Autom Softw Eng (2017) 24:623-671 @ CrossMark
DOI 10.1007/s10515-016-0200-3

An Architecture based on interactive optimization
and machine learning applied to the next release
problem

Allysson Allex Aratjo! - Matheus Paixao? -

Italo Yeltsin! - Altino Dantas! - Jerffeson Souzal

Received: 1 April 2015 / Accepted: 20 May 2016 / Published online: 6 June 2016
© Springer Science+Business Media New York 2016

Abstract The next release problem (NRP) consists of selecting which requirements
will be implemented in the next release of a software system. For many search based
software engineering approaches to the NRP, there is still a lack of capability to effi-
ciently incorporate human experience and preferences in the search process. Therefore,
this paper proposes an architecture to deal with this issue, where the decision maker
(DM) and his/her tacit assessments are taken into account during the solutions eval-
uations alongside the interactive genetic algorithm. Furthermore, a learning model
is employed to avoid an overwhelming number of interactions. An empirical study
involving software engineer practitioners, different instances, and different machine
learning techniques was performed to assess the feasibility of the architecture to incor-
porate human knowledge in the overall optimization process. Obtained results indicate
the architecture can assist the DM in selecting a set of requirements that properly incor-

B Allysson Allex Aratjo
allysson.araujo@uece.br
http://goes.uece.br

Matheus Paixao
matheus.paixao.14@ucl.ac.uk
http://crest.cs.ucl.ac.uk

Italo Yeltsin
italo.yeltsin@uece.br

Altino Dantas
altino.dantas @uece.br

Jerffeson Souza

jerffeson.souza@uece.br

Optimization in Software Engineering Group, State University of Ceard, 1700,

Dr. Silas Munguba Avenue, 60.714-903 Fortaleza, Brazil

2 CREST Centre, University College London, Malet Place, London WCIE 6BT, UK

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-016-0200-3&domain=pdf

624 Autom Softw Eng (2017) 24:623-671

porate his/her expertise, while optimizing other explicit measurable aspects equally
important to the next release planning. On a scale of 0 (very ineffective) to 5 (very
effective), all participants found the experience of interactively selecting the require-
ments using the approach as a 4 (effective).

Keywords Next release problem - Interactive optimization - Machine learning -
Search based software engineering

1 Introduction

During an iterative and incremental software development process, there are some
complex decisions to be made. Selecting which requirements will be implemented in
the next release of the system is one of them, given the high number of combinations,
technical constraints, multiple objectives and different stakeholders. “Release” is the
term used to describe a stable and executable version of the system, which is delivered
according to stakeholders requests. Given this context, the problem of maximizing
the stakeholders satisfaction, while respecting a predefined budget for the release
development, is called the next release problem (NRP) (Bagnall et al. 2001). The
stakeholder is usually satisfied according to the requirements he/she wants the most,
which are implemented in the next release.

The main goal of the search based software engineering (SBSE) field is to refor-
mulate difficult problems found in software engineering into search problems. Then,
the problems are solved by the use of computational search, especially metaheuristics.
These search techniques are guided by a fitness function, which is able to distinguish
good solutions from not so good ones (Harman 2007a). Thus, SBSE needs only two key
ingredients: (i) the choice of the representation of the problem and (ii) the definition
of the fitness function (Harman et al. 2012).

State of the art single objective SBSE approaches to the NRP usually select the
requirements for the next release in a fully automatic fashion, without an effective and
dynamic participation of the decision maker (DM). Most of the approaches assume
that all the required information is collected before the optimization process. However,
asking the DM to express a priori his/her knowledge might be an inconvenient task to
perform, especially because there is too much information to consider, where most of
it is actually implicit (Ferrucci et al. 2014).

Moreover, when the DM is not employed in the resolution process, he/she may feel
excluded from the analysis, and present some resistance or put little confidence in the
final result (Miettinen 1999,Shackelford 2007). In addition, there are several intrinsic
aspects of requirements engineering which comprehension is inherently subjective,
demanding a more effective user collaboration (Harman 2007b). Therefore, a user-
friendly inclusion of the human expertise during the search process can result in a
better strategy to handle the NRP, providing a decision support tool that is able to
deal with all these matters and find a solution that successfully incorporates the DM’s
qualitative assessments.

The interactive evolutionary computation (IEC), which is a branch of interac-
tive optimization, is supported by two key components: (i) human evaluation and

@ Springer

Autom Softw Eng (2017) 24:623-671 625

(i) computational search through bio-inspired evolutionary strategies (Takagi 1998).
Population-based algorithms seem to be ideal for interactive optimization since a user
can directly evaluate fitness values of potential solutions (Takagi 2001). This optimiza-
tion strategy is often necessary when the algorithm that defines the fitness function
is either too complex to specify or, in many cases, impossible to quantify and code
(Shackelford 2007).

Despite being widely spread in SBSE, currently used genetic algorithms (GAs) still
lack the capability of efficiently considering human expertise in the search process.
Thus, the interactive genetic algorithm (IGA) emerges as an interesting alternative in
order to include the DM in the GA evolution process. The IGA shares several key
concepts with a traditional GA, such as population evolution by applying selection,
crossover and mutation operators. Differently, the solution evaluation is performed
considering the DM’s knowledge, guiding the search process to more valuable areas
in subjective terms (Cho 2002).

Although an intense human involvement is interesting and attractive to the search
process, it may cause one of the most critical drawbacks of interactive optimization
approaches: the human fatigue (Takagi 2001). This exhaustion occurs due to repeated
requests for human judgements, which ends up distracting the focus of the user over
the algorithm execution, then jeopardizing the search trajectory (Simons et al. 2014).
Dealing with this intrinsic complication can be considered a mandatory feature for
any interactive optimization approach (Shackelford 2007).

Based on Kamalian et al. (2006), this paper handles the human fatigue using a
machine learning model. The DM’s expertise is gathered when he/she provides sub-
jective evaluations to each solution during the algorithm evolution. Then, after the
creation of a training dataset composed by different releases and respective human
evaluations, a learning model can be used to learn the human behavior and, eventu-
ally, replace the DM in the remainder of the evolutionary process.

An initial proposal of an architecture that allows the DM to take part in a search-
based approach to the NRP has been introduced in Aradjo et al. (2014). In this first
work, a conceptual version of the architecture was presented and empirically evaluated.
Preliminary results were able to show that an IGA can successfully incorporate the
DM preferences in the final solution. Therefore, this paper has the main objective of
thoroughly present and evaluate the architecture to solve an interactive version of the
next release problem that allows an inclusion of human knowledge during the search
process using an interactive genetic algorithm.

The present paper significantly extends the previous work in three different aspects:
(a) the learning model, previously only proposed as an idea, is now developed and
considered in the empirical evaluation of the approach; (b) the empirical evaluation
considering artificial cases was extended with two new research questions. Further-
more, the approach has also been evaluated with software engineering practitioners;
and (c) the description of the architecture has been improved and extended through
the definition of a new component, called the Interactive Module. The primary con-
tributions of this paper can be summarized as:

— The presentation of an interactive single objective formulation of the NRP, called
iNRP, that suits the explained architecture;

@ Springer

626 Autom Softw Eng (2017) 24:623-671

— A suite of proposed metrics that may contribute to the SBSE research community
for the evaluation of empirical studies involving interactive optimization;

— Analyses of the behavior of the architecture when considering both simulated and
real human subjective evaluations.

As previously mentioned, two experiments were performed in the empirical study
conducted in this work, respectively named as: (a) artificial experiment and (b)
participant-based experiment. In the first one, a simulator was employed to verify the
influence of different evaluation profiles in several and exhaustive scenarios, including
both artificial and real-world instances. In the second experiment, a group of software
engineer practitioners was invited to solve a real-world instance using the proposed
approach. For each experiment, two learning techniques were used based on different
strategies of machine learning.

The remainder of this paper is organized as follows: Sect. 2 explains the proposed
architecture; Sect. 3 presents the interactive formulation for the NRP, while Sect. 4
exhibits and examines the empirical study designed to evaluate the proposal; Sect. 5
discusses some work related to this paper; finally, Sect. 6 concludes the paper and
points out some future research directions.

2 Architecture overview

Domain knowledge can be used to guide the optimization algorithm to promising areas
of the search landscape. Such an approach enables the search to simultaneously and
effortlessly adapt the solution to the business needs of the DM, while reducing the size
of the search space. It is recommended to: “wherever possible, domain knowledge
should be incorporated into the SBSE approach” (Harman et al. 2012). However,
the design of search approaches that are able to naturally incorporate the subjective
preferences into the overall optimization process is still a challenge for the SBSE
community.

Following the definitions stated in Miettinen et al. (2016), the role of the DM in the
solution process can be divided into four classes: (i) no-preference methods in which
there is no need of articulation of preference information; (ii) a priori methods that
require articulation of preference before the search process; (iii) a posteriori methods
in which the preference information is used after the search process and, finally, (iv)
interactive methods in which the DM introduces preference information progressively
during the search process. This proposal focuses on interactive methods.

One important assumption of this work is that, regardless of how many stakeholders
are involved in the project, there will be a specific DM to make the last call. This
decision is motivated by the need of an unbiased judgement that is able to manage the
possible conflicts of interests of the other stakeholders and also weight the different
characteristics of the decision-making process. Such a role should be performed by a
professional fully immersed in the high-level project particularities and with a broad
view of his/her short/long time decisions. Hence, the presented approach focuses in
interacting with this only one crucial stakeholder, referred in this work as decision
maker (DM).

@ Springer

Autom Softw Eng (2017) 24:623-671 627

After deciding how the human will provide its preferences and who will be the
DM in the software project, the next step is to understand the nature of human pref-
erence. According to the work in Aljawawdeh et al. (2015), the preferences can be
categorized as explicit and implicit. Explicit preferences are readily articulated by the
DM and their relevance to the search is typically well understood by him/her, while
implicit preferences may be tacit and difficult for humans to previously articulate. As
an example, implicit memory is a type of memory that previous experiences might
aid in the performance of a task without conscious awareness of these experiences
(Schachter 1987).

Therefore, this paper proposes a conceptual architecture that is able to interactively
incorporate in a step-wise manner both explicit and implicit preferences during the
search process through an interactive genetic algorithm. To overcome the need of
human intervention in all individuals evaluations, a machine learning model is used to
learn the user’s profile and, consequently, be able to replace him/her when necessary
alongside the IGA. Such architecture (presented in Fig. 1), is composed of three main
components, which are generically described below:

1. Interactive genetic algorithm responsible for the optimization process, where
the candidate solutions are firstly evaluated by the Interactive Module and, when
required, by the learning model. Given an individual, its fitness value is calculated
considering both explicit and implicit preferences. Explicit preference is repre-
sented by well defined aspects of the problem, such as the quantitative measures
of score value and the implementation effort of each requirement, as addressed
by the classical NRP (Bagnall et al. 2001). Implicit preference is gathered by a
qualitative assessment of the DM regarding a certain solution, which is formally
defined as subjective evaluation (SE). The transition between using the Interac-
tive Module and the Learning Model is dynamically performed depending on how
many interactions the DM is willing to perform.

2. Interactive module responsible for the interactive interface with the DM. Thus,
each interaction consists of an individual of the IGA that receives a SE value from
the DM. The SE value of that respective individual is passed to the IGA, while
both the individual and its SE value are passed to the learning model. The only
constraint between the number of interactions and individuals is to have a number
of individuals that is, at least, equal or bigger than the number of interactions.
Thus, it is possible to have more individuals than interactions, but not vice-versa.

3. Learning model responsible for learning the user profile through a machine learn-
ing technique, in which all details regarding the learning problem formulation and
representation have to be well-formalized. The training process occurs in this
component, according to the samples (individuals and SE values) provided by the
Interactive Module. After the training process be performed, the learning model
will be able to provide a SE value to each solution that needs to be subjectively
evaluated. Naturally, the SE value provided by the learning model will only be
suitable for the learnt DM’s profile. In addition, the effectiveness of the learning
model will be proportional to the number of samples provided by the Interactive
Module.

@ Springer

628 Autom Softw Eng (2017) 24:623-671

—— 1% Stage

“ 2" Stage

!

Interactive Module

0

individual;
Settings SE;

individual ; +SE;

Interactive
Genetic
Algorithm

Learning

Model

Fig. 1 Conceptual architecture overview

As presented in Fig. 1, the relationship between these components are divided in
two distinct stages, defined below:

(a) First stage (solid lines) before starting the search process, it is necessary for the
DM to specify two architectural settings: (i) the weight of the implicit preferences
in comparison to the explicit ones for the fitness calculation. This parameter is
related to how influential the DM’s subjective knowledge will be in the search
process; (ii) a minimum number of interactions i which the DM is willing to
take part in. This parameter defines the first i individuals to be evaluated by the
DM, where each individual; and its respective S E; value are sent to the learning
model.

(b) Second stage (dotted lines) at this moment, the learning process is performed
using the set of samples collected in the previous stage as a training dataset.
After the conclusion of this process, the learning model will be responsible for
simulating the DM behavior and evaluates the remainder of j individuals from the
evolutionary process, in other words, providing a SE; value for each individual j
until the stopping criteria is reached. At the end, the best solution found by the
IGA is presented to the DM.

Figure 2 presents an activity diagram that shows the overall optimization process,
focusing on how the different components of the architecture exchange information.
As explained before, the IGA primarily follows the concepts of a traditional GA, with
the primary difference being the fitness evaluation. As depicted in the Fig. 2, after the
architectural settings definition (weight of the subjective evaluation and number of
interactions), the population is initialized and the stopping criteria is verified. While
the criteria is not reached, the search process continues.

As previously mentioned, the fitness value of an individual considers both explicit
preferences and the SE value that encapsulates the implicit preference of the DM.
The decision to stop requiring SE values from the Interactive Module and changing
to receive SE values from the learning model is defined according to the minimum
number of interactions i established by the DM. Therefore:

@ Springer

Autom Softw Eng (2017) 24:623-671

629

Interactive Module

Interactive Genetic Algorithm

Learning Model

DM defines architectural
settings

Present best

Initialize
population

Check if the stop
criteria has been
reached

solution

Check if all individuals
have theirs fitness
calculated

[yes]

[no]

Check if number of
interactions has been
reached

Train
training set

Check if training set

Add individual i and
its human subjective

to the

Submit individual i) f
to the user [no] [yes] was trained
training set
Provide a
subjective
evaluation to
the individual i Calculate

fitness of the
individual i

Perform genetic

Provide a
subjective
evaluation for the
individual i

operators

Fig. 2 Activity diagram of the conceptual architecture

— If the number of interactions has not been reached, the individual is presented to the
DM, which will be responsible for giving a SE. This evaluation is then considered
in the fitness calculation of individual;, and the S E; value alongside its respective
individual; are included in the training dataset for the learning model.

— If the number of interactions has been reached, it is checked whether the learning
model has been trained. If not, the training process is performed considering the
samples collected in the previous stage as training dataset. Then, the learning
model provides a SE; for the individual; to be evaluated. In the case where
the learning model has already been trained, it directly provides a SE; for each

presented individual;.

When the fitness of all individuals in the population are calculated, the genetic oper-
ators are applied and, consequently, the algorithm carries on considering the subjective

@ Springer

630 Autom Softw Eng (2017) 24:623-671

evaluations provided by the learning model until the stopping criteria is reached. Upon
finishing, the best solution achieved is shown to the DM.

This conceptual architecture can be considered sufficiently generic to be adopted
in other software engineering scenarios tackled by SBSE, such as feature selection
in software product lines, requirements prioritization or software design problems.
However, this paper is focused on evaluating the approach to the NRP, in which all
formalization required to be suited to the architecture is properly presented in the next
section.

3 An interactive next release problem formulation

In SBSE, the fitness function guides the search by capturing the properties that make
a given solution preferable to another one (Zhang et al. 2008). Usually, the fitness
function is composed of metrics that represent quality and constraint attributes from
the software asset being measured and optimized (Harman and Clark 2004). Unfor-
tunately, sometimes these attributes may not be precisely defined in the early stages
of the software life cycle, or are inherently associated with comprehension activities,
which require a human input to the assessment (Harman et al. 2012). This kind of
problem can be properly handled by algorithms that employ a “human-in-the-loop”
fitness computation, in other words, interactive optimization.

