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Abstract Debugging is difficult and costly. As a programmer looks for a bug, it
would be helpful to see a complete trace of events leading to the point of failure.
Unfortunately, full tracing is simply too slow to use after deployment, andmay even be
impractical during testing.We aid post-deployment debugging by giving programmers
additional information about program activity shortly before failure. We use latent
information in post-failure memory dumps, augmented by low-overhead, tunable run-
time tracing. Our results with a realistically-tuned tracing scheme show low enough
overhead (0–5 %) to be used in production runs. We demonstrate several potential
uses of this enhanced information, including a novel postmortem static slice restriction
technique and a reduced view of potentially-executed code. Experimental evaluation
shows our approach to be very effective. For example, our analyses shrink stack-
sensitive interprocedural static slices by 53–78 % in larger applications.

Keywords Postmortem program analysis · Debugging · Core dumps · Static program
slicing · Path tracing · Coverage

1 Introduction

Debugging is a difficult, time-consuming, and expensive part of software develop-
ment and maintenance. Debugging, testing, and verification account for 50–75 % of a
software project’s cost (Hailpern and Santhanam 2002); these costs grow even higher
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in some cases (Gauf and Dustin 2007; Tassey et al. 2002). Yet, post-deployment fail-
ures are inevitable in complex software. When failures occur in production, detailed
postmortem information is invaluable but difficult to obtain.

Developers would benefit greatly from seeing concrete traces of events leading
to failures, failure-focused views of the program or program state, or suggestions of
potentially-faulty statements. Sadly, full execution tracing is usually impractical for
complexprograms.Even for simple code, full-tracingoverheadmayonly be acceptable
during in-house testing.

One common and very useful artifact of a failed program execution is a core mem-
ory dump. Coupled with a symbol table, a core dump reveals the program stack of
each execution thread at the moment of program termination, the location of the crash,
the identities of all in-progress functions and program locations from which they were
called, the values of local variables in these in-progress functions, and the values of
global variables. Prior work with symbolic execution has shown that this information
can help in deriving inputs and/or thread schedules that match a failed execution (Zam-
fir and Candea 2010; Rößler et al. 2013; Weeratunge et al. 2010).

Our goal is to support debugging using latent information in postmortem core
dumps, augmented by lightweight, tunable instrumentation1. This paper explores four
such enhancements: (1) a variant of Ball–Larus path profiling, (2) function coverage,
(3) statement coverage, and (4) call-site coverage. We evaluate the trade-offs among
these tracing methods, and conclude that pairing our path profiling variant with call-
site coverage yields a complementary, realistic, and valuable choice for deployed
applications.

Our results for this pairing with a realistically-tuned tracing scheme show low
overheads (0–5 % execution time, 0–4 % dynamic memory) suitable for production
use. We also demonstrate a number of potential preprocessing debugging uses of this
enhanced information, including a unique hybrid program slicing restriction and a
reduction of potentially-executed control-flow graph (CFG) nodes and edges. These
postmortem analyses can take advantage of all of our core dump enhancement tracing
mechanisms. For example, one of our evaluated applications, space, crashes within a
loop in a complex function containing many branches and a large switch statement.
The bug is a missing exit statement within one switch case. Our analysis is able to
provide the complete branch trace within the crashing function, reducing the possible
set of executed statements by over 65%. This benefit comes at a tracing time overhead
of just 0.3%relative to uninstrumented code.This is a simple, intraprocedural example;
Sect. 6 indicates that our approach often performs even better on larger, more complex,
interprocedural cases.

This paper expands upon our previous conference paper (Ohmann and Liblit 2013)
in several ways. First, we provide discussion and experimental results for varying
granularities of program coverage tracing (at functions, call sites, and statements),
whereas Ohmann and Liblit (2013) only discussed call-site coverage. Section 4.1.2
details this change, and provides examples. Second, and partly due to these extended
tracing options, in this paper we more strongly emphasize the difference between our

1 Source code is available at http://pages.cs.wisc.edu/~liblit/ase-2013/code/.
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instrumentation (which is static) and our run-time tracing (which is customizable).
We introduce the notion of a “scheme” to describe a possible tracing configuration,
and provide a more in-depth discussion of this topic. See Sect. 4 for details. Third,
with more instrumentation choices (due to the added forms of program coverage),
we provide some discussion of (and a new approach to) customization of tracing
post-deployment (see Sect. 4.2).

Further changes involve our analyses and evaluation. First, we provide a more
detailed discussion of our control-flownode and edge reduction analysis (seeSect. 5.1).
Second, we evaluate our techniques in much greater detail. Specifically, we evaluate
each tracing mechanism (including all coverage types) independently, along with trac-
ing schemes combining multiple mechanisms, including the “realistic” scheme from
Ohmann and Liblit (2013). We also assess the effect of post-deployment customiza-
tion support on our tracing overhead. See Sects. 6.1, 6.3 for details. Third, we provide
an in-depth discussion of sources of ambiguity that we encounter in our analysis
framework. Note that ambiguity in our results is expected: we intentionally sacrifice
full-trace detail to reduce run-time overhead. However, the fact that we use two inde-
pendent pieces of software for pre-instrumentation and post-crash analysis results in
additional ambiguity (for matching trace data to analysis program representations).
Section 6.2.2 contains full details. Finally, we set further context for our work: we dis-
cuss threats to the validity of our experiments (Sect. 7), and provide a more extensive
discussion of our future work plans (Sect. 9).

Figure 1 shows the relationships between our instrumentation and analyses; each
feature of this diagram is described in the sections that follow. We begin with a moti-
vating example in Sect. 2, then review key background material in Sect. 3. Section 4
describes the kinds of data we collect and our instrumentation strategies for doing so.
Section 5 gives a detailed description of the analyses we perform on collected data.We
assess instrumentation overhead and usefulness of analysis results in Sect. 6. Section 7
discusses possible threats to the validity of our results. Sections 8, 9 discuss related
work and opportunities for future research. Section 10 concludes.

2 Example

Figure 2 shows an example we will refer to throughout the paper. The source code in
Fig. 2a is taken from flex: one of the applications used for evaluation in Sect. 6. Most
often, we will make use of the function’s intraprocedural CFG representation, shown
in Fig. 2b.

3 Background

We begin by describing core dumps and their benefits for postmortem debugging.
We then review a well-studied path profiling approach by Ball and Larus (1996); the
present work develops a variant of this approach. Finally, we briefly outline program
slicing, which serves as the basis of one of our analyses.
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Fig. 1 Overview of data collection and analysis stages. Sharp-cornered rectangles represent inputs

and outputs; rounded rectangles represent computations (Color figure online)

(a) (b)

Fig. 2 Example code. a Code example. b Control-flow graph
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3.1 Core memory dumps

All widely-used modern operating systems can produce a “core dump” file containing
a snapshot of a program’s memory. A dump may be saved after abnormal program
termination due to an illegal operation (such as using an invalid pointer) or on demand
(such as by raising a fatal signal or failing an assertion). This can be useful if the core
dump is to be used for postmortem analysis.

Typically, a core dump includes the full program stack at termination. For our
purposes, the key elements are the point of failure (the exact location of the program
crash), as well as the final call location in each other still-active frame on the stack
(i.e., each stack frame’s return address). Conveniently, core dumps are only produced
in the case of program failure. Thus, collecting them imposes zero run-time overhead.
This is a key advantage to using core dumps for postmortem analysis.

3.2 Path profiling

Path profiling is traditionally used to compute path coverage during program testing.
The approach we adopt fromBall and Larus (1996) is designed to efficiently profile all
acyclic, intraprocedural paths. The algorithm first removes back edges to transform the
CFG of a procedure into a directed acyclic graph (DAG).We represent the transformed
CFG as a single-entry, single-exit DAG G = (V, E, s, x) where V is the set of nodes
in the graph and E ⊆ V ×V is the set of edges with no directed cycles. Every node in
V is reachable by crossing zero or more edges starting at the unique entry node s ∈ V .
Conversely, the unique exit node x ∈ V is reachable by crossing zero or more edges
starting from any node. A path p through G is represented as an ordered sequence
of nodes 〈p1, . . . , p|p|〉 such that (pi , pi+1) ∈ E for all 1 ≤ i < |p|. We define a
complete path as a path whose initial and final nodes are s and x respectively. Let C
represent the set of all complete paths; note that this set is finite since G is a DAG.
Loops are handled specially, and are discussed later in this subsection.

The overall goal of the Ball–Larus algorithm is to assign a value Increment(e) to
each edge e ∈ E such that

1. each complete path in C has a unique path sum produced by summing over the
edges in the path;

2. the assignment is minimal, meaning that all path sums lie within the right-open
interval [0, |C |); and

3. the assignment is optimal, meaning that each path requires the minimal number
of non-zero additions.

The first step assigns a value to each edge such that all complete path sums are
unique and the assignment is minimal. To do so, the algorithm traverses the graph in
reverse-topological order. For each n ∈ V we compute NumPaths[n], the number of
paths from n to x . If we number the outgoing edges of n as e1, . . . , ek with respective
successor nodes v1, . . . , vk , then the weight Weight(ek) assigned to each outgoing
edge of n is

∑k−1
j=1 NumPaths[v j ]. After this step, complete path sums using Weight

values are unique, and the assignment is minimal.
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(a) (b)

Fig. 3 Path profiling example. a Extra instrumentation code added for path profiling. b Path
numbers (Color figure online)

The next step optimizes the value assignment. This uses a maximum-cost spanning
tree (MCST) ofG. AMCST is an undirected graph with the same nodes asG, but with
an undirected subset ofG’s edges forming a tree, and forwhich the total edgeweighting
is maximized. Algorithms to compute MCST are well-known. Remaining non-tree
edges are chord edges, and all edge weights must be “pushed” to these edges. The
unique cycle of spanning tree edges containing a chord edge determines its Increment.

