cause more accurately.

Transactional-log based retrieval

For incidents related to system availability drop, we mainly use the transactional
log as the source information for analysis. Using the technique discussed in Sect. 4, we
mine out the suspicious execution patterns in transactional logs, and use such patterns
as signatures for each incident.

Then we define a similarity metric to compare a new incident to past ones in
repository. We treat each incident as a document, each execution pattern as a term, and
the corresponding DM I score as the weight of the term. Let D = {d;, d>, ..., d;} be
the total m documents in the issue repository. Consider the given new issue as a query,
denoted as g. So we represent each document d; as Y peA() Wi »tp, where a term is
represented by an abstract vector t, p is the index of the corresponding term in d;,
A(i) is the valid index set, and w;, is the weight of t,. We use DM as the weight
for each term, because suspicious execution patterns are often used to distinguish
between different incidents in the practice of software engineering. Such weight is
much different from the TF-IDF weight (Han et al. 2011). Our evaluations proved
that it is better than TF-IDF. We then use the Generalized Vector Space Model (Wong
et al. 1985) to calculate the similarity of two incidents. We calculate the cosine score
of two document vectors, each representing one issue. In particular, given a documents
di thatd; =) peA() Wi ptp. We next define the similarity metric
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Fig. 3 Overview of HMRF-based incident association
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The metric measures the cosine of the angle between the two vectors. Here ||d;|| =
J/di - dj. We define inner product between two terms:
tp - tq = # of overlapped events in p-th term and g-th term 3)

System Metric based retrieval

For latency incidents, we proposed a new algorithm to improve the effectiveness
of recurrent issue identification based on system metrics. In our approach, the metric
data is treated as observations and the corresponding issue types are treated as a field
of hidden variables. As described in Fig. 3, given the historical data of performance
issues, we first discretize the metric data according to a set of initial thresholds. We
then build a HMRF-based model that can cluster issues according to the issue types,
and derive optimal thresholds and clustering parameters using an EM (Expectation-
Maximization)-based algorithm [refer to Figure 4 of our paper (Lim et al. 2014)].
The SLO compliance records are treated as the non-issue type. Finally, when a new
record arrives, we determine if it indicates a recurrent issue or a brand-new issue by
evaluating its distance to the centroid of clusters.

In our scenario, we try to understand the underlying run-time performance states
of the system through analyzing the observed values of system metrics. In prac-
tice, it is customary to expect a strong time-based correlation among the values of
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Fig. 4 An illustrative example of our HMRF model

system metrics within each service incident (Bodik et al. 2010; Duan and Babu 2008).
The metric values of two neighboring time-epochs often reflect similar performance
state. HMRF is a good tool to model the relationship among neighboring epochs. It has
been successfully used in many areas, including semi-supervised clustering (Basu et al.
2004), bioinformatics (Li et al. 2009), because they support probabilistic modeling
of information about the dependencies between hidden variables and their observa-
tions, and the mutual influences among neighboring observations. In this project, we
define a temporal-neighboring constraint, which means that every pair of neighboring
time-epochs tends to be of the same incident. Suppose that there exist v instances of
performance issue and each of which belongs to one of the k issue types (k < v).
The v issue instances and the non-issue instances (i.e., compliance instances) can be
grouped into k + 1 clusters (k issue types plus 1 non-issue type). Each cluster consists
of performance issues of the same type. An example of issue clustering is shown in
Fig. 4. There are three issue instances, which consist of records of two issue types
(i.e., k1, k2). The SLO compliance records can be treated as a special non-issue type.
The problem is to automatically group the T records into 3 clusters, and assign a new
record to a correct cluster. If the new record can be well categorized into a cluster,
a reoccurring issue is detected. Otherwise, the issue is a brand-new issue. The detail
implementation of this algorithm can be found from our technical report (Lim et al.
2014).

4.5.1 Healing-action adaptation

According to our empirical study of healing actions in the incident repository, we find
that most healing actions can be formatted as a tuple < verb, target, location >,
where “verb” denotes an action and “target” denotes a component or service. Table 1
shows all “verbs” and “targets” in SAS. When we retrieve a similar historical inci-
dent, we extract the verb and target from its description text. For example, we extract
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Table 1 Healing actions

Verb Target Event of location
Reboot SQL (Database) evl

Recycle App-Pool (Application Pool) ev2

Restart IIS (Internet Information Service) ev2

Re-image ‘WFE (Web Front End) ev2

Reboot WAP (Web Application) ev3

Patch Service (SQL/WFE/WAP) evl, ev2, ev3
Restart Scanner (Anti-virus Component) ev2, ev3

Restart Search (Search Component) ev3

Restart AD (Active Directory) evd

“reboot” as the verb and “SQL server” as the target from the description “We found
few SQL servers with high memory usage and few servers were not able to connect
through SSMS. Availability is back up after rebooting the SQL machine SQL32-003".
We determine the location using the technique that detects the malfunctioned server
role.

4.6 Fast time series clustering

In order to ensure service quality, various types of performance counters (e.g., CPU
usage, disk I/0, network throughput, etc.) are continuously collected on each server.
For analysis purpose, they are often aggregated at pre-defined time intervals (e.g.,
5min) on each server, resulting in time series representing certain performance char-
acteristic of the service(s) under monitoring. When conducting incident management,
OCE:s often need to explore these performance counters for understanding data char-
acteristics, spotting patterns, and validating hypotheses, etc. by leveraging different
analysis techniques such as clustering, matching, filtering, and visualization, etc. These
tasks help users obtain insights and make informed decisions. The process of com-
pleting these tasks is usually iterative, which requires analysis techniques to be fast
and scalable in order to create real-time and interactive exploration experiences.