As previously mentioned, in order to apply a search based approach to a Soft-
ware Engineering problem, one needs the solution representation and fitness function
(Harman 2007a). However, since this paper proposes an architecture based on SBSE,
interactive optimization and machine learning foundations, three major questions had
to be properly defined: how the objectives to be optimized are mathematically mod-
elled? How does the DM interact with the optimization process? And which details
are required to allow the learning process to be performed? Therefore, the problem
formulation in this work is composed of a triad of formulations, respectively named
as mathematical modeling, interactive modeling and learning modeling.

3.1 Mathematical modeling

Consider R = {r1, 2, r3, ..., ry} the set of all available requirements to be selected
for the next release, where N is the maximum number of requirements. Each require-
ment 7; has an importance value v; and an implementation effort e;. Consider
K = {k1, ko, k3, ..., kpy} as the set of stakeholders to be attended by the system,
where each stakeholder & ; has a specific weight w; that measures his/her relevance to
the software project. The interactive next release problem (iNRP) model proposed in
this work can be formalized as follows:

maximize a X score(X) + B x SE(X), (D)

subject to: effort(X) < budget, 2)
N

where, score(X) = Z v; X Xj, 3)

i=1

@ Springer

Autom Softw Eng (2017) 24:623-671 631

M
v,~=Zw/~xsj~,~, (4)
j=1
N
effort(X) =) ei x x;, Q)

i=1

where budget refers to the release available budget. A binary solution representation is
used, where the release is represented by the decision variables X = {x1, x2, ..., xn},
so that x; = 1 implies that requirement r; is included in the next release and x; = 0
otherwise. The score(X) function (Eq. 3) is calculated by multiplying the sum of
the total importance (v;) of requirement r; and the decision variable x;. The total
importance (v;) of a requirement r; is given by the product of the weight (w ;) of each
stakeholder (k) and the specific importance (s ;) for the requirement r; provided by
each stakeholder (see Eq. 4). Generally, the score(X) function encourages the search to
achieve solutions that maximize the overall stakeholders satisfaction. Similarly to the
score(X) function, the ef f ort (X) function (Eq. 5) represents the total implementation
ef fort of the release and it is calculated by the product of the sum of each requirement
effort(X) (e;) and the decision variable x;. As a constraint, the ef fort(X) cannot
exceed the budget. Therefore, this formulation provide the quality of a candidate
solution, also known as, the fitness (F).

In the IGA application to the iNRP, each individual is a release. However, as
explained in the Sect. 2, two kinds of information are needed to calculate the fitness of
an individual: the explicit and the implicit preferences. The first one is represented by
the score(X) objective obtained using Eq. 3, which represents the overall stakeholders
satisfaction, while the second is encapsulated by the DM’s tacit assessment obtained
from S E (X). The implicit preference provided by the DM was modeled using a numer-
ical range value established as a qualitative “grade”. So, when the release fully satisfies
the DM, the grade is maximum. Similarly, the grade is minimal when the release is
completely different from what the DM expects. Thus, the search process will be
guided to areas that maximize both the score(X) values and the DM’s satisfaction.

To avoid any misconceptions, this paper considers “explicit preference” as the result
of the score(X) function and the “implicit preference” as the subjective evaluation
provided by the DM (SE(X)). Thus, in some cases, the DM opinion towards the
selected requirements is not influenced by the explicit one, because the importance
assigned by a specific stakeholder to a certain requirement may not agree with the DM
strategic planning. So, it is reasonable to expect some trade-off regarding the loss in
the overall stakeholders satisfaction to achieve a better solution in subjective aspects.
Later on, it will be explained how this trade-off can be properly balanced according
to the specific needs of a certain software project.

Another important aspect to take into account under the context of next release
planning are the interdependencies between requirements. This paper considers the
functional interdependencies REQUIRE(;, r;) and AND(7;, r;) (Carlshamre et al.
2001). These two interdependencies were chosen because they are the most common
in software projects. A REQUIRE(r;, r;) dependency indicates that requirement r;
cannot be selected to the next release if r | is not selected as well. However, requirement

@ Springer

632 Autom Softw Eng (2017) 24:623-671

rj can be included in the nextrelease without ;. Differently, AND(r;, r;) indicates that
both requirements should be selected for the release, otherwise none of them can. Both
interdependencies are represented by a single matrix N x N called “functional”. Thus,
functional;; = 1 indicates the existence of a dependency REQUIRE(r;, r;), while
a dependency AND(r;, r;) is represented by functional;; = functionalj; = 1.

The mathematical model used in this paper can be considered as a generalization
of the one proposed in Baker et al. (2006). When the weights o and 8 in Eq. 1
are configured to « = 1 and 8 = O, the classical NRP is reached. In other words,
the requirements selection will consider only the score(X) function (Eq. 3). When
the weights are configured to « = 0 and B = 1, only the subjective evaluations
(SE(X)) will be considered in the search process. The « = 1 and 8 = 1 configuration
consider the DM’s assessment and, at the same time, select the requirements with
highest score(X). This freedom of choice to be determined before the algorithm
execution allows the proposed approach to be adapted so specific needs of different
software projects. For example, if it is established to prioritize the DM’s subjective
evaluations over the stakeholders satisfaction, one can simply choose a « = 1 and
B = 2 configuration. On the other hand, if it is decided to prioritize the importance
values assigned by the stakeholders more than the DM’s strategic opinions, a o = 2
and 8 = 1 configuration can be employed. Moreover, the fitness calculation addressed
in this formulation is summarized by the following algorithm:

Algorithm 1: Fitness calculation of a certain individual
Input: individual, SE, «, 8
Output: Fitness of individual
begin
Calculate score of individual
Normalize score to the same range of SE

Fitness of individual < (a x score) + (B x SE)
end

In this work, it was opted to normalize the score(X) value to the same interval
of SE(X), in order to avoid a possible unbalance among these values during the
optimization process. Given this context, the only method to prioritize one function
over the other is by assigning values to the weights « and f in the fitness function.
The score(X) normalization is described as follows:

score(X)

normalizedScore(X) = (
SCOT € pmax

) X SEmax, (6)

where, X represents a solution, score,qy is the highest value in terms of score which
a solution can have and SE,,,, is the highest grade which the subjective evaluation
can assume.

3.2 Interactive modeling

There have been several studies that explore Interactive Optimization in SBSE, as will
be discussed in Sect. 5.2. In recent years there has also been an increase in the number

@ Springer

Autom Softw Eng (2017) 24:623-671 633

of empirical studies involving interactive optimization application to the Software
Engineering. As stated in Glass (2002), “the most important factor in software work
is not the tools and the techniques used by the programmers, but rather the quality of
the programmers themselves”.

However, there is a challenge in designing suitable environments to exploit these
human qualities in the search process, given that the user knowledge can be expressed
in a variety of forms. This paper considers the understanding of the whole process
regarding the human interaction and his/her influence in the optimization process to
be a very important issue. As discussed in Aljawawdeh et al. (2015), the nature of the
implicit preference and the moment in which this aspect will be exploited during the
optimization process are the main aspects to be modelled in an interactive optimization
approach.

Therefore, three main questions are proposed and, consequently discussed, to define
the Interactive Modeling for the iNRP.

1. At which moment are the preferences from the DM captured?

As previously discussed, the moment of preference incorporation in the search
process ranges from no-preference, a priori, a posteriori and interactively (Miet-
tinen et al. 2016). To the present proposal, the DM will interactively provide
subjective evaluations for a previously defined number of individuals generated
by the IGA. This number of interactions is a architectural setting defined before
to start the search process, which depends on DM availability. Given a scenario
delimited by 50 interactions and a population with 50 individuals, for example,
all the 50 individuals from the first generation of the IGA will be evaluated by the
DM. On the other hand, from the first individual of the second generation until the
end of the IGA, the individuals will be evaluated by the learning model. Similarly,
in a hypothetical case of 50 human interactions and 25 individuals, the first two
generations of the IGA will have all individuals evaluated by the DM, and the
Learning Model will start evaluating individuals from the third generation and on.
At the end of the process, the best final solution is presented to the DM.

2. What type and which preferences are provided to the search process?
Following the assumptions detailed in Aljawawdeh et al. (2015), the nature of
human preferences are explicit or implicit. As stated before, this work explores
both types, being “explicit” the result of the objective measure score function and
“implicit” the subjective evaluation provided by the DM (SE). The first one reflects
the overall stakeholders satisfaction, while the second encapsulates several of the
DM'’s subjective concerns regarding the presented solution. This value must be
within a predefined range representing “how good” he/she thinks that selection is.
The DM is not actually looking for a precisely defined numerical target but rather
for a subset of the search space that gives the general impression he/she is looking
for. The fuzzy aspect of human subjectivity is therefore more to be taken as a basis
for robustness than as a source of trouble (Semet 2002).

3. How the preferences are incorporated and influence the search process?
Human preferences can be incorporated and influence the search process in several
ways. In Aljawawdeh et al. (2015) six potential design pattern abstractions consid-
ering the combination between the moment and type of preferences (explicit and

@ Springer

634

Autom Softw Eng (2017) 24:623-671

implicit) are presented. One of them inspired this work, and it is called “Implicit
preference, interactive”, in which the definition states: “users are offered oppor-
tunities to input preference to metaheuristic search either as qualitative evaluation
solely or in combination with quantitative objective fitness functions”. In the
present study, the subjective evaluation will be exploited as an objective alongside
the explicit metric score in the fitness function, guiding the search to areas which
maximizes both the DM’s evaluations and score values. In addition, as will be fur-
ther discussed in the Related Work (Sect. 5), there are other ways to incorporate the
DM'’s opinion in the search process beyond being an objective to be maximized.

The Interactive Modeling described above enables the DM to incorporate his/her
knowledge during the search process. Generally, three interesting benefits arise from

the
(@)

(b)

(©)

usage of Interactive Evolutionary Computation:

As the DM expresses his/her preferences during the evolutionary process, the DM
will receive some feedback from the search through the presentation of the most
promising solutions throughout the algorithm evolution. Since the solution fitness
considers both implicit and explicit preferences (Aljawawdeh et al. 2015), it can
be conjectured that, as the solutions are evaluated by the DM, there will be a
natural trend for the new generations to be composed of solutions which better
suits his/her subjective needs.

Another interesting benefit that can be highlighted is the capability to incorporate
the changes in the DM’s criteria during the search process. As stated in Miettinen
et al. (2016), “an important advantage of interactive methods is learning”. Given
the visualization of the solutions influenced by the DM opinion, he/she will pro-
gressively gain more consciousness of how attainable or feasible the preferences
are. Consequently, he/she may get some insights about the problem, and even
adapt the decision criteria. The proposed approach is able to deal with this aspect.
This benefit reinforce one of the major goals of search based requirements opti-
mization, that is to provide meaningful insights to the DM (Zhang et al. 2008). In
the case of a change in the DM decision criteria using an a priori approach, the
algorithm would have to be executed again to cope with the new preferences.

At last, besides incorporating human knowledge, another important aspect of
the interactive approach is human engagement. Intuitive interaction with domain
specialists is a key factor in industrial applicability, since it makes the system more
usable and more easily accepted in an industrial setting (Marculescu et al. 2015).
As presented in the Introduction, when the DM is not employed in the resolution
process, he/she may feel excluded in the analysis, which may cause resistance and
lack of confidence in the final result (Miettinen 1999,Shackelford 2007).

3.3 Learning modeling

Machine Learning deals with the issue of how to build programs that improve their
performance at some task through experience (Mitchell 1997). The field of Software
Engineering turns out to be a fertile ground where many software development and
maintenance tasks could be formulated as learning problems and approached in terms
of learning algorithms (Zhang and Tsai 2003).

@ Springer

Autom Softw Eng (2017) 24:623-671 635

According to the work in Witten and Frank (2005), there are basically four different
styles of learning. In classification learning, the learning scheme is presented with a set
of classified examples from which it is expected to learn a way of classifying unseen
examples. In association learning, any association among features is sought, not only
the ones that predict a particular class value. In clustering, groups of examples that
belong together are sought. In numeric prediction, the outcome to be predicted is not
a discrete class but a numeric quantity.

This paper presents the idea of gathering the DM’s implicit preferences during
the algorithm evolution through subjectively evaluating a certain number of individ-
uals, which in the NRP perspective are the releases. A machine learning model is
used alongside the search to learn the human behavior and, eventually, replace it in
the remainder of the process. In other words, classifying unseen examples following
the learnt user profile. This strategy enables the system to absorb the user’s implicit
knowledge without requiring the user to formalize this information a priori (Shack-
elford 2007). However, as discussed in Zhang and Tsai (2003), user modeling poses a
number of challenges for machine learning that have hindered its application in Soft-
ware Engineering, including: the need for large data sets; the need for labeled data;
concept drift; and computational complexity.

Similarly to the Interactive Modeling, two major questions are discussed aiming to
define the learning modeling for the proposed iNRP:

1. Problem formulation

An important first step is to formulate the problem in such a way that it conforms
to the framework of a particular learning method chosen for the task. As stated
in Mitchell (1997), “a computer program is said to learn from experience E with
respect to some class of tasks 7" and performance measure P, if its performance
at tasks in 7, as measured by P, improves with experience E”. Thus, to have a
well-defined learning problem, one must identity these three features:

— Task T: evaluate a release considering the human preferences;

— Performance measure P: number of interactions;

— Training experience E: evaluating releases provided throughout the optimiza-

tion process.
2. Problem representation

The next step is to define a representation for both training data and knowledge to
be learned. The representation of the (a) input, (b) attributes and (c) output in the
learning task is often problem-specific and formalism-dependent (Zhang and Tsai
2003.
Following the concepts defined in Witten and Frank (2005), the input to a machine
learning scheme is a set of samples. These samples are the things that need to
be classified, associated or clustered. Each sample is an individual, independent
example of the concept to be learned. The samples that provide the input to the
machine learning model are characterized by its values on a fixed, predefined set
of attributes. Also, it is important to highlight the presence of a special attribute
called class, which describes the goal to be learned.
Each training dataset is represented as a matrix of samples versus attributes, as
depicted in Fig. 3. As can be seen in such figure, there are three samples, with

@ Springer

636 Autom Softw Eng (2017) 24:623-671

Attributes Class
A A
1 1 0 1 0 83

Samples 0 1 1 0 0 34

1 1 1 0 0 74
—

distinct values

Fig. 3 Example of training dataset

each row representing a possible release and each column representing a spe-
cific requirement (attribute). The exception is the last column at the right, which
represents the class obtained through the subjective evaluation provided by the
DM. As explained in Section 3.1, r; = 0 implies that requirement 7; is included
in release and, r; = 0 otherwise. For example, the first solution represented by
X = {1,1,0, 1,0} is composed by requirements rq, r» and r4, and received a
SE(X) = 83 from the DM. As explained in Sect. 2, this dataset will be iteratively
constructed until the number of interactions defined by the DM in the architectural
settings is reached. After concluding, the training process is performed considering
the training dataset previously collected.

The output usually takes the form of predictions about new examples or clas-
sification of unknown examples. In the present context, the task is to evaluate
releases according to the human preferences. Thus, considering that the Learning
Model already learnt the user profile, the output will be a subjective evaluation
to an unseen solution generated by the optimization process. As discussed above,
both input and output follow a numerical range value established as a qualitative
“grade”. It is important to point out that the quality and the quantity of the data
needed are dependent on both the selected machine learning technique and the
number of provided training samples.

Atlast, an important aspect to be distinguished is the type of learning, which can be
generally categorized as supervised and unsupervised. The first one is basically a
synonym for classification, in which the learning will come from the labeled sam-
ples with a class in the training dataset, while the second is essentially a synonym
for clustering, and is unsupervised since the input samples are not labeled (Han
et al. 2011). Thus, the proposed learning model follows the supervised learning
principles where each release is labeled with the respective class, defined as the SE.