Instrumentation is then straightforward. Track the path sum in a register or local
variablepathSum, initialized to0 at s. Along each chord edge e, update the path sum:
pathSum += Increment(e). When execution reaches x , increment a global counter
corresponding to the path just traversed: pathCount[pathSum]++.

Cycles in the original CFG create an unbounded number of paths. Control flow
across back edges requires creating extra paths from s to x by adding “dummy”
edges from s to the back edge target (corresponding to initialization of the path sum
when following the back edge) and from the back edge source to x (corresponding to a
counter increment when taking the back edge). The algorithm then proceeds as before.
Because of the dummy edges to x and from s, counter increments and reinitialization
of the path sum occur on back edges. We expand our definition of a complete path to
include paths that begin at back edge targets or that end at back edge sources.

Figure 3 shows possible instrumentation to profile paths in the example func-
tion from Fig. 2. Figure 3a shows the function’s CFG annotated with pathSum and
pathCount increments. Each acyclic path completes at either function exit or the
loop back edge, and the counter for the path’s value is incremented at that point. As
shown in Fig. 3b, each acyclic path is uniquely numbered. Note that the assignment
is clearly minimal, as each acyclic path contains at most one pathSum initialization,
and one pathSum increment.

The preceding overview of path profiling focuses on details relevant to the present
work; see Ball and Larus (1996) for the complete, authoritative treatment. There has
been a great deal of follow-on work since the original paper (Ammons et al. 1997;
Melski and Reps 1999; Vaswani et al. 2007; Sumner et al. 2010), some of which
provides opportunities for potential future work described in Sect. 9.
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3.3 Program slicing

Program slicing with respect to program P , program point n, and variables V deter-
mines all other program points and branches in P which may have affected the values
of V at n. The original formulation by Weiser (1984) proposed the executable static
slice: a reduction of P that, when executed on any input, preserves the values of V at
n. In this work, we are concerned with non-executable or closure slices, which are the
set of statements that might transitively affect the values of V .

Ottenstein and Ottenstein (1984) first proposed the program dependence graph
(PDG), a useful program representation for slicing. The nodes of a PDG are the
same as those in the CFG, and edges represent possible transfer of control or data.
A control dependence edge is labeled either true or false and always has a control
predicate or function entry as its source. An edge n1 → n2 means that the result of the
conditional at n1 directly controls whether n2 executes. (A node may have multiple
control-dependence parents in the case of irregular control flow such asgoto,break,
or continue statements). A data dependence edge is labeled with a variable v and
has a variable definition at its source and a variable use at its target.

Our definition of the system dependence graph (SDG), an interprocedural depen-
dence graph, is drawn from Horwitz et al. (1988). The SDG combines all PDGs, and
adds a number of new nodes and edges. Each call is now broken out into three types
of nodes: a call-site, actual-in, and actual-out nodes (We treat globals as additional
parameters, following Horwitz et al. 1988). A special actual-out node is created for the
return value. Each PDG is also augmented with formal-in and formal-out nodes cor-
responding to formal parameters and the return value, as well as global variables used
or defined in the procedure. Interprocedural control dependence edges are added from
each call site to the called procedure’s entry node. Interprocedural data dependence
edges are added for all appropriate (actual-in, formal-in) and (formal-out, actual-out)
pairs, including the return value. Finally, summary edges from actual-in to actual-
out nodes are computed; these represent transitive data dependence summarizing the
effects of each procedure call. Details on the computation of these edges can be found
in Horwitz et al. (1988).

A static slice considers all possible program inputs and execution flows. While
debugging, one prefers a slice that is constrained to a particular execution. Korel and
Laski (1988) first proposed dynamic slicing as a solution to dataflow equations over an
execution history.We are interested in closure dynamic slices similar to those proposed
by Agrawal et al. (1990). The authors propose four variants of dynamic slicing. The
first simply marks all executed nodes, and performs a static slice over that subset of
the graph. The second recognizes that each executed node has exactly one control-
dependence parent and one reaching definition for each variable used in the statement.
Therefore, this variant slices using only dependence edges actually observed as active
during the execution. The third approach recognizes that different instances of each
node may have different dependence histories. Therefore, this approach replicates
each statement each time it occurs in the execution trace, attaching only the active
dependence edges for that instance of the statement. Agrawal and Horgan’s final
approach only replicates nodes with unique transitive dependencies.
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Dynamic slicing can be very expensive, potentially requiring data equivalent to a
full execution trace. To make matters worse, one must trace all memory accesses due
to pointer variables, arrays, and structures to have a completely accurate dynamic slice
in the general case (Agrawal et al. 1991; Korel and Laski 1990). Kamkar et al. (1993)
and Zhang and Gupta (2004) are able to reduce the cost of dynamic slicing, but the
cost of fully-accurate slicing remains too high for production use. Venkatesh (1991)
and Binkley et al. (2006) formalize the semantics of program slicing and discuss the
distinctions and orderings among the different types of program slices.

4 Data collection

When consideringwhich data to collect and how, several desirable properties guide our
choices. Instrumentationmust be efficient in time and space, and therefore suitable for
production use. Data must be held inmemory until failure, adding no I/O or other sys-
tem calls during normal execution.Data sizemust scalewith aspects of execution state,
such as stack depth or number of program locations. Results must bemappable back
to source code, and contain as little ambiguity as possible. Lastly, instrumentationmust
be tunable (for overhead or to change focus) without recompilation or redeployment.

Any core dump already records the return address of each active function at the
time of failure. While this has all the above qualities, it may be insufficient on its
own. Therefore, we augment core dumps with two novel techniques: path tracing
and various forms of program coverage. Some of these techniques can be combined.
Throughout the remainder of the paper, we will refer to a (possibly empty or singleton)
set of tracing mechanisms as a tracing scheme.

The distinction between instrumentation and tracing is key to our technique. First,
during compilation, the programmust be instrumented to support each possible desired
tracing scheme. Section 4.1 describes the four tracing mechanisms we consider in
this paper. Second, tracing must be customizable post-deployment. We discuss the
preliminary method we adopted in Sect. 4.2. Section 4.3 touches on thread safety.

4.1 Tracing mechanisms

This paper considers four tracing mechanisms (path tracing, statement coverage, call-
site coverage, and function coverage) which we group into two different high-level
methods of tracing. Our path tracing mechanism is an extension of work by Ball and
Larus (1996). Coverage mechanisms are all traced similarly, while only the traced
program points differ. For each instrumented function, we produce a metadata file
used to interpret traced data for reconstruction and postmortem analysis; we describe
this metadata individually for each tracing mechanism.

4.1.1 Ball–Larus inspired path tracing

Path tracing records the last N acyclic paths taken through each function on the stack
at the time of failure. Like any stack-bound data, this is discarded whenever a function
returns. We achieve this using a variant of Ball–Larus path profiling. Rather than
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counting acyclic path executions, we instead record each completed acyclic path in a
stack-allocated circular buffer.

However, completed paths alone do not yield an execution suffix. We also need
the final “incomplete” path leading up to the failure. Fortunately, given a CFG G,
failing node v, and a partial path sum w, we can recover the unique acyclic path
that accumulates the value w upon reaching v. This is a natural consequence of the
Ball–Larus approach: v andw are the only state maintained while determining acyclic
paths, and therefore must constitute the system’s entire “memory” of the partial path
covered so far.

Formally, for any node v ∈ V , every (pathSum, v) pair either encodes a unique
subpath in G or is infeasible. Conversely, every unique subpath in G is represented
by a unique (pathSum, v) pair. The proof that these uniqueness properties hold is
straightforward by contradiction. G has a unique exit node, x , that is reachable from
v via some sequence of edges E. This sequence of edges need not be unique. Each of
those edges has been assigned an increment, and, therefore, we can compute the sum
of the “suffix” sequence of edges to bew = ∑

e∈E Increment(e). Suppose two distinct
subpaths p and q both begin at s, end at v, and share the same value of pathSum. We
can “complete the path” for both of them by connecting each subpath to E and getting
a total path sum of w f inal = w + pathSum. However, we know that two acyclic
paths do not share the same path sum by the proof from Ball and Larus (1996). It is
trivially the case that no subpath can give rise to more than one possible pair as edge
increments are fixed. We must merely guarantee that an accurate partial path sum is
available at every point during execution, since failure can occur at any time.

Figure 4 shows appropriate instrumentation for the example from Sect. 2.
Note that the pathSum increments and pathTrace stores correspond to the path
profiling instrumentation scheme shown in Fig. 3. Our implementation of path tracing
includes a number of changes relative to standard Ball–Larus path profiling. We move

array allocation into the stack, giving one trace ( pathTrace ) per active call. The size
of this array determines how many acyclic paths are retained. This is fixed at build
time, defaulting to 10 (We performed preliminary experiments on small applications,
varying the buffer size over several orders of magnitude up to 100,000. We find that
overhead initially increases anywhere from10–40%per order ofmagnitude.Overhead
eventually stabilizes once the array is so large that most of it is unused and therefore
never mapped into memory). Note that, since space for path traces is stack-allocated, it
naturally scales directly with the stack depth. Its allocation is also “free” as no explicit
allocation is required, and (depending on the choice of trace size) it hasminimal impact
on the size of a stack frame.

