
Autom Softw Eng (2017) 24:543–572
DOI 10.1007/s10515-017-0211-8

Reconstructing and evolving software architectures
using a coordinated clustering framework

Sheikh Motahar Naim1 · Kostadin Damevski2 ·
M. Shahriar Hossain1

Received: 6 November 2015 / Accepted: 30 January 2017 / Published online: 7 February 2017
© Springer Science+Business Media New York 2017

Abstract During a long maintenance period, software projects experience architec-
tural erosion and drift, making maintenance tasks more challenging to perform for
software engineers unfamiliar with the code base. This paper presents a framework
that assists software engineers in recovering a software project’s architecture from its
source code. The architectural recovery process is an iterative one that combines clus-
tering based on contextual and structural information in the code basewith incremental
developer feedback. This process converges when the developer is satisfied with the
proposed decomposition of the software, and, as an additional benefit, the frame-
work becomes tuned to aid future evolution of the project. The paper provides both
analytic and empirical evaluations of the obtained results; experimental results show
a reasonably superior performance of our framework over alternative conventional
methods. The proposed framework utilizes a novel compartmentalization technique
Coordinated Clustering of Heterogeneous Datasets (CCHD) that relies on contextual
and structural information in the code base, but, unlike most previous approaches,
does not require specific weights for each information type, which allows it to adapt
to different project types and domains.

B Sheikh Motahar Naim
snaim@miners.utep.edu

Kostadin Damevski
kdamevski@vcu.edu

M. Shahriar Hossain
mhossain@utep.edu

1 Department of Computer Science, University of Texas, El Paso, TX 79968, USA

2 Department of Computer Science, Virginia Commonwealth University,
Richmond, VA 23284-3019, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-017-0211-8&domain=pdf
http://orcid.org/0000-0001-9480-1236

544 Autom Softw Eng (2017) 24:543–572

Keywords Software architecture · Coordinated clustering · Heterogeneous data
clustering · Architecture recovery

1 Introduction

Over time, software project architectures diverge from their original design and cease
to follow their written documentation due to the dual effect of architectural erosion
and drift (Taylor et al. 2009). Architectural recovery techniques can be used to prevent
erosion and drift, by recommending restructuring opportunities (Bavota et al. 2013)
to developers, or to treat these conditions, by recovering the architectures of software
projects for which the architectural decomposition has been lost (Bauer and Trifu
2004).

Due to these and other applications, automatically extracting software architectures,
usually by using a clustering algorithm on the code base, has been a long standing
pursuit in the software engineering and software maintenance research communi-
ties (Shtern and Tzerpos 2012). While a number of approaches and tools have been
proposed for architectural reconstruction, more research is needed for such tools to
become integral part of the IDE and achieve wide application by developers.

Recently, a number of proposed software clustering techniques have relied on lex-
ical information, found in identifier names and comments in the source code, as a
means to perform software clustering, often combining this type of information with
structural information available in the source code (e.g., method caller to callee rela-
tionships) (Scanniello and Marcus 2011; Misra et al. 2012; Bavota et al. 2013). In
software clustering approaches that use both lexical and structural types of informa-
tion, the distance function must combine both types of information extracted from the
code base into a singlemetric, trading off the importance of one type of information for
the other. However, the ratio of structural to lexical information is impossible to know
at the outset and is dependent on a project-by-project basis analysis. This information
weighing problem has also been outlined in a recent survey of software clustering
performed by Shtern and Tzerpos (2012).

A recent comparative study of architectural recovery techniques by Garcia et al.
(2013a) shows that even the best software architecture extraction algorithms cannot
produce better than 50% average accuracy, compared to “ground truth” architectures
derived from expert developer feedback. Our experience in a smaller scale experiment
also indicates that extracting software architectures is a very subjective task, where
the results vary significantly from developer to developer. Therefore, evaluations of
architectural recovery techniques based on “ground truth” architectures can be subjec-
tive, and penalize logical decompositions that disagree with few developers’ opinion.
The approach presented in this paper, follows a few other solutions to the architecture
recovery problem that dynamically integrate developer opinion to adapt its clustering
results (Christl et al. 2005; Koschke 2002). When used by experienced developers,
such semi-automatic approaches can achieve improved reconstruction accuracy based
on minimal, as-needed, developer feedback.

In this paper, we describe a framework based on our novel CCHD algorithm, short
for Coordinated Clustering of Heterogeneous Datasets, which clusters a software
project’s source code in order to discover its inherent architecture. Our framework

123

Autom Softw Eng (2017) 24:543–572 545

leverages three datasets extracted from a software project’s source code: (1) text
retrieved from comments and identifiers in the source code, (2) method (function)
caller to callee relationships, commonly known as a call-graph, and (3) method to
class relationships. In addition to automatically producing a coherent software archi-
tecture, the framework provides a mechanism to maintain the quality of the extracted
architecture by placing newly developed code into appropriate architectural compo-
nents. In summary, the contributions of this paper are as follows.

1. The architectural recovery framework seamlessly combines programstructurewith
the natural language context of the code. The two types of data (lexical and struc-
tural) leveraged by our CCHD technique complement each other in describing
relationships between program elements in the source code. Unlike prior work
that views structural and lexical information as integrated data, we present a clus-
tering technique that allows two heterogeneous datasets (e.g., a call graph and a
lexical dataset) to be partitioned simultaneously using relationships between the
two without explicitly weighing their importance levels in the distance metric.

2. The architectural recovery framework is flexible. Along with automatic placement
of new code, the framework allows the user to refine an existing architecture when
necessary.

3. We provide a broad range of evaluations to verify if the frameworkmeets the needs
of software engineers. The evaluations include information theoretic measures,
conventional compartmentalization assessment techniques, as well as empirical
justifications by professional software engineers.

The recent surge in the use of a combination of lexical and structural informa-
tion (Bavota et al. 2013; Bauer and Trifu 2004; Shtern and Tzerpos 2012; Scanniello
andMarcus 2011; Misra et al. 2012) to solve the architectural decomposition problem
provides an indication of the growing importance of software architecture analysis
tools. Our approach addresses the problem of combining these two types of infor-
mation in a novel way. It also addresses a larger question present in many software
maintenance tools: how to smoothly and seamlessly incorporate contextual informa-
tion found in the program identifiers with structural information exhibited by the
code? This problem is present in a variety of software maintenance tools, including
feature location, program comprehension and software testing, all of which are of
great relevance to industrial applications with a strong software emphasis.

The rest of the paper is organized as follows. Section 2 reviews the literature related
to this work from different perspectives. We provide a formal description of the prob-
lem we are trying to solve in Sect. 3. Section 4 describes the process of preparing the
raw code base for further analysis. Section 5 describes the proposed CCHD framework
in details. Different evaluation metrics used in our experiments are defined in Sect. 6.
We describe the experimental set-up and present the results in Sect. 7. Finally, Sect. 8
discusses the implications of the experimental results.

2 Related work

Our solution to the problem of reconstructing software architecture involves extracting
lexical and structural information of a software code base. It generates two heteroge-

123

546 Autom Softw Eng (2017) 24:543–572

neous datasets and the relationships between them from a single code base. Then a new
architecture for the code base is obtained by clustering the datasets simultaneously
using an information theory based algorithm. Initial clustering results are refined using
the feedback of the users in an iterative fashion to finally achieve a stable structure.
In this section, we review the literature from these different aspects of our solution
framework.

2.1 Software clustering

Someprevious research that relies onboth lexical and call graph information to perform
software clustering are (Garcia et al. 2011; Bavota et al. 2013; Misra et al. 2012;
Scanniello and Marcus 2011). Bavota et al. (2013) propose a weighted combination
of two metrics that expresses the strength of the lexical and structural relationship
between two classes to modularize (or package) a software. In a similar approach,
Misra et al. (2012) uses a few more parameters to reflect both lexical similarity (e.g.
between class names, method names, or just plain program text), as well as structural
relationships (e.g. caller-callee, inheritance). Scanniello and Marcus (2011) leverage
graph partitioning techniques where the call graph edges are weighed based on shared
semantic information between two methods. We claim that the weakness of each of
these approaches are the arbitrary sets of weights applied to each class of information
(ormetric) to compute similarity between two program elements. Instead of combining
the call graph and lexical information in one dataset, we keep the information separate
and consider them relational data. Our approach co-clusters lexical and structural
information simultaneously without resorting to choosing a set of constants to weigh
the importance levels of the structural and the lexical information.

Recent work by Corazza et al. (2016) consider lexical information within the
source code but ignore the connectivity between them. Moreover, they use a prob-
abilistic method to weigh different code elements before clustering them whereas our
approach does not require any such pre-weighting. Though Zhu et al. (2013) consider
both similarity and connectivity between program elements, they have to adjust the
contributions of each of these factors using a random walk model. Praditwong et al.
(2011) use a multi-objective optimization based approach to find software modules of
high cohesion and low coupling. One of their objectives is to find nearly equal-sized
clusters, whichwe do not agree with due to our assumption that, naturally, there should
be modules of greatly different sizes in many software code base. This assumption
is based on the ground truth information we have for multiple code bases, labeled
by expert developers. For example, in the Hadoop data set, the five largest clusters
include more than 54% of the total classes, while the total number of clusters is 67.
Similar characteristics were found in the Apache OODT code base.