4 Empirical study
The following sections present all the details regarding the empirical study. As previ-

ously mentioned, two experiments were performed, respectively named as (a) artificial
experiment and (b) participant-based experiment. Firstly, the metrics developed to

@ Springer

Autom Softw Eng (2017) 24:623-671 637

evaluate the outcome of these experiments are explained. Next, general settings used
in the experiments are presented, including the instances configurations, machine
learning techniques and IGA parameters, specifications of each experiment and the
research questions proposed to be answered. Then, with all these details being properly
presented, the analyses and discussion of the achieved results are conducted. Finally,
threats that may affect the validity of the experiments are also discussed.

4.1 Metrics

In order to promote meaningful analyses, three metrics were developed to clarify the
results. It is believed such metrics are generic enough to be used in other research
projects that explore the concepts of interactive optimization in SBSE.

4.1.1 Similarity degree

The Similarity degree (SD) indicates a percentage of how similar a candidate solution
is when compared to the target solution. It is reasonable to consider that this metric
directly represents a subjective satisfaction, given that the closer a candidate solution
is from the target solution, the higher the subjective evaluation. Consider a set of
6 requirements with a target solution represented by P = {1,0,0,0,1,1} and a
candidate solution represented by X = {1, 1, 0, 1, 1, 0}, for example. As one can see,
X1, x3 and x5 are equal in both P and X, thus, this candidate solution X would have a
SD(X, P) = % x 100 % = 50 %. This result is obtained by the following equation:

N
. . . 1
SD(X, P) = (Z’“f’fx“’—”’) % 100 %, (7)

where X is a candidate solution for which one wants to calculate its SD(X, P) in
relation to a target solution P. N is the number of requirements, x; indicates whether
the requirement r; is present in the solution or not, and p; indicates if the requirement
r; belongs to the target solution or not.

4.1.2 Similarity factor

The Similarity factor (SF) indicates the proportional gain in SD when comparing a
solution with human influence and another one without human influence. For exam-
ple, consider two solutions Y and X. The first solution with human intervention
has a SD(Y, P) = 85.33, while The second one, without human influence, has a
SD(X, P) = 54.27. Thus, the gain in SF achieved by Y over X is 57.2 %. This value
is given by:

SD(Y, P)

SF(Y,X,P)= (m -

1) x 100 %,)

@ Springer

638 Autom Softw Eng (2017) 24:623-671

where Y is the interactively generated solution, i.e., the search process is influenced
by implicit preferences, X is the solution generated without considering subjective
evaluations and P is the target solution.

4.1.3 Price of preference

The Price of preference (PP) shows how much is lost in explicit preference in order to
incorporate implicit preferences from the DM through SE. Consider two solutions Y
and X, for example. The first one generated with human influence has a score(Y) =
99.89, and the second one, without human influence, has a score(X) = 115.87.
Therefore, the PP loss of Y over X is 16 %. This value is obtained by:

score(Y)

PP(X,Y) = (1 —) x 100 %, ©)

score(X)

where Y is the solution considering subjective evaluations and X is the fully automatic
solution, i.e., without any interaction.

4.2 Empirical study settings

This subsection initially presents the instances used in the experiments, including the
number of requirements and interdependencies, number of stakeholders and budget
definition. Then, the main concepts of the machine learning techniques employed in
the tests are presented, as well as their respective parameters. The IGA parameters are
also presented, alongside a brief discussion about the statistical techniques employed
to analyze the obtained results.

4.2.1 Instances configuration

The instances set is composed with both artificial and real-world data. The artificial
data was randomly generated and designed to represent different scenarios of next
release planning. The number of requirements varies between 50, 100, 150 and 200.
The specific importance of each requirement is ranged from a discrete value between
1 and 5. The number of stakeholders was randomly generated within a discrete range
of 1 to 8. The weight of each stakeholder is given by a continuous random value
between 0 and 1, so that the sum of the weights of stakeholders is equal to 1. The
artificial instances name is in the format I_R, where R is the number of requirements.
For example, if an instance has 50 requirements, it will be named I_50.

The real-world instances employed in this empirical study are the same in Karim
and Ruhe (2014), respectively named as Word Processor and ReleasePlanner. The
first one is based on a word processor software, being composed of 50 requirements
and 4 customers. The second one is based on a decision support system and has
25 requirements and 9 customers. For all instances, including the artificial ones, the
budget was considered to be 60 % of the maximum release cost.

@ Springer

Autom Softw Eng (2017) 24:623-671 639

Interdependencies between requirements present a considerable impact in the
search space of the NRP Carlshamre et al. 2001). The interdependency density indi-
cates the percentage of requirements that have dependencies in a particular instance.
For the artificial instances, the interdependencies were randomly created at a den-
sity of 50% following a procedure that is described next. Two requirements are
randomly chosen, and the type of interdependency (REQUIRE(;, r;) or AND(r;,
r;)) they will have between themselves is also chosen at random. This process is
repeated until the 50 % interdependency density is reached. For example, given a
release with 100 requirements, 50 requirements will have at least one type of inter-
dependency and each of these requirements will have a maximum of 50 dependents.
The real-world instances have originally 82 and 40 % of interdependency density,
respectively.

4.2.2 Machine learning techniques settings

With respect to the details regarding the learning process, the API provided by the
Waikato Environment for Knowledge Analysis (WEKA) was emplyoed (Hall et al.
2009). WEKA is an open source platform that is characterized by a high degree of
portability and modifiability. Aiming at having a more generic analysis, two techniques
based on different learning strategies were chosen: least median square (LMS) and
multilayer perceptron (MLP).

First of all, when the expected outcome and the attributes of a particular learning
model are numeric, linear regression can be considered a natural technique to be
used. Linear Regression performs standard least-squares multiple linear regression
and can optionally perform attribute selection. Such feature is accomplished either by
greedily using backward elimination or by building a full model from all attributes and
dropping the terms one by one, in a decreasing order of their standardized coefficients,
until a stopping criteria is reached (Witten and Frank 2005). The usual least-squares
regression models are seriously affected by outliers in the data. As an attempt to
minimize this issue, the least median square (LMS) is arobust linear regression method
that minimizes the median (rather than the mean) of the squares of divergences from
the regression line (Rousseeuw 1984). It repeatedly applies standard linear regression
to subsamples of the data and outputs the solution that has the smallest median-squared
eITor.

As defined in Witten and Frank (2005), the main idea is to express the class as a
linear combination of the attributes, with predetermined weights:

x = wo + wia) + waaz + - - - + weay, (10)

where x is the class; aj, aa, ..., a; are the attribute values; and wg, wy, ..., wi are
the weights. These weights are calculated from the training data. The first training
sample will have a class, say x and attribute values afl), aél), R a,il) where the
superscript denotes that it is the first sample. Moreover, it is notationally convenient

to assume an extra attribute ag, with a value that is always 1.

@ Springer

640 Autom Softw Eng (2017) 24:623-671

The predicted value for the first example’s class can be written as:

an +w1a§1)+w2a(l)+ + w algl) Zw] (1), (11D

The difference between the predicted and actual values for a certain sample is of
particular interest for the LMS technique. The method of linear regression chooses the
coefficients w; to minimize the median of the sum of the squares of these differences
over all the training samples. Suppose there are n training samples; denote the ith one
with a superscript (/). Then, the sum of the squares of the differences is:

2
n

Z x@ = ija?) , (12)
j=0

i=1

where the expression inside the parentheses is the difference between the ith samples’s
actual class and its predicted class. The median of the sum of squares is what has to
be minimized through a properly selection of coefficients.

The multilayer perceptron (MLP) is a neural network that is trained using the
backpropagation algorithm and, consequently, is capable of expressing a rich variety
of nonlinear decision surfaces. Its main characteristics are: (a) the model of each neuron
or network processing element has a nonlinear activation function; (b) it presents, at
least, one intermediate layer that is not part of the input or output; and (c) it has a high
degree of connectivity between its network processing elements, defined thorough the
synaptic weights (Haykin 2001).

The backpropagation algorithm is able to learn the weights for a given multilayer
network with a fixed set of units and interconnections. It is a version of the generic
gradient descent, which attempts to minimize the squared error between the network
output values and the target values for these outputs (Witten and Frank 2005). To use
gradient descent to find the weights of a multilayer perceptron, the derivative of the
squared error must be determined with respect to each weight in the network. Accord-
ing to Mitchell (1997), the gradient specifies the direction of the steepest increase of
the error E, and the weight update rule is be given by:

w; < w; + Aw;, (13)
where
Aw; =1 Y (ta — Oa)¥id, (14)
deD

being n as a positive constant called the learning rate, which determines the step size in
the gradient descent search. D is the dataset of training samples, 4 is the target output
for training samples d, and o4 is the output of the linear unit for training samples d.
Thus, x;4 denotes the single input component x; for a training samples d.

@ Springer

Autom Softw Eng (2017) 24:623-671 641

Table 1 Machine learning techniques settings

Learning technique Parameter settings

Least median square Sample size (-S): 4
Used seed to generate samples (-G): 0
Multilayer perceptron learning rate (-L): 0.3
Momentum rate (-M): 0.2
Number of epochs (-N): 500
Multilayer perceptron percentage size of validation set (-V): 0
The used value to seed the random number generator (-S): 0

The consecutive number of errors allowed for validation,
testing beforethe network terminates (-E): 20

The hidden layers to be created for the network
(-H): (attributes +classes) / 2

The work in Mitchell (1997) summarizes the gradient descent algorithm for training
linear units as follows: pick an initial random weight vector, apply the linear unit to
all training examples, then compute A,,; for each weight according to Eq. 14. Update
each weight w; by adding A,,;, then repeat this process.

Finally, Table 1 presents the machine learning techniques parametrization used in
the empirical tests. More details regarding each parameter are available in Witten and
Frank (2005).

4.2.3 Interactive genetic algorithm settings

All IGA’s settings were empirically obtained by preliminary experiments. They are:
number of individuals that is double of the number of requirements; 100 generations;
90 % crossover rate; 1/ N mutation rate, where N is the number of requirements; 20 %
of elitism rate.

To account for the inherent variation in stochastic optimization algorithms, for
each weight configuration, number of interactions, instance and machine learning
technique, the IGA was executed 30 times, collecting both quality metrics (SD, SF
and PP) and respective averages from the obtained results. In the end, more than
55,000 executions of the IGA were performed.

Aiming at analyzing the results in a sound manner, guidelines suggested by Arcuri
and Briand (2011) and the statistical computing tool R (R-Project 2016) were consid-
ered. Statistical difference is measured with the Mann—Whitney U test considering a
95 % confidence level, while the Vargha and Delaney’s A1 test is used to measure
the effect sizes. The A1y statistics measures the probability that a run with a particular
algorithm 1 yields better values than a algorithm 2. This work assumes LMS; and
MLP,; therefore, Alz =0.26 in score, for example, indicates that, in 26 % of the time
the LMS; reaches higher values than MLP». If there is no difference between two
algorithms performances, then A1 = 0.5. All instances and results of the empirical

@ Springer

642 Autom Softw Eng (2017) 24:623-671

study, including the ones that had to be omitted due to space constraints, are available
sl
online.

4.3 Experimental design

The empirical study realized in this work was divided in two different experiments:
Artificial and Participant-based. Basically, the first one is conducted with a simulator
representing the DM, while the second one employs software engineering practition-
ers.

4.3.1 Artificial experiment

In order to represent the DM’s role during the IGA interaction, a simulator was devel-
oped. The main purpose of this simulator is not to faithfully simulate a human being,
but rather demonstrate the influence of a certain evaluation profile in the search process
when faced with different scenarios of next release planning.

Similar to the used idea in Shackelford and Corne (2004) and Tonella et al. (2013),
the human tacit assessment is simulated by creating a “target solution” which repre-
sents a solution that the DM would consider “ideal” or “gold standard”. Such solution
has the same structure of an individual and, consequently, comprises of a subset of
the selected requirements to be implemented, respecting the budget and the interde-
pendency constraints. The requirements present in the target solution are randomly
chosen. In this experiment all instances were tested, where each one has the same
specific target solution for the all 30 algorithm executions.

Throughout the interactions in the search process, the simulator provides a SE
considering the target solution that is established for the respective instance. The
evaluation given to a particular solution is proportional to how ideal it is, attending the
implicit preference encompassed by the target solution. If the included requirements
in a candidate individual are totally different from the target solution, the evaluation
is minimal. On the other hand, when the individual is equal to the target solution,
the evaluation is maximum. The evaluations are proportionally given for the other
possibilities. Thus, the following equation is used by the simulator to determine a SE
for a candidate solution:

z;\]\l<j<NAx-:p' 1
simulatedSE(X, P) = = _N S X SEnax, (15)

where, X is a candidate solution, P is the target solution, and N is the total number
of requirements in the solution. Decision variable x; indicates if the requirement r;
is included in the candidate solution, while p; indicates whether the requirement r;
belongs to the target solution P. Finally, SE,,, is the highest value SE can assume.
For this empirical study, the minimum simulated SE(X, P) is 0 and the maximum is
100.

1 http://goes.uece.br/allyssonaraujo/architecture4inrp.

@ Springer

http://goes.uece.br/allyssonaraujo/architecture4inrp

Autom Softw Eng (2017) 24:623-671 643

4.3.2 Participant-based experiment

This experiment aims at verifying the behavior and feasibility of the architecture when
it is used by software engineering practitioners. A group of 5 participants was invited
to act as decision makers in the experiments. The members of the group have between
2 and 10 years of experience in the software engineering industry, adding up to a total
of 30, and an average of 6 years of experience. Regarding the software development
experience, on a scale of “low”, “moderate”? and “high”, four participants rated at
“moderate” and one at “high”. In terms of experience in requirements selection, four
participants rated at “moderate” and one at “low”. All participants have graduated in
computer science or related areas, and have received or are finishing post-graduate
degree.

Before the experiment, each participant was separately briefed about (i) the task
they were supposed to perform, which was selecting requirements to be implemented
in the next release, (ii) the architecture and interactive approach they would be using
and (iii) the Word Processor instance they would be working with. More specifically,
at first moment, the details of the next release problem were explained, including
its motivation and major aspects such as multiple stakeholders, score and budget
constraint. After this step, the proposed approach was presented through the expla-
nation of all components depicted in Fig. 1. In the final stage, initially a period of
tool familiarization with a simple NRP instance was given and, finally, the Word
Processor instance was presented. This real-world instance was chosen because it
presents more details than ReleasePlanner, thus, being considered to be more intu-
itive. This explanation lasted between 35 and 40 minutes. Based on these details, a
simple requirements specification document was produced and handled for all par-
ticipants. This document consists of all requirement descriptions, the importance
values given by the stakeholders and implementation efforts. Also, the total avail-
able budget and the relevance of each stakeholder to the company was presented. Due
to the space constraint, just a sample piece of this document is reproduced in the
Table 2.

Table 2 A sample piece of the requirements specification document shown to the participants

Budget 850.20 Weight 9 3 5 7

Description Cost Md. Fazlul Jim Rick Samantha Total
Alam Li Bertuzzi Holmes
Chowdhury

1 Create a new file 66.00 8 9 9 9 35

2 Open an existing file ~ 76.00 8 9 9 9 35

3 Close current file 11.00 8 9 9 1 27

4 Save a file 63.00 8 9 9 9 35

50 Search a text 7.00 1 7 9 6 23

in the document...

@ Springer

644

Autom Softw Eng (2017) 24:623-671

(&) Interactive Genetic Algorithm - Solution

Selected requirements
| #D | Description

Not selected requirements.