The stack-allocated array serves as a circular buffer.A local variable (pathIndex )
tracks the current buffer position. At each back edge and function exit, we append the

path sum ( pathSum ) for the just-completed path to this buffer. On back edges,

the path sum is reinitialized ( pathSum=3) to uniquely identify paths beginning
at the loop head. Obviously, we cannot instrument functions with more paths than
can be counted in a machine integer. This rarely affects 64-bit platforms, though
Sect. 6.3 notes one exception seen in our experimental evaluation. Instrumentation
skips affected functions, for which we simply collect no trace data.
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Fig. 4 Path tracing instrumentation example. Highlighted code implements path tracing (Color
figure online)

We must be able to access the current path sum at any point, not just at the very
ends of complete paths. For safety, we forbid the compiler from keeping this value in
a register. Rather, both the path sum and the trace array are declared volatile.

Instrumentation produces a metadata file necessary for future analyses. For each
function, we record (1) a full representation of the CFG with edges labeled with path
sum increments; and (2) a mapping from basic blocks to line numbers. The linker

aggregates this metadata into a single record for the entire executable: path info

in Fig. 1.

4.1.2 Program coverage

Path traces provide very detailed information close to the point of failure in each
active stack frame. However, path traces have two major blind spots: old paths that
have already rotated out of the circular trace buffer, and interprocedural paths through
calls that have already returned.
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Program coverage data can easily provide coarser-grained global information,
allowing tracing to scale gracefully as the debugging task departs from the active
crash stack. Coverage instrumentation uses one global array per instrumented func-
tion, and one local array (of the same size) for each stack frame. For a function f , we
select a set of statements, which we call trace points. These trace points are numbered
0, 1, . . . , n − 1; these serve as indices into f ’s local and global coverage arrays. Cov-
erage that we gather is binarized, meaning that we record whether each trace point was
ever executed (1) locally, in each particular invocation of f corresponding to a stack
frame; and (2) globally, for any invocation of f across the entire program’s execution.
Thus, each trace point corresponds to one local coverage bit per active f stack frame
plus one global coverage bit. Taken together, the local and global coverage bits have
several desirable properties. The local bits offer up-to-date information for trace points
in each still-active function. Space for this is stack-allocated, so, like path traces, it
naturally scales with the stack depth. Conversely, the global coverage bits summarize
data from completed calls which have already left the stack.

Our prior work (Ohmann and Liblit 2013) considered only one set of trace points:
call sites. In this work, we place that choice in better context, by also considering
two alternatives. First, one may elect to gather full statement coverage. Naïvely, one
trace point could be used for each statement in f . However, one trace point per basic
block in f is sufficient. Second, if one is interested in function coverage, one need
only select one trace point per function. Any statement guaranteed to execute on any
execution of f will do; we use function entry, as selecting function exit may require
either multiple trace points or adding a shared exit block. Note that function coverage
is unique in that it has no stack-local variant: all functions currently in the active stack
are clearly executing.

Call-site coverage is the final coverage form we consider. This mechanism is taken
directly from our prior work (Ohmann and Liblit 2013). Here, we have one trace point
for each call site in f . Our use of call sites as the program points for which to gather
coverage information is somewhat arbitrary. However, the choice is well-matched to
its purpose. Call sites mark departures from the visible call stack; these are places
where stack-based tracing (such as path tracing) cannot help us. Intuitively, coverage
at call sites complements dense stack-local mechanisms where that help is most likely
to be useful. We find that call-site coverage works extremely well in practice (see
Sect. 6.3).

Figure 5 shows appropriate instrumentation for the example from Sect. 2.
The three variants correspond to our three sets of trace points. This example also shows
some of the subsumption relationships that hold among the three types of program
coverage. Call-site coverage is more precise than function coverage for this particular
function: it is able to determine whether the loop was ever taken via tracing the call to
realloc_char_array. The subsumption relationship, however, does not hold in
general, as a functionmay be a leaf function (i.e., contain no calls) or not be guaranteed
to execute a call instruction on every path through the function. However, statement
coverage always subsumes both function and call-site coverage. In the examples of
Fig. 5, only statement coverage distinguishes the direction of the if statement within
the loop.

123



876 Autom Softw Eng (2017) 24:865–904

(a) (b)

(c)

Fig. 5 Program coverage instrumentation example. a Function coverage. b Call-site coverage. c Statement

coverage Highlighted code implements coverage (Color figure online)
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Local coverage data is stored in a stack-allocated n-element array (cov ),
zero-initialized at function entry. A per-function global n-element array

(add_actionCov ), initialized at program start, holds global coverage informa-
tion. Immediately following each trace point i , we store true into slot i of both
the local and global coverage arrays. To preserve ordering, the arrays are declared
volatile.

For each trace point, we record a small amount of staticmetadata used to identify the
trace point during analysis. In practice, our setup requires that this data differ slightly
depending on the type of trace point used. Function coverage need only record the
name (or mangled name) of the function. Call-site coverage records: (1) the name
of the called function, if known; and (2) the line number of the call site. Statement
coverage records the sequence of line numbers occurring in the basic block, and, for
reasons discussed further in Sect. 6.2.2, any calls that occur within the basic block.
The linker aggregates this metadata into a single record for the entire executable:
coverage info in Fig. 1.

4.2 Tracing customization

In production code, it can be difficult to specify instrumentation overhead require-
ments beforehand, as these requirements may change over time, or vary for each
program instance. Furthermore, while focusing on failure-related code could substan-
tially reduce tracing cost, it is impossible to predict where or when post-deployment
failures will occur before release. Therefore, if the cost of full program tracing is too
high for production use, customizable tracing is necessary.

Our approach statically replicates each function, instruments each replica with
one possible tracing scheme, and dynamically decides which replica to execute. Our
original implementation from Ohmann and Liblit (2013) used internal replication.
That is, we replicated each function body inside the function, and added a branch at
function entry to select between tracing schemes. However, that work considered only
two alternatives: call-site coverage with and without path tracing.

In this extended work, we allow substantially more freedom in tracing schemes,
and add two new coverage alternatives. Note that the number of possible tracing
schemes grows exponentially with the number of possible tracing mechanisms. Of
course, some schemes are unnecessary; for example, statement coverage subsumes
both call-site coverage and function coverage. Nevertheless, the number of possible
schemes can quickly become unwieldy: there are 10 possibilities for our mechanisms
proposed in Sect. 4.1.2

This explosion prompted us to instead use external replication; that is, we replicate
each function, f , intomultiple functions, one for each of f ’s possible tracing schemes.
The original body of f is changed to a “springboard” that calls the correct variant.
This significantly reduces the sizes of individual functions, and makes selected tracing
schemes easier to identify (as each now constitutes its own function). However, many

2 Each of no coverage, function coverage, call-site coverage, statement coverage, and (for some functions)
function coverage + call-site coverage; possibly paired with path tracing.
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Fig. 6 Tracing customization example

alternatives and optimizations are possible here. For example, one could use a switch
statement or a jump table, inline functions or use tail calls, use a binding method to
change later indirect calls to direct calls, etc. Our current approach is very straight-
forward, using standard switch statements and function calls. We rely on compiler
optimizations to make appropriate choices regarding inlining or conversion to jump
tables. For each function, a global variable encodes which function variant to use on
that particular run. These variables are stored in a special section of the data segment
where they can easily be changed by direct editing of the program binary. Applications
can initially ship with all instrumentation turned off. Over time, instrumentation can
be activated for selected functions based on previously-observed failures.

Figure 6 shows an example for the function from Sect. 2. The new global variable,
add_actionInst, determines which tracing to use for this particular run. Here
there are three possibilities: no tracing, call-site coverage tracing, or call-site coverage
plus path tracing. Note that our simple approach introduces an extra indirection into
each function call. This example is reasonably small; however, as mentioned previ-
ously, the number of possible tracing schemes can grow rapidly inmore extreme cases.
In Sect. 6, we investigate both the memory and run-time costs of this customization.