Clustering time series is an important and useful technique for exploratory study
on the characteristics of various groups in a given time series dataset. It can identify
the homogeneous groups of time series data based on the similarity among different
time-series. However, given the scale of our Service X, it is challenging to cluster a
huge number of time-series to support interactive time-series exploration. In order to
overcome this problem, we proposed a fast time-series clustering algorithm with the
aid of an elegant sampling mechanism [the algorithm details can be found in (Ding
et al. 2015)].

Based on the fast clustering algorithm, we designed a friendly UI (as shown in
Fig. 5) for users to explore time-series data, where OCEs can get an overview of
all time-series groups by clicking the Groups on the left panel. In the figure, a time
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Fig. 5 Interactive time-series exploration

series dataset including data of CPU utilization for 2078 servers, is presented. Each
time series instance has 1,008 data points. The analysis task is to obtain an overall
understanding on the CPU utilization across all the servers, and find out how these
two aspects relate to each other. With our fast clustering technique, 21 groups of CPU
utilization are immediately obtained in less than 2s. Each group in fact is a cluster
obtained from our clustering algorithm. In each chart, the black curve is the median of
the group, (i.e. median is used to aggregate all the time series instances in the group).
The above groups reveal different patterns of CPU utilization of different servers. For
example, the chart shows that we have increasing CPU usage for 8.56 % machines.
OCE:s can further look into the individual time-series items of a group by clicking the
chart of the group. Our high-performance clustering algorithm enables real-time and
interactive drill-down analysis in our tool. With such an interactive exploration, OCEs
can quickly understand the overall resource usage information (e.g., CPU usage) of
the system, and discover some suspicious resource-usage patterns immediately.

4.7 Evaluation
4.7.1 Performance beacon

We evaluated our technique of performance beacon analysis using real data of Service
X. For example, on a data set of 36 incidents, with nearly the same precision, our
technique achieved a high recall (~ 90%) compared to the recall of ~ 60% obtained
using L1-Logistic Regression [in short as L1-LR, an algorithm in state-of-the-art
research (Cohen et al. 2005)]. Figures 6 and 7 show the recall and precision results,
respectively, as we change the threshold of the number of selected metrics from 1
to 10. We can observe that our technique can achieve better recall and precision
in all cases than the technique of L1-LR. In practice, a threshold of 5 or 6 is a good
choice. The characteristics of incidents of Service X, such as the short-period violation

@ Springer



Autom Softw Eng (2017) 24:905-941 925

Fig. 6 Recall of beacon analysis 100 b

80 / ¥==0Ours
_ / @ L1-LR
2 60 /
3 40 /
kS y

20 +

0
0 5 10 15

Threshold of metric number

Fig. 7 Precision of beacon
analysis

o
o

——0urs |
——L1-LR

~
o

.

AN
]

precision (%)

® 3=
— O
50
40
0 2 4 6 8 10 12

Threshold of metric number

and coupling effect, are common among many other online services. Therefore, our
analysis technique can also be applied to other online services.

4.7.2 Multi-dimension analysis

We use F-measure, Recall, and Precision metrics to measure the effectiveness of
our algorithm for fault localization based on multi-dimension analysis. The F-measure
is defined as follows:

2 x Precision x Recall
F-measure = — 4
Precision + Recall

where Precision = % and Recall = TPTJF%. Here, TP (true positive) is
the number of actual effective combinations correctly reported by our algorithm. FP
(false positive) is the number of wrongly reported effective combinations. TN (true
negative) is the number of non-effective combinations that are correctly reported.
FN (false negative) is the number of effective combinations that are not reported by
our algorithm. The higher the metric values, the better the detection performance. In
addition, we measure the execution time (in seconds) to evaluate the efficiency of the
algorithm.
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Table 2 Evaluation results of

fault Tocalization with Metrics Our technique DPMiner
multi-dimension analysis Recall 0.84 0.83

Precision 0.88 0.37

F-meaure 0.86 0.51
;ﬁz:z;isiizhng actions in Category ID Verb Target # of cases

ID1 Recycle App-Pool 57

D2 Reboot WAC 57

1D3 Restart IS 43

1D4 Reboot SQL 39

ID5 Restart AD 31

ID6 Re-image WEFE 9

ID7 Patch Service 3

1D8 Restart Scanner 2

1D9 Restart Search 2

We collected the actual issue report data, which contains more than ten thousand
issue reports collected in early 2015. There are total 92 emerging issues in this dataset,
which are verified by the domain experts in the product team.*

To the best of our knowledge, there is not specific algorithm in literatures for
similar scenario. Therefore, we are not able to find a good basis for comparison study.
In this paper, we only compared our technique with a classical algorithm (DPMiner).
DPMiner (Dong and Li 1999) detects emerging patterns, which are attribute-sets whose
support rates increase significantly from one dataset to the other. As shown in Table 2,
our technique is able to achieve good results. The Recall, Precision, and F-measure
values are 0.84, 0.88, and 0.86, respectively. Furthermore, it significantly outperforms
the DPMiner approach. The improvement on F-measure is 69%. Note that emerging
pattern mining techniques such as DPMiner is not originally designed for mining
effective combinations defined in our scenario because it does not support change
detection in time series data. Also, there are no pruning strategies based on isolation
power.