#D |

Description

{2 Close CurrentFile
7 PrintPreviewaFile
|8 PantCurrentFile
11 Save and Exitfrom Word Processing Application
|12 Undo a Task and goes backto previous state
13 Redothe most recent Change
|14 Delete a Textand Copyto Clipboard
|15 CopyaText
|16 Paste a Textfrom Clipboara
19 Search fora Textin the curent Document
|20 Search andReplace aText
21 Select All From Current File
|22 switch to Default View
|23 Print Layout View of Current File
|24 webPage Layout View of Current File
26 Show HealerFooter of Current File
|27 InsertPage Numbers in Footer
28 InsertDate/Time in the File Footer

Crete a New File

Open an Existing File

Save aFile

Save aFile as a Different File Type

Search for a File in The Entire PC containing some Text
Make a File Password Protected

Send File To EmaillFAX

SetFile Header Inform ton

External Linking and Embedding

Goto a specific location in the curent file
Zoom InfOut

Spelling Check Tool

‘Grammar Check Tool

Readthe Text of The Document

Mail Merge with Existing Customer Database

Configure Documents Options
Import Data from Extemal Database

|20 insert symbolto the Cursor Location
30 SetUpdate File Bookmark
|31 Inserta Hyperiinked Text
32 Change Font Sefting of Selected Text
|33 settne Paragraph Formatiing
34 InsertBulletsMNumbering to Selected Text
|35 Changeto UpperiLowerMixed Case for the Selected Text
36 Change Background of the Document
|43 insertaTable
44 Delete an Existing Table
|45 FormataExisting Table
46 SonSelected Data
|48 Loads Applicant Help File
49 Searches a Textin the Document Help File

T r e T r e T D R O AT GV R VAT Evaluate
Very bad Bad Indiferent Good Excellent

Fig. 4 Graphical user interface

Next, it was explained to each participant that he/she would need to perform the
role of a requirements engineer in a hypothetical company in which the software to
be developed is a Word Processor. Then, each participant would use the presented
tool to select a set of requirements to be implemented in the next release, where
the subjective evaluations could be based on the information detailed in the require-
ments specification document. As an attempt to assess the behavior of the approach
when facing different evaluation profiles, participants had complete freedom to adopt
any judgement criteria when giving subjective evaluations to each candidate solu-
tion.

Many of the issues faced when implementing an IEC technique can be resolved or
avoided by careful design and evaluation of the existing experience and environment
of the potential users. Good visualization is a key to the success of the IEC; therefore,
significant effort should be put into the user interface design (Shackelford 2007). Thus,
a graphical user interface (GUI) was developed to provide a better and user-friendly
environment for the participants to interact with the implemented approach. As seen
in Fig. 4, the requirements included in a solution to be evaluated are presented in
the left-hand side, while the not selected requirements are displayed in the right-hand
side. The participant gives the SE to the solution by adjusting the slide on the bottom
of the screen. As it was previously explained, a set of solutions will be iteratively
presented to the participant until the number of interactions is reached. In the end, the
final solution is presented to the participant.

As stated earlier, before the search process, it is necessary to define the weights «
and B in the fitness function, regarding the influence of the score function and the SE
value during the search process, respectively. It is also necessary to indicate how many
interactions the DM will perform during the optimization process. Specifically, this
empirical study used @« = 1 and 8 = 1 as weight configuration in the fitness function,
and a total of 50 interactions for each participant was established.

@ Springer

Autom Softw Eng (2017) 24:623-671 645

p
SO

Training set

10 +10 +10 +10 +10
interactions | interactions | interactions | interactions | interactions
p
? ? o) e S > SSO
GA§ IGAY, i IGAY, i IGAS, i IGA], i IGAE, R
H H D B) 340
L P
: > sy
et tteeeerennnrerrreeeessneerreeasssnnneeeeaaeeanneeneeanssnnnreeeeeannnnnnnes > sP
: s
; p
) s10
® 0 stsmnmnnm
Evolutionary process Human evaluations Training process Model evaluations

without interactions

Fig. 5 Participant-based experiment procedure

In order to better exploit the experiments performed with the participants, a simple
procedure was designed to evaluate the approach’s performance when used with a
different number of interactions, even though each participant interacted with the sys-
tem only 50 times. Such a procedure is depicted in Fig. 5, and consists in training the
learning model at different interactive cycles during the optimization process, conse-
quently, replacing the DM at different moments. Consider / GAf , where p represents
the number of the participant and i the number of interactions using the interactive
genetic algorithm. Similarly, Sl.p represents the solution generated by a participant p
with i interactions. This way, the results with different number of interactions can be
properly compared.

At first, a solution without any human influence is generated, called S(I)) . As can be
seen, there are no interactions at this point; therefore, a standard Genetic Algorithm
is used. This solution will be used to conduct comparisons between interactive and
non-interactive methods, and also to provide the score,,, to be used in the score
normalization (Eq. 6). After this solution is captured, the first interactive cycle com-
posed by the first 10 interactions is initiated. As previously presented, each interaction
represents a candidate solution that receives a SE from the DM. Consequently, these
10 solutions and their respective subjective evaluations are included in the training
dataset. Then, the remainder of the evolutionary process will be realized considering
a learning model constructed with these 10 samples until a final solution Sf’o is found.
After these first 10 interactions are reached, the same population continues to be used
for a second interactive cycle of 10 interactions. At this point, the training dataset will
be composed by the samples collected in the first one 10 interactions complemented
by the 10 more samples captured in the second cycle. Naturally, the Learning Model
will be constructed in this moment considering 20 samples to find a final solution S;O.
This process is repeated until the 50 interactions are reached, in other words, the five
cycles of 10 interactions is completed. In the end, 6 different solutions are found for
each participant p, considering the different number of interactions i.

@ Springer

646 Autom Softw Eng (2017) 24:623-671

4.3.3 Research questions

Three research questions were designed to assess and analyze the behavior of the
proposed approach. They are presented as follows:

— RQ; (Sanity check): Does the proposed architecture incorporate the subjective
evaluations in the final solution?
In order to answer this question, there is analyzed if the final solutions are
influenced by the interactions throughout the evolutionary process. The metric
employed was the Similarity Degree, where percentually represents how similar
a candidate solution is when compared to the target solution. Given the fact that
is a exhaustive test which uses a huge number of interactions and weight configu-
rations, just the Artificial Experiment was considered and, consequently, just the
simulator.

— R Q7 (Interactivity trade-off): What is the trade-off between the DM’s satisfaction
and the impact on score values?
As explained in Sect. 3, the DM preferences towards the selected requirements
may be not influenced by the score value. Thus, it is natural to have some trade-
off regarding the loss in the overall stakeholder’s satisfaction to achieve a better
solution from the DM subjective point of view. The metrics used to evaluate this
aspect were the PP and SF. The first one indicates how much is lost in explicit
information in order to incorporate implicit preferences, while the second metric
shows the gain, in percentage terms, in SD by comparing a solution with DM influ-
ence and another one without DM influence. Such as previous research question,
only the Artificial Experiment was considered.

— RQ3 (Comparison): Does the proposed architecture improve the DM’s satisfac-
tion when compared to the non-interactive approach?
To answer this question, a participant-based experiment was conducted aiming
to verify the feasibility of the architecture when it is used by professionals with
different evaluation profiles. The metrics fitness (F), SE, SF' and PP were used
in the experiment. The SD it was not considered because there is not a previous
target solution to represents the subjectively ideal solution to each participant, as
well as simulated in the artificial experiment.

4.4 Results and analysis

The results for the empirical study are presented in this section using the analysis of
the previous three presented research questions.

— RQ1 (Sanity check): Does the proposed architecture incorporate the subjective
evaluations in the final solution?

The analysis conducted in this question aims at investigating the influence of the
number of interactions in the evolutionary process and, consequently, the Similarity
Degree (SD) achieved by the final solution. The higher SD value, more similar the
candidate solution is to the target solution. Table 3 presents the average SD value for
the 30 runs of the IGA with different number of interactions, considering all instances

@ Springer

647

Autom Softw Eng (2017) 24:623-671

00T 6089 A 9I'v8 v L60 €8'1L v £v'e8 v L0 0t'8L v €L 18 A 00$
760 YO'IL v 60°¢8 A 160 €e'0L A £v'c8 A L8O 0¥'9L v L0'€8 v 00
860 €569 A 0078 v 60 0SCL A LT'Y8 v £€8°0 009L A LTT8 v 00¢
660 €L°69 v €678 v 060 €8°EL A £8°¢8 v Lo 089L v £6°08 A 00¢
060 Y0°L9 v 96'SL v 060 LSYL v LY'€8 v 880 €SSL v €6'18 v 001
€60 8€'99 v 60°SL v 060 00°¢€L v 0€C8 v €80 08'vL v LY'08 v 06
80 1S9 A ov'IL v 6L°0 08'1L v 0S'8L v €80 ereL A 09°6L A 08
99°0 £€°69 v 86'89 v 8L0 01°'89 v LESL v 690 L99L v L9'6L A oL
¥9°0 £€6'79 v L9°LY v 650 0CT'L9 A €0’ 1L v 980 £€5°eL v Ly'08 \ 09
69°0 86'19 A 8L'Y9 v ev'o LS89 v eL’L9 v 980 LOCL v 09°6L v 0S
90 1€°€9 v 0829 v 6I'0 0r'L9 v 0029 v L0 €L°0L v 0CvL v or
€€°0 8¢€C9 v L0"09 v 0To 08°¢9 v L9°8S v €v'o €5°0L v 0¥'69 v 0¢
Se0 6209 v €L'8S v ST'0 o' 19 v 12 BYY v o €L'89 v 00°€9 v 0c
8%°0 986 - 79'8S - 0€0 LS'LS - £€Css - 970 LY'S9 - 0029 - 01
auy TN d ISIT d ay I d ISINT d ty TN d TSI d

0ST1 0011 0S1 !

I = ¢ pue | =oym A pue IS Suisn (7) SUONOLIANUI JO JOUINU JUAIJIP PUE SUNI ()¢ I0J SAN[BA 22.482p A114v]1uuls JO ATRIOAY € JqeL,

pringer

As

Autom Softw Eng (2017) 24:623-671

648

QOUQIRJJIP [BONSIIEIS JUsAIdaI P[Oq UT SAN[BA "SUOT)OLISIUI JO JOqUINU dUILS) [P sanbruyod) Surureay
QUIYOBW 0M) Y} I0J AINSLIW 2215 122ff2 ay) spuasard uwnjod Cly oy, “(1omof Apueoyrudis) A pue (10ySry Apueoyrusis) v ‘(Juarafjip APueoyruss Jou Jng Jomo[) A ‘JUSISFFIP
ApueoyuSis 10u Inq 1YS1y st 93LIOAL O SUBOW ¥ [0GUIAS 9Y) 210YM ‘[9AS] OUIPYUOD % GG & SULIIPISUOD SAN[BA (7§ US9MI] SOUIISJJIP [BINSHRIS SALOIpUL uwn[oo d oy],

€0 09°¢6 v LO'L8 A 180 009, A €1'es \ 660 LY'S9 A 8T8 v 00§
050 L9°06 v £5°06 A 9L'0 ov'LL v LO'C8 A 660 $9°S9 v e A 0oy
9¢°0 LO'68 v L9°06 A 960 €eSL v £6'C8 v 001 S8°Y9 A LEE8 v 00¢
Lo €L'S8 v 01'C6 v L60 ELEL v 09°C8 v 860 LS9 v LTT8 v 00¢
L0 LTY8 A 0¥°'06 A 60 00°€L \ (e A 80 06’19 A 8669 v 00T
vL0 0r'v8 A L9°C6 v 960 or'CL \ €L'T8 A L0 029 \ 01°'89 v 06
90 L9¥8 A 0t°'06 v 660 £e0L A 08'C8 \ L0 809 \Y LY'S9 v 08
90 L9¥8 v 08'88 A 60 [AN3 \ LTT8 \ S9°0 L6'6S A £9°¢9 v 0L
SL0 £6'C8 A 08°06 A 960 eLIL A L818 A 870 $9°09 A 05°09 A 09
<80 0’18 A €S Y6 \Y 660 08'1L v £6'C8 v €70 SL'T9 \Y LL 09 v 0S
L0 £5°¥8 v €e'l6 v wo 08°69 v €eSL v S€0 00°09 v SCT'8S v oy
Lo €L'E8 v 00°06 v w0 £€°69 v 08°09 v 90 TL9S A CL9S v 0¢
€€°0 £6'C8 v €CLL v 810 0999 v £6°9¢ v 670 €L9S v 8V ¥S A 0¢
€€0 €S9L - €6'0L - 0o L99¢ - £eoy - 6€°0 0€'9¢ - 80°SS - 0TI
N_m\ CITN d ISIN'T d NJ& TN d ISINT d N_m\ CITN d ISIN'T d
IOUUR[JOSLI[OY J10SS9001J PIOAL 0021 1

ponunuod ¢ JqeL,

pringer

As

Autom Softw Eng (2017) 24:623-671 649

100% 100%
90% 90%
8 8
S 80% o 80%
8 o
> 70% 2 70%
k5 S
E 60% £ 60% |-/ E
n - * -
o |_50 =—t— 1_200 4 % 1_50 =—t— 1_200 4
50% I_100 —»— Word Processor 50% 1_100 —»— Word Processor
0% I_159) Releas‘ePIanner‘—o— 40% I_159) Releas‘ePIanner‘—o—
b o
0 100 200 300 400 500 0 100 200 300 400 500
Number of interactions Number of interactions
(@) (b)

Fig. 6 Relation between similarity degree and number of interactions. a Machine learning technique: LMS.
b machine learning technique: MLP

Table 4 Number of interactions for each instance and machine learning technique

1.50 1_100 1_150 1.200 ‘Word Processor ReleasePlanner
LMS 60 100 200 300 50 40
MLP 200 200 200 200 200 200

and the two machine learning techniques. The sets of 30 values for each particular
number of interactions are statistically compared in order to assess whether a different
number of interactions yield a statistically different SD value.

When looking at the LMS results, it is possible to notice that, for every instance,
there is no significant gain in SD after a certain number of interactions which, varies
according to the instance size. For example, considering I_50, this stability is achieved
after 50 interactions, while 200 interactions are needed for I_200. Such behavior can
be visualized in Fig. 6(a), which shows the considerable SD increase in the first 200
interactions and, after a while, the mentioned stabilization.

Regarding the MLP results, the significant gains in SD can be verified and only
occur using a smaller number of interactions. The non-significant differences for bigger
numbers of interactions make it difficult to precisely identify the moment in which SD
stabilizes. As presented in Fig. 6(b), such stabilization occurs at about 200 interactions
for most of the instances. Furthermore in this analysis, LMS outperforms MLP in 80 %
of the results. However, the MLP outperforms the LMS in 92 % when the number of
interactions is <30.

The previously mentioned stabilization is closely associated with the machine learn-
ing technique and the size of the instance. Therefore, it is natural that the bigger the
instance, the more difficult it will be to learn the implicit preferences. These stabiliza-
tion values will be used in the next two research questions. For instance, for I_50 using
LMS, the conducted analyses will be performed with a fixed number of 60 interactions
because this is the number in which occurs the stabilization of the SD for this instance
and machine learning technique. The number of interactions defined to all instances
and machine learning techniques which will be further used are presented in Table 4.

@ Springer

650 Autom Softw Eng (2017) 24:623-671

In conclusion, it was observed the SD value has an intrinsic relation with the number
of interactions. This can be explained because as the number of interactions increase,
more samples (individuals and SE values) are included in the training dataset. Conse-
quently, with a learning model properly adjusted, it is natural that the final solutions
will be more similar to the target solution, i.e., more suitable in subjective aspects. In
turn, these conclusions suggest the proposed approach passes the sanity check when
it demonstrates that the implicit preferences given by the simulator are incorporated
in the solutions.

— R Q7 (Interactivity trade-off): What is the trade-off between the DM’s satisfaction
and the impact on score values?

As previously discussed, it is natural to have some trade-off related to the loss in
score to achieve a better solution in terms of the DM’s subjective satisfaction. Thus,
to provide an analysis of this trade-off, two complementary results will be detailed:
the gain in Similarity factor (SF) and the loss in Price of preference (PP). Through
the first metric it is possible to measure the proportional gain in SD, while the second
helps to shed light in the expected impact in score.