4.3 Additional consideration: thread safety

Our experimental evaluation uses only single-threaded applications, but our instrumen-
tation remains valid with threads. Path tracing only accesses stack-allocated variables,
and each thread independently maintains its own path traces. Program coverage writes
to globals, but never reads from globals. (We store each coverage bit as a full byte
for atomicity.) Thus, even updates to the global coverage arrays have no malign race
conditions.
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5 Analyses

Herewedescribe two analyseswedeveloped to demonstrate the utility of the new infor-
mation embedded in core dumps. First, we describe a simple algorithm that restricts
the feasible execution set of CFG nodes and edges based on dynamic information
from a failing run. Second, we describe a novel static program dependence graph
restriction algorithm which can be used without knowledge of slicing criteria to allow
future restricted static program slicing. Both analyses are defined with respect to data
collected as per Sect. 4. We assume that this data has been extracted from the core file
and is named and organized as follows:

pathOne execution suffix for each frame on the stack at program termination. Each
suffix contains at least one entry: either the final crash location (for the innermost
frame on the stack) or the location of the still-in-progress call to the next inner
frame (for all other frames).
localCoverageOne array for each (coveragemechanism× stack frame) at program
termination. Array elements are Booleans, with one element per static trace point
in the frame’s function. If a particular form of coverage is not used, all its elements
are true. From this we extract unusedPoints, the set of unexecuted trace points in
each frame. Note that this description is equally valid for either call-site coverage
or statement coverage. Specifically, if we only trace call-site coverage for some
frame, the localCoverageSTMT array contains all true elements.
globalCoverage One Boolean array for each (coverage mechanism × function) in
the program, regardless of the state of the stack, with one element per static trace
point in the corresponding function. If the corresponding coverage is traced, each
element denotes whether or not the corresponding trace point was ever executed.
Otherwise, all elements are true. From this we extract globalUnusedPoints, the set
of unexecuted trace points across the entire run. Again, this description applies to
all three forms of program coverage (function coverage has only a single entry per
function). Unused tracing mechanisms result in wholly true entries.

5.1 Restriction of execution paths

Our first analysis determines the set of CFG nodes and edges which could not have
executed given the crashing program stack and tracing data collected. This analysis
involves only computing static CFG reachability based on the path and coverage data.
As the analysis is very light-weight, it could be used before debugging to filter portions
of the program structure shown to a programmer.

Let P be a program with CFG G. While the statements and edges in G represent
all possible control flows on any execution of P , they are a static over-approximation
of those active in any possible run of P . A full execution trace for a specific run r can
precisely yield the set of executed statements and edges in G. With this information,
one might reasonably restrict G to a subgraph Gr containing only the CFG nodes and
edges active during r , and use the restricted subgraph during debugging or subsequent
r -specific analyses.

123



880 Autom Softw Eng (2017) 24:865–904

Fig. 7 Intraprocedural active node analysis

Fig. 8 Coverage reduction

If the complete execution trace is unavailable, but possible execution flows can be
safely over-approximated, then the graph Gr can likewise be approximated, giving a
subgraph that is larger than ideal, but still smaller than G. In our case, we have path
traces and program coverage data as described in Sect. 4. This trace data is incomplete
and ambiguous: many runs can produce the same data. Our goal is to use this trace
data to determine the set of possibly-active nodes and the set of possibly-active edges
on any run that is consistent with the trace data.

Figure 7 shows the algorithm for intraprocedural active nodes analysis. We first
run the procedure coverage_reduce() shown in Fig. 8. This procedure eliminates all
trace points in the function that were not executed in a particular activation record,
as well as any other program points which could not have executed given that the
trace points did not execute. The procedure has two phases. First, it determines the
set of nodes forward-reachable from function entry; then it finds the set of nodes
backward-reachable from the function’s end (in this case, the crash point). Any node
not in the intersection of these two sets either (1) only executes if an eliminated trace
point executes or (2) only occurs after the crash point. Then, continuing with Fig. 7,
all nodes in the path trace must be kept, along with any nodes backward-reachable
from the first path entry (path1). All other nodes can be eliminated. Though not shown,
determination of active edges is identical; the only difference is that we track edges
crossed rather than nodes visited for each stage.

The interprocedural algorithm in Fig. 9 is largely an extension of the intraprocedural
algorithm, with some complexities to deal with stack data. We apply the logic from
Fig. 8 to every procedure in the entire application, now using globalUnusedPoints.
After this, for each frame on the stack, we execute the intraprocedural algorithm over
a mutable copy of the procedure’s CFG,G ′. This is necessary because the analysis will
remove nodes from G′ via a call to coverage_reduce(), and the result must respect the
retain sets of all invocations of each procedure on the stack (in the case of recursion)
and all possible invocations through transitive calls. To incorporate possible execution
flows outside the visible stack, we collect the set of possibly-executed calls (excluding
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Fig. 9 Interprocedural active node analysis

the final call, end_call, corresponding to the crash location for the relevant stack
frame), and determine the set of CFG nodes that may have executed during those
calls. This set is determined as all forward-reachable CFG nodes from the entry of each
called function. This reachability analysis crosses call edges (to get full interprocedural
information) but not return edges (to preserve context-sensitivity). Instead, we assume
the intraprocedural CFG contains an intraprocedural edge corresponding to the call
and return for each call site. As with the intraprocedural variant, gathering active
edge information is nearly identical. Here, an additional requirement is that we also
maintain a set of possible return edges (which, for this simple analysis, can be derived
directly from the set of possible call edges). After all frames have completed, we can
eliminate nodes and/or edges which were eliminated for all frames.

5.2 Static slice restriction

Our second analysis is a novel technique for program dependence graph (PDG) restric-
tion based on an early dynamic program slicing algorithm originally proposed by
Agrawal et al. (1990). Note, however, that we are not actually computing a dynamic
slice: during analysis, the slicing criteria (program point and variables of interest) may
not yet be known. Rather, we restrict the static PDG to respect the failing execution
data. This can be a preparatory step for multiple future slice queries for any given
slicing criteria.

Let P be a program with dependence graph G. As with the CFG in Sect. 5.1,
dependence edges in G are a static over-approximation of those active in any possible
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Fig. 10 Intraprocedural dependence graph reduction

run of P . Suppose in this case that one knewexactlywhich control and data dependence
edges were actually used during a specific run r . One might reasonably restrict G to
a dependence subgraph Gr containing only the dependence edges active during r ,
and use the restricted subgraph during subsequent r -specific analyses. For example,
a backward static slice over Gr would yield an r -restricted dynamic slice for any
program point of interest. This corresponds to approach 2 in Agrawal et al. (1990).

As in the CFG case, our path traces and program coverage data from Sect. 4 allow
us to over-approximate the exact set of dependence edges active in r , yielding a safe
over-approximation of the idealGr . Specifically,wewish to compute a trace-restricted
dependence graph that retains every dependence edge that could possibly have been
active in any run that is consistent with the trace data.

For this formulation, we assume that G is also overlaid with the control-flow edges
in each procedure (as the PDG contains all nodes from the CFG by our definition). In
the remainder of the paper we refer to a graph with both CFG and PDG edges as a
combined graph. In Figs. 11, 12 and 13, “→” always refers to a control-dependence
(not control-flow) edge, while “→v” refers to a data-dependence edge defining v. For
the high-level descriptions of the algorithms given here, we collapse all actual-in and
actual-out nodes into their associated call nodes for ease of presentation.

5.2.1 Intraprocedural restriction

Figure 10 shows the overall process of computing intraprocedural PDG restrictions,
which proceeds in several phases. This algorithm resembles that in Fig. 7 for active
CFG nodes, but determining active dependence edges is somewhat more complex. To
begin, coverage information is used to prune the reachable nodes in the combined graph
per Fig. 8, described earlier. Next, we identify the control and data dependence edges
that must be retained. This process is more complex than simple reachability required
for CFG nodes and edges; details for each of control-dependence and data-dependence
edges appear in Figs. 11, 12 respectively. Lastly, we remove all dependence edges not
selected for retention.

Figure 11 shows the process for determining the retained set of control dependence
edges. The goal is to identify the immediate control-dependence parent of each node
in path and each node potentially executed prior to path. The vector unattributed holds
path entries for which the algorithm has yet to determine the most direct controlling
node. The outer foreach loopwalks backward (beginning from the crash point) through
the entries in path. The inner loop begins with the entry immediately prior to the
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Fig. 11 Intraprocedural control-dependence retention

Fig. 12 Intraprocedural data-dependence retention

current node, again walking backward through path. During this inner-loop search,
if a node is encountered that controls the execution of the outer-loop node, then the
control dependence edge between those nodes was “active” in the traced execution,
and thus must be retained. Once such a node is found, the outer-loop node has found
its directly-controlling conditional; it is removed from unattributed and the search for
that node ends. After attributing control dependence parents to as many path entries as
possible, the algorithm determines the set of nodes backward-reachable from the first
entry in the trace. These nodes have no additional dynamic information: any control

123



884 Autom Softw Eng (2017) 24:865–904

dependence edge from a reachable node could have been active in some run producing
this trace. Finally, all remaining unattributed nodes from pathmust retain all incoming
control dependence edges from reachable nodes.

Determining the retained set of data dependence edges, detailed in Fig. 12, follows a
similar process, albeit with some additions.Here, each nodemust determine active data
dependence parents for each variable used at that node. The algorithm first determines
which variables must be defined and may be used by each node in the combined
graph. For brevity in presentation,mustDef andmayUse are computed as sets of (node,
variable) pairs, but will also be interpreted asmappings from nodes to sets of variables.
Each entry of the unattributed vector again corresponds to a node from the path trace,
but instead tracks all unattributed variable uses at that entry. The calleeExclusions
parameter is unused by the intraprocedural analysis. The nested loops step backward
through path, as in control dependence retention. In this case, the outer loop finishes
with a path entry only once it has attributed each variable used (or potentially used, in
the case of pointers) at that node. Otherwise, at each inner loop step, data dependence
edges are retained for any variables not yet attributed. Summary data dependence edges
(from the appropriate actual-in to actual-out nodes) should be added to retainwhenever
a call node is encountered. The path trace does not contain data-flow information. Thus,
in the case of pointers with multiple possible variable targets, the analysis cannot be
certain which dependence for v was active. Therefore, the algorithm considers a used
variable v attributed only if the source must always define v. Lastly, we conservatively
add all possible data-dependence edges to unattributed variable uses, much as Fig. 11
did for control-dependence edges leading to unattributed nodes.