Design rules clustering, proposed by Cai et al. (2013), augments architectural
recovery techniques with the notion that certain design decisions (e.g. exhibited by
inheritance hierarchies) are fundamental to the software’s architecture and should be
given precedence over other, typical measures of cohesion and coupling. While we
have not experimented with the types of design rules described in their paper, we
believe that integrating them into a mixed-influence framework such as ours may be
one way of effectively applying them to a wide variety of code bases.

123

Autom Softw Eng (2017) 24:543–572 547

2.2 Software clustering improvement via software engineers’ feedback

Semi-automatic software clustering, which integrates human feedback into an auto-
mated technique, has previously been studied by a few researchers (e.g. Bavota et al.
2012; Koschke 2002; Christl et al. 2005). The strength of these types of approaches
in finding solutions that are close to developer opinions is also their weakness: poor
feedback can lead such algorithms to poor architectural reconstruction. We believe
that this weakness can be addressed by better project planning, i.e. by selecting the
most experienced developer or group of developers to guide the architecture recovery
process in order to produce a good result.

Bavota et al. (2012) considered a software clustering approach where the initial
result is improved via feedback from software engineers, an aspect which is similar to
the one described in this paper. However, our software clustering technique differs in
several ways, including the clustering algorithm, the objective function, and the way
in which developer feedback is incorporated.

Christl et al. (2005) used semi-automatic software clustering that integrates devel-
oper feedback for reflexion analysis, which maps software architectures extracted
from code into a hypothesized conceptual architecture. On one example application,
the necessary feedback was very small and the algorithm produced very high mapping
correctness. The authors do not consider evolving the code after the mapping is com-
plete, as our approach does, while the clustering algorithm relies only on structural
dependencies in the code.

2.3 Heterogeneous data clustering

In the literature, research on heterogeneous clustering appears in different forms. Some
researchers focus on clustering based on heterogeneous features (Yang andZhou 2006;
Yoon et al. 2006) to partition the data into multiple views and then combine the results
in a systematic way. There is also a surge in the use of transfer of knowledge from one
domain to another (Dai et al. 2007; Hossain et al. 2014). Some of the techniques to
cluster heterogeneous datasets depend on the concurrent influence of the clusterings
on each other based on implicit or explicit relationships between the datasets (Hossain
et al. 2010; Momtazpour et al. 2012). Gao et al. (2005) propose an algorithm to cluster
heterogeneous objects of two types—a central type and objects connected to the central
type of objects. The solution leverages a combination of pairwise co-clustering applied
on subdivided problems. In this paper, we propose a technique that clusters relational
heterogeneous data (e.g., a graph and a collection of text documents) simultaneously
without leveraging feature level heterogeneity.

2.4 Information theoretic approaches to co-clustering

Several clustering algorithms use information theoretic formulations to cluster objects
and features simultaneously (Gokcay and Principe 2002; Dhillon and Guan 2003;
Böhm et al. 2006). Dhillon et al. presents an algorithm (Dhillon et al. 2003) for
simultaneously clustering the rows and the columns of a contingency table of data.

123

548 Autom Softw Eng (2017) 24:543–572

The method views the contingency table as an empirical joint probability distribution
of twodiscrete randomvariables andfinds a clustering result thatmaximizes themutual
information between the cluster random variables. Banerjee et al. (2004) propose a
solution to the co-clustering problem using the minimumBregman information (MBI)
principle that simultaneously generalizes the maximum entropy. Our proposed CCHD
algorithm has resemblance with the mathematical machinery of the co-clustering of
Dhillon (2001) but it has broader functionality in terms of heterogeneity.

3 Problem description

3.1 Formalism

In modern object-oriented programming languages code is organized in classes,1

where commonly one class is stored in one file. The set of classes, C =
{c1, c2, . . . , cnc }, form the code base of a software project. Developers may provide
comments in the code for readability and to aid future modifications as a part of
their standard software development practice. Comments and thoughtfully declared
identifiers (e.g., variable names and method/function names) can create a rich natu-
ral language vocabulary, T = {t1, t2, . . . , tnt }, where ti is referred as the i th term of
vocabulary T . Classes consist of a set ofmethods/functions,M = {m1,m2, . . . ,mnm },
where M is the set of all methods in all classes of a specific software project. That
is, each method, mk of M , is associated with a unique identifier that combines a class
name with a method name.

C , T , and M have complex relationships between them. For example, there is an
inherent bipartite relationship between the terms in T and the classes in C since each
term can be associated with multiple classes. Classes commonly contain significant
numbers of terms,whichmakes this relationshipmore interesting than that of T andM .
These term-class relationships can be expressed as: S = {(ti , c j) : ti ∈ T, c j ∈ C}.

A second set of relations can be formed using the caller-callee relationships of the
methods. Each method of a class can call itself or other methods in the same class
or in another class. A call graph G(M ′, E) represents these relationships where each
method m ∈ M ′ ⊆ M . M ′ is the set of all methods that are categorized either as
callers or callees. The graph G is an undirected graph based on the assumption that
if one method calls another method, both the methods are expected to have strong
relationship and should be in the same cluster, irrespective of the direction of the
edge. The set disjunction, M − M ′ is the set of isolated nodes. An isolated method
that is neither a caller nor a callee does not impact the software architecture since it
will never execute, and therefore is external to the functionality of the software. As a
result, it is redundant to keep these isolated methods in the call-graph. In the rest of the
paper, for simplicity, whenwe useM we actually refer toM ′. Each edge (mi ,m j) ∈ E
represents a method call either from mi to m j or from m j to mi .

1 In this paper, we use class to refer to the programming language context of the word, rather than to a
collection or category.

123

Autom Softw Eng (2017) 24:543–572 549

The third set of relationships appears from the existence of the methods within
specific classes. Every method in the code base belongs to a particular class and most
classes contains one or more methods. We represent the method-class relationships as
a bipartite graphR = (C, M, R) where C and M are two sets of vertices representing
the classes and the methods respectively, and R = {{ci ,m j } : ci ∈ C,m j ∈ M} is the
set of relationships.

Now the problem of extracting a good architecture of a software project can be
expressed as developing the function � : {C, T, M} → P which maps three parame-
ters C , T and M into clusters of class-files P using the relationships S, G andR. �’s
objective is to extract the inherent software architecture with limited or no feedback
from the software engineers. In addition, such a function has the capability to deter-
mine the ‘proper’ location for any newly written (or modified) methods or classes so
that architectural drift can be prohibited in the future.

3.2 The proposed framework

Our solution to the described problem comprises of three stages: (1) capturing the
caller-callee relationships of the methods of a software code base to construct the call-
graph G, extracting relational dependence R between the methods and the classes,
and constructing term-class relation S for the class files; (2) incorporating call-graph
G, method-class relation R, and term-class relation S to discover the architecture of
a code base; and (3) automatic placement of newly written or modified code into the
extracted architecture. Figure 1 shows our software architectural recovery framework.
The framework applies a series of data extraction techniques and preprocessing to con-
struct S, G andR. Section 4 provides a detailed description of the techniques utilized
in this stage. The call-graph G is represented by an adjacency matrix, the term-class
relationships S are converted to a vector space model, and method class relationships
are stored in a binary matrix. The next stage combines these three heterogeneous data
sources and applies our coordinated clustering mechanism (CCHD) to produce a com-
partmentalization of the codes that reflects the relationships among the heterogeneous
data sets. We explain this process in Sect. 5. After the clusters are obtained, we char-
acterize each of them by selecting representative terms in a systematic and automated
way, perform cluster enrichment to distinguish our results from a vanilla clustering
algorithm that does not take the relationship between these heterogeneous datasets
into account.

Based on the characterization and enrichment results discovered in the second stage,
the software engineer can apply her/his knowledge and provide feedback to update
some of the results. After adjusting the results the framework trains a classifier for
automatic placement of new code in this software architecture. CCHD framework
has the ability to categorize both new classes and new methods since it produces
clusters for classes, methods and terms. However, in this paper, we build a classifier
for categorizing only new classes since the number of methods is too large. Huge
number of methods wouldmake the task of evaluation cumbersome for the developers.
A software engineer can iteratively provide feedback and modify the architecture as
required. In practice, this cycle can iterate a few times until the software engineers

123

550 Autom Softw Eng (2017) 24:543–572

Fig. 1 Framework of the complete system

are completely satisfied with the architecture and there are no more suggestions for
change.

3.3 Illustrative example

In the following we show a brief and very simplified example of how CCHD operates.
For this purpose, we consider a subsystem of three classes—SpellChecker, IndexState
and DocumentIndexer—extracted from the code base of the Sando code search tool,
shown in Fig. 1. Each class contains exactly one method, e.g. class SpellChecker
contains the method checkResult. One component of CCHD’s input is exactly this
method to class membership. Another input to CCHD is the relationships between the

123

Autom Softw Eng (2017) 24:543–572 551

system’s classes and natural language terms. Strength of a relationship between a class
and a term depends on how many times that term appears in that class file compared
to other class files. Exact formula to compute this strength is discussed in the next
section.