First, the SF results will be analyzed while the 8 weight is increased in the fitness
function. A higher SF value indicates a higher gain in SD. The experiments were
performed in such a way that the o« weight of the score function was fixed as 1, and
the g weight of the SE function was varied from O to 1 with uniform intervals of 0.1. In
other words, different scenarios are considered, ranging from no influence of the DM
(¢ = 1 and B = 0) to configurations in which the subjective evaluation is equivalent
to the score function (¢ = 1 and 8 = 1). Table 5 presents the average of SF values
for 30 runs, considering different 8 weights and using both LMS and MLP.

For example, analyzing the real-word instance Word Processor in the configuration
of B = 0.5, a SF value of 23.35 and 27.32% was obtained for LMS and MLP,
respectively. When the g weight was doubled to 1, the SF values had a considerable
increase of 72.12 and 54.89 %, respectively. Generally, when comparing solutions
without DM influence (@« = 1 and 8 = 0) and solutions influenced by him/her (o« = 1
and 8 = 1), the average gain of SF for all instances using LMS is 53.78 %, while using
MLP is 34.06 %. The results for all instances are similar, which clearly demonstrates
that SF values significantly grows as 8 increases.

Figure 7 shows the SF values obtained with LMS and MLP considering the propor-
tional increase in 8. These results reinforces the capability of the proposed approach
at incorporating the subjective evaluations and, consequently, satisfy the DM’s pref-
erences. In addition, it shows that the influence of the DM’s preferences in the search
process can be adjusted by the weights configuration in the fitness function according
to specific needs of different software projects.

As previously discussed, the incorporation of the DM subjective knowledge in the
final solution usually accrues a loss in the score function. Therefore, an analysis of
the Price of Preference (PP) is suitable. A higher PP value indicates a bigger loss
in score. Similarly to the SF analysis, the experiments were performed in which the
o weight of the score function was fixed in 1, and the 8 weight of the SE function
varied from O to 1 with 0.1 intervals. Table 6 presents average PP values for 30 runs,
considering different configurations of 8 weight and using LMS and MLP.

@ Springer

Autom Softw Eng (2017) 24:623-671 651

Table 5 Average of SF values for 30 runs and different settings of B using LMS;| and MLP,

B 1.50 1_100 1_150

p LMS; p MLP, App p LMS; p MLP, A;p p LMS; p MLP, A
0.1 A 527% A 1054% 034 A 880% A 1030% 045 A 562% A 557% 0.50
02 A 421% A 639% 040 A 17.60% A 22.60% 032 A 1739% A 697% 0.85
03 A 1224% A 10.19% 0.58 A 2549% A 21.05% 0.63 A 19.69% A 10.55% 0.79
04 A 2165% A 1526% 0.65 A 31.47% A 3024% 054 A 27.80% A 9.64% 094
05 A 2225% A 2138% 054 A 37.84% A 3038% 064 A 3247% A 1321% 091
0.6 A 2470% A 19.09% 0.63 A 4025% A 32.00% 069 A 33.92% A 14.55% 091
07 A 3251% A 2375% 0.67 A 4798% A 37.94% 067 A 37.37% A 18.89% 0.92
0.8 A 3098% A 21.32% 071 A 5281% A 3473% 084 A 41.42% A 17.38% 0.95
09 A 28.01% A 2607% 0.57 A 49.73% A 33.08% 081 A 4228% A 22.17% 0.88
10 A 36.86% A 28.00% 0.69 A 56.68% A 4158% 079 A 4646% A 20.57% 0.97
B 1.200 ‘Word Processor ReleasePlanner

p LMS; p MLP, A p LMS; p MLP, A p LMS; p MLP, App
0.1 A 841% A 466% 066 A 151% A 072% 055 A 1665% A 1247% 0.46
02 A 17.09% A 926% 073 A 290% A 577% 043 A 2854% A 25.17% 0.48
03 A 2338% A 893% 087 A 899% A 1190% 039 A 3206% A 31.26% 0.43
04 A 31.54% A 1423% 090 A 1223% A 18.15% 036 A 33.11% A 34.81% 0.29
05 A 37.64% A 13.84% 098 A 2335% A 2732% 036 A 3487% A 33.78% 041
0.6 A 4256% A 1227% 099 A 3531% A 39.22% 046 A 3697% A 36.08% 0.34
07 A 46.19% A 12.93% 096 A 4549% A 4277% 054 A 3923% A 3696% 0.45
08 A 5141% A 2135% 097 A 49.02% A 4735% 051 A 4533% A 35.53% 0.60
09 A 5242% A 1952% 097 A 6548% A 53.05% 076 A 3832% A 40.38% 0.40
10 A 5679% A 21.63% 098 A 72.12% A 5489% 089 A 51.70% A 37.66% 0.65

The p column indicates statistical difference between SF values considering a 95 % confidence level, where
the symbol A means the average is higher but not significantly different, V (lower but not significantly
different), A (significantly higher) and V¥ (significantly lower). The A 12 column presents effect size measure
for the two machine learning techniques with the same B configuration. Values in bold represent statistical
differences

Analyzing the instance I_150 in the configuration of § = 0.5, the PP loss was
2.67 and 1.01 % for LMS and MLP, respectively. Doubling this weight to B = 1,
the results are 6.00 and 2.26 % for the LMS and MLP, respectively. In summary, the
average PP loss for all instances using LMS was 10.62 %, while employing MLP was
6.22 %. These values are obtained when comparing solutions generated without any
DM influence (¢ = 1 and 8 = 0) with solutions generated using the same weight for
functions score and SE (¢« = 1 and g = 1).

Thus, it is important to highlight that the loss in PP using MLP being smaller than in
the LMS one, and is a direct consequence of the reached SF in the previous analysis.
In other words, as LMS reaches a higher SF' and can incorporate most of the DM

@ Springer

652 Autom Softw Eng (2017) 24:623-671

100%

100%

\|50\ T T T

"I50 —— 1200

T T
1_200
|_100 —%— Word Processor |_100 —»— Word Processor
80% |- 1_150 ReleasePlanner —e— | 80% 1_150 ReleasePlanner —e— |
S S
© ©
S 60% E & 60% E
Z /../:"\s/’ =
S 40% 3 2 40%
£ E
(2] n
20%‘/ 20%
0, L L L L L L L O% L L L L L L L L
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
p B
(a) (b)

Fig. 7 Relation between the increase of the 8 weight and similarity factor. a machine learning technique:
LMS. b machine learning technique: MLP

preferences, the PP loss is naturally proportional. Similarly to the SF values, the PP
values also significantly grow in relation with the 8 increase in the most of instances.

Figure 8 presents an overview of the PP behavior with LMS and MLP when the
B weight of SE in the fitness function is incremented. As can be seen, the solutions
found for almost all instances present a similar increasing tendency of PP values for
both machine learning techniques. Thus, the higher is the influence of the implicit
preferences in the search process, the smaller will be the score function. Such as in
the SF analysis, in the scenario where the loss in score needs to be avoided, another
weight configuration that is more suitable for the specific software project can be
employed. However, even in the case in which the weights are balanced (¢ = 1 and
B = 1), the PP loss is, in average, merely 10.62 and 6.22 % for the LMS and MLP,
respectively. This PP loss can be considered small, since there is a substantial gain in
SF of 72.12 and 54.89 % for both machine learning techniques.

From the previous analyses, two important findings were obtained: (i) the capability
of the proposal at incorporating the subjective evaluations and, consequently, including
the implicit preferences; and (ii) how much is lost in terms of score due to the inclusion
of subjective evaluations.

In order to provide a better visualization of the trade-off between the metrics SD
and PP, the Fig. 9 presents their relation considering all instances and both machine
learning techniques. The right-hand side of the figures shows how much is reached of
SD, while the left-hand side reflects how much is lost in score for all instances. For
example, looking at instance I_100 and using the LMS, one needs to lose only 7.0 %
of score in order to reach a SD of 82.3 %. Using MLP the score loss was 5.0% in
order to reach a 73.8 % of SD.

In synthesis, when using LMS, the average loss of score for all instances is 10.62 %
and the average gain in SD is 83.99 %. By adopting MLP, the average values were
6.22 and 74.26 % for the lost of score and gain in SD, respectively. Therefore, it
can be concluded that the proposed architecture is capable to incorporate the DM’s
preferences in the iNRP, with a considerably small loss in score.

— RQ3 (Comparison): Does the proposed architecture improve the DM'’s satisfac-
tion when compared to the non-interactive approach?

@ Springer

Autom Softw Eng (2017) 24:623-671 653

Table 6 Average of PP for 30 runs and different configuration of the g weight using LMS| and MLP;,
witha =1

g 150 1100 1150

p LMS;, p MLP, A, p LMS; p MLPy App p LMS; p MLP, Ay
0.1 v —072% A 091% 034 v —024% A 033% 045 v —030% A 0.11% 0.46
02 Vv —0.02% A 043% 041 A 085% VvV —031% 059 v —100% v —0.12% 0.43
03 A 087% A 083% 054 A 179% A 176% 053 A 096% A 024% 057
04 A 343% A 130% 072 A 129% A 158% 05 A 025% A 124% 0.40
05 A 424% A 251% 063 A 371% A 148% 08 A 2.67% A 101% 0.64
06 A 487% A 327% 073 A 491% A 294% 072 A 3.13% A 047% 0.74
07 A 634% A 439% 068 A 577% A 3.85% 075 A 3.68% A 035% 084
08 A 7.54% A 483% 072 A 7.69% A 3.06% 090 A 469% A 1.73% 0.76
09 A 801% A 624% 066 A 7.76% A 348% 086 A 564% A 1.07% 0.86
10 A 886% A 646% 072 A 871% A 503% 082 A 600% A 2.62% 088
B 1.200 Word Processor ReleasePlanner

p LMS; p MLP, A p LMS; p MLP, App p LMS, p MLP, A
0.1 A 025% A 020% 0.53 A 0.69% v —0.08% 063 A 0.07% Vv —0.44% 0.57
02 A 0.14% A 045% 046 A 0.17% A 023% 050 A 0.82% A 095% 052
03 A 1.05% 4 1.15% 049 A 090% A 0.74% 044 A 120% A 1.83% 038
04 A 208% A 088% 064 A 190% A 2.67% 038 A 1.59% A 146% 048
05 A 436% A 1.11% 084 A 480% A 499% 044 A 2.89% A 2.00% 0.55
06 A 515% A 1.74% 089 A 8.65% A 9.04% 052 A 2.99% A 2.75% 049
07 A 565% A 2.10% 085 A 1222% A 10.11% 067 A 3.58% A 2.67% 048
08 A 687% A 3.17% 090 A 13.08% A 12.69% 045 A 6.67% A 2.61% 0.60
09 A 7.59% A 2.85% 093 A 20.15% A 1554% 076 A 498% A 3.61% 048
10 A 8.12% A 387% 090 A 24.63% A 1595% 097 A 743% A 342% 0.66

The p column indicates statistical difference between PP values considering a 95 % confidence level, where
the symbol A means the average is higher but not significantly different, vV (lower but not significantly
different), A (significantly higher) and ¥ (significantly lower). The A 12 column presents effect size measure
for the two machine learning techniques with the same B configuration. Values in bold represent statistical
differences

As explained in Sect. 4.3.2, a group of software engineering practitioners was
invited to use the proposed approach in a Participant-based Experiment. The obtained
results for all participants are reported in Table 7.

As can be seen, there are no SF' and PP values for the Séu configuration. This is
natural because it is a non-interactive solution. Nevertheless, its values in Fitness and
SE were calculated. The first one was measured by normalizing the value of the score
function to 100 and adding the SE value.

In terms of solution quality, analyzing specifically the Participant 4, the SSI:) with
MLP was the best one among all interactive solutions (including other participants).
Comparing its fitness value with the result of S(‘)D , it is verified an improvement of

@ Springer

654

Autom Softw Eng (2017) 24:623-671

30% T T T T T T T 30% T T T T T
1. 50 —— 1_200 1. 50 —— 1_200
25% |- |_100 —»— Word Processor - 25% 1_100 —»— Word Processor 4
2 1_150 ReleasePlanner —e— ® 1_150 ReleasePlanner —e—
© 20% |- 1 2 20% .
2 o
Q 15% |- B “q:, 15% E
9: o
© 10%] ‘5 10% B
©
2 8 |
= o
T 5% = 5% 1
0% § 0% g—— = 1
_5% L L Il Il Il Il Il Il _50/0 Il Il Il Il Il Il Il Il
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
B p
(a) (b)

Fig.8 Relation between price of preference and the increase of the 8 weight. a machine learning technique:
LMS. b machine learning technique: MLP

Score loss mm— SD
1_50 -8.9 I 79.6
1_100 -5.7 82.3
1_150 -6 I 83.5
1_200 -8.1 82.3
Word Processor -24 ol 82.9
ReleasePlanner -7.4 10 90.0
L L L L L L
-40 -20 0 20 40 60 80 100
(a)
Score loss mm— SD
150 -6.5 0 76.8
1_100 -5.0 0 73.8
1_150 -3 B 69.7
1_200 -390 65.7
Word Processor -16.000 73.7
ReleasePlanner -3410 85.7
-40 —I20 (I] 2IO 4IO 6IO 8IO 100

(b)

Fig. 9 Relation between similarity degree and price of preference. a machine learning technique: LMS. b
machine learning technique: MLP

36.9 % and a score loss of 4.4 % (PP line). On the other hand, 94.17 was the fitness
value of the worst solution, which is the S{(’) with LMS. The quality of this solution is
32.7 % worse than Sé) . A discussion about the performance of LMS and MLP on the
Participant-based Experiment will be presented later in Sect. 4.5.

Considering the fitness (F line) average results, the values of MLP from S{B to Ss%,
and, the values of LMS for S ﬂ) and S;Z) were higher than the fitness average obtained

@ Springer

655

Autom Softw Eng (2017) 24:623-671

0028 00'8L 00°€6 00°SL 00'+8 00'¥7L 00'8L 00°€9 009L 00'9L 00°€L as
6€°LLT 90'981 SL'T91 €6erl Se I8l TTOST TT 081 ST°001 I7°9¢€1 SS611 00°€LT d S
12°0¢T 19°61 TLol 80'%C ¥$°6 €98 Trol ¥8'6 Wl LS'L - dd
0081— 00'6— 0081— 000 000 000 000 000 000 00°81— - EN
008 0016 00'C8 00001 00001 00001 00001 00001 00001 00'Z8 00001 as
18°081 LTSLT 17061 0T vLI 62881 So'TTI TLL8T €vL8T 68°681 1S+Cl 00°00C d ¥
9L'L 0TSt 80°01 19'9C WL S0'CI or'L 18°6 88'6 IS¢l - dd
€097~ 6£°91— 6S'¥C 8€'LS— 'S 0T'8— 6£°91 81°6% €6'€9 9T+t - ES
00°S¥ 00'1¢ 009L 009 00°€6 009 00 1L 00'16 00001 00°88 00'19 as
81°681 SSILI 76981 6%°0LT G8ELI €0°681 81°9G1 o' 171 P1°L81 69°Tr1 00°191 d €
68°L1 Sot'€T 779'9C 8€S°LT YO1°ST L LO0T 9L LLOT 8SL - dd
01°LE L6°0T oy L6°0C SSer vLLT L6°0T L6°0C 91— 000 - EN
00°68 00°SL 00°L8 00°SL 00°68 00°€L 00°SL 00°SL 0019 0029 0029 as
117281 €S9LT 8E'ELT Y6 LI 0681 00981 10061 Y0€LT 00681 89°691 007291 d T
Ity 0T'€e 098°CT 881°9 00°€T 91'¢ S6'8 00°¢ #8°0 01°0 - dd
0S°LET 00°ST— 0S°TIT 00°S8 00°0% 0529 00°SS 0S'Ty 0S°TS— 0S'LE— - ES
00°S6 00't€ 00°68 00°68 009 00°S9 0029 00°LS 00°61 00°ST 00°0% as
69161 LYELT 0L°€81 S1'801 TIv81 TTLOT LTYLI LT'¥6 IL°LTT $6'96 00°0%1 d I
AN ISINT AN ISIN'T AN ISINT SdTN ISIN'T AN ISINT
s Org s g Ols Js (d) uednieg

anbruyoe) Surures| suIYORW Yora puE SUONORIAUI JO JOqUINU JUAISIJIP yim sjuedionted [[e 10J g4 pue 7§ ‘S (/) SSouly Jo sanfep £ dqeL,

pringer

as

Autom Softw Eng (2017) 24:623-671

656

€0¥1 66'0C 0°ST 08°61 856 €6 LO0T 80°CI se's 8¢'8 - dd
¥$'8T ST 9¢'LE LTOT o €TST ¥8°61 6L°61 6LC - - E
08'LL 08'S9 09'+8 0T'TL ot'+8 09°€L 0T'LL 0T'LL 0T’ 1L 0999 00vL as
06'+91 Ye6v1 0L'6ST 69°6Y1 88°0GT 9 TH1 €T6YI 81T 6v vl 8F°STT 0T L¥1 d o3eIoAY
88°61 8P el 6L 11 8Sp1 S9T 6T°S1 18°€l 1€ 88 98Tl - dd
€€T1 $8'9 ov'LT vL'T LOST Iy $8'9 0L €T— Iy Iy - ds
SdTN ISINT AN ISINT SITN ISIN'T CITN ISIN'T AN ISIN'T
0S, (0% 0¢, 0z, 01 0,
aS iy 7S iy iy Y (d) edronreq

ponunuod / d[qeL,

pringer

As

Autom Softw Eng (2017) 24:623-671 657

P P P P P P
Sy S, S,y NN S, WENNN S, WS,
100 ;

60 .