5.2.2 Interprocedural restriction

Figure 13 gives the steps for interprocedural restriction. The formulation closely mir-
rors the interprocedural slicing method given in Horwitz et al. (1988), which is also
later used to slice over the restricted dependence graph. First, we use global unused-
Points information to remove unexecuted trace points from each function, as well as
any other nodes execution-dependent on those program points.

Next we process each stack frame, beginning with the crashing function. This
phase identifies active dependence edges within and between stack procedures; tran-
sitive dependencies from called (and returned) procedures are captured with summary
edges. For each frame, we create G ′, a temporary subgraph of G containing only
nodes from the frame’s function. As with the active nodes analysis from Fig. 9, inter-
procedural restriction must respect the retain sets of all possible invocations of each
procedure. We then remove unused trace points. At this point, we need to connect
this frame to the previous frame by retaining data dependence edges from formal-in
nodes to actual variables from the call. For the innermost frame, this has no effect. For
other frames, connected will contain those edges to formal-in nodes that correspond
to (transitively) potentially-used formals in the previous stack frame; these must be
retained. unconnected contains any actuals not connected to a useful formal. Note
that here the intraprocedural restriction algorithms are used as subroutines. We now
use the third parameter to intra_data_retain: the algorithm does not consider unused
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Fig. 13 Interprocedural dependence graph reduction

actuals to be “unattributed,” as incoming data dependence edges for these variables
were unused.

The final step of the algorithm retains dependence edges from transitive calls begin-
ning from the stack frames. A worklist is populated with all calls not corresponding
to the crash point in this frame. All dependence edges backward-reachable in the
SDG from the worklist nodes (including edges corresponding to function returns but
excluding those corresponding to function calls) must be retained. These edges cor-
respond to transitive interprocedural dependencies for previously-returned calls. The
algorithm does not need to “re-ascend” to calling procedures because summary edges
are included in both phases.

5.2.3 Additional considerations and relationship to dynamic slicing

Slices over a restricted graph, like those of Agrawal et al. (1990) and Horwitz et al.
(1988), are closure slices. These over-approximate the set of statements that may have
affected the variable values at the chosen slice point, but are not necessarily executable
or equivalent to the original program.

Unlike Agrawal and Horgan, our dependence graph restriction algorithms are not
actually computing dynamic slices: they are not “slicing from” any particular pro-
gram point. In fact, one way to define the analyses is as partial-trace dynamic slicing
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from every point along our execution suffix. The choice of static-slice start node is
orthogonal to this restriction. Every static slice taken over the restricted graph should
be consistent with the trace data, modulo the loss of accuracy (as in Agrawal and
Horgan’s approach 3) when a node is executed multiple times with different incom-
ing dependence edges. Our dependence graph is static, so these dynamically-distinct
nodes are necessarily collapsed into one static node.

It would be possible to unroll all traced paths into the dependence graph and track
individual dependencies. This approach for a full execution trace produces what is
known as a dynamic dependence graph, and is equivalent to Agrawal and Horgan’s
approach 3; our approach would produce a partial-dynamic dependence graph. While
it can yield smaller dynamic slices, this approach also makes the PDG significantly
larger and more complex to understand. Despite advances in compressing dynamic
dependence graphs (e.g., Zhang and Gupta 2004 and the final approach by Agrawal
et al. 1990), graph sizes remain quite large, increasing the time and mental effort for
a developer to sift through graph data to find a reasonable slice point. Thus, we do
not work with dynamic dependence graphs for our analysis results; future work could
consider this possibility.

Our primary goal is extremely lightweight data collection. Therefore, we do not
track updates to memory locations as would be necessary for fully-accurate interpro-
cedural dynamic slicing (Agrawal et al. 1991). We accept a potential loss of accuracy
that comes with static alias analysis for globals and pointer variables when crossing
procedure boundaries.

6 Experimental evaluation

We conducted experiments to assess the efficiency of our data collection strategies
and the utility of the information we collect. We use Clang/LLVM 3.4 (Lattner and
Adve 2004) to compile and instrument programs. Instrumentation operates directly
on LLVM bitcode.

We selected a range of applications varying in functionality and size. Table 1 gives
additional details about our test subjects. The Siemens applications, flex, grep, gzip,
sed, and space were obtained from the Software-artifact Infrastructure Repository
(Do et al. 2005; Elbaum and Kinneer 2006). space contains real faults, sed contains
both seeded and real faults, and the remaining SIR-provided test subjects contain only
seeded faults. ccrypt and gcc are real, released versions with real faults. Some appli-
cation versions have multiple faults which can be enabled separately; the “Variants”
column of Table 1 counts unique builds across all versions and all available faults.
All of these applications are written in C. However, there are no practical reasons our
approach could not be applied to object-oriented programming languages, and both
our analysis back end and compiler front end support compilation and analysis of C++
code.

Results presented in this section are aggregates across all versions, bugs, and test
suites of each application. In general, results vary little among builds of a given applica-
tion; we note any exceptions below.We also aggregate results for all applications from
the Siemens test suite to simplify presentation. These are very small, simple applica-
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Table 1 Evaluated applications

Application Type Variants Mean LOC

print_tokens Siemens 7 727

print_tokens2 Siemens 10 568

schedule Siemens 9 413

schedule2 Siemens 10 373

tcas Siemens 41 173

ccrypt Linux utility 1 5280

flex Linux utility 81 14,946

grep Linux utility 59 15,460

gzip Linux utility 59 8114

sed Linux utility 75 14,314

space ADL interpreter 38 9563

gcc C compiler 1 222,196

tions, and results indicate that they have similar results for both tracing overhead and
analysis effectiveness. Again, we note exceptions below.

6.1 Overhead

Our first evaluations assess the efficiency of our tracingmechanisms and customization
methodology from Sect. 4. All experiments used a quad-core Intel Core i5-3450 CPU
(3.10 GHz) with 32 GB of RAM running Red Hat Enterprise Linux 6.5.

6.1.1 Run-time overhead

Overhead is the ratio of execution times for instrumented and uninstrumented code. For
each version of each application, we ran the test suite over the non-faulty build at least
three times and took the geometric mean of the overheads for each test case. Results
appear in Fig. 14. Smaller values are better, with 1.0 conveying no instrumentation
overhead.Webuilt each applicationversionusingour instrumentor,with all non-library
functions instrumented with various instrumentation configurations.

We first evaluate each tracing mechanism individually. The first four bars (Function
Coverage, Call Coverage, Statement Coverage, and Path Tracing) indicate instrumen-
tation that does not require any customization (that is, all functions have only one
variant: the particular tracing mechanism listed). Function coverage causes no mea-
surable overhead for our test subjects. Call-site coverage is far cheaper than statement
coverage (gathered as basic block coverage). The maximum overhead for call-site
coverage among our test subjects was 2.0 % (for gcc), while statement coverage has
overheads as high as 25.8 % (for sed). gcc has thirteen functions with more than 263

acyclic paths; these cannot be instrumented for path tracing. Even so, the cost of full
path tracing is surprisingly low, varying across applications from negligible to 10.4 %
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Fig. 14 Run-time overhead (Color figure online)

(for gzip). This suggests that our adaptation of the classic path profiling approach
is very efficient, substantially reducing our overhead over full path profiling (which,
according to initial results by Ball and Larus (1996), has approximately 30 % average
run-time overhead due to large storage requirements and the use of hashing).

Taking into account measured overheads and expected orthogonality of benefits,
we then considered instrumentation based on a realistic set of tracing schemes for cus-
tomization: {None, Call Coverage, Call Coverage + Path Tracing}. We then activated
call-site coverage tracing for all non-library functions and path tracing for any function
appearing in the crash stack of any failing test case for each application version. This
is a realistic configuration if latent instrumentation can be enabled post-deployment
in response to observed failures, and appears as “Realistic” in Fig. 14. Our results
indicate that limiting path tracing to functions involved in failures can significantly
reduce overhead (especially for gzip and sed). The overhead of a particular applica-
tion appears to depend on non-trivial factors. For example, larger applications do not
necessarily have more overhead. Most applications have comparable overheads for
all versions with realistic instrumentation. One version of gzip has significantly lower
overhead (about 1 % on average), while the other versions are around 5 %. Overheads
between sed versions also vary somewhat, ranging from negligible to 2.5 %. Averaged
across all larger (non-Siemens) applications, the realistic configuration shows a mere
2.0 % overhead.

We next evaluated what portion of the overhead for the realistic configuration was
due to tracing customization (i.e., the springboard function discussed in Sect. 4.2).
The “Realistic (fixed)” bar in Fig. 14 shows the run-time cost of the “Realistic” con-
figuration had we disallowed customization (that is, had we re-instrumented each
function based on observed failures to obtain the same tracing data as “Realistic”
but with each function deciding at compile time—rather than run time—which trac-
ing scheme to use). Clearly, customization adds a substantial portion of the run-time
overhead for some applications (especially gzip). Overall, though, the “Realistic” con-
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Fig. 15 Memory overhead (Color figure online)

figuration has extremely low run-time overhead (< 5 % in all cases), and would be
suitable for deployed applications.