In Fig. 1, we observe that some of the methods are connected in the call graph,
i.e. a method calls another method. We can use this relationship as a bidirectional,
binary indication of a relationship between each two methods. This example, so far,
encompasses the three relationships that CCHD requires: (1)methods to classes, where
each method has a containing class; (2) classes to terms, where frequency of terms can
be used; and (3) methods to methods, where the call graph is used. CCHD optimizes
a cost function that combines all three of these relationships into a decomposition of
classes, e.g. classes DocumentIndexer and IndexState, were placed into one group,
while class SpellChecker was placed in another group.

Once CCHD has completed the initial assignment of classes to groups (or clus-
ters), the developer is asked to consider the choices the algorithm made. If, for
instance, the developer indicates that a better grouping is between classes IndexState
and SpellChecker, and places these two classes in one group, leaving class Docu-
mentIndexer in the other, CCHD learns from this feedback, creating an automated
classifier for each of the groups. So, when a new class d is introduced in the system
(or if the existing classes were modified in a way that their relationship strength is
affected), CCHDwill act to automatically reorganize the system’s architecture. As the
software system evolves, CCHD incorporates developers’ feedback at each step, using
it to tune the way it evolves the decomposition of this particular software system.

4 Data preparation

4.1 Data extraction

Our architectural recovery framework directly relies on three type of relationships—
class-lexical terms, method-class, and callee method-caller method relationships. The
effect of other types of connections between these types of data, such asmethod-lexical
terms, is expressed indirectly in the system via the above three, i.e. by the combination
of class-terms and method-class relationship. In the following section, we describe the
way we extract these three types of relationships from a raw software codebase. All of
the six real world codesbases we used in our experimental evaluations (Sect. 7) were
synthesized following this process.

To extract the list of methods and classes as well as a call graph containing the
invocation relationship between methods we rely on the SrcML.NET code analy-
sis framework.2 SrcML.NET constructs the list of method-class memberships and a
method-method call graph using lightweight program analysis techniques, while also
building an XML representation of eachmethod’s inner syntactic structure. This XML
is used to construct the other type of relationships i.e. class-term relationships required
by the CCHD framework. The XML representation provides a convenient means to

2 https://github.com/abb-iss/SrcML.NET.

123

https://github.com/abb-iss/SrcML.NET

552 Autom Softw Eng (2017) 24:543–572

extract the identifiers (variable names, method and class names) and comments from
each method. Javadoc-style comments, located directly above a method in some soft-
ware projects, are also parsed and inserted into each method’s term list. The term list
of a class comprises of all the terms of its methods as well as any other identifiers
or comments within its definition. Since SrcML.NET supports several programming
languages, including C,C++,C#, and Java, the data extraction routines are able to
rapidly obtain lexical and structural information from a variety of software projects.
In the paper’s companion website,3 we have provided the raw codebase of an open
source software proeject (Sando v1.7) and the corresponding relationships extracted
by applying this synthesis process.

4.2 Preprocessing

Several preprocessing steps are commonly applied to lexical data in order to remove
spurious matches based on common words in the language (e.g. “the”, “is”, “at”) or
common words in a particular software project, while also providing the ability to
match words which are semantically but not syntactically similar (e.g. “parse” and
“parsing”). Our goal in choosing from a variety of such preprocessing mechanisms
was to achieve the above mentioned goals in a straightforward way, without imposing
processing pipeline bulk that is unlikely to have widespread benefits.

We use vector space modeling (Manning et al. 2008) to represent the natural lan-
guage terms in each class in the source code, after removing the stop words and
numerals and applying Porter stemming. Each term t of class c is weighted as

wt,c = (1 + log(t ft,c))(log N
d ft

)
√∑nc

j=1((1 + log(t f j,c))(log N
d f j

))2
(1)

where t ft,c is the frequency of term t in class file c, d ft is the number of class-files
containing term t , nc is the number of terms in class c, and N is the total number of class
files. The above equation is a variant of tf-idf modeling with cosine normalization. The
comments and the identifiers of the class files of a code base differ in size. In general,
longer classes have higher term frequencies because many terms are repeated. The
cosine normalization helps lessen the impact of size of the class files in the vector
space modeling.

Some methods in the constructed call graph G may be isolated since they do not
have either a caller or a callee relationship. We eliminate these isolated methods from
the call graph, as they do not carry any useful relational information.

5 Coordinated clustering of heterogeneous datasets

In the core of theCCHDframeworkweuse a graph clustering algorithmnamed spectral
clustering (see Sect. 5.2) that tries to bring closely connected nodes of a graph in the

3 http://vcu-swim-lab.github.io/cchd.

123

http://vcu-swim-lab.github.io/cchd

Autom Softw Eng (2017) 24:543–572 553

same cluster so as to minimize the weights of the edges across clusters. Motivated by
the nature of spectral clustering algorithm,we extract different entities, namely classes,
methods and terms, and their relationships from a code base (described in Sect. 4),
and represent them in a heterogeneous graph so that relevant entities are grouped
in the same cluster. Notice that spectral clustering is usually used on homogeneous
graph where all the nodes are of same type. Though our dataset contains variety of
entities and relations, we are still able to represent them in a single graph maintaining
all the graph properties. This enables us to simultaneously cluster terms, classes,
and methods. Many clustering frameworks (Bae and Bailey 2006; Basu et al. 2008)
suffer from the necessity of expensive post-processing steps to relate different types
of entities after discovering homogeneous clusters. CCHD overcomes the necessity
of those post-processing steps through the use of an Eigenvalue method.

5.1 Unification of heterogeneous information

After the data extraction and the preprocessing steps on the original code base, we
have three datasets: call graphG, method-class associationsR, and class-term bipartite
relationships S. We situate these three datasets on a common footing to be able to
perform simultaneous clustering of all of them.

We use an nt ×nc matrix S to store the vector space representation of the class-term
associations S. S(t, c) = wt,c records the weight of the t th term of the cth class file
(computed using Eq. 1). We build an (nt + nc) × (nt + nc) adjacency matrixW1 for
the weighted bipartite relationships of S:

W1 =
[

0 S
ST 0

]
(2)

Similarly, we build an adjacency matrix W2 for the call graph G:

W2(i, j) =
{
1, if method mi calls method m j or vice versa

0, otherwise
(3)

Now, we merge W1 and W2 to obtain a combined adjacency matrix W .

W =
[W1 0

0 W2

]
=

⎡
⎣

0 S 0
ST 0 0
0 0 W2

⎤
⎦ (4)

W does not capture the relationships betweenW1 andW2. We bridgeW1 andW2 by
putting the associations from method-class relationships R in the following way:

W(nt + i, nt + nc + j) =
{
1, if class ci includes method m j

0, otherwise
(5)

123

554 Autom Softw Eng (2017) 24:543–572

Fig. 2 Unification of heterogeneous datasets and their relationships

As a result, we have all three data sets within matrix W .

W =
⎡
⎣

0 S 0
ST 0 R
0 RT W2

⎤
⎦ (6)

Figure 2 demonstrates the steps of unifying the three heterogeneous datasets with an
example with three classes, five terms and four methods. The combined matrix, W is
somewhat similar to the Design StructureMatrix (DSM) proposed by Cai et al. (2011).

123

Autom Softw Eng (2017) 24:543–572 555

However, while the basic design structure matrix focuses on dependencies only, our
CCHD architecture is able to leverage vectors for nodes (e.g., classes), weights for
edges (e.g., term-class weights), and binary relations (e.g., call-graph relationships).
Such representation of the matrix enables us to accommodate all the entities extracted
from the code base and at the same time retain their mutual relationships. That is
why it produces meaningful results after being fed to spectral clustering algorithm
(ALGORITHM 1).

5.2 Partitioning the code base data

We partition the combined data W in such a way that connected methods, class files,
and relevant terms appears together in one group. We utilize graph Laplacian the-
ory in this space. In our algorithm, we utilized the unnormalized graph Laplacian
matrix (Luxburg 2007) for partitioning our datasets. The unnormalized graph Lapla-
cian matrix is given as:

L = D − W (7)

where D is the diagonal matrix defined as

di =
n∑
j=1

W(i, j) (8)

Our algorithm focuses on the following two properties of the unnormalized graph
Laplacian matrix.

– The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant
one vector 1.

– L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn .

An overview of many of its properties can be found inMohar and Alavi (1991), Mohar
(1997). We use Shi and Malik (2000) normalized spectral clustering algorithm to par-
tition classes C , terms T , and methods M all packaged together in W . Algorithm 1
outlines the spectral clustering we use for our software architectural recovery frame-
work. The exact number of clusters in a codebase is very subjective—the developers
themselves usually have different opinions—and hence difficult to know beforehand.
The general spectral clustering algorithm takes a fixed number of clusters as an input
but in our framework we run spectral clustering multiple times with different num-
ber of clusters. We report the experimental results in Sect. 7 for different values of
k (Figs. 4, 5, 6), and from those results we attempt to find a suitable value of k for
a particular code base. Although there are some quantitative measures like Average
Silhouette Coefficient (Struyf et al. 1997) and Dunn Index (Dunn 1973), which use
inter-cluster distances and intra-cluster distances to determine the best value for k,
they are not guaranteed to give exact results that will satisfy a subject matter expert.
Though the clustering algorithm described above is a general purpose one, it suits very
well with our purpose of clustering classes, methods and terms simultaneously. We

123

556 Autom Softw Eng (2017) 24:543–572

represent class-term relationships, call graph and method-class relationships of a code
base in a heterogeneous graph and apply the spectral clustering algorithm to obtain
heterogeneous clusters. Inside ALGORITHM 1, the column-wise Eigen vectors com-
pose the nodes relevant to classes, methods and terms. That is, each row represents a
vector for either a class, or a method, or a term.

Algorithm 1: Pseudocode for spectral clustering.
Data: The combined matrix obtained from Eq. 6 containing all the code elements and their

relationships, W and the number of clusters k
Result: Cluster assignment for each row ofW .
Steps:
1. Compute the diagonal matrix D, using Eq. 8.
2. Compute the unnormalized Laplacian L = D − W .
3. Compute the first k generalized eigenvectors u1, . . . , uk of the generalized eigenvalue

problem Lu = λDu. Package the eigenvectors u1, . . . , uk as columns into a n × k matrix
X where n is the total number of rows in W . Notice that each row of X is still
representing a class, or term, or method.

4. Apply k-means clustering on X to find k clusters.
5. Return cluster assignment for each row of X .

The result obtained from our coordinated clustering algorithm is unique in nature
because it combines methods, terms, and classes through an amalgamation of the
natural language context and the existing structural usage pattern of the methods. This
provides a primary architecture of the code base to the software developer, which can
be modified through subsequent passes as illustrated by the loop in Fig. 1.

5.3 Architectural refinement via developer feedback

We expect that a developer (or software architect) feedback is required in order to
tailor the initial clustering result into the most appropriate architectural decomposi-
tion. In soliciting feedback, our framework adopts two goals: (1) provide context by
characterizing each of the clusters using representative natural language terms; and
(2) minimize the number of program elements that require input from the developer.

To achieve the first goal, we show an list of terms for each cluster, ordered in ascend-
ing order of their distances from the corresponding cluster prototypes. To achieve the
second goal, apart from showing a similarly ordered list of program elements for each
cluster, we highlight the difference between the previous and current architectural
decomposition (i.e. what program elements were added or removed). This provides
enough information to the developer on the progress of the algorithm as it iteratively
incorporates their feedback.

At the outset of the iterative architectural decomposition process, we use simple
k-means clustering as the prior decomposition on which CCHD performs its initial
clustering. To map a CCHD cluster to a k-means cluster, we compare a CCHD cluster
with all the k-means clusters and select the most similar one for the mapping. We used
three similarity measures for this mapping—hyper geometric distribution (Berkopec

123

Autom Softw Eng (2017) 24:543–572 557

2007), number of common pair of classes between two clusters, and number of com-
mon classes between two clusters.

To provide feedback the developersmark the programelements first answerwhether
the specific set of methods, classes, and terms comprise an individual cluster, and if
yes, then they mark the elements that do not belong. This is forms the input of a Naive
Bayes classifier which becomes trained on the features of each cluster. Naive Bayes
is a relatively simple classification technique, which is computationally efficient, and
amenable to this specific problem.

After the training process is complete, an added benefit is that as new code is
written in the software project, the system will automatically organize it in the existing
architecture. This can ensure that the system, from that point on, does not stray from
the selected architectural decomposition.

6 Evaluation plan

In this section, we provide descriptions of the evaluation techniques we used to
assess the outcome of our framework. We used a wide spectrum of evaluation
techniques—from cluster quality measurement to computing information theoretic
mutual dependence between heterogeneous components to empirical assessments.
We provide the results of these evaluations next, in Sect. 7.

6.1 Evaluation datasets

We use seven different open source software projects, Sando (v. 1.7), Apache httpd (v.
2.0), JEdit (v. 5.1.0), Apache OODT (v. 0.2), Hadoop (v. 0.19.0), ArchStudio (v. 4) and
ITK (v. 4.5.2) to evaluate our approach. Table 1 summarizes the characteristics of these
datasets. We use only the Sando dataset for the empirical (human subject) evaluation,
as we were able to recruit some of the primary developers as participants. We use
only the Hadoop, OODT, ArchStudio and ITK datasets for comparative evaluation,
as those as where both “ground truth” results and previous benchmarks for other
architectural recovery techniques are also available (Garcia et al. 2013a). In some of
the other evaluation categories where we evaluate a parameter or detailed result of our

Table 1 Summary of the evaluation datasets

Dataset Lines of code Classes Terms Methods Method-class relations Call graph edges

Sando 20K 142 2687 819 841 414

httpd 60K 366 12,994 3488 3495 4365

JEdit 100K 830 14,514 6878 7014 18,598

OODT 180K 940 11,023 11,271 5812 15,310

Hadoop 200K 2895 25,382 31,300 17,199 49,812

ArchStudio 280K 1854 19,691 7285 6015 10,010

ITK 1M 989 11,608 5205 4143 4799

123

558 Autom Softw Eng (2017) 24:543–572

technique, for clarity, we select and focus our discussion only on one or a few of the
datasets.

CCHD’s initial clustering output for the above systems, for a fixed number of
clusters, in provided in a companion website4 to this paper.

6.2 Evaluation for relations clustering

CCHD utilizes the relationships in R to cluster the methods in G and the class files
in S. One endpoint of a relationship inR is associated with a method while the other
endpoint is associated with a class. In an ideal architecture, the endpoints of each
relationship of R should be in the same cluster. In the worst case, with an arbitrarily
constructed architecture, all endpoints of the relationships tend to scatter in multiple
clusters forming a uniform distribution of the relationships over the clusters. One
measure to evaluate the relational nature of the methods and the class files across
clusters is the divergence of a clustering from its possible worst case scenario. We
build a k-by-k contingency matrix Br to capture the overlap of clustering agreements
between two endpoints of the relationships. We record the percentage of relationships
having one end in a class file cluster i and the other end in a method cluster j in
Br (i, j). Br captures the distribution of the class file clusters in the method clustering
and each row sums up to 1. Similarly, we build another k-by-k contingency matrix Bc

which represents the distribution of the method clusters in the class file clustering. The
columns of Bc sums up to 1. In an ideal case, both Br and Bc will constitute diagonal
matrices since the endpoints of each relationship will be assigned to the same cluster.

Br (i, j) = NR(Ci , Mj)∑k
j ′=1

NR(Ci , Mj ′)
(9)

Bc(i, j) = NR(Ci , Mj)∑k
i ′=1

NR(Ci ′ , Mj)
(10)

The function NR(Ci , Mj) returns the number of relationships between a class file
cluster Ci and a method cluster Mj .

Since each row of Br sums up to 1 it is possible to compute Kullback–Leibler (KL)
divergence, δr (i), between the i th row and a corresponding uniform distributionU (1k).
The KL divergence is an information theoretic metric for the difference between two
probability distributions. The uniform vectorU (1k) represents lack of any architecture
where relationships are scattered arbitrarily in all clusters. Therefore, δr (i) is ameasure
of how well the i th cluster of the class file clustering is distributed across the method
clusters.

δr (i) = KL-Div

(
Br (i, :),U

(
1

k

))
(11)

4 http://vcu-swim-lab.github.io/cchd.

123

http://vcu-swim-lab.github.io/cchd

Autom Softw Eng (2017) 24:543–572 559

Similarly, we can compute the divergence of each column of Bc with the corre-
sponding uniform distribution.

δc(j) = KL-Div

(
Bc(:, j),U

(
1

k

))
(12)

We use median of all the 2k KL-Divergence values (for k rows of Br and k columns
of Bc) as our overall measure of relational architecture evaluation. Higher median
KL-Divergence indicates better relationship between class file clustering and method
clustering, i.e., methods are well placed in the class files. Section 7.2 presents detailed
experimental results for this evaluation.

6.3 Mutual information

Another means of evaluating our software clustering algorithm is by considering how
well the resulting clusters capture the relationship betweenmethods and classes within
a single cluster; a poor clustering would contain many methods that are clustered
separately from their containing classes. We measure the information shared by the
methods in one side of the relationships in R and the class files in the other side using
mutual information (MI) (Chaitin 1982).

MI =
k∑

i=1

k∑
j=1

Ni j

N
log2

⎛
⎝

Ni j
N

ai b j

N2

⎞
⎠ (13)

where Ni j is the number of relationships between class file cluster i andmethod cluster
j , ai is the total number of relationships associated with class file cluster i , b j is the
total number of relationships associated with method cluster j , and N is the total
number of relationships in R.