40 | 1

Subjective Evaluation

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

(a)

P P P P P P
Sy s S, Sy NN S, W S, WS,
100 .

80 1

40 -

20 | .

Subjective Evaluation

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

(b)

Fig. 10 Results of SE for each participant with several number of interactions. a machine learning tech-
nique: LMS. b machine learning technique: MLP

by S(f . Thus, in spite of the loss in score denoted by PP, an overall improvement in
solution quality by the inclusion of DM interactions was observed.

Looking at SE and PP average of the results of S;:) with MLP technique, it is noticed
the values of both metrics were similar to the results obtained on Artificial Experiment
(Tables 3 and 6) considering the same instance (Word Processor) with 50 interactions.
It is important to remember that a simulator was used in Artificial Experiment, then
SD metric in these tables is compared with SE value. This observation points out to the
consistence of proposed approach when used by software engineering practitioners in
comparison with the main conclusions achieved in the previous experiment.

In order to summarize the participants behavior throughout the experiment, Fig. 10a
presents the SE given by the participant to the final solutions, as well as the number
of required interactions.

Analyzing the Fig. 10a, which presents the LMS results, it is noticed that for all
participants, there were at least two solutions that are better or at least as good as Sg
(solution generated without interactions). Looking at the results of Participant 2, all
interactive solutions are better than Sg , with an exception of Sﬁ) that had the same
value of SJ.

Similarly, Fig. 10b presents the obtained values using the MLP technique. It is
possible to realize that, for each participant, at least four interactive solutions present
higher SE than the Sg solution, with exception of Participant 4, for whom three solu-

@ Springer

658 Autom Softw Eng (2017) 24:623-671

SF —— PP —— SF —— PP ——

35% f--- et BEE TR ST RO 35%
25% 25%

15% 15%

5% 5%

—5% | | | | | —5% | H H H
10 20 30 40 50 10 20 30 40 50
Number of interactions Number of interactions

Fig.11 Relation between similarity factor and price of preference considering the average of all participants
for each number of interactions. a machine learning technique: LMS. b machine learning technique: MLP

tions were equal to Sé’ . In the specific case of Participant 5, all solutions influenced
by him/her were superior than the non-interactive one.

Some interesting results to be highlighted are the ones obtained by the Participant
4. He/she provided a maximum subjective evaluation for S([; , thus, it was impossible
for any other solutions to be better in terms of SE. This should not be a problem in a
real usage of the proposed approach, because it is expected that if the non interactive
solution already satisfies all the DM’s desires, he/she would simply accept it.

Besides SE results, the trade-off between satisfaction of the DM’s preferences and
the score loss is relevant in this experiment. Thus, Fig. 11a and b show the SF and PP
averages of the solutions obtained by all participants with each number of interactions.

Specifically analyzing the results obtained with 50 interactions, LMS reached
around 20 and 0 % of PP and SF, respectively, while MLP achieved almost 30 % of SF
and <15 % of PP. More generally, in average, the SF values using LMS were higher
than the PP ones in two of the five different number of interactions. Furthermore, SF
values from MLP were bigger than PP values in four cases.

4.5 Discussion

Based on the data collected and analyzed in the empirical study, some interesting find-
ings can be discussed. The first one is the relationship between the achieved results and
the machine learning technique employed. In the Artificial Experiment (Sect. 4.3.1), a
simulator was used to evaluate the IGA candidate solutions. The criteria adopted by the
simulator to evaluate the solutions is always the same, in other words, the subjective
evaluations are directly related to the number of requirements present in the candidate
solution that are also present in the target solution. If the requirements included in
a candidate individual are totally different from the target solution, the evaluation is
minimal. Similarly, when the individual is equal to the target solution, the evaluation is
maximum. As can be seen, the subjective evaluations provided by the simulator follow
a linear proportion. On the other hand, the participant-based experiment (Sect. 4.3.2)
employs real human evaluations which are defined as multi-criteria and of nonlinear
character (Piegat and Satabun 2012).

@ Springer

Autom Softw Eng (2017) 24:623-671 659

Hence, since the LMS is a robust regression linear model (Rousseeuw 1984), it is
expected that it will reach good results when considering the simulator in the artificial
experiment. Linear regression is a simple method that has been widely used in statisti-
cal applications. However, according to Witten and Frank (2005), there are two serious
disadvantages to median-based regression techniques: (i) it can only represent linear
boundaries between classes, which makes them too simple for many practical appli-
cations and (ii) they incur high computational cost, which also makes them infeasible
for practical problems.

In contrast, the MLP technique, powered by the backpropagation training rule, is
able to perform nonlinear regression; therefore, overcoming the LMS weaknesses. If
the training examples are not linearly separable, the training rule converges toward a
best-fit approximation to the target concept (Witten and Frank 2005; Mitchell 1997).
As stated in Palit and Popovic (2006), the practical use of neural networks has been
recognized mainly because of distinguished features such as (i) general nonlinear
mapping between a subset of the past time series values and the future time series
values and (ii) capability of learning and generalization from examples using a data-
driven self-adaptive approach. These aspects theoretically underlie the conclusions of
the empirical study suggesting why the LMS achieved better results in the Artificial
Experiment, while the MLP outperforms the LMS in the Participant-based Experiment.

Another aspect that can be highlighted are the insights obtained into how people
go about using the system. Firtly, all five participants were invited to sign a term
of consent and to respond a questionnaire. On a scale of “insufficient”, “indifferent”
and “sufficient”, all the participants considered the briefing (described in Sect. 4.3.2)
before the experiment as “sufficient”. When asked to rate how effective they found the
experience of interactively selecting the requirements for the next release, all profes-
sionals considered as “effective”. The scale used to this answer was “very ineffective”,
“ineffective”, “indifferent”, “effective” and “very effective”. Complementing and rein-
forcing this achievement, it was asked if they would use the proposed approach in their
workplaces. Following a scale of 1 (“no way) to 5 (“certainly”), one participant rated
at 3, three participants at 4 and one at 5. These results may suggest two conclusions: (i)
the proposed approach was considered distinguished by software engineering practi-
tioners and (ii) it encourages the application of the presented approach in a real-world
scenario of requirements planning.

The participants were also asked to rate how much tiring was to evaluate the can-
didate solutions during the IGA evolution. On a scale of 0 to 9, one participant rated
at4, two at 5 and two at 7, which generates an average of 5.6. As stated in Wang et al.
(2006), “it is pretty hard to measure the fatigue reduction in the case of IEC, since
IEC deals with subjective evaluation values that depend on the application task and
the subject’s perceived value of the task™. There are some pieces of work that propose
approaches to reduce the human effort without compromising the results and consis-
tencies, such as Kamalian et al. (2006), Hsu and Huang (2005) and Wang et al. (2006).
Even though these papers claim to reduce the effort undertaken, but the analysis of
“how much” fatigue was mitigated is very context-depending. A straightforward way
to assess some kind of improvement in human fatigue through the usage of the learning
model would be the clock time taken to complete the task. However, this would not
be the most appropriate way to analyze the human fatigue. It is reasonable to believe

@ Springer

660 Autom Softw Eng (2017) 24:623-671

that a certain participant may spend more time than another and still report less fatigue
or, in other case, evaluate less solutions than other participant and indicates a higher
fatigue. Also, it is possible that the participant could undertake the experiment with
some previous tiredness (physical or psychological) which can have a direct influence
in his/her fatigue report. Definitely, this is an important aspect to be properly discussed
and refined.

Regarding the “free text” comments participants were allowed to give about the
experience, it can be highlighted the need to integrate detailed requirements specifica-
tions in the user graphic interface. Others suggestions to the interface were proposed,
such as increase the slide button and a more intuitive use of colors.

Finally, the answers of each research question discussed in the empirical study can
be formalized as:

— RQj: the solutions provided by the approach are properly influenced by the inter-
actions throughout the evolutionary process, given the higher values obtained
in Similarity Degree. This influence produces solutions that incorporate the sub-
Jjective evaluations and, consequently, are more suitable to the Decision Maker
preferences.

— RQ»: the loss in score in the solutions is considerably small, especially when
taking into account the high gain in Similarity Factor. This conclusion suggests
that the approach is able to generate solutions as good as those produced without
any human influence, but satisfying most of the Decision Maker preferences. In
addition, this trade-off can be conveniently calibrated according to the software
projects specific needs through a detailed weights configuration.

— RQ3: even considering participants with different and unknown evaluation pro-
files, the proposed architecture was able to improve their subjective satisfaction.
This fact can be justified through the higher SE values obtained in the Participant-
based Experiment. Furthermore, the found results shown architecture consistence
regarding to the conclusions achieved in the Artificial Experiment.

4.6 Threats to validity

A list of threats to the validity of empirical studies in Search Based Software Engi-
neering is presented in de Oliveira Barros and Neto (2011). Such threats are classified
as: (i) conclusion validity threats, (ii) internal validity threats, (iii) construct validity
threats and (iv) external validity threats. The above the threats that may effect the
validity of the experiments performed in this paper will be discussed, including what
was eventually designed to mitigate the effects of each one.

Regarding the conclusion validity threats, due to the stochastic nature of the IGA,
each execution can achieve different results. Therefore, in order to ensure a fair com-
parison for each weight configuration, number of interactions, instances and machine
learning technique, 30 runs were performed. According to Arcuri and Briand (2014),
this is an acceptable number of executions for empirical studies in SBSE, even though a
greater number of runs would have provided greater accuracy. Aiming at precisely pro-
viding conclusions regarding the achieved results, statistical analyses were performed
using the Mann—Whitney U test to measure the difference between the samples with

@ Springer

Autom Softw Eng (2017) 24:623-671 661

a 95 % confidence level and, complementing this one, the Vargha and Delaney’s A
to highlight the effect size. Despite being extensively explored problem in the litera-
ture, there is no other approach using an IGA to solve the NRP. Given the lack of a
recognized benchmark example, this work is focused in comparing the results reached
by the proposed architecture with the ones generated without human influence, which
can be considered a small scale investigation. Another important challenge to be dis-
cussed concerns to how evaluate and estimate the reduction of fatigue. This work
asked the participants an numerical value which can express his/her tiredness during
the experiment. Another more refined metric may provide more useful insights.

Concerning the internal validity threats, the parametrization procedure adopted to
the empirical study is properly presented in the Sects. 4.2.2 and 4.2.3 , which present
all the configurations regarding both the machine learning technique and IGA. With
an aim to have a more generic analysis, the LMS and MLP were chosen due to the
different learning strategies of each one. These main differences were discussed in their
respective topics. Although the results were obtained from a preliminary empirical
study, the tuning parametrization process was not conducted as suggested in Arcuri
and Fraser (2011), which may indicate better configurations and, consequently, to
produce superior results for some specific instance. Throughout the paper, there are
no details regarding the code instrumentation, however, to mitigate this threat and
facilitate the experiments replication, the source code and all evaluated instances can
be found in the supporting web page.> Regarding the data collection procedure, all
details of the design and generation of artificial instances, as well as the real-world
instances particularities, are described in the Sect. 4.2.1. Furthermore, Participant-
based Experiment are highly dependent of the developed scenario and, consequently,
the users engagement. In order to mitigate this problem, before the experiment, each
participant was separately briefed about the main details related to the experiment.
Nevertheless, providing to the participants a more elaborate scenario thats is as similar
as possible to their workplaces is a considerable challenge.

In relation to the construct validity threats, this paper does not perform a study on
computational cost of execution or performance of the used algorithm. Aiming to be
more meaningful and appropriate to the empirical study, it was necessary to develop
a suite of metrics for the interactive perspective. All these metrics were precisely
defined and can be reused in other works involving interactive optimization in SBSE.
However, a specific metric for the learning perspective would be useful to consider.
The proposed iNRP formulation is a generalization based on the mathematical model
proposed in Baker et al. (2006), which can be considered a simplification of a real next
release planning situation. Another issue to be discussed is the choice of the target
solution that determines the performance of the SD and SF metrics being compared. As
explained in Sect. 4.3.1, the requirements present in the target solution are randomly
chosen, but of course there is no warranty that this is indeed the optimal selection.
Regarding the type of the SE, a numerical value range was used, but other ways of
evaluation may be show as more intuitive (e.g., “bad” to “excellent” or “one star” to
“five star” rating).

2 http://goes.uece.br/allyssonaraujo/architecture4inrp.

@ Springer

http://goes.uece.br/allyssonaraujo/architecture4inrp

662 Autom Softw Eng (2017) 24:623-671

Finally, concerning external validity threats, artificial instances with 25, 50, 100,
150 and 200 requirements and real-word instances with 25 and 50 requirements
were used in the empirical study. Experiments with bigger instances would have
provided more generalizable results. Moreover, the number of professionals in the
Participant-based Experiment could be bigger to provide a more reliable evaluation
of the approach. To cope with this threat, participants with reasonable software engi-
neering practice were invited to discuss the system usage.

5 Related work

In this section, the work related to this research is discussed. Firstly, the work directly
related to the Next Release Problem, followed by the work that applies interactive
optimization in Search Based Software Engineering. Finally, some strategies designed
to handle human fatigue are also presented.

5.1 Next release problem

The first single objective formulation of the NRP was presented in Bagnall et al. (2001).
This approach considers the existence of more than one customer with different levels
of relevance to the company, which is indicated by his/her respective weight. Each
customer then indicates which requirements he/she wants to be implemented in the next
release. The customer is considered satisfied if all his/her requirements are selected for
the next release. Also, each requirement presents a development cost. Thus, the goal is
to select a set of requirements that maximizes the sum of satisfied customers’ weights,
while the implementation cost of the release is subject to the available release budget.
Regarding the empirical evaluation, it uses exact methods, neighborhood heuristics
and a metaheuristic called Simulated Annealing. It was noticed that the exact method
has found better solutions for smaller instances in viable times, but in bigger instances
the metaheuristic had better performance.

Differently from Bagnall et al. (2001), the work Baker et al. (2006) argues that each
requirement should have its importance given by the customers. The global importance
of a requirement is calculated by a weighted sum of the specific importance given by
the customers. Thus, it aims at selecting a set of requirements that maximizes the
global importance of the release. Such work is considered relevant due to the usage
of real-world data from a great telecommunication company. In order to validate
the approach, Greedy Algorithms and Simulated Annealing were applied, with the
results being compared to the ones produced by an expert. It was concluded that both
algorithms had a better performance than the professional.