All of the preceding results used non-optimized builds, as this is most conducive to
debugging. We also gathered results (not shown in Fig. 14) using each of our previous
instrumentation schemes but with Clang “-O3” optimization enabled. Analysis still
works correctly on optimized code, due in part to our use ofvolatile declarations as
discussed in Sect. 4. Results for optimized code are very similar to unoptimized results,
and suggest that our instrumentation does not seriously hinder program optimization.
In fact, for the “Realistic” configuration with optimization, overhead averages just
1.6 % across all larger applications, with a maximum overhead of 4.5 % (for gzip).
However, debugging optimized code is always tricky. For example, statement reorder-
ing can make the execution paths we recover difficult to understand. Prior work on
debugging optimized code (Tice 1999; Jaramillo et al. 2000) is directly applicable
here.

6.1.2 Memory overhead

We next measured the ratio of the maximum resident memory size of the running
program for instrumented and uninstrumented code. Again, for each version of each
application, we ran the test suite over the non-faulty build at least three times and took
the geometric mean of the overheads for each test case. Results appear in Fig. 15.
Smaller values are better, with 1.0 conveying no instrumentation overhead.

Again, the first four bars indicate memory overhead for each tracing mechanism
individually (without customization). Our results indicate that function coverage and
call-site coverage have very small memory footprints. For statement coverage and path
tracing, however, extra memory usage is somewhat larger; for sed, overheads reach
8.4 % for path tracing and 6.7 % for statement coverage.
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The next two bars (“Realistic” and “Realistic (fixed)”) again correspond to the
scheme proposed in Sect. 6.1.1: optional tracing of call-site coverage and path tracing,
with coverage enabled everywhere and path tracing enabled in functions appearing in
failing stack traces. Beginning with the “Realistic (fixed)” scheme, it is again clear
that specializing tracing to observed failures can significantly reduce overhead. In
the most extreme case (sed), the memory overheads for call-site coverage and path
tracing are 1.4 and 8.4 % respectively (totaling 9.8 %), but the uncustomized realistic
configuration causes only 3.0 % overhead.

However, the “Realistic” results indicate that tracing customization appears to take
a large toll on static memory usage. Exploring this further, the final bar, “All Options”,
shows memory overhead for the pathological case where we instrument for all 10
logical tracing possibilities (as mentioned in Sect. 4.2), but perform no tracing at
execution time (i.e., we select the “none” variant for all functions). Perhaps as one
might expect, the memory cost of customization is quite high. Since we create a
new copy of every instrumented version of each function, we can potentially cause
an exponential blow-up in code size. For the larger applications, the results of “All
Options” instrumentation indicate that this is a potential issue. This scheme does not
enable any tracing at run time, so the observed memory overheads are pure code bloat.

Nevertheless, it is important to keep this result in perspective. First, our instru-
mentation makes rather naïve choices; in a real-world scenario, it may be possible
to make more informed decisions about which functions are likely to ever require
customization or tracing in the future. Second, and most importantly, the increased
memory usage for customization is a one-time cost: it does not scale throughout pro-
gram execution. Thus, the dynamic memory cost of tracing is more closely related
to the “Realistic (fixed)” results. The uncustomized realistic configuration shows just
1.8 % memory overhead averaged across all larger (non-Siemens) applications.

As with time overhead, we also gathered memory overhead numbers for our tracing
configurations with standard “-O3” compiler optimizations enabled. For the most part,
the results are again similar to their unoptimized counterparts. Overhead numbers are
slightly higher in optimized code. The differences are most pronounced for coverage
mechanisms; statement coverage sees its maximum overhead value (for flex) increase
from 5.9 to 12.4 %. The uncustomized realistic scheme similarly sees its maximum
overhead increase from 4.5 to 7.6 %. Nevertheless, the average overhead for this
realistic schemewith compiler optimizations (for the larger applications) is only 2.5%.
Thus, our tracing has a very small memory footprint, even for optimized builds.

6.2 Analysis implementation

This section describes details related to our implementation and evaluation of the
analyses described in Sect. 5.

6.2.1 Implementation details

CodeSurfer 2.2p0 (Anderson et al. 2003) produces our combined graphs. These match
the SDG description given in Sect. 3.3, and are overlaid with CFG edges. All CFG
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(a)

(b)

Fig. 16 Examples of matching ambiguity. a Multiple expressions on a single line. b Single statements
across multiple lines

nodes (i.e., all nodes except for those representing “hidden” formal and actual para-
meters such as global variables) have associated source-code location information.

Our analysis implementation follows that given in Sect. 5. However, there we sim-
plified presentation by collapsing both global and local formals and actuals into their
associated call node. Formals and actuals are separate nodes in CodeSurfer SDGs,
and our analysis treats them separately; thus, retention can distinguish between used
and unused formal and actual parameters, the unconnected set (Fig. 13) is composed
of nodes (rather than variables), and summary edges exist from actual-in nodes to
actual-out nodes (which are relevant for intraprocedural analysis).

6.2.2 Sources of ambiguity

Because we use two different pieces of software (Clang and CodeSurfer) to determine
statement locations for path trace entries and coverage trace points, minor disagree-
ments are inevitable. Much of the ambiguity in matching program locations stems
from the fact that line numbers are the smallest granularity at which we can reliably
match Clang AST nodes to CodeSurfer graph nodes. We also find disagreements in
the selection of line numbers to assign to particular program points. Naturally, our
matching approach must always be conservative with respect to our analyses in order
to ensure that our results safely under-approximate (but never over-approximate) the
optimal reduction we can achieve.

We are generally unable to individually match different expressions occupying the
same source line, as Clang and CodeSurfer may break or order the expressions dif-
ferently. This means that the start, end, and size of expressions can differ, as well as
the number of nodes or operations involved. Consider the two code lines shown in
Fig. 16a. In the first line, the LLVM bitcode contains significantly more instructions
than the number of expressions given as CFG nodes produced by CodeSurfer (deref-
erences, the unary “!” operation, etc.). The ordering of the actual parameters in the
call to exp_equiv_p and evaluation of their expressions need not correspond, so
we also cannot count on an ordered many-to-one relationship.

This in-line ambiguity is particularly problematic for path traces and statement cov-
erage data, but also has a small impact on call-site coverage matching. For path traces,
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we handle the ambiguity by matching each path trace entry with a set of nodes match-
ing the given line number (rather than a single node). This set can be restricted based
existing CFG edges to previous or from following entries in the trace; nevertheless,
significant ambiguity is common. Specifically, we are never able to distinguish paths
through a single line, such as the if statement given on the second line of Fig. 16a.
Our analyses from Sect. 5 suffer further from this problem because we often miss out
on opportunities to remove a node from the unattributed sets (Figs. 11, 12) due to not
knowing if an assignment definitely executes on a particular line. Ambiguity due to
the matching of LLVM line numbers to CodeSurfer nodes reduces the precision of our

analysis in the correspondence stage of Fig. 1. Statement coverage, similarly,
cannot always distinguish betweenmultiple basic blocks which occur in the same line.
However, as mentioned in Sect. 4.1.2, the set of called functions is also recorded for
each basic block; this can often help to distinguish blocks occurring purely within
the same line. Call-site coverage is unable to distinguish between calls to the same
function on the same line.

Our tools must also grapple with statements that spanmultiple lines. This is because
Clang and CodeSurfer builds do not necessarily agree about whether to assign the line
number(s) for a statement or expression to the first line, last line, or (in CodeSurfer’s
case) all relevant lines. Figure 16b shows two examples of statements demonstrating
this issue. This issue arises most frequently with conditional expressions, ternary
expressions, and calls. Actual parameters (unless they contain other expressions which
will necessitate their own line number, such as another call) tend to be assigned the
line number of the call statement (which is usually either the first or last line of the
entire statement). Because of the great uncertainty in matching multi-line expressions,
we intentionally introduce ambiguity into the combined graph to safely match Clang’s
output.We collapse all line numbers within each set of nodes corresponding to amulti-
line expression into a single set, which we assign to all nodes of the expression. This
impacts path traces, statement coverage, and call-site coverage. For path traces, this
further increases the ambiguity as to which expression each path trace entry refers to
on a particular line. For statement coverage, it necessitates that we only remove nodes
for which all trace points corresponding to that line have “false” as their coverage bit.
For call-site coverage, we similarly must ensure that call nodes are only removed if
they are either the only call site on the line (for indirect calls), or the only call to the
specified function (for direct calls).

Other intricate issues also necessitate some further minor introduction of ambiguity
into the combined graph. For example, LLVM 3.4 assigns the line number of the close
of the statement block (i.e., the closing “}” brace) to the conditional of a do–while
statement. Naturally, this character has no semantic value, so it will not appear in
the CodeSurfer graph. Thus, we must include all line numbers up to the most recent
statement within the loop in the set of line numbers for the loop guard conditional.
These changes, as well as changes necessary for multi-line expressions, are referred

to as the fix graph stage in Fig. 1. Finally, in flex, gcc, and one version of grep,
we had to modify one source code line by eliminating a line break at the start of an
if statement that otherwise caused irreconcilable disagreement between Clang and
CodeSurfer line numbers.
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Unfortunately, this ambiguity is quite common in the applications we examined.
In fact, all four code lines from Fig. 16 are taken from one single function of gcc.
Nevertheless, our analysis results show that we can significantly reduce ambiguity in
the failing execution despite this ambiguity in our analysis framework.