6.4 Local evaluation of the class file clustering

Finally, we evaluate the quality of the resulting class clustering using several metrics
intended to reveal how closely the classes within each of the resulting clusters are
related. After running our architectural recovery algorithm, we evaluate the resultant
class file clustering locally by using Sum of Squared Distances (SSD) (Cressie 1993),
Dunn Index (DI) (Dunn 1973), and mutual information between terms and class files.
SSD provides a measure of cohesion of a clustering and smaller values are desired.
Dunn index takes both cohesion and clusters’ separation into account. It is defined
as the ratio between the minimal inter-cluster distance and the maximal intra-cluster
distance.

DI = min
1≤i≤k

{
min
1≤ j≤k

{
d(i, j)

max1≤l≤k d
′
(l)

}}
(14)

123

560 Autom Softw Eng (2017) 24:543–572

where d(i, j) is the distance between clusters i and j , and d
′
(l) measures the intra-

cluster distance of cluster l. Higher Dunn index values are better.
We use Eq. 13 to compute the mutual information between terms and the class files.

The only difference is that the relationships considered in Eq. 13 are replaced by the
bipartite relationships between the terms and the class files. Section 7.3 describes the
experimental findings for local evaluation of the class file clustering.

6.5 Local evaluation of the call graph partitioning

The call graph is composed of a complex set of relationships between the methods.
Our CCHD-based approach clusters both the call graph and the class files simultane-
ously to obtain a meaningful partition for both. The call graph itself can be partitioned
independently using Shi and Malik (2000) normalized cut algorithm. Then we can
compare the results obtained by any other approach to this independent graph cluster-
ing to verify if the other approach provides a different result set than the standalone
graph partitioning.We compute the Jaccard index (JI) (Yue andClayton 2005) between
two clustering outcomes to find their similarity. For every pair of methods in the call
graph, JI investigates whether two methods are clustered together in both clusterings
or separate in both clusterings, or together in one but separate in the other. JI is defined
as follows.

J = a + b(
n
2

) (15)

where a is the number of agreements across all pairs, b is the number of disagreements,
and n is the number of vectors in the dataset.

We use a second method to evaluate the quality of the call graph partitions. One of
the objectives of graph clustering is to minimize the number of edges that have their
endpoints in two different partitions. In an ideal case, each cluster will be a graph
component with no edge between the clusters. We compute the percentage of edges
of the call graph that have their two endpoints in the same cluster as a quality measure
of the call graph partitions.

Finally, we use conventional sum of squared distance (SSD) as a measure of cohe-
siveness of the clustering result. During any comparison, we use the same vector
representation of the call graph using (Shi and Malik 2000) but compute SSD with
different cluster assignments of the vectors for a fair assessment. We describe the
experiments with local evaluation of the call graph partitioning in Sect. 7.4.

6.6 Evaluation of the automatic organization

We evaluate the automatic categorization step for newly written codes using a k-fold
cross validation technique. k-fold strategy guarantees that every record is used as both
training and test over subsequent runs. In addition, we varied k of the k-fold technique
to experiment a wide range of data splits. Experimental results are shown in Sect. 7.6.

123

Autom Softw Eng (2017) 24:543–572 561

6.7 Evaluation of clustering accuracy

To evaluate the overall accuracy of the clustering result, we calculate the MoJoFM
(Wen and Tzerpos 2004) value between the estimated clustering with the ground truth
clustering. MoJoFM provides a measure of how close one clustering result (A) is to
another clustering (B), and is calculated as:

MoJoFM(A, B) =
[
1 − mno(A, B)

max(mno(∀A, B))

]
× 100% (16)

where mno(A, B) is the minimum number of Move or Join operations one needs to
perform in order to transform either A to B or vice versa.

6.8 Empirical evaluation

To evaluate the partitioning we conducted a user study, consisting of four professional
developers at ABB Inc. and the Sando open source code search tool,5 which was
developed in large part by those four developers. Sando was chosen for the study
since it is an open source software project of considerable size, consisting of hundreds
of classes and many thousands of lines of code, where the developers can still be
aware of the purpose of all or most of the classes in the project. The developers were
contacted via e-mail, and presented with a listing of seven components, which were
initially discovered by the CCHD-based framework. For each of the components,
the developers were provided a list of the classes in the component and an ordered
list of the most relevant terms from the code base that define that component. The
developers were also given, for each component, a list of classes that were added,
removed, and retained, compared to a plain k-means clustering of the dataset. The
developers were asked to mark each component (as a whole) as either good or bad,
based on the class files that are part of it. In addition, the developers were asked to
mark each of the class files that were added, removed or retained in the component
as either (1) good decision by the algorithm; (2) bad decision by the algorithm; or
(3) cannot decide. The developers worked individually and were given an unrestricted
time span to perform this task, although most of them reported having completed the
task within one hour. The evaluation consisted of only a single iteration of CCHD,
and therefore the developers did not experience or evaluate the training and tuning
performed by CCHD over multiple iterations, which is one of the strengths of this
technique.

7 Results

The research questions we seek to answer in this section are as follows.

5 http://sando.codeplex.com.

123

http://sando.codeplex.com

562 Autom Softw Eng (2017) 24:543–572

1. How does the runtime of the CCHD approach scale with increases in number of
classes and terms? (Sect. 7.1)

2. Are the relationships between the methods in the call graph and the class file data
preserved at cluster level using CCHD? (Sect. 7.2)

3. Does the CCHD algorithm improve the quality of the class file clustering?
(Sect. 7.3)

4. Is the quality of the call graph partitioningwith CCHDbetter than a direct mapping
of an independent class file clustering to related methods? (Sect. 7.4)

5. Are the components of the architecture discovered by the CCHD approach empir-
ically justifiable? (Sect. 7.5)

6. How does the proposed framework perform in categorizing new code into an
extracted architecture? Can the framework provide a characterization of each com-
ponent of a software architecture discovered by the CCHD approach for better
understanding of the code base? (Sect. 7.6)

7. How does the initial clustering performed by CCHD compare to other state of the
art software clustering techniques? (Sect. 7.7)

7.1 Runtime characteristics

To examine the runtime characteristics of the CCHD approach, we prepared synthetic
datasets with smoothly varying the number of classes, methods, and strengths of rela-
tionships between them. Using synthetic data enabled us to create artificial conditions
for evaluating the runtime of CCHD that wewould have a hard time to create using data
from the wild. The synthetic datasets were generated by randomly creating entries in
the matrix of natural language terms, classes and methods, where we constrained the
number of methods to be 5 times the number of classes. When varying the number of
classes, we kept the number of terms fixed at 500, while we kept the number of classes
fixed at 50 when varying the number of terms. Figure 3 shows the runtime behavior or
the CCHD approach. It shows that the runtime monotonically increases with number
of classes and terms. We experimented the runtime with different numbers of clusters.

Fig. 3 Runtime characteristics, (left) with varying number of classes (right) with varying number of terms

123

Autom Softw Eng (2017) 24:543–572 563

With any number of clusters in the experiment, we observe that the runtime increases
are modest. MATLAB codes for generating these synthetic datasets are provided in
the paper’s companion website.

7.1.1 Complexity analysis

CCHD framework works in several stages—pre-processing, building the combined
matrix, running spectral clustering, and building the classifier. In this section we
analyze the computational complexity of the CCHD framework and its different com-
ponents. The symbols used in this section refer to the same symbols described in
Sect. 3.1. The pre-processing step is mostly about removing stop words, performing
stemming and computing the tf-idf values of all the terms in each document, which has
a time complexity of O(nc × nt) (Hossain et al. 2012). Once we have the tf-idf values
for each word-document pair, we just have to go over all the pairs, which is equal to the
number of edges in the class-term association graph, and put each tf-idf value in corre-
sponding cell in constant time. Similarly, we have to go over all the edges of call graph
and method-class relationship graph to complete building the combined matrix, W .
Therefore, total cost for building the combined matrix is O(|S|+|R|+|E |). The most
expensive parts of spectral clustering are solving the generalized eigenvalue problem
that takes O(n3) time (Mises and Pollaczek-Geiringer 1929; Pohlhausen 1921) and
applying k-means clustering that takes O(knt) time (Na et al. 2010), where k is the
number of clusters and t is the number of iterations for the algorithm to converge.
Notice that in this solution, the number of nodes for spectral clustering is the sum
of all the entities in the code base, that is, n = nc + nt + nm . Based on the cluster-
ing results and developers’ feedback we run Naive Bayes classifier to categorize the
classes using their term distribution. The training process takes O(nc × nt) time and
the categorization step takes O(k×nt) time for a single class (Zheng andWebb 2005).
Though the framework goes throughmultiple stages, and some of them have relatively
higher time complexities (e.g. spectral clustering), all these things will be done offline
except the categorization step of Naive Bayes classification that has very low time
complexity. Therefore, once the system goes live, there should not be any issues with
time. Section 7.1 characterizes the runtime of CCHD using a synthetic dataset.