4.7.3 Heal suggestions

We also evaluated the effectiveness of our techniques for two different types of inci-
dents (i.e., availability incidents and latency incidents) respectively.

Transactional-log based retrieval

4 We choose this dataset because it has quality labels verified by domain experts. Although we do have
other real datasets that have a larger number of attributes, the quality of their labels may be insufficient to
calculate TN and FN due to the difficulties of manual identification effort mentioned above.
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Fig. 8 Accuracy of suggesting correct healing action

We evaluate our technique of availability-issue retrieval in Service X. We studied
243 service issues (they were detected by our internal monitoring system) in the year of
2012. Each of them has a clear resolution and its related transaction logs. The healing
actions for the 243 issues are categorized into 9 categories based on the combination
of their verb and target information as shown in Table 3. To comprehensively evaluate
our approach, we design experiment to replay the major real usage of our technique.
Specifically, we in-turn treat each of the 243 issues (in the order of their occurring
time) as a “new issue”, and then we reflect real usage of our approach in practice
by treating the previously encountered issues (i.e., those that occurred before “new
issue”) as the “historical issues”. We then apply our approach for each combination
of “new issue” + “historical issues” and then measure the accuracy of our approachs
effectiveness in suggesting a correct healing action for the “new issue”.

Figure 8 shows the overall accuracy trend for each approach. The X-axis is the
index of each issue (sorted by occurring time); the Y-axis is the average accuracy of
the issues between the first one and the current one. Higher accuracy values indicate
better effectiveness. According to Fig. 8, the overall accuracy of our approach is
87%, specifically, our approach correctly suggests healing actions for 213 issues.
The high accuracy of our approach is critical to enable auto-healing tasks. Although
currently service recovery heavily relies on manual efforts, product teams are starting
to deploy some scripts to apply healing actions automatically, e.g., deploying a script
in a dedicated management machine to command the IIS of a remote service to restart.
We can then map our suggested healing action to its corresponding script, which is
deployed to accomplish service auto-healing. More detailed results including the ROC
curves of our technique can be found in (Ding et al. 2012, 2014).

Metric based retrieval

Similar to the latency issue retrieval, we also extensively evaluated our HMRF-
based approach in the practice of Service X. Figure 9 shows the performance of
HMRF-based approach in detecting recurrent issues of Service X, measured using
ROC curves. The TPR (True Positive Rate) value is around 98% when FPR (False
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Fig. 9 ROC curves of the proposed approach for recognizing recurrent performance issues

Positive Rate) value is 10%, and the AUC (the area under the ROC curve) value is
96.91%. These results are fairly good for a healing suggestion system. More detailed
results including the comparison between our technique and other two state-of-art
algorithms can be found in (Lim et al. 2014).

5 The tool
5.1 Usability

As a practical tool, making the analysis results actionable and understandable to OCEs
is very important. Otherwise, the tool would not make real impact or be widely used
by OCEs.

One pain point of the OCE:s is to sift through a huge amount of monitoring data
when working on a service incident. To address such pain point, we defined two design
rationales for presenting the analysis results in SAS: conciseness and comprehensive-
ness. Based on the results generated using different analysis techniques, SAS can
automatically compose an analysis report using a predefined decision tree. This report
serves as the primary form of presentation for SAS to communicate its analysis results
to OCEs. As shown in Fig. 10, the report is concise, and yet contains comprehensive
information about the underlying incident. The report has three parts. It first provides
information on the impact of the incident, e.g., the number of failed user requests and
the number of impacted users. Such information helps the OCEs to assess the sever-
ity of the incident. The second part of the report provides information for assisting
effective diagnosis including the summary of the underlying issue (if found), a list of
similar incidents in the past, and links to the detailed diagnosis results of each type
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There is an internal server error related issue
Datacenter : DC1

Start time:  9/4/2012 3:48:00 AM End time: 9/4/2012 3:58:00 AM
Impact:

Influenced requests 1000

Influenced end users 100
Diagnosis:

This issue is a problem of "Credential loss". The source of the issue mainly locates at ~ Front End Server
FE001 .

Here are similar previous occurrences of the issue:
e Incident ID 91236:3/14/2012 10:49:00 AM (see detail )
e Incident ID 91271:7/26/2012 14:25:00 AM (see detail )

See also:
Malfunctioned Frontend Servers 973 of 1000 failed requests related to  FEOOI.
Malfunctioned SQLServers No malfunctioned SQLservers detected.
Suspicious Metrics No highly correlated metrics found.

Suspicious Execution Patterns 1 major pattern in the logs covers 973 of 1000 failed requ ests.

Suggested actions based on similar past incident (ID 91236):

Reset the IIS service on the front end server FEOO1

Fig. 10 An example analysis report

of the monitoring data. This report provides an easy and systematic way for service
engineers to consume the analysis results, and thus greatly improves the usability of
SAS. For example, OCEs can quickly get an overview of the incident and understand
what was going on during the period of the incident. They can also obtain detailed
information for further investigation through a single mouse click. The third part of the
report recommends service-recovery actions adapted from those for similar incidents
in the past. For example, in Fig. 10, the suggested action is to reset the IIS on a specific
front end server.