Naturally, the NRP was tackled by various approaches. In Jiang et al. (2010), the
usage of a hybrid algorithm composed by Ant System and Hill Climbing is proposed.
The work in del Sagrado et al. (2010) is related to the use of the Ant Colony Optimiza-
tion to the NRP, and the achieved results are better in solution quality and convergence
terms than the results found by Genetic Algorithms and Simulated Annealing. Such
work was complemented in do Nascimento Ferreira and de Souza (2012), when it was
elaborated a comparative study between Ant Colony Optimization, Genetic Algo-

@ Springer

Autom Softw Eng (2017) 24:623-671 663

rithm and Simulated Annealing considering requirements interdependencies. This
work concludes that the Ant Colony Optimization reaches better results than other
metaheuristics.

In van den Akker et al. (2005), techniques of integer linear programming were
applied considering some practical aspects of the NRP, such as the list of requirements,
interactions between requirements and their respective costs, and the resources that
the development team requires. The work on Xuan et al. (2012) focuses on solving
big instances of the NRP through an algorithm named “Backbone Algorithm”. The
achieved results are compared with a Simulated Annealing variant known as LMSA.

Generally speaking, the approaches presented above can be considered decision-
making tools, where the DM inserts data, then the tool automates the process and
returns a set of requirements to be implemented in the next release. Due to this autom-
atization, such approaches do not consider implicit preferences during the search
process, and consequently don’t making use of various benefits that human knowl-
edge could offer to improve the results.

5.2 Interactive optimization in search-based software engineering

The work in Pitangueira et al. (2015) presents a systematic review and mapping study
of SBSE approaches to requirements selection and prioritization. The authors point
out that, in terms of innovation for the area, adding user judgement in the model may
lead to better results, and would also take the empirical studies closer to the software
engineering reality. This point of view is also reinforced in Zhang et al. (2008) and
Harman et al. (2012).

In the requirements engineering field there are four pieces of work that can be
highlighted. First of all, the first version of this work presented in Aradjo et al.
(2014) primarily assess whether an IGA for the NRP can properly incorporate the
DM knowledge in the final solutions. In addition, it has also drafted a first version
of the architecture that considers a learning model as an option of replacing the DM
when necessary.

A conceptual proposal is presented in Pitangueira (2015), which focuses on improv-
ing the selection of software requirements for a next release. It proposes the usage of
a search-based approach interactively with multiple stakeholders in the optimization
process through the establishment of a judgment consensus about what is a good Pareto
Front.

In Dantas et al. (2015), an interactive approach to the software release planning
is proposed in which the search is guided according to a Preferences Base that is
interactively supplied by the DM during the search process. In this approach, the
fitness of a certain candidate solution is penalized according to the importance level of
each preference that was not satisfied. Preliminary results indicates that the solutions
are able to satisfy almost all user preferences, prioritizing the most important ones,
with little score loss.

Finally, Tonella et al. (2010) investigates an IGA approach for a real case study
in the requirements prioritization process. The main idea of this paper is to minimize
the amount of “requirements peers” evaluations obtained from the users, making this

@ Springer

664 Autom Softw Eng (2017) 24:623-671

approach more scalable and accurate concerning the final requirements prioritization.
The results are positive denoting that the performance of the requirements prioritization
process is better when employing the interactive approach. Later, this approach was
extended in Tonella et al. (2013), pointing out comparisons with the IAHP, the state
of the art reference algorithm for interactive requirement prioritization.

Regarding software maintenance, an approach to find appropriate refactoring sug-
gestions using a set of examples is proposed in Ghannem et al. (2013). The fitness
function combines the structural similarity between a candidate design model and
refactoring examples, alongside developer’s ratings for the refactorings proposed dur-
ing execution of the IGA. The fitness function of the solution is computed as an average
of its old fitness function and the overall designer’s rating. Initially, the base of exam-
ples and an initial model to be improved are used as inputs. Results showed that this
approach is stable regarding its accuracy, integrity, type and amount of refactorings
per class.

Under the context of software design optimization, an inclusion of the developer
in tasks of software re-modularization is proposed in Bavota et al. (2012). In such
work, quality and dependencies between modules are automatically evaluated. The
user, in turn, evaluates if two components must be in the same module or not. Given
this feedback, a penalty function is applied to penalize solutions that violate the con-
straints imposed by the developers. Despite the effectiveness regarding cohesion, the
approach does not consider the developer’s knowledge when deciding about grouping
the components.

Still considering the software design field, there is a large amount of work apply-
ing interactive optimization concepts (Parmee et al. 2006; Simons and Parmee 2010;
Simons et al. 2010; Simons 2011; Simons and Parmee 2012; Simons et al. 2014;
Simons and Smith 2013). It is possible to highlight the work in Simons et al. (2014)
because it summarizes many ideas and concepts presented in the previous ones. The
research is focused on interactive ant colony optimization in which the search process
is guided by an adaptative model that bring together objective and subjective factors.
Regarding the interaction, the user is invited to give a numeric evaluation (from 1
to 100) for a feasible candidate solution. The solution’s representation is modelled
as a UML diagram in which each class is divided into three compartments and con-
nected with other classes through arrows. Concerning the results, the participants of
the experiments rated the proposal as persuasive in the sense that it may be considered
as an interesting direction in the interactive search for problems related to software
design.

With respect to software testing, it is possible to cite the project exploited in Mar-
culescu et al. (2012, 2013, 2015,7?). Generally, it is proposed a system for testing
embedded software by applying a technique that largely automates the generation of
test data while still enabling domain specialists to contribute with their knowledge and
experience. The fitness function is calculated from a set of quality objective scores
for a candidate solution, and a set of weights for those objectives is provided by the
user which are combined into a single fitness. Thus, to guide the search, the domain
specialist decides the relative importance of the quality objectives. In the experiments,
the Differential Evolution was employed as search engine. An industrial evaluation
was conducted, and results showed that the tool complements existing testing meth-

@ Springer

Autom Softw Eng (2017) 24:623-671 665

ods, given that the user interaction is essential in developing interesting and useful test
cases.

As presented in Sect. 3.2, this work considers to be of great value three major ques-
tions when defining an Interactive Modeling for a search problem. Thus, Table 8
presents these three aspects under the perspective of the related work discussed
above.

5.3 Treating human fatigue

In Kamalian et al. (2006) the use of artificial intelligence techniques is proposed to
predict human evaluations based on previous interactions, analogously to the learning
model proposed in this work. It is proposed the use of fuzzy inference systems and
machine learning techniques to reduce human fatigue. The empirical evaluation was
conducted under the context of microelectromechanical systems, also known as micro-
machines design problem. The fuzzy-system-based predictor was based on four system
rules manually derived from the observation of previous human user tests, reaching a
reduction in human effort of 51 % in average. Regarding the machine learning, it was
investigated the results of four different approaches, and it was achieved, in average,
a reduction in human effort of 31 %. These approaches achieved good accuracy on
validation tests, but because of the great diversity in user scoring behavior, they were
unable to achieve equivalent results on the user test data.

In Hsu and Huang (2005), it is argued that one of the main causes of human fatigue
is the fact that there are occasions where the result preferred by the user does not
exist in the search space. If it is not possible to ensure that the solution idealized by
the user exists in the search space, the search process becomes more difficult and,
consequently, the fatigue increases. Given this context, an effective method to create
a search space that meets the customer values (or objectives) is proposed. It integrates
the search space into a customer values-based IEC model to reduce user burden when
designing their preferred products. A case study involving the design of water bottles
was analyzed in order to verify the model’s performance. Overall, the results confirm
that a correct search space contributes to reduce the user fatigue.

Another alternative to ameliorate human fatigue that can be mentioned is the work
in Wang et al. (2006). Fundamentally, it is proposed the creation of an absolute scale
to improve the prediction of human evaluations in IEC, accelerating the algorithm
convergence, and reducing the amount of human intervention. Thus, a concrete pre-
dictor method of mapping relative data to the absolute scale is proposed. Regarding
the experiments, three methods were compared: an IGA with the proposed predictor
using an absolute scale, an IGA with a conventional predictor using a relative scale,
and an IGA without a predictor. First, the effectiveness of this method was evaluated
using seven benchmark functions instead of a human user, which was aimed at veri-
fying the convergence speed of an IEC using the proposed absolute rating. Next, the
method was assessed through a subjective test using an IEC based individual emotion
retrieval system in order to prove that the proposed predictor is effective in reducing the
user fatigue. The proposed predictor using absolute evaluation had better prediction
performance than conventional predictors, resulting in faster convergence.

@ Springer

Autom Softw Eng (2017) 24:623-671

666

paziundo
9q 03 saAndalqo
JURIHIP oY SunySrom

ODV! & Jo uoneuLIojur

oNSTINAY Ay} UT ddUanju]
SJUOWIAINSBAW
[eImonns yIm

paulquiod Jurnelr 1as)

uorouny ssouly
Q) UI JUTBISUOD 1JOS

suostiedwos asimared jo

JoquINu) AZIWTUTA

paznurxeur
9q 03 9A1O3[qo JayJoUY

paznurxeur
2q 03 9ARO3[qo TAYIoUY

$9A1}O2[qo Ayirenb ayy

Jo ooueyrodwr oATIE[I
AU} SApIoap Jos) ordxg

SOSSB[O

TINN UO paseq su3isap
Qreprpued Suney Jorduy

s3uriojoejar pasodoxd
oy Suney orduy

3q pnoys Aay) araym

10U 21k Jey) S)OBJIIR 10]
sonfeuad ppy o1dxy

syuowiaabaz
uaamilaq GOmMHNn—EOU
astmared ordxyg
soseo[al
ut
uonedo[[e sjuawInbaz
oyradg orndxy
Uon0a[as syuawaInbar
uonnjos Ay}
jnoqe uonenyeay yorduy

QANORIANUT

QATIORION]

QATORIIU]

QATIORIOIU]

QATIORIANUT

aanoeru] pue toud v

QATIORIANUT

uoneIouas viep 1sa,

u31sop a1eM)JOS

Suuojoejoy

UOTJBZLIB[NPOW-AT 9IEMIJOS

uoneznuond syuowainbay

Suruued aseajoy

wopqoId asea[ar IXoN

(ST0T) ‘Te 10 Ndsa[NoIBy

($107) T 39 suoung

(£107) '8 10 wauuRyD

(2102) 'Te 10 vloARyg

(€100) 'Te 19 B[[dUQ,

(S102) Te 19 seyueq

(#102) '8 12 ofnery

(ssao01d
OIS Ay} dduangur
pue pajerodioour

are saduatdyaid oY) Moy

(ssao001d

[oIeas ay) 03 papiaoid

are soouarayord
yoym pue 2d4£) ey

(paimded N
oY) woiy saouardyard
Q) AIB JUSWOW YOTYM Iy

worqoId

1odeg

SI0oM PaJE[aI o) 0) SUIOPOW JATORIAN] § I[qRL,

pringer

As

Autom Softw Eng (2017) 24:623-671 667

6 Conclusions

Selecting requirements for the next release is a complex task in the incremental and
iterative software development model, given the high number of combinations, techni-
cal constraints, multiple objectives and different stakeholders. An interesting approach
to deal with this problem is the interactive optimization, which is a research field that
uses the human tacit knowledge in computational search. The use of such optimiza-
tion strategy is primarily recommended when the human influence can effectively
contribute to the search process enabling the support decision system to absorb the
user’s implicit knowledge without the requirement to formalise this information a
priori.

An initial proposal of the presented architecture has already been introduced in
Aradjo et al. (2014), in which preliminary results shown that an IGA can successfully
incorporate the user preferences in the final solution. The present work significantly
extends the previous work, improving both the architecture and empirical study.
Through the combination of the benefits achieved by the Interactive Optimization,
Machine Learning and SBSE, the main objective of this paper is to thoroughly present
and evaluate the architecture to solve an interactive version of the NRP that allows an
inclusion of human knowledge during the IGA evolution. Aiming to not overload the
Decision Maker with a large number of interactions, a learning model was proposed
to learn the human behavior and, eventually, replace the DM in the remainder of the
evolutionary process. Thus, the architecture is composed by three different compo-
nents with distinct responsibilities: (a) interactive genetic algorithm, (b) Interactive
Module and (c) learning model. These components communicate among themselves
and each one was properly modelled under the Interactive Next Release Problem
(INRP) perspective. Regardless of how many stakeholders are involved in the project,
the approach focuses in interacting with only one crucial DM that needs to be fully
immersed in the high-level project particularities and responsible to make the last call.

This paper considers both explicit (intrinsic characteristics of the problem) and
implicit preferences (tacit and difficult to previously articulate) in the evaluation func-
tion. The first one is captured through the score function that guides the search in
order to achieve solutions that maximize the overall stakeholders satisfaction, in other
words, selecting the requirements they want to be implemented in the next release.
On the other hand, the implicit preference is gathered when the DM provides SE to
each solution during the algorithm evolution. However, it is reasonable to have some
trade-off between these objectives, because the importance assigned by a specific
stakeholder to a certain requirement may not agree with the DM’s broad view of the
project. According to the specific scenario and project needs, it is possible to balance
this trade-off defining the influence of each objective in the search process through
the weights « and B specified in the architectural settings.

Two experiments were performed for the empirical study conducted in this work:
the Artificial Experiment was verified with several and exhaustive scenarios, and the
Participant-based Experiment investigated the feasibility of the architecture when it is
used by software engineering practitioners. Through the analysis and results achieved
in the empirical study, three main findings can be highlighted:

@ Springer

668 Autom Softw Eng (2017) 24:623-671

The proposed architecture passes the sanity check when it demonstrates that as
the number of interactions increase, more suitable to the DM preferences the final
solution is;

— To incorporate the DM preferences, it is natural to have some score loss given the
trade-off previously established. However, this score loss is considerably small,
making the approach able to generate solutions as good as those produced in a
fully automatic method, but satisfying most of the DM preferences;

Even considering software engineering practitioners with different evaluation
profiles, the proposed approach can improve their subjective satisfaction in com-
parison with a non-interactive solution;

Therefore, some interesting benefits of interactively including the DM in the next
release planning during the evolutionary process can be underlined: (i) the DM could
receive some feedback from the search through the presentation of the most promising
solutions throughout the algorithm evolution; (ii) the capability to incorporate the
changes from the DM’s criteria during the search process; (iii) the DM may get some
insights about the problem, and even dynamically adapt the decision criteria; and (iv)
mitigate the feeling of intellectual exclusion by the user in the analysis, which may
cause resistance and lack of confidence in the final result.

As future work directions, it is expected to provide other analyses regarding the
learning model performance; develop a strategy to measure the increase or decrease
of fatigue; interact with multiple decision makers where their subjective evaluations
are considered as different objectives to be optimized in a many-objective paradigm;
assess different ways for the DM to evaluate the solutions and suit the architecture
for a interactive multi-objective next release problem (iMONRP) formulation aiming
to maximize both score and SE, while minimizing the cost; and finally, conduct a
extensive empirical study considering other traditional problems exploited in SBSE.

Acknowledgments The authors would like to thank the editorial staff and the anonymous reviewers for
their professional and constructive comments, the participants of the experiment for their availability and,
finally, the members of the Optimization in Software Engineering Group of the State University of Ceara.