7.2 Relationship preservation by CCHD

The CCHD approach provides a balance between the clusters’ quality in multiple
datasets and preservation of cluster level relationships between those datasets. To
measure how well the relationships are preserved at the cluster level, we use median
KL-divergence as explained in Sect. 6.2 and mutual information as described in
Sect. 6.3.We compare our resultswith independent executions of spectral clustering on
the call graph and the inter-class lexical similarity datasets. Note that our framework,
CCHD, is also based on spectral clustering (Ng et al. 2002), but using a combination
of the call graph and class lexical similarity. Therefore, in this evaluation we aim to
show that this combination outperforms isolated executions of spectral clustering on
each of the constituent relationships. We vary the number of clusters from two to ten.

123

564 Autom Softw Eng (2017) 24:543–572

(a)

(b)

Fig. 4 Information theoretic evaluation to measure the quality of the relationship preservation by CCHD
approach and independent execution of k-means on the call graph and the class file datasets. a Median KL-
Divergence to compute the distribution of the relationships across two clusterings: (left) Sando, (middle)
Apache httpd, and (right) jEdit. b Shared information between methods and class files in terms of mutual
information: (left) Sando, (middle) Apache httpd, and (right) jEdit.

Figure 4a shows themedian KL-Divergence with different number of clusters using
three different datasets and two approaches—CCHD and independent execution of
spectral clustering. All the three plots depict that the CCHD approach provides higher
median KL-Divergence from the uniform distribution than the independent spectral
clustering executions. This indicates that our CCHD approach provides a mechanism
to bring two endpoints of a relationship to the same cluster. With each of the datasets,
the results become better with larger number of clusters. Figure 4b shows the corre-
sponding mutual information for each code base. We observe that, with any number of
clusters, the mutual information between the method clusters and the class file clusters
is higher with the CCHD approach than the independent execution. Although class
files and the call graph are generated from the same code base, conventional clustering
algorithms cannot take context and modular usage of the code into account, and as a
result the relationships are not well preserved. With CCHD, the relationships are pre-
served along with the clusters’ locality. Section 7.3 portrays the experimental results
for clusters’ locality.

7.3 Quality of the class file clusters

In this section, we assess the quality of the class file clusters discovered by our CCHD
approach. We used all the three datasets—Sando, Apache httpd, and jEdit—for the

123

Autom Softw Eng (2017) 24:543–572 565

Fig. 5 Class cluster quality comparison between CCHD and a similarity matrix based spectral k-means
clustering algorithm using the Apache httpd dataset: (left) SSD, (middle) Dunn index, and (right) term-class
mutual information

experiments but are reporting only the results of httpd in this space because the other
datasets have similar findings. We compare the results of the CCHD approach to a
similarity matrix based spectral k-means clustering algorithm, which is a baseline
that is most similar to the clustering algorithm described in this paper. For both the
algorithms, the CCHD approach and the similarity matrix based spectral k-means, we
map the resultant class file cluster labels to the original vector of terms and compute
the SSD. This evaluation ensures the fairness of comparison since SSD is based on
the original vector space rather than any transformed one (as in CCHD and spectral
clustering). Figure 5(left) shows that the CCHD approach provides lower SSD than the
spectral k-means clustering. This indicates that, for the httpd dataset, CCHD provides
better locality of a class file clustering than the k-means algorithm. Moreover, the
increase in SSDwith larger number of clusters usingCCHD is smaller than the increase
with spectral k-means algorithm.

Figure 5(middle) shows the evaluation with the same setting but using Dunn Index
(DI) instead of SSD. Larger DI values are better. Though it is practically very hard for
a system to show superior performance from every angle for all the datasets, CCHD
shows reasonably better results in most of the cases. We observe that CCHD has
competitive DI compared to the spectral k-means algorithm. DI of CCHD is better
than the spectral k-means algorithm for almost any k. The exceptions for Apache httpd
are k = 4 and k = 5. For jEdit, CCHD has smaller DI only with k = 2. This indicates
that although the CCHD approach takes many items into account—e.g., call graph
locality, relationship preservation, and class file clustering quality—it does not result
in deterioration of quality of the class file clustering. In Sect. 7.4, we report that CCHD
does not deteriorate the quality of the call graph partitions either.

Since we aim to capture the holistic features of a code base, we utilize the call
graph, class files, and the relationships between methods and the class files while the
conventional k-means algorithm uses only the document vectors for clustering a code
collection. In a sense, our approach has a possibility of loosing mutual information
between terms and class files since we use relational information for clustering the
call graph and the class files simultaneously. Despite the possibility, Fig. 5(right)
shows that the CCHD approach provides better mutual information trends, barring the
exceptions for k = 7 and k = 8, even when compared to the standalone execution
of spectral clustering algorithm on the class files. Moreover, for the exceptional cases
when CCHD cannot give better results, they are fairly close to the spectral clustering
results.

123

566 Autom Softw Eng (2017) 24:543–572

Fig. 6 Evaluation of the call graph partitioning for the jEdit code base: (left) Jaccard similarity index
between a clustering mechanism and Shi and Malik (2000) normalized cut algorithm, (middle) SSD of the
graph partitioning using different approaches, (right) percentage of call graph edges within each cluster
using different approaches

7.4 Quality assessment for the call graph partitions

Figure 6(left) shows that both the CCHD approach and the direct mapping of k-means
class clustering to themethods provide different clustering results than Shi andMalik’s
(2000) normalized cut algorithm applied on the call graph. The CCHD approach tends
to produce lesser similarity to the normalized cut algorithm than the direct class file
to method mapping. This illustrates that our approach neither follows direct mapping
of class file clusters to label the methods nor it relies on the normalized cut based
algorithm to partition the call graph. In addition to providing different clustering
results, the CCHD approach tends to provide high quality clusters in terms of locality
when compared to the normalized cut algorithm and direct class file cluster mapping
as shown in Fig. 6(middle). Figure 6(right) illustrates that our CCHD approach has the
best percentage of call graph edges inside the partitions. The results clearly show that
the call graph partitioning with the CCHD approach provides unique and high quality
graph partitions. We used all the three code bases for this experiment and obtained
similar trends.

7.5 Empirical evaluation

All of the four participants of our developer case study reported that examining the
Sando classes for each of the 7 components, categorized by CCHD, was not difficult
and consumed less than one hour of their time. Most of the participants, 3 out of 4,
found that 6 components (out of 7) were logically constructed, while one developer
found only 5 components as satisfactory. There was some disagreement among the
developers on which components were inappropriate: two developers found Cluster
1 as poorly constructed, while two others found Cluster 7 as poor. Another developer
thought thatCluster 6was incorrect.Cluster 1was the largest, consisting of 82Sando
classes, which bothered the developers thatmarked it as inappropriate, while the others
regarded Cluster 1 as defining the core functionality of Sando. One the other hand
Cluster 7 was one of the smallest, consisting of only 4 Sando classes. The two
developers that found Cluster 7 as inappropriate felt that while it included a coherent
set ofSando classes, it did not include several other relatedSando classes that should

123

Autom Softw Eng (2017) 24:543–572 567

have been included. Not having included necessary functionality was also the reason
Cluster 6 was marked as incorrect by the single developer.

Software architecture recovery is highly subjective, as shown by previous studies
as well as by the general lack of agreement among the developers in our study on the
accuracy of each of the extracted clusters. Overall, CCHDwas successful at providing
the developers a good initial architecture, as the vast majority of the clusters were
marked as appropriate by the developers, while the framework’s ability to fine tune
the clustering by training a classifier is aimed at addressing developer subjectivity in
software architectural recovery.

7.6 Automatic categorization and characterization of clusters

To evaluate the accuracy of our automatic categorization technique after applying the
CCHD approach, we use cross fold validation over the CCHD outcome. We report
the accuracies with different number of clusters and varying test and training splits in
Fig. 7. We only report the results with the Sando code base because we designed the
empirical evaluation using Sando. Our observation with the CCHD outcome for the
Sando code base is that the class are well distributed across the clusters when there
are seven groups. Figure 7(left) shows that with different training and test splits, we
obtain an accuracy of around 97%with seven clusters.With k = 3 and 5 the accuracies
are more than 90%. With large number of clusters (e.g., k = 9) the accuracies reduce
which can be expected with any automatic categorization.

The software engineers provided feedback on CCHD results with k = 7 (Sect. 7.5).
Since three out of software engineers found that six clusters (out of seven) were log-
ically constructed, we removed one suggested cluster (Cluster 7) from the list and
applied cross fold validation over six clusters. Another important aspect of verify is a
simple spectral clustering over the similarity matrix for the code classes provides high
quality classification. The categorization accuracy comparison in Fig. 7(right) illus-
trates that bothCCHDoutcomes andmodifiedCCHDoutcomes providemore accurate

Fig. 7 Results for automatic placement of codes into existing architecture: (left) after applying CCHDwith
different number of clusters and (right) a comparison of categorization accuracy between three approaches
using different clustering outcomes—a similarity matrix based spectral clustering with k = 7, CCHD
approach with k = 7, and modification of the CCHD outcome using software engineer’s feedback

123

568 Autom Softw Eng (2017) 24:543–572

Table 2 Characterizations of three example clusters

Cluster label Representative terms (class probability of terms p(t |c))
Graphical user
interface

box (0.0006), text (0.0006), window (0.0005), control (0.0005), event (0.0005)

Search search (0.0002), criteria (0.00018), result (0.00016), index (0.00015), query (0.00015)

Spell checking Spell (0.0005), engine (0.0005), suggest (0.0005), word (0.0004), language (0.0004)

Terms with highest class probability p(t |c) are listed

categorization than the spectral clustering without considering any relationships and
the call graph.