In addition, we present the results of suspicious execution patterns in an easy-to-
understand way in SAS. Many terms in the machine-learning and data-mining areas are
noteasily accessible to OCEs. For example, many OCE:s are not familiar with execution
patterns or FCA. In SAS, we use a Ul to highlight the common difference between logs
of succeeded and failed requests, and facilitate OCEs to intuitively manipulate the log
sequences for understanding the contribution of different log messages to the failure.

5.2 Deployment
SAS was first deployed to the datacenters of Service X worldwide in June 2011. The

OCE:s of Service X have been using SAS for incident management since then. Because
of its importance for Service X, we were required to make sure the high availability
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of SAS. However, in practice, it is very difficult to estimate how much OCE time a
tool helps save. In order to assess the value of SAS, we have instrumented SAS and
started to collect its usage data since 2012. The usage data records all the interactions
between users and SAS. Based on the usage data, we can answer questions, such as
“who uses which analysis module at what time on what data?”

According to the usage data from a year study, about 90% of OCEs used SAS to
accomplish their incident-management tasks. SAS was used to diagnose about 86% of
service incidents. Along with engineers from Service X teams, we investigated whether
the analysis results of SAS were useful for diagnosing an incident. The ground truth
is set up according to the product-ticketing system. In particular, for each service
incident, a ticket is created in the ticketing system to record the detailed information
of the diagnosis process of the service incident including symptoms, email threads,
diagnosis results, and recovery actions. We use the recorded tickets as the ground truth,
and compare them with our analysis results to conduct the evaluation. The results are
considered useful if (1) they can directly help locate the cause of the incident; (2)
they can locate the malfunctioned component; or (3) they can find out the problematic
site to help OCEs to reduce their investigation scope. The usage data shows that SAS
helped diagnose about 76% of the service incidents that SAS was used for.

To make our approach more effective and better fit into pipelines of service diag-
nostic in real production, we investigate and record the issues or conditions where our
approach fails to help. There are following main reasons why SAS failed to provide
useful diagnosis information for the remaining 24% service incidents.

— First, sources of incident causes were not covered by the monitoring system.
For example, in the production environment of Service X, several incidents were
caused by a malfunctioned Active Directory (AD) controller. Since no monitoring
information was collected on AD servers back then, SAS could not provide useful
clues for diagnosis. Another typical case is that the issue is caused due to network
devices before the front-end server of Service X, so the user requests did not reach
the front-end service at all.

— Second, some detected incidents are false alarms. Typical examples are the issues
detected during system upgrading, i.e., the monitoring system was not shut down
in time when the service upgrade began. Including such kind of data in the system
can hurt the accuracy of the tool.

— Third, some incidents are “one-shot issue”. Each incident is unique and is not
similar to any other ones. Our approach fails on these issues because there exist
no similar historical issues for these issues. According to the feedback on these
issues from engineers, the performance beacons and suspicious log patterns still
can provide useful information for diagnosis, and the signatures that our approach
generates are still valuable to the engineers in diagnosis.

— Fourth, sometime, the telemetry data is insufficient for diagnosis. We have some
cases, where even knowledgeable developers cannot identify the causes by inspect-
ing the telemetry data. More information should be recorded in log messages for
generating more proper signatures. For example, from the systems source code,
there is one event generated for indicating the overall general exception handling
at the last stage of request processing. If the request fails, there could be various
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exception types. However, if there was no exception call-stacks, it is often quite
difficult to know where the exception is thrown.

In summary, with the techniques of data analysis, SAS tackled challenges in prac-
tice, and it helped OCEs of Service X improve their effectiveness and efficiency of
incident management. We expect that the analysis techniques and design principals of
SAS can be applied to other online services.

6 Related work

Previous work applies statistical-analysis techniques (i.e., machine learning and data
mining) to tackle the scale and complexity challenges in incident management. We
discuss related work in the following categories.

Incident-beacon identification Previous work (Bodik et al. 2010; Cohen et al. 2005,
2004; Huang et al. 2006; Zhang et al. 2005) mainly focused on finding suspicious sys-
tem metrics that may be related to the incident under investigation. Given the data of
system SLO states (violation or compliance) and system metrics, Cohen et al. (2004)
and Huang et al. (2006) proposed the Tree-Augmented-Network (TAN) approach to
deduce a TAN model, which uses a few system metrics to predict system SLO states.
Their approach identifies the metrics used by the deduced TAN model as service-issue
beacons. Zhang et al. (2005) extended Cohen’s work (2004) to changing workloads
and external disturbances adaptation via maintaining an ensemble of TAN models,
such that a new model is added whenever existing ones do not accurately capture
the current system behaviors. Cohen et al. (2005) extended their previous approach
(Cohen et al. 2004) by proposing a Signature approach. Bodik et al. (2010) adapted
their approach by adopting a different model, named as L1-Logistic Regression, to
identify highly correlated metrics more accurately. However, these previous classifi-
cation based approaches (Bodik et al. 2010; Cohen et al. 2004, 2005; Huang et al.
2006; Zhang et al. 2005) usually analyze each performance issue one by one, and
have a number of limitations (suffering from the over-fitting problem when learning a
classifier for a performance issue with short duration, identifying only general symp-
toms as incident beacons, etc.) (Fu et al. 2012). Our techniques in SAS tackle these
problems by mining CARs from historical data, and then selecting the best ones from
the candidates by matching them with the performance issue under investigation.