References

Aljawawdeh, H.J., Simons, C.L., Odeh, M.: Metaheuristic design pattern: Preference. In: Proceedings of
the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference, pp.
1257-1260. ACM (2015)

Aratijo, A.A., Paixdao, M.H.E.: Machine learning for user modeling in an interactive genetic algorithm for the
next release problem. In: Proceedings of the 6th International Symposium on Search-Based Software
Engineering (SSBSE ’14), vol. 8636, pp. 228-233. Springer, Fortaleza, Brazil (2014). doi:10.1007/
978-3-319-09940-8_16

Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Softw. Test. Verif. Reliab. 24(3), 219-250 (2014)

Arcuri, A., Briand, L.C.: A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In: Proceedings of the 33rd International Conference on Software Engineering
(ICSE ’11), pp. 1-10. IEEE, Honolulu, HI, USA (2011). doi:10.1145/1985793.1985795

Arcuri, A., Fraser, G.: On parameter tuning in search based software engineering. In: Proceedings of the 3rd
International Symposium on Search Based Software Engineering (SSBSE ’11), vol. 6956, pp. 33-47.
Springer, Szeged, Hungary (2011). doi:10.1007/978-3-642-23716-4_6

@ Springer

http://dx.doi.org/10.1007/978-3-319-09940-8_16
http://dx.doi.org/10.1007/978-3-319-09940-8_16
http://dx.doi.org/10.1145/1985793.1985795
http://dx.doi.org/10.1007/978-3-642-23716-4_6

Autom Softw Eng (2017) 24:623-671 669

Bagnall, A.J., Rayward-Smith, V.J., Whittley, .M.: The next release problem. Inf. Softw. Technol. 43(14),
883-890 (2001). doi:10.1016/S0950-5849(01)00194-X

Baker, P, Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to component selection and
prioritization for the next release problem. In: Proceedings of the 22nd IEEE International Conference
on Software Maintenance (ICSM *06), pp. 176—185. IEEE, Philadelphia, Pennsylvania (2006). doi: 10.
1109/ICSM.2006.56

Bavota, G., Carnevale, F., Lucia, A.D., Penta, M.D., Oliveto, R.: Putting the developer in-the-loop: An
interactive ga for software re-modularization. In: Proceedings of the 4th International Symposium on
Search Based Software Engineering (SSBSE ’12), vol. 7515, pp. 75-89. Springer, Riva del Garda,
Italy (2012). doi:10.1007/978-3-642-33119-0_7

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., et al.: An industrial survey of requirements interde-
pendencies in software product release planning. In: Proceedings Fifth IEEE International Symposium
on Requirements Engineering, 2001, pp. 84-91. IEEE (2001)

Cho, S.B.: Towards creative evolutionary systems with interactive genetic algorithm. Appl. Intell. 16(2),
129-138 (2002)

Dantas, A., Yeltsin, L., Aradjo, A.A., Souza, J.: Interactive software release planning with preferences base.
In: Proceedings of the 7th International Symposium on Search-Based Software Engineering (SSBSE
*15), pp. 341-346. Springer, Bergamo, Italy (2015). doi:10.1007/978-3-319-22183-0_32

de Barros, M.O, Neto, A.C.D.: A survey of empirical investigations on ssbse papers. In: Proceedings of
the 3rd International Symposium on Search Based Software Engineering (SSBSE ’11), vol. 6956, pp.
268-268. Springer, Szeged, Hungary (2011). doi:10.1007/978-3-642-23716-4_24

do Nascimento Ferreira, T., de Souza, J.T.: An aco approach for the next release problem with depen-
dency among requirements. In: Proceedings of the 3rd Brazilian Workshop on Search-Based Software
Engineering (WESB ’12). Natal, RN, Brazil (2012)

del Sagrado, J., del Aguila, L.M., Orellana, F.J.: Ant colony optimization for the next release problem—a
comparative study. In: Proceedings of the 2nd International Symposium on Search Based Software
Engineering (SSBSE ’10), pp. 67-76. IEEE, Benevento, Italy (2010). doi:10.1109/SSBSE.2010.18

Ferrucci, F.,, Harman, M., Sarro, F.: Search-based software project management. In: Software Project Man-
agement in a Changing World, pp. 373-399. Springer (2014). doi:10.1007/978-3-642-55035-5_15

Ghannem, A., Boussaidi, G.E., Kessentini, M.: Model refactoring using interactive genetic algorithm. In:
Proceedings of the Sth International Symposium on Search Based Software Engineering (SSBSE *13),
vol. 8084, pp. 96-110. Springer, St. Petersburg, Russia (2013). doi:10.1007/978-3-642-39742-4_9

Glass, R.L.: Facts and Fallacies of Software Engineering. Addison-Wesley Professional, Boston (2002)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software:
an update. SIGKDD Explor. Newsl. 11(1), 10-18 (2009). doi:10.1145/1656274.1656278

Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

Harman, M.: The current state and future of search based software engineering. In: Proceedings of Interna-
tional Conference on Software Engineering / Future of Software Engineering 2007 (ICSE/FOSE *07),
pp. 342-357. IEEE, Minneapolis, Minnesota, USA (2007). doi:10.1109/FOSE.2007.29

Harman, M.: Search based software engineering for program comprehension. In: Proceedings of the 15th
IEEE International Conference on Program Comprehension (ICPC *07), pp. 3—13. IEEE, Banff,
Alberta, Canada (2007). doi:10.1109/ICPC.2007.35

Harman, M., Clark, J.A.: Metrics are fitness functions too. In: Proceedings of the 10th IEEE International
Symposium on Software Metrics (METRICS ’04), pp. 58-69. IEEE, Chicago, USA (2004). doi:10.
1109/METRIC.2004.1357891

Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engineering: techniques, taxonomy,
tutorial. Empir. Softw. Eng. Verif. 7007, 1-59 (2012). doi:10.1007/978-3-642-25231-0_1

Haykin, S.S.: Redes Neurais. Bookman, Porto Alegre (2001)

Hsu, F.C., Huang, P.: Providing an appropriate search space to solve the fatigue problem in interactive
evolutionary computation. New Gener. Comput. 23(2), 115-127 (2005)

Jiang, H., Zhang, J., Xuan, J., Re, Z., Hu, Y.: A hybrid aco algorithm for the next release problem.
In: Proceedings of the 2nd International Conference on Software Engineering and Data Mining
(SEDM ’10), pp. 166-171. IEEE, Chengdu, China (2010). http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=5542931

Kamalian, R., Yeh, E., Zhang, Y., Agogino, A.M., Takagi, H.: Reducing human fatigue in interactive evolu-
tionary computation through fuzzy systems and machine learning systems. In: 2006 IEEE International
Conference on Fuzzy Systems, pp. 678—684. IEEE (2006)

@ Springer

http://dx.doi.org/10.1016/S0950-5849(01)00194-X
http://dx.doi.org/10.1109/ICSM.2006.56
http://dx.doi.org/10.1109/ICSM.2006.56
http://dx.doi.org/10.1007/978-3-642-33119-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_32
http://dx.doi.org/10.1007/978-3-642-23716-4_24
http://dx.doi.org/10.1109/SSBSE.2010.18
http://dx.doi.org/10.1007/978-3-642-55035-5_15
http://dx.doi.org/10.1007/978-3-642-39742-4_9
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1109/FOSE.2007.29
http://dx.doi.org/10.1109/ICPC.2007.35
http://dx.doi.org/10.1109/METRIC.2004.1357891
http://dx.doi.org/10.1109/METRIC.2004.1357891
http://dx.doi.org/10.1007/978-3-642-25231-0_1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5542931
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5542931

670 Autom Softw Eng (2017) 24:623-671

Karim, M.R., Ruhe, G.: Bi-objective genetic search for release planning in support of themes. In: Proceedings
of the 6th International Symposium on Search-Based Software Engineering (SSBSE ’14), vol. 8636,
pp. 123-137. Springer, Fortaleza, Brazil (2014). doi:10.1007/978-3-319-09940-8_9

Marculescu, B., Feldt, R., Torkar, R.: A concept for an interactive search-based software testing system. In:
Proceedings of the 4th International Symposium on Search Based Software Engineering (SSBSE *12),
vol. 7515, pp. 273-278. Springer, Riva del Garda, Italy (2012). doi:10.1007/978-3-642-33119-0_21

Marculescu, B., Feldt, R., Torkar, R.: Objective re-weighting to guide an interactive search based software
testing system. In: Proceedings of the 12th International Conference on Machine Learning and Appli-
cations (ICMLA ’13), pp. 102-107. IEEE, Miami, Florida, USA (2013). doi:10.1109/ICMLA.2013.
113

Marculescu, B., Feldt, R., Torkar, R., Poulding, S.: An initial industrial evaluation of interactive search-
based testing for embedded software. Appl. Soft Comput. 29, 26-39 (2015). doi:10.1016/j.as0c.2014.
12.025

Marculescu, B., Poulding, S., Feldt, R., Petersen, K., Torkar, R.: Tester interactivity makes a difference in
search-based software testing: A controlled experiment. arXiv preprint arXiv:1512.04812 (2015)

Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, Norwell (1999)

Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective optimization methods. In:
Multiple Criteria Decision Analysis, pp. 927-976. Springer (2016)

Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc, New York (1997)

Palit, A.K., Popovic, D.: Computational intelligence in time series forecasting. Theory Eng. Appl. (2006).
doi:10.1007/1-84628-184-9

Parmee, 1., Hall, A., Miles, J., Noyes, J., Simons, C., et al.: Discovery in design: Developing a people-
centred computational approach. In: DS 36: Proceedings DESIGN 2006, the 9th International Design
Conference, Dubrovnik, Croatia (2006)

Piegat, A., Satabun, W.: Nonlinearity of human multi-criteria in decision-making. J. Theor. Appl. Comput.
Sci. 6(3), 36-49 (2012)

Pitangueira, A.M.: Incorporating preferences from multiple stakeholders in software requirements selection
an interactive search-based approach. In: 2015 IEEE 23rd International Requirements Engineering
Conference (RE), pp. 382-387. IEEE (2015)

Pitangueira, A.M., Maciel, R.S.P., de Oliveira Barros, M.: Software requirements selection and prioritization
using sbse approaches: a systematic review and mapping of the literature. J. Syst. Softw. 103, 267-280
(2015). doi:10.1016/].jss.2014.09.038

R-Project: http://www.r-project.org/ (2014). Accessed Apr 2016

Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388), 871-880 (1984)

Schachter, D.L.: Implicit memory: history and current status. J. Exp. Psychol. 13(3), 501-518 (1987)

Semet, Y.: Interactive evolutionary computation: a survey of existing theory. University of Illinois, (2002)

Shackelford, M.: Implementation issues for an interactive evolutionary computation system. In: Proceedings
of the 9th annual conference companion on Genetic and evolutionary computation, pp. 2933-2936.
ACM (2007)

Shackelford, M., Corne, D.: A technique for evaluation of interactive evolutionary systems. In: Adaptive
Computing in Design and Manufacture VI, pp. 197-208. Springer (2004)

Simons, C.: Interactive evolutionary computing in early lifecycle software engineering design. Ph.D. thesis,
University of the West of England (2011)

Simons, C.L., Parmee, I.C.: Dynamic parameter control of interactive local search in uml software design.
In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 3397-3404.
IEEE (2010)

Simons, C.L., Parmee, 1.C.: Elegant object-oriented software design via interactive, evolutionary compu-
tation. IEEE Trans. Syst. Man Cybern. Part C 42(6), 1797-1805 (2012). doi:10.1109/TSMCC.2012.
2225103

Simons, C.L., Parmee, 1.C., Gwynllyw, R.: Interactive, evolutionary search in upstream object-oriented
class design. IEEE Trans. Softw. Eng. 36(6), 798-816 (2010). doi:10.1109/TSE.2010.34

Simons, C.L., Smith, J.: A comparison of meta-heuristic search for interactive software design. Soft Comput.
17(11), 2147-2162 (2013). doi:10.1007/s00500-013-1039-1

Simons, C.L., Smith, J., White, P.: Interactive ant colony optimization (iaco) for early lifecycle software
design. Swarm Intell. 8(2), 139-157 (2014)

Simons, C.L., Smith, J., White, P.: Interactive ant colony optimization (iaco) for early lifecycle software
design. Swarm Intell. 8(2), 139-157 (2014). doi:10.1007/s11721-014-0094-2

@ Springer

http://dx.doi.org/10.1007/978-3-319-09940-8_9
http://dx.doi.org/10.1007/978-3-642-33119-0_21
http://dx.doi.org/10.1109/ICMLA.2013.113
http://dx.doi.org/10.1109/ICMLA.2013.113
http://dx.doi.org/10.1016/j.asoc.2014.12.025
http://dx.doi.org/10.1016/j.asoc.2014.12.025
http://arxiv.org/abs/1512.04812
http://dx.doi.org/10.1007/1-84628-184-9
http://dx.doi.org/10.1016/j.jss.2014.09.038
http://www.r-project.org/
http://dx.doi.org/10.1109/TSMCC.2012.2225103
http://dx.doi.org/10.1109/TSMCC.2012.2225103
http://dx.doi.org/10.1109/TSE.2010.34
http://dx.doi.org/10.1007/s00500-013-1039-1
http://dx.doi.org/10.1007/s11721-014-0094-2

Autom Softw Eng (2017) 24:623-671 671

Takagi, H.: Interactive evolutionary computation: System optimization based on human subjective evalu-
ation. In: IEEE International Conference on Intelligent Engineering Systems (INES’98), pp. 17-19
(1998)

Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of ec optimization and human
evaluation. Proc. IEEE 89(9), 1275-1296 (2001)

Tonella, P., Susi, A., Palma, F.: Using interactive ga for requirements prioritization. In: Proceedings of the
2nd International Symposium on Search Based Software Engineering (SSBSE ’10), pp. 57-66. IEEE,
Benevento, Italy (2010). doi:10.1109/SSBSE.2010.17

Tonella, P., Susi, A., Palma, F.: Interactive requirements prioritization using a genetic algorithm. Inf. Softw.
Technol. 55(1), 173-187 (2013). doi:10.1016/].infsof.2012.07.003

van den Akker, J., Brinkkemper, S., Diepen, G., Versendaal, J.: Determination of the next release of a
software product: an approach using integer linear programming. In: Proceeding of the 11th Interna-
tional Workshop on Requirements Engineering: Foundation for Software Quality (REFSQ 05). Porto,
Portugal (2005). http://citeseerx.ist.psu.edu/viewdoc/summary ?doi=10.1.1.85.27%95

Wang, S., Wang, X., Takagi, H.: User fatigue reduction by an absolute rating data-trained predictor in IEC.
In: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, pp. 2195-2200. IEEE (2006)

Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann,
Amsterdam (2005)

Xuan, J., Jiang, H., Ren, Z., Luo, Z.: Solving the large scale next release problem with a backbone based
multilevel algorithm. IEEE Trans. Softw. Eng. 38(5), 1195-1212 (2012). doi:10.1109/TSE.2011.92

Zhang, D., Tsai, J.J.: Machine learning and software engineering. Softw. Qual. J. 11(2), 87-119 (2003)

Zhang, Y., Finkelstein, A., Harman, M.: Search based requirements optimisation: existing work and chal-
lenges. In: Proceedings of the 14th International Working Conference, Requirements Engineering:
Foundation for Software Quality (RefsQ ’08), vol. 5025, pp. 88-94. Springer, Montpellier, France
(2008). doi:10.1007/978-3-540-69062-7_8

@ Springer

http://dx.doi.org/10.1109/SSBSE.2010.17
http://dx.doi.org/10.1016/j.infsof.2012.07.003
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.27%95
http://dx.doi.org/10.1109/TSE.2011.92
http://dx.doi.org/10.1007/978-3-540-69062-7_8

	An Architecture based on interactive optimization and machine learning applied to the next release problem
	Abstract
	1 Introduction
	2 Architecture overview
	3 An interactive next release problem formulation
	3.1 Mathematical modeling
	3.2 Interactive modeling
	3.3 Learning modeling

	4 Empirical study
	4.1 Metrics
	4.1.1 Similarity degree
	4.1.2 Similarity factor
	4.1.3 Price of preference

	4.2 Empirical study settings
	4.2.1 Instances configuration
	4.2.2 Machine learning techniques settings
	4.2.3 Interactive genetic algorithm settings

	4.3 Experimental design
	4.3.1 Artificial experiment
	4.3.2 Participant-based experiment
	4.3.3 Research questions

	4.4 Results and analysis
	4.5 Discussion
	4.6 Threats to validity

	5 Related work
	5.1 Next release problem
	5.2 Interactive optimization in search-based software engineering
	5.3 Treating human fatigue

	6 Conclusions
	Acknowledgments
	References