To aid the process of analytical evaluation of the clustering result, we provide the
software developers with a characterization of each cluster. When we train our system
for automatic placement of new codes, we obtain the probability of each term being
associated with each cluster. For each cluster, we sort these probabilities in descending
order and present the corresponding terms as a characterization of each cluster. Table 2
shows the characterizations of three clusters (out of seven) discovered from the Sando
dataset.

7.7 Comparison with other techniques

To evaluate the quality of software architecture recovered by CCHD framework, we
measure its accuracy against the ground truth information of four open source code
bases: Apache OODT (version 0.2), Hadoop (version 0.19.0), ArchStudio (version
4) and Insight Segmentation and Registration Toolkit (ITK, version 4.5.2) (Garcia
et al. 2013b; Lutellier et al. 2015). The accuracy of an architecture is calculated as
MoJoFm using Equation 6.7. We then compare the accuracies of CCHD on OODT,
Hadoop, ArchStudio and ITK data sets with six other state-of-the-art software archi-
tecture recovery techniques, namely,Algorithm forComprehension-DrivenClustering
(ACDC) (Tzerpos and Holt 2000), Weighted Combined Algorithm (WCA) using UE
measure (Maqbool et al. 2004), scaLable InforMation BOttleneck (LIMBO) (Andrit-
sos andTzerpos 2005),Bunch (Mancoridis et al. 1999), uniformversion ofZone-Based
Recovery (ZBR) (Corazza et al. 2010) and Architecture Recovery using Concerns
(ARC) (Garcia et al. 2011). The MoJoFM values of these techniques on the four
data sets were collected from the survey of Garcia et al. (2013a) and their later work
(Lutellier et al. 2015). Table 3 summarizes the performance of different techniques.
The MoJoFm value for LIMBO was not available because this technique produces an
architecture of OODT dataset for which MoJoFM calculation does not terminate. We
found that the CCHD framework achieved the best accuracy on OODT and ITK data
sets, was close to best one on ArchStudio, and came out as second-best on Hadoop
data set. This is to note that the accuracies achieved by the CCHD framework is based
on only the initial clustering (without developers’ feedback).

123

Autom Softw Eng (2017) 24:543–572 569

Table 3 Comparison of
architecture recovery accuracies
(in MoJoFm) of different
methods

Method OODT Hadoop ArchStudio ITK

ARC 48.48 54.28 62 59

ACDC 46.01 62.92 77 59

WCA-UE 43.67 42.15 33 32

LIMBO – 19.23 26 31

Bunch 31.56 51.24 – –

ZBR-UNI 30.89 36.00 48 –

CCHD 52.83 60.36 76.8 65.63

Bold values of the last row are to
highlight the values for our
method. Remaining bold values
show the best result among other
methods for each data set

8 Implications of the results

Our CCHD software clustering approach presents a novel model and algorithm for
software clustering, coupled with an iterative process of integrating developer feed-
back to improve the clustering that was initially obtained. The approach builds on
previous successes of integrating lexical and structural information for improving the
quality of software clustering, but presents an approach that is free of pre-weighting
of information and other assumptions, which may limit techniques that use them in
applying across a wide set of software projects.

CCHD uses relationships between methods, relationships between classes and
the correspondence of methods and classes to perform the clustering. As method
relationships, in this paper, we used the call graph, and as class relationships, we
used lexical similarity between natural language terms in the classes. Other rela-
tionships between classes or methods can easily be integrated, as well as composite
metrics that combine several relationship types, e.g. class inheritance and lexical
similarity.

While the initial CCHD clustering is competitive with the best approaches in the
field, we find, based on a small-scale study of developers in the field, that improving
the initial clustering to fit a particular project or specific developer is necessary in order
to achieve industrially-usable architecture recovery. Also, CCHD will not effectively
decompose extremely degraded legacy systems that have strong inter-dependencies
and contain similar, repetitive natural language semantics. Better metrics, which may
be integrated into the CCHD framework, that can tease out the original architecture
are required to improve the system’s effectiveness for such cases.

An additional benefit of the proposed technique is the ability to automatically
characterize the clusters by providing the probabilistically strongest terms. This char-
acterization was very important in conducting our developer study, in order to further
clarify to the participants the nature of each cluster. The idea of characterizing software
clusters has been discussed by others, but is not yet a required part of each technique
or tool. We believe that automatic cluster characterization is absolutely integral to
developers’ use of architecture recovery systems, and should be performed by all such
approaches that utilize natural language information.

123

570 Autom Softw Eng (2017) 24:543–572

9 Conclusions

We have presented a data analytic framework leveraging a palette of data mining
techniques to recover software architecture from a code base. Experimental results and
empirical evaluations show that the framework discovers software project architectures
systematically to help software engineers maintain complex code bases.

Our directions for future work are two fold. Currently, our framework allows soft-
ware engineers to improve the clustering outcomes at the instance level. A future
direction is to allow the users to provide abstract level feedback, for example, how
clusters can be merged together, how some clusters can be subdivided, or a combi-
nation of both, where clusters can be regrouped with a scatter and gather approach.
This would help software engineers capture more expressive relationships between
the call graph and the lexical dataset. Secondly, we aim to enrich the CCHD approach
by providing temporal information about the development history of the code base
using version control. This will incorporate the code base knowledge propagated over
time to obtain a better architecture.

References

Andritsos, P., Tzerpos, V.: Information-theoretic software clustering. IEEE Trans. Softw. Eng. 31(2), 150–
165 (2005)

Bae, E., Bailey, J.: Coala: a novel approach for the extraction of an alternate clustering of high quality and
high dissimilarity. In: Proceedings of the Sixth International Conference on Data Mining (ICDM’06),
IEEE, pp 53–62 (2006)

Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S., Modha, D.: A generalized maximum entropy approach to
Bregman co-clustering andmatrix approximation. In: Proceedings of the 10th InternationalConference
on Knowledge Discovery and Data Mining (KDD’04), pp. 509–514 (2004)

Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algorithms, Theory, and Appli-
cations. CRC Press, Boca Raton (2008)

Bauer, M., Trifu, M.: Architecture-aware Adaptive Clustering of OO Systems. In: Proceedings of the 8th
European Conference on Software Maintenance and Reengineering (CSMR’04), pp. 3–14 (2004)

Bavota, G., Carnevale, F., Lucia, A., Penta, M., Oliveto, R.: Putting the developer in-the-loop: an interactive
GA for software re-modularization. In: Proceedings of the 4th International Symposium on Search
Based Software Engineering (SSBSE’12), pp. 75–89 (2012)

Bavota, G., Lucia, A., Marcus, A., Oliveto, R.: Using structural and semantic measures to improve software
modularization. Empir. Softw. Eng. 18(5), 901–932 (2013)

Berkopec, A.: HyperQuick algorithm for discrete hypergeometric distribution. J. Discrete Algorithms 5(2),
341–347 (2007)

Böhm, C., Faloutsos, C., Pan, J., Plant, C.: Robust information-theoretic clustering. In: Proceedings of
the 12th International Conference on Knowledge Discovery and Data Mining (KDD’06), pp. 65–75
(2006)

Cai, Y., Iannuzzi, D., Wong, S.: Leveraging design structure matrices in software design education. In:
Proceedings of the 24th IEEE-CS Conference on Software Engineering Education and Training
(CSEET’11). IEEE, pp. 179–188 (2011)

Cai, Y., Wang, H., Wong, S., Wang, L.: Leveraging design rules to improve software architecture recovery.
In: Proceedings of the 9th InternationalACMSigsoft Conference onQuality of SoftwareArchitectures,
ACM, New York, NY, USA, QoSA’13, pp. 133–142. doi:10.1145/2465478.2465480 (2013)

Chaitin, G.: Algorithmic Information Theory. Wiley Online Library, New York (1982)
Christl, A., Koschke, R., Storey, M.: Equipping the reflexion method with automated clustering. In: 12th

Working Conference on Reverse Engineering. IEEE, pp. 10–20 (2005)

123

http://dx.doi.org/10.1145/2465478.2465480

Autom Softw Eng (2017) 24:543–572 571

Corazza, A., Di Martino, S., Scanniello, G.: A probabilistic based approach towards software system clus-
tering. In: 2010 14th European Conference on Software Maintenance and Reengineering (CSMR).
IEEE, pp. 88–96 (2010)

Corazza,A.,DiMartino, S.,Maggio,V., Scanniello,G.:Weighing lexical information for software clustering
in the context of architecture recovery. Empir. Softw. Eng. 21(1), 72–103 (2016)