Known-incident association As discussed earlier, associating a newly incoming
incident with a previous known incident is very useful in incident management. Some
techniques analyze performance metric data, and apply machine learning techniques to
classify issues. For example, Falcon system (Duan and Babu 2008) utilizes both labeled
and unlabeled data to improve the overall accuracy of diagnosis. Itis an active-learning
technique, which facilitates manual labeling effort via maximizing the benefits gained
from newly-diagnosed unknown instances. Natu et al. (2011) focused on automated
debugging of SLO violations by initiating a two-stage process of feature selection using
a Classification and Regression Trees (CART) method followed by a statistical change-
point detection algorithm. Yuan et al. (2006) used classification techniques to classify
system problems into different categories. However, in real practice, classification-
based techniques are often not applicable due to lack of labeled samples. In addition,
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a classification-based technique often cannot check whether an incident is a totally
new one or similar to a previous one. Previous work (Bodik et al. 2010; Cohen et al.
2004, 2005; Huang et al. 2006; Zhang et al. 2005) retrieved similar previous incidents
by defining similarity based on the beacons of incidents (those beacons are used
as incident signatures). Another set of research efforts in the area of mining bug
repositories is also related to our known-incident association technique. The basic
idea of such scenario is to apply web-search techniques on a bug repository where
each bug report is considered as a web document. Ashok et al. (2009) implemented
a search system for similar-bug retrieval to speed up bug fixing based on the natural-
language text, dumped traces, and outputs described in the bug reports. Some other
work (Sun et al. 2010; Wang et al. 2008) uses mining or classification techniques on
textual information to cluster or detect duplicate bug reports. These techniques would
not be effective in our problem setting because the textual information is a much
weaker representation of an incident compared to the monitoring data associated with
the incident. Furthermore, the textual information is also incomplete or imprecise
(Ding et al. 2012). Different from the previous work, we extract incident signatures by
analyzing the difference between the logs of failed requests and succeeded requests.
In SAS, we go further to provide healing suggestions by leveraging the solutions of
previous incidents in the incident repository.

Fault localization Automated localization of faults/bugs is a major research area in
software engineering. Two kinds of localization techniques are used in SAS. The basic
idea of our technique for execution-pattern mining is similar to previous work (Liu
et al. 2005; Sun et al. 2010) in that we all leverage the differences between the logs of
failed and succeeded requests. Sun et al. (2010) evaluated patterns mined from both
correct and incorrect runs to detect duplicate bug reports. Sambasivan et al. (2011)
have also developed a technique for performance problem localization by comparing
request flows from two executions (e.g., of two system versions or time periods). The
request flows are built based on end-to-end request-flow tracing within and across ser-
vice components. Nagaraj et al. (2012) proposed DISTALYZER, an automated tool
to support developer investigation of performance issues in distributed systems by
identifying salient differences between sets of logs that may potentially affect over-
all performance and significantly contribute to the observed differences in behavior.
Similar to these approaches, our work uses contrast information to achieve high accu-
racy of signature generation. Cellier (2008) applied FCA to fault localization by using
concepts to find interesting clusters. In contrast to these previous techniques on fault
localization, our work is motivated by addressing challenges of incident management.

There are another set of related literatures that are loosely related to our fault site
localization technique based on multi-dimension analysis. Li et al. (2011) studied 18
software usage characteristics and investigated how they are related to field quality and
how they differ between pre- and post-release. They identified the five most important
usage characteristics through general linear regression. Menzies et al. (2013) pro-
posed machine-learning based methods for learning from bug datasets succinct rules
that explain quality issues. Bird et al. (2014) found that the reliability of a software
system depends on the environment it operates in. They performed an empirical study
of more than 200,000 Windows users, and found that the reliability of individual sys-
tems is related to whether and which other systems are installed. They also applied

@ Springer



Autom Softw Eng (2017) 24:905-941 933

association rule mining to detect the influence of factor combinations on the reliability
of a system. Epifani et al. (2010) addressed the problem of identifying change points
concerning the reliability and performance of a software service. Their approach is
based on the execution trace produced by client invocations, and only tries to find out
change points. Our multi-dimension algorithm works with the customer issue reports.
It identifies not only the change point, but also the effective attribute combinations
that are associated with the changes. In our algorithm, we integrate closed itemset
mining, change detection, and pruning techniques to detect emerging issues in multi-
dimensional time series issue data.

The above-discussed previous work focused on developing techniques for a single
type of data sources, and none of them has been deployed to a real-world online service
system. In our work, we conducted comprehensive analysis on various monitoring-
data types to handle real-world problems, and developed the SAS system, which has
been used in real production environments.

7 Lessons learned

We started the project on data-driven performance analysis for online services in 2010.
It took us 2 years to conduct algorithm research, build the diagnosis system, and make
the system an indispensable system for the engineering team of Service X. In this
section, we share some of our experiences and the lessons learned along the way.

7.1 Solving real problems

Solving real problems is one of the key factors to the success of SAS. We did not,
however, take the problem-driven approach right at the beginning of the project, and
we learned the lesson the hard ways.

When we first knew about the various challenges of Service X, we went on the usual
research route looking into the research literature on existing work to understand state-
of-the-art techniques in the area. We found that using a machine-learning technique
to classitfy, retrieve, and predict service violations had been an interesting topic, and
a classification-based technique was the mainstream solution. We analyzed the pros
and cons of several popular classification-based techniques, implemented, and tested
them using the real data that we obtained from Service X. However, the results were
not satisfactory as discussed in Sect. 4.1; therefore, we decided to research on this
topic in order to improve the recall and precision. We spent a few months along this
direction and did get better results later.