6.3 Analysis effectiveness

We evaluated the benefit of our analyses described in Sect. 5. For test cases where core
dumps were already produced, we used the generated core file. If a test case produced
bad output without crashing, we used the output tracing tool of Horwitz et al. (2010) to
identify the first character of incorrect output, and forced the application to abort at that
point. We aggregated results by taking arithmetic means across all failing tests of each
faulty build, then across all faulty builds of each version. This avoids over-representing
builds that simply havemany failing test cases. For intraprocedural results, we ran each
analysis over every function on the stack that has at least one ambiguous branch on a
path from function entry to the crash point.

We ran analysis experiments by varying which tracing mechanisms were enabled.
In all cases, the tracing mechanisms specified were enabled for all functions in
each application. Path traces are purely intraprocedural tracing; therefore, restrict-
ing tracing to functions appearing in crashing stacks (the “realistic” configuration
from Sect. 6.1) does not result in any loss of information. As mentioned previously,
gcc has thirteen functions with more than 263 acyclic paths that cannot be instru-
mented for path tracing; however, all program coverage remains available for these
functions. Due to memory constraints, we were unable to gather complete analysis
results for gcc. Specifically, we excluded six gcc functions that we could not ana-
lyze with our memory-based analysis: assign_parms, expand_expr, fold,
fold_truthop, rest_of_compilation, and yyparse. gcc’s large size also
prevented us from constructing the whole-program combined graph. Therefore, we
omit interprocedural analysis results for gcc.

6.3.1 Restriction of execution paths

The restriction algorithms in Sect. 5.1 can eliminate CFG nodes and edges that could
not possibly have been active during a given run. Figures 17, 18 show results (intrapro-
cedural and interprocedural, respectively) for “active edges” as a percentage of all CFG
edges. We show only results for edges here, as “active nodes” show very similar pat-
terns. These numbers are relative to context-sensitive, stack-constrained, backward
reachability. For the intraprocedural analysis, we count backward-reachable nodes
and edges from the frame’s crash point. For the interprocedural analysis, we work
back from the crash point of the innermost stack frame. Smaller numbers here are
better: values close to the “None” result indicate little reduction, while values closer
to 0 % mean that our analysis eliminated many inactive edges.

Figure 17 shows intraprocedural results. Here we measured the set of possibly-
active CFG edges as a percentage of all CFG edges in each stack frame’s function. We
ran our analysis over every function on the stack that has at least one ambiguous branch
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Fig. 17 Intraprocedural active edges (Color figure online)

Fig. 18 Interprocedural active edges (Color figure online)

on a path from function entry to the crash point. We first measured the reductions for
each tracingmechanism individually. Reductions for the smaller Siemens applications
are modest across all tracing mechanisms. Execution ambiguity is generally very low
for these applications due to the small size of most functions. Results for larger appli-
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cations, however, are much more impressive. Note that, by our analysis formulation
from Sect. 5.1, function coverage does not contribute to intraprocedural analysis (as all
functions in the crashing stack are clearly already executing). Our other three tracing
mechanisms all perform well, though complete statement coverage obtains the best
results for all applications except sed (which achieves a 1 % better reduction with path
tracing). The high cost of full statement coverage, however, motivates consideration
of the “Realistic” scheme from Sect. 6.1: the combination of path traces and call-site
coverage. Results indicate that the two mechanisms are indeed complementary. For
example, gcc sees an additional 20 % reduction due to the combination. The realistic
configuration is the optimal choice for all but two of the applications (ccrypt and gcc),
and averages 41 % reduction, with a maximum reduction of 54 % (sed), across the
larger applications. It achieves these reductions at significantly less tracing cost than
full statement coverage.

Figure 18 shows interprocedural results for active edges. Here, the plot shows the
set of possibly-active CFG edges as a percentage of all edges in the entire program
(excluding external libraries). Again, reductions for smaller applications are modest.
There are, however, some exceptions: one version of print_tokens sees an average
46 % interprocedural reduction in active edges. However, in general, as with intrapro-
cedural analysis, execution ambiguity is very low, often with only one stack frame
besides main. Considering the larger applications, however, results are again much
more impressive. Some patterns are clear. Coverage data is the dominating factor
for interprocedural analysis. This is not surprising: coverage maintains global-scope
information not available to path tracing. However, path traces do still contribute to
the reduction for our “Realistic” result in all larger applications except space (which
generally has very little ambiguity within the failing stack). Comparing our coverage
mechanisms, it is clear that the coarse-grained global information provided by func-
tion coverage often still leaves a great deal of execution ambiguity that can be rectified
by the finer-grained coverage mechanisms. Full statement coverage provides a clear
benefit for some applications (e.g., flex, grep, and sed), but, for others, the reductions
obtained for the inexpensive “Realistic” configuration are comparable.

Overall, results for the combination of path tracing and call-site coverage are
quite impressive, with average reductions as high as 71 % (ccrypt, interprocedural).
Most applications are uniform across versions, but versions of sed have active edge
reductions ranging from 38–66 % in the intraprocedural case, and 51–85 % in the
interprocedural case. space versions vary from 9–56 % intraprocedurally and 6–54 %
interprocedurally. In general, for complex applications, we find that a stack trace alone
leaves great ambiguity as to which code was active. Our feedback data and analyses
can significantly reduce this ambiguity with negligible impact on performance.

6.3.2 Static slice reduction

Our PDG restriction algorithms from Sect. 5.2 can compute a restriction of the static
PDG based on traced data. Per Sect. 5.2.3, the computed restriction is independent of
(and can be computed prior to selecting) the slicing criteria. For our evaluation, we
compute interprocedural static slices backward from the crash point in the innermost
stack frame; intraprocedural slices work backward from the crash point in each func-
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Fig. 19 Intraprocedural slicing (Color figure online)

tion in the crash stack. All interprocedural slices are callstack-sensitive (Horwitz et al.
2010; Krinke 2004; Binkley et al. 2007). Results show, to a large extent, very similar
patterns to those for active edges.

Intraprocedural slicing results are shown in Fig. 19, where bars indicate the slice
size for each stack frame’s function as a percentage of all PDG nodes that have a
source-code representation (i.e., that map to a line number). Note that a line can have
more than one node. For example, for a call with multiple parameters we count each
actual parameter separately, as some may be included in the slice while others are
not. The “None” bar represents the slice size for a backward static slice from the
crashing location in each active stack frame without the benefit of our dependence
graph restriction. Smaller numbers are again better: values close to “None” indicate
little reduction in slice size, while values closer to 0 % mean that slices were much
smaller with our restriction analysis than without. Smaller applications again see less
benefit. However, larger applications again show much better results. Considering
each tracing mechanism individually, full statement coverage again has the strongest
results.However, the combination of path tracing and call-site coverage again performs
extremely well, with the best results for all applications except grep (for which it lags
behind full statement coverage by a mere 1.5 % reduction). Intraprocedural slice
reductions average 40 % across all larger applications, with a maximum reduction of
53 % for gcc, the largest application in our experiments.

Figure 20 shows interprocedural slicing results. Here, bars indicate the slice size
as a percentage of all SDG nodes in the entire program (excluding external libraries).
The “None” bar represents the slice size for a callstack-sensitive backward slice from
the crashing location without the benefit of our dependence graph restriction.

As in all previous cases, the Siemens applications see only a small benefit, though
there are some exceptions: one version of schedule has an average interprocedural
slice reduction of 73 %, but the absolute slice sizes in this particular case are small, so
the absolute ambiguity is not large. Results improve substantially for larger applica-
tions, with interprocedural slice reduction showing better results (53–78 % reduction,

123



Autom Softw Eng (2017) 24:865–904 897

Fig. 20 Interprocedural slicing (Color figure online)

“Realistic” trace data) than the intraprocedural variant. Coverage data is again the
dominating factor in interprocedural analysis. Here, however, the benefit of full state-
ment coverage over the combination of call-site coverage and path traces is much less
pronounced. Even for grep (the application with the largest discrepancy), full state-
ment coverage further reduces slice size by only 14 % beyond the realistic tracing
scheme. Overall, the realistic scheme obtains the majority of the benefit of full state-
ment coverage at a much lower cost. space is the only larger application with highly
varied results, ranging from 6–46 % intraprocedurally and 9–62 % interprocedurally.

Overall, the results for path traces and call-site coverage are again very impressive,
especially interprocedurally. Even for flex, the worst among the large applications, our
approach cuts interprocedural slice sizes in half. The best results, for ccrypt, show a
78 % reduction, the cost of which is a mere half percent of execution time overhead
(“Realistic” in Fig. 14).

6.4 Discussion

Our results indicate that enhancing core dumps from failing applications with light-
weight, tunable tracing can yield significant postmortem analysis benefits. The
combination of path traces and call-site coverage proved an inexpensive, comple-
mentary, and effective pairing to enhance postmortem analyses. Path traces have the
additional benefit of providing a detailed (though incomplete) partial trace leading
up to the point of failure. This would likely be very valuable to a developer in a real-
world scenario, but we could not assess this benefit in our present experimental setting.
Future work could consider performing a live debugging study with real developers
to gauge the complete benefit of path traces and the reductions from our coverage
mechanisms.