Cressie, N.: Statistics for Spatial Data, vol. 900. Wiley, New York (1993)
Dai, W., Xue, G., Yang, Q., Yu, Y.: Co-clustering based classification for out-of-domain documents. In: Pro-

ceedings of the 13th International Conference on Knowledge Discovery and Data Mining (KDD’07),
pp. 210–219 (2007)

Dhillon, I.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings
of the 7th International Conference onKnowledgeDiscovery andDataMining (KDD’01), pp. 269–274
(2001)

Dhillon, I., Guan, Y.: Information theoretic clustering of sparse cooccurrence data. In: Proceedings of the
3rd International Conference on Data Mining (ICDM’03), pp. 517–520 (2003)

Dhillon, I., Mallela, S., Modha, D.: Information-theoretic co-clustering. In: Proceedings of the 9th Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’03), pp. 89–98 (2003)

Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.
J. Cybern. (1973)

Gao, B., Liu, T., Zheng, X., Cheng, Q., Ma,W.: Consistent bipartite graph co-partitioning for star-structured
high-order heterogeneous data co-clustering. In: Proceedings of the 11th International Conference on
Knowledge Discovery in Data Mining (KDD’05), pp. 41–50 (2005)

Garcia, J., Popescu, D.,Mattmann, C.,Medvidovic, N., Cai, Y.: Enhancing architectural recovery using con-
cerns. In: Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society, pp. 552–555 (2011)

Garcia, J., Ivkovic, I., Medvidovic, N.: A comparative analysis of software architecture recovery techniques.
In: Proceedings of the 28th InternationalConference onAutomatedSoftwareEngineering (ICASE’13),
pp. 486–496 (2013a)

Garcia, J., Krka, I., Mattmann, C., Medvidovic, N.: Obtaining ground-truth software architectures. In:
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, pp. 901–910
(2013b)

Gokcay, E., Principe, J.: Information theoretic clustering. Pattern Anal. Mach. Intell. 24(2), 158–171 (2002)
Hossain, M.S., Tadepalli, S., Watson, L., Davidson, I., Helm, R., Ramakrishnan, N.: Unifying dependent

clustering and disparate clustering for non-homogeneous data. In: Proceedings of the 16th International
Conference on Knowledge Discovery and Data Mining (KDD’10), pp. 593–602 (2010)

Hossain, M.S., Gresock, J., Edmonds, Y., Helm, R., Potts, M., Ramakrishnan, N.: Connecting the dots
between pubmed abstracts. PLoS ONE 7(1), e29,509 (2012)

Hossain, M.S., Marwah, M., Shah, A., Watson, L., Ramakrishnan, N.: AutoLCA: a framework for sustain-
able redesign and assessment of products. ACM Trans. Intell. Syst. Technol. 5(2) (2014)

Koschke, R.: Atomic architectural component recovery for program understanding and evolution. In: IEEE
International Conference on Software Maintenance. IEEE Computer Society, pp. 478–488 (2002)

Lutellier, T., Chollak, D., Garcia, J., Tan, L., Rayside, D., Medvidovic, N., Kroeger, R.: Comparing soft-
ware architecture recovery techniques using accurate dependencies. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering (ICSE). IEEE, vol. 2, pp. 69–78 (2015)

Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R.: Bunch: a clustering tool for the recovery and main-

tenance of software system structures. In: IEEE International Conference on Software Maintenance,
1999 (ICSM’99). Proceedings. IEEE, pp. 50–59 (1999)

Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, vol. 1. CambridgeUniversity
Press, Cambridge (2008)

Maqbool, O., Babri, H.A.: The weighted combined algorithm: a linkage algorithm for software clustering.
In: Eighth European Conference on Software Maintenance and Reengineering, 2004. CSMR 2004.
Proceedings. IEEE, pp. 15–24 (2004)

Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM 9(1), 58–77
(1929)

Misra, J., Annervaz, K., Kaulgud, V., Sengupta, S., Titus, G.: Software Clustering: Unifying Syntactic and
Semantic Features. Working Conference on Reverse Engineering, pp. 113–122 (2012)

Mohar, B.: Some Applications of Laplace Eigenvalues of Graphs. Springer, Berlin (1997)

123

572 Autom Softw Eng (2017) 24:543–572

Mohar, B., Alavi, Y.: The Laplacian Spectrum of Graphs. Graph Theory Comb. Appl. 2, 871–898 (1991)
Momtazpour, M., Butler, P., Hossain, M.S., Bozchalui, M., Ramakrishnan, N., Sharma, R.: Coordinated

clustering algorithms to support charging infrastructure design for electric vehicles. In: Proceedings
of the 18th International Conference on Knowledge Discovery and DataMining (KDDUrbComp’12),
pp. 126–133 (2012)

Na, S., Xumin, L., Yong, G.: Research on k-means clustering algorithm: an improved k-means clustering
algorithm. In: In Proceedings of the 3rd International Symposium on Intelligent Information Technol-
ogy and Security Informatics (IITSI’10). IEEE, pp. 63–67 (2010)

Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process.
Syst. 2, 849–856 (2002)

Pohlhausen, E.: Berechnung der eigenschwingungen statisch-bestimmter fachwerke. ZAMM 1(1), 28–42
(1921)

Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-objective search problem.
IEEE Trans. Softw. Eng. 37(2), 264–282 (2011)

Scanniello, G., Marcus, A.: Clustering support for static concept location in source code. In: Proceedings
of the 19th International Conference on Program Comprehension (ICPC’11), pp. 1–10 (2011)

Shi, J., Malik, J.: Normalized cuts and image segmentation. Pattern Anal. Mach. Intell. 22(8), 888–905
(2000)

Shtern, M., Tzerpos, V.: Clustering methodologies for software engineering. Adv. Softw. Eng. (2012).
doi:10.1155/2012/792024

Struyf, A., Hubert, M., Rousseeuw, P.: Clustering in an object-oriented environment. J. Stat. Softw. 1(4),
1–30 (1997)

Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory, and Practice.
Wiley, New York (2009)

Tzerpos, V., Holt, R.C.: Acdc: an algorithm for comprehension-driven clustering. In: 2013 20th Working
Conference on Reverse Engineering (WCRE). IEEE Computer Society, pp. 258–258 (2000)

Wen, Z., Tzerpos, V.: An effectiveness measure for software clustering algorithms. In: 12th IEEE Interna-
tional Workshop on Program Comprehension, 2004. Proceedings. IEEE, pp. 194–203 (2004)

Yang, C., Zhou, J.: HClustream: a novel approach for clustering evolving heterogeneous data stream. In:
Proceedings of the 6th International Conference on Data Mining (ICDM’03), pp. 682–688 (2006)

Yoon, H., Ahn, S., Lee, S., Cho, S., Kim, J.: Heterogeneous clustering ensemble method for combining
different cluster results. Data Min. Biomed. Appl. 3916, 82–92 (2006)

Yue, J., Clayton, M.: A similarity measure based on species proportions. Commun. Stat. Theory Methods
34(11), 2123–2131 (2005)

Zheng, F., Webb, G.I.: A comparative study of semi-naive Bayes methods in classification learning. In:
Proceedings of the Fourth Australasian Data Mining Conference (AusDM05), Citeseer, pp. 141–156
(2005)

Zhu, J., Huang, J., Zhou, D., Yin, Z., Zhang, G., He, Q.: Software architecture recovery through similarity-
based graph clustering. Int. J. Softw. Eng. Knowl. Eng. 23(04), 559–586 (2013)

123

http://dx.doi.org/10.1155/2012/792024

	Reconstructing and evolving software architectures using a coordinated clustering framework
	Abstract
	1 Introduction
	2 Related work
	2.1 Software clustering
	2.2 Software clustering improvement via software engineers' feedback
	2.3 Heterogeneous data clustering
	2.4 Information theoretic approaches to co-clustering

	3 Problem description
	3.1 Formalism
	3.2 The proposed framework
	3.3 Illustrative example

	4 Data preparation
	4.1 Data extraction
	4.2 Preprocessing

	5 Coordinated clustering of heterogeneous datasets
	5.1 Unification of heterogeneous information
	5.2 Partitioning the code base data
	5.3 Architectural refinement via developer feedback

	6 Evaluation plan
	6.1 Evaluation datasets
	6.2 Evaluation for relations clustering
	6.3 Mutual information
	6.4 Local evaluation of the class file clustering
	6.5 Local evaluation of the call graph partitioning
	6.6 Evaluation of the automatic organization
	6.7 Evaluation of clustering accuracy
	6.8 Empirical evaluation

	7 Results
	7.1 Runtime characteristics
	7.1.1 Complexity analysis

	7.2 Relationship preservation by CCHD
	7.3 Quality of the class file clusters
	7.4 Quality assessment for the call graph partitions
	7.5 Empirical evaluation
	7.6 Automatic categorization and characterization of clusters
	7.7 Comparison with other techniques

	8 Implications of the results
	9 Conclusions
	References