We presented to the engineering team from Service X the improvements that we
made over the state-of-the-art techniques, and we got feedback such as “interesting”,
“good”, and “useful”, as well as questions and comments such as “this technique
alone cannot solve our problems”, and “do you guys look at logs as well?”, “How can
you help find the root cause?”, etc. It was then when we realized that we missed two
important issues. One was that there were other data sources (e.g., service logs) that
were important for analyzing service-quality issues but we did not leverage. The other
was that the problem that we worked on was important, but it may not be the most
important one and it was not the whole problem.
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Since we had a real system running, and there were practitioners who faced real
challenges and were willing to talk with us, we decided to reset the project and take a
problem-driven approach in order to ensure that our research would address the real
problems. After a few rounds of communication with the Service X teams, we clearly
identified that the top priority for Service X at that time was to greatly reduce the Mean-
Time-To-Restore (MTTR), and the primary challenges included dealing with large-
scale and heterogeneous data, and leveraging disaggregated knowledge learned from
past incidents, etc. Based on these challenges and real-world scenarios, we formulated
the incident-management problem of online services as a software-analytics problem,
and researched and developed SAS as discussed in the previous sections.

7.2 Improving techniques in practice

Robustness The built service should provide users with robust models and analysis
results, otherwise users are not willing to spent their critical time on it. We improve
the robustness of the tool from both the data level and the algorithm level.

On the data level, strict data quality check is performed before the data is used
further analysis. In a large-scale online-service system, data missing and noise can be
common. In order to obtain high quality system models, we need clean data. In our
tool, we monitor the data quality. For example, the number of data missing and noise in
atraining data set are required to be less than 2% of total volume of data. Otherwise, the
data cannot be used to train a model. The model is trained at a fixed frequency using up-
to-date data so that the created rules always consider the latest data pattern information.

On the algorithm level, robust and mature algorithms have been adopted by both
components. In the design of techniques, much effort was spent on tuning the under-
lying algorithms to make them robust in the real scenarios. For example, in order
to improve the robustness of our algorithm of malfunctioned-role detection, median
values and Medians of Absolute Difference (MAD) are used to estimate the Gaussian
parameters. In addition, during the detection stage, we use Bayesian inference by set-
ting a low a-prior failure probability (e.g., 1e-5), which can largely reduce the rate of
false positives. In our execution-pattern analysis, each execution pattern is represented
by a subset of log events rather than a sub-sequence of log events to improve algo-
rithm robustness. Because many distributed-system components serve a single user
request collaboratively and their log events may be disordered due to machine-time
bias, an algorithm based on execution patterns with temporal sequential events is not
robust enough in practice. In addition, our empirical study shows that an event set is
an effective abstraction for our problem context [similar observations were also made
by Cellier (2008)].

Performance In addition to the enabling algorithms for analyzing the large-scale
and heterogeneous data, performance plays an important role in the adoption of SAS
in practice. In order to speed up the investigation of service incidents, OCEs need to
obtain relevant information as quickly as possible. We paid a lot of attention to ensure
high performance when designing and implementing SAS.

In order to enable real-time analysis leveraging historical data, we designed a back-
ground service to incrementally process new generated data as it came in, and save
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the intermediate results for on-demand analysis later on. Our service runs once every
5min, collects the metric data newly generated during the past 5min, calculates the
KPIs and metric values from the data, and runs some analysis modules. For example,
the first two steps of the technique for identifying incident beacons (see Sect. 4.1) run
as a part of the background service to learn a set of CARs incrementally. The learned
CARs are stored as intermediate results, and then are used later for on-demand anal-
ysis. On the contrary, the third step is often run on demand. When an OCE tries to
investigate a service incident, he/she often selects the time period of the incident for
analysis through the UI of SAS, and lets SAS run the third step of the technique on
the metrics for the time period under investigation. Because the third step does not
require heavy computation, an OCE can obtain incident beacons immediately.

We also have some special designs in the module of execution-pattern analysis
to improve the performance. First, we automatically cache log sequences of a few
succeeded requests in a local file, and update the cache every day in the background
service. Doing so can help speed up the on-demand analysis by reducing the data-
fetching time. Second, during the on-demand analysis, we select a 20-min time window
where the service has the worst performance among the time range of the incident under
investigation, and use only the failed requests in the window for analysis to reduce the
computational cost of execution-pattern analysis. Such design can largely improve the
interactivity of SAS. When an analysis step did take a relatively long time, e.g., a few
seconds, related information would be displayed to notify users on what analysis was
running along with its progress.

7.3 Availability

Besides the interactivity and the performance, high availability is also very important
for a tool designed for online services. When a service incident occurs, OCEs need
to use the tool for investigating and resolving the incident as quickly as possible.
If the tool is unavailable at that time, OCEs have to spend extra time to restore the
tool or to investigate the incident through other ways (e.g., manually inspecting the
instrumented data). Therefore, it is important to guarantee the high availability of
SAS. In order to improve the robustness of SAS, the background service of SAS is
designed to be auto-recoverable from failures. For example, there are a set of check
points in the service code. At each check point, we verify the states of the service,
and record the states and all intermediate results in files. When the service fails, it is
restarted automatically by the operating system, and then, it recovers its states from
the latest check-point files. During the past year, we encountered one case: we were
called in during a mid-night to fix a SAS issue because OCEs were unable to get the
latest analysis report from SAS; such issue was caused by that the account used for
SAS was deleted by an engineer by mistake.