There are clearly substantial trade-offs regarding coverage in our domain. While
function coverage has unmeasurably small overhead, its postmortem analysis benefit
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is often significantly smaller than other options. Full statement coverage comes at a
high overhead cost, but is useful where its cost can be tolerated. Call-site coverage
provides most of the benefit of full statement coverage at significantly less cost; thus,
it is likely the best choice in many real-world deployed scenarios.

Overall, our goal was to show that a large benefit can be drawn from very little cost
via targeted core dump enhancement; we have succeeded in this regard. A particular
real-world application may benefit (in both overhead cost and analysis performance)
from a more customized tracing scheme than the rather simple schemes we consider
here. While our “Realistic” scheme proved widely applicable, different scenarios will
allow different choices. If higher execution overheads can be tolerated, statement
coverage proved helpful for many applications. If execution constraints are tightened,
simple function coverage can still yield significant benefit in many scenarios. To this
end, our approach is intentionally customizable.

7 Threats to validity

We attempted to gather fair and generalizable results, but have not formally proven
the correctness of our approaches or implementation. Here we discuss threats to the
validity of our results, and measures taken to mitigate these risks.

7.1 Threats to internal validity

We began with a claim that nearly all deployed software will have bugs throughout
its lifetime. Our software is no exception. Bugs in our algorithm design or software
implementation could impact the correctness of analysis results or the accuracy of
overhead results.

We made significant attempts to control other factors (outside of our tracing mech-
anisms) which could have impacted overhead results. We used a single machine and
ran our tests under minimal load. Nevertheless, our instrumentation does impact code
size, stack frame size, and (in rare cases where we need to place instrumentation along
edges) the CFG of the programs. Thus, it is possible that other factors not directly
related to instrumentation may impact our results.

Section 6.2.2 notes changes we required in order to match static information
between the two toolswe used for our analysis experiments. The intentional addition of
this ambiguity into our combined graphs makes our results a safe over-approximation
of the optimal result, but could impact the relationship between the results of different
tracing methods. In particular, it may have a larger effect on some tracing methods
when compared with others. From a subjective and cursory inspection, this seems to
impact our path traces most significantly.

7.2 Threats to external validity

While we attempted to select applications with a wide variety of size and functionality,
it is obviously impossible for us to test our approach on all possible programs. Thus,
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our results may not generalize to all deployed software. In particular, we evaluate only
applications written in the C programming language in this work, so the applicability
of our approaches to modern object-oriented languages cannot be guaranteed.

Many applications had seeded faults, raising typical concerns as to whether such
faults are realistic. All applications include test suites with both failing and successful
runs; we distinguished these by comparing the result with that produced by a non-
buggy reference version of the same application. In real deployed applications, it may
be more difficult to identify failures or to obtain failing core dumps (either due to not
recognizing failures until later in execution or due to security concerns). While this
does not directly impact the utility of our traced information, it could make it more
difficult for a developer to select appropriate functions for instrumentation/tracing,
or impact the “distance” between the failure and the fault. Longer fault propagation
distances likely increase the benefit of traced information, but the overall impact is
not clear from our lab experimental setting.

8 Related work

Several prior efforts use symbolic execution in conjunction with dynamic feedback
data to reproduce failing executions (Zamfir and Candea 2010; Jin and Orso 2012;
Crameri et al. 2011; Rößler et al. 2013; Cao et al. 2014). We intentionally sacrifice
perfect replay in favor of low overhead and tunable instrumentation. As symbolic
execution can be very expensive and is undecidable in the general case, we see related
work on symbolic execution based on core dumps as possible beneficiaries of the
restriction analyses we perform. Yuan et al. (2010, 2011) use static analysis with logs
from failing runs to identify paths that must, may, or cannot have executed between
logging points. Clause and Orso (2007) track environment interactions for replay
and minimization of failing executions. While we do not require run-time logging or
tracing of environment interactions, these approaches may provide additional valuable
sources of information that could be used in conjunction with the analyses described
here. Failure reconstruction is one possible postmortem analysis task worthy of study;
we propose other inexpensive pre-debugging analyses in this work, and demonstrate
their effectiveness in reducing failing execution ambiguity. Manevich et al. (2004) use
backward dataflow analysis to reproduce failing executions based on only a failure
location and typestate information regarding the failure. While very efficient, this
approach is geared toward solving specific typestate problems with very simple types
(e.g., tracking NULL values for null-pointer dereferences). Our approach uses denser
information, but targets a wider range of unknown failures: anything that can be made
to dump core.

Adaptive bug isolation (Arumuga Nainar and Liblit 2010) and the Gamma project
(Orso et al. 2002; Bowring et al. 2002) emphasize adaptive post-deployment instru-
mentation with data collection aggregated across large user communities. Such
approaches are complementary to our own: we focus on gathering very valuable infor-
mation at very low cost, while these related efforts focus on how best to deploy
information-gathering instances.
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Gupta et al. (1997) compute slices within a debugger; ordered break points and
call/return traces restrict the possible paths taken. While Gupta et al. focus on inter-
active debugging, our approach is intended for deployed applications. This imposes
different requirements, leading to different solutions.Our overheadsmust remain small
relative to a completely uninstrumented application, not merely relative to an appli-
cation running in an interactive debugger. Gupta et al. use complete break-point and
call/return traces, while we have only bounded buffers for each morsel of dynamic
data. Takada et al. (2002) offer near-dynamic slicing by tracking each variable’s most
recent writer. Our work focuses more on control than data; in the presence of pointers
and arrays, lightweight dynamic data dependence tracing in the style of Takada et al.
could be a useful addition. Call-mark slicing (Nishimatsu et al. 1999) marks calls that
execute during a given run, then uses this to prune possible execution paths, thereby
shrinking static slices. The first phase of our interprocedural slice restriction algorithm
uses a similar strategy. However, our information ismore detailed: we have both global
coverage information as well as segregated information for each stack frame.

9 Future work

Our results indicate that the core dump enhancement approach has great potential to
aid in postmortem debugging. In this section, we consider some of the most promising
future directions for continued research.

9.1 Unused information

The astute reader will note that, while our analyses can significantly reduce execution
ambiguity, we cannot claim to make full use of the information we gather. First,
we only make use of false coverage bits to eliminate unused code. It is clear that
true coverage bits can also provide important execution information; for example,
if statement branches not contained within a loop will always have only one branch
covered for local execution. Second, our present analysis does notmake use of function
coverage bits for intraprocedural analysis, but it is possible to do so. All direct calls
to any unexecuted function could also be removed as part of our coverage restriction
procedure from Fig. 8. Finally, our traced information holds great promise for more
heavyweight analyses. Particularly, our data could be used as additional constraints to
reconstruct failing executions via symbolic execution. Recent work has shown great
strides in this area (Zamfir and Candea 2010; Jin and Orso 2012; Rößler et al. 2013).
Future work could also consider aggregation of data from multiple failing runs in, for
example, slice-based fault localization (e.g., Lei et al. 2012) or some form of union
slicing (e.g., Mulhern and Liblit 2008).

9.2 Customization

Customization currently makes up a large portion of both the run-time and memory
overheads of the realistic instrumentation configurationwe propose. Futurework could
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take at least two possible routes to mitigate this. First, instrumentation could eliminate
tracing options for some functions by user customization (based on a more limited set
of expected future tracing needs) or bymakingmore intelligent static decisions (if it can
be determined that certain functions are better or worse candidates for specific tracing
mechanisms). Second, as we note in Sect. 4.2, we use a very simple switch-based
customization method for our current implementation. Future work could consider
other indirection techniques, such as function multi-versioning for Scenario-Based
Optimization (Mars and Hundt 2009).

9.3 Tracing extensions

Our results indicate that specializing path tracing to functions involved in previous
failures can substantially reduce overhead. However, when path tracing is deployed
more widely, our preliminary inspection indicates that a large portion of its overhead
comes from functions with a very large number of acyclic paths. In addition, we were
unable tomakeuse of path tracing instrumentation for a non-trivial number of functions
from one of our test subjects due to very large path counts. One might simply leave
these uninstrumented; unfortunately, these complex functions may be exactly what the
programmer needs help understanding. One could also trace just some paths, perhaps
adapting work by Apiwattanapong and Harrold (2002) or Vaswani et al. (2007) on
focused path profiling variants. The resulting trace suffix would be ambiguous but
potentially still useful.

Our global program coverage mechanisms work well as described here, but are
both coarse-grained and inflexible. We are interested in approaches that can encode
calling context with low overhead (Sumner et al. 2010; Bond and McKinley 2007),
rather than explicitly and blindly logging all trace points. We are also interested in
leveraging aspects of data flow as well as control flow; analyses by Yuan et al. (2011)
to identify “most-useful” variables may be a good start. Our current instrumentation
and analysis techniques should be able to analyze C++ applications; we are interested
in exploring whether our techniques translate well to larger object-oriented software
with many dynamically-bound calls.

10 Conclusion

Our primary design goal was to provide valuable extended core-dump information
for debugging with low enough overhead to be used in a production setting. Our
adaptations of path tracing and program coverage are complementary strategies that
realize this goal. Experimental evaluation finds interprocedural slice reductions as
high as 78 %, and active node and edge reductions as high as 71 %. Average run-time
overheads are merely 1.2 % in a realistic debugging configuration, with a maximum
overhead of less than 5 %. Thus, we provide significant debugging support for negli-
gible cost.
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