7.4 Investing in system building

In addition to conducting algorithm research, we also built the entire SAS system,
which was deployed in the datacenters of Service X worldwide. The engineering cost
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in building such a system was not low. We did not build SAS to its current state all
at once. Instead, we took a step-by-step way and added functionalities incrementally.
Doing so did not only help pave the way to creating real impact in three main ways
(as discussed below), but also helped us maintain the engineering investment within
the manageable scope.

First, having a working system helped demonstrate the research value and built trust
with the product-team partners. Usually, product teams are under tight schedule and
they would not have cycles for “distractions” once they are in the full development
mode. In the case of providing online services, they are quite sensitive about deploying
systems or tools that consume resources in datacenters and might impact the services
in any way. Considering these practical issues, we built SAS v1.0 with the primary
functionality of discovering problematic execution patterns associated with the given
service incident by analyzing the service logs. This functionality greatly reduced the
scope of log investigation from thousands of lines of logs to just tens of lines. We
first demonstrated the effectiveness of SAS using historical logs. Then we got the
permission to run it within the internal deployment environment of Service X. This
step was critical because SAS was made available for the first time to the teams of
Service X for trouble-shooting, and this step demonstrated that running SAS had
negligible impact on Service X. After SAS v1.0 was used to help troubleshoot some
incidents, we got the permission to deploy it to the production environment of one
datacenter. The success there created the demand of worldwide deployment into all
datacenters.

Second, a working system helped us get timely feedback. The feedback allowed
us to observe the troubleshooting experiences of service engineers, and it helped us
understand how well the service engineers used SAS. At the same time, we instru-
mented SAS to collect how service engineers used it in the real settings. This data
provided quantitative metrics for us to measure the impact of our work. The investi-
gation on different scenarios where SAS was used for or not used for certain incidents
could let us to find new research opportunities.

Third, a working system helped us build up credibility and bring in more research
opportunities. As more and more teams came to know the success of SAS, they started
to come to us with their own problems. Some of them were similar to the challenges of
Service X and the others were different. For the similar problems, we could easily reuse
the analysis techniques and modules that we built for SAS. Therefore, the engineering
investment really paid off, and it would pay off more as components in SAS got
(re)used more. The different problems provided new opportunities for us to explore
the online service landscape.

8 Observations and discussion
8.1 Practical implications
Before the discussion, let’s look at a real case first, as this case demonstrates the

capability and limitation of our data-driven technique in the area of incident manage-
ment.
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The case is about Antivirus Configuration Corruption. In January of 2012, ServiceX
experienced continuous performance problem in one datacenter. During the occurrence
of this issue, customers experienced both slow response and failures of uploading files
in an unpredictable fashion. Engineers who first diagnosed this issue found that one
Web Front End (WFE), named WFEX, “produced” most http-status = 500 errors. Dur-
ing the investigation, SAS automatically locates the problem to WFEX, and finds the
symptoms of the issue including “Internal Server Error” messages and “SQL fail-
ing over detected” messages. Considering that the load-balancing strategy randomly
selected one WEE to serve each transaction instance, and the transaction instances that
go through WFEX have a high probability to fail, the engineers asserted that WFEx
went into a bad state. They try to recover the service by rebooting WFEx. However, the
rebooting action did not turn back the service availability, and the same issue existed
continuously. They have to rotate out WFEX for off-line investigation. After several
senior experts investigated the problem for a long time, they finally found the root cause
of the issue is “configuration file for antivirus component became corrupted after a
random restart” (denoted as ACC). Resolving this issue is challenging because the
antivirus component is a third-party component, and the team do not collect enough
telemetry data about it. It was finally resolved in about two weeks by involving 12
experts in different relevant teams and investigating various logs of different compo-
nents/features. Similar to other issues, SAS automatically recorded this issue in the
repository. On early February, 2012, a new issue X occurred in another farm of the
same datacenter, our approach retrieved the historical issue of ACC as the most similar
issue, with the similarity score of 0.96. Guided by the information of the historical
issue and its healing suggestion, the engineer, who was not familiar with this issue,
immediately moved to check the antivirus configurations instead of rebooting the WFE
(a common healing action) and successfully recover the WFE in a few minutes. During
this second occurrence, our approach helped reduce much investigation time of the
engineer by providing informative diagnostic clues.

From the case, we can see that SAS can quickly locate the problem site and find
out the most relevant log messages by screening a large amount of telemetry data.
However, it does not help much when a specific case happens at first time. Its capability
of correctly associating a recurrent issue to the past one did help engineers a lot when
the issue happens again.

While SAS has been proven to be useful in Service X, we now discuss some of the
practical implications of SAS.

At first, SAS mainly consists of a set of modules using statistical data analysis
techniques. In order to make the analysis statistically meaningful, there must exist
enough data to provide high coverage of system run-time behaviors. For example, in
the above case, the tool cannot find deep information about the cause which are not
recorded by the logs at all. The basic assumption here is that the collected logs would
capture artifacts of the problem under investigation and hence point to that component.

Second, although SAS can help engineers quickly take actions to recover Service X
for many cases. However, some issues still need intensive manual efforts during their
first-time occurrences as described in the above example. The insights obtained from
data-driven techniques are usually correlation rather than causation. There is still a gap
between our analysis results and root causes. Root cause analysis often needs decent
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knowledge about the service system and deep experience in software engineering. In
SAS, we design the tool to support human-in-the-loop (HITL) for decision making
and knowledge inputing. Our healing adaptation algorithm is another technique to
leverage the knowledge in the issue repository. Studying on proper methodologies
for representing complex domain knowledges and integrating them with data-driven
techniques is still a very important part of our future work.

8.2 Improving telemetry

As a data-driven analysis project, data quality is a key problem here. In addition
to inventing various techniques of system/service data analysis, we also found that
we need to pay much attention to another fundamental problem: how to generate
logs or system metrics to make sure that they contain precise and concise informa-
tion necessary for incident management? In fact, the importance of logging can be
widely identified by the various usages of logs in diverse software system management
tasks and techniques, including anomaly detection (Fu et al. 2009; Lou et al. 2010),
error debugging (Glerum et al. 2009), performance diagnosis (Nagaraj et al. 2012;
Sambasivan et al. 2011), workload modeling (Sharma et al. 2011), system behavior
understanding (Fu et al. 2013), etc. Based on our observation during the project, we
summarize a number of directions that deserve further exploration for improving cur-
rent logging practices, which in turn to benefit both the effectiveness and the efficiency
of the incident management (Fu et al. 2014).

End-to-end tracing Modern software systems are generally composed of various
components, which may be deployed as distributed systems. End-to-end tracing can
provide a detailed picture of how a request was serviced through the whole system,
and thus can assist in understanding the behaviors of a complex system. In SAS, we
heavily depend on the logs generated by end-to-end transactional logs. Each request
contains a unique request ID that can be used to correlate the log messages of a user
request from different service components together to form a whole log sequence
(see Sect. 3.2).

Effective logging With a system scaling up, the size of produced logs becomes large,
e.g., at arate of about 50 gigabytes (around 120-200 million lines) per hour. However,
most of them are not relevant when we try to diagnose a service incident. Hence,
finding useful information under the huge volume of log data is referred to colloquially
as “finding the needles in the haystack”. In SAS, we try to use analysis techniques
to filter out irrelevant logs and system metrics. However, a more efficient way may
be preventing the generation of irrelevant logs to eliminate the processing overhead
caused by irrelevant logs, namely “On-demand logging in production”. Traditionally,
logging statements are statically inserted to source code, and print log messages at
specific fixed program locations, which may generate too many useless logs. One
promising direction is to log on demand. That is, each program location for logging
can be dynamically enabled (or disabled) to generate logs when a specific condition
is satisfied (or not satisfied). For example, at a logging point of a Remote Procedure
Call (RPC), only latency above a threshold value is symptomatic for logging as a
performance anomaly, whereas latencies of normal calls can be ignored.
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Log categorization Logs should be categorized by source, type, and function. For
example, in our system, each logging statement has a unique eventID (see Sect. 3.2).
With event IDs, we can easily construct a rough code path from a log sequence. Such
log categorization can help achieve better log understanding and efficient postmortem
analysis. Otherwise, we need extra efforts to extract a signature for each type of log
entry (Fu et al. 2009). One good example is the Unified Logging System (ULS) in
Microsoft, which supports automatic tagging of logs, such as event ID and request ID.
With these automatically recorded tags, logs can be easily categorized with respect
to an event type or a request. However, more of such similar infrastructure features
are needed. For example, since we have more and more cross workloads, it would be
quite helpful for troubleshooting if logs can be correlated to different workloads (i.e.,
request type).

Closed-loop process for log quality Although all practitioners know that quality of
logs is very important, however, limited efforts and attentions have been put to ensure
the high quality of log data. During our project, we found that many difficulties are
caused by the quality of logs, and there is still a big room for the improvement of log
quality. For example, unlike Service X, many other systems do not record a request
ID in log data, and do not have an event id for each log entry. Without request IDs,
we cannot link log messages related to the operations of a single request together.
This brings extra computational cost and accuracy degradation to our algorithms.
In the state-of-art practice of software engineering, there is no strong incentive for
engineers to put efforts and attentions on log quality. Many engineers write their
logging statements with an ad hoc way. In the current practice, we do not have a process
to ensure the quality of logs. It is totally different from that of source code, where we
have a closed-loop process (i.e., develop, code review, testing, and fixing) to ensure
code quality. Some teams do have guiding documents for logging practice. However,
such logging guidances are often loosely followed. There is no formal process to
enforce the logging practice, e.g., no review, no testing, and no feedback. In addition,
different from source code, there is no existing good practice for engineers to test
the quality of logs. Given the importance of logs in the cloud era, we argue that it is
worthy to put efforts on researching and developing new technologies and processes for
ensuring log quality, such as quality evaluation, testing, closed-loop process, and so on.

9 Conclusion

Incident management has become a critical task for an online service to ensure high
quality and reliability of the service. However, incident management faces a number
of significant challenges such as the large data scale, complex problem space, and
incomplete knowledge. To address these challenges, we developed an industrial system
called SAS based on a set of data-driven techniques to improve the effectiveness and
efficiency of incident management in a large-scale online service of Microsoft. In
this paper, we have shared our experience on incident management for the large-scale
online service including the way of using software analytics to solve engineers pain
points, the resulting industrial system, and the lessons learned from the process of
research development and technology transfer.
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