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Abstract We introduce in this paper an itemset mining approach to tackle the fault
localization problem, which is one of the most difficult processes in software debug-
ging. We formalize the problem of fault localization as finding the k best patterns
satisfying a set of constraints modelling the most suspicious statements. We use a
Constraint Programming (CP) approach to model and to solve our itemset based fault
localization problem. Our approach consists of two steps: (i) mining top-k suspicious
suites of statements; (ii) fault localization by processing top-k patterns. Experiments
performed on standard benchmark programs show that our approach enables to pro-
pose a more precise localization than a standard approach.
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1 Introduction

Developing software programs is universally acknowledged as an error-prone task.
The major bottleneck in software debugging is how to identify where the bugs are
(Vessey 1985), this is known as fault localization problem. Nonetheless, locating a
fault is still an extremely time-consuming and tedious task. Over the last decade,
several automated techniques have been proposed to tackle this problem.

Most of automated techniques for fault localization compare two kinds of exe-
cution traces, namely the passed and failed executions (Jones et al. 2002), such as
Tarantula (Jones and Harrold 2005) which is one of the most popular fault local-
ization technique. These methods are based on a scoring function to evaluate the
suspiciousness of each statement in the program by exploiting the occurrences of the
considered statements in passing and failing test cases. Since, the statements with
high scores correlate highly with faults and that brings us to a total order on state-
ments from highly suspicious to guiltless statements. It is important to stress that this
technique does not differentiate between two failing (resp. passing) test cases, and con-
sequently it ignores the dependencies between statements that can help us to locate the
fault.

Other techniques take in account the cause effect chains with a dependence analysis
by using, for instance, program slicing (Agrawal et al. 1993). The disadvantage here is
that fault can be located in a quite large slice (static slicing) and/or can be time/space
consuming (dynamic slicing).

Recently, the problem of fault localization was abstracted as a data mining problem.
Cellier et al. (2009, 2011) propose a combination of association rules and Formal
Concept Analysis (FCA) to assist in fault localization. The proposed methodology
tries to identify rules between statement execution and corresponding test case failure.
The extracted rules are then ordered as a lattice and explored bottom up to detect the
fault.

In the data mining community, many approaches have promoted the use of con-
straints to focus on the most promising knowledge according to a potential interest
given by the final user. As the process usually produces a large number of patterns, a
large effort is made to a better understanding of the fragmented information conveyed
by the patterns and to produce pattern sets i.e. sets of patterns satisfying properties
on the whole set of patterns (De Raedt and Zimmermann 2007; Rojas et al. 2014).
Discovering top-k patterns (i.e. the k best patterns according to a score function) is a
recent trend in constraint-based data mining to produce useful pattern sets (Crémilleux
and Soulet 2008).

In this spirit of this promising avenue, we propose in this paper an itemset mining
approach to tackle the fault localization problem. We formalize the problem of fault
localization as finding the k best patterns satisfying a set of constraints modeling the
most suspicious statements. We use the test cases coverage of a program collected
during the testing phase for finding the location of program fault. Our approach,
which benefits from the recent progress on cross-fertilization between data mining
and Constraint Programming (Guns et al. 2011; Khiari et al. 2010), is achieved in two
steps:
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(1) Mining top-k suspicious patterns (i.e., set of statements) according to dominance
relations and using constraints dynamically posted,

(2) Ranking the statements by processing the top-k patterns in an ad-hoc ranking
algorithm to locate the fault.

Our localization approach is based on two working hypothesis. The first hypothesis
is usually called the competent developer hypothesis (DeMillo et al. 1978) . It states
that, even some faults are introduced, the resulting program would certainly fulfill
almost all of its specifications. In other words, the resulting program may contain
faults, but it will certainly tackle the problem it has been designed for. The second
requirement on which our approach is based is the single fault hypothesis, i.e., there
is only one faulty statement in the program. This requirement might appear as being
restrictive but it has been shown that complex faults usually result from the coupling
of single faults [a.k.a. the coupling effect (Jones et al. 2002)].

Experiments performed on several benchmark of single fault programs (Siemens
suite) show that our approach enables to propose a more precise localization as com-
pared to themost popular fault-localization techniqueTarantula (Jones andHarrold
2005). To the best of our knowledge, our proposal is the first data mining approach
that exploits pattern sets to fault localization.

This paper is organized as follows. Section 2 sketches definitions and presents
the context. Section 3 gives a background on pattern discovery and describes the CP
modeling for itemset mining. Section 4 presents the detail of our approach for fault
localization. Section 5 presents an illustrative example of fault localization using our
approach. Section 6 reports experimental results and a complete comparison with
Tarantula. Section 7 presents the related fault-localization methods in the area of
data mining and using failing/passing executions. Section 8 concludes the paper and
gives some directions for the future works.

2 Background and motivation

This section presents background knowledge about the problem of fault localization
and constraint satisfaction problems.

2.1 Fault localization problem

In software engineering, a failure is a deviation between expected and actual result.
An error is the part of the program that is liable to lead to a subsequent failure. Finally,
a fault in the general sense is the adjudged or hypothesized cause of an error (Laprie
et al. 1992). The purpose of fault localization is to pinpoint the root cause of observed
symptoms under test cases.

Given a faulty program P having n lines, labeled L = {e1, e2, . . . , en}. For instance,
for the program “Character counter” given in Fig. 1, we have L = {e1, e2, . . . , e10}.
Definition 1 (Test case) A test case tci is a tuple 〈Di , Oi 〉, where Di is a collection
of input settings for determining whether a program P works as expected or not, and
Oi is the expected output.
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Fig. 1 Example of program and its associated transactional dataset

Definition 2 (Passing and failing test case) Let 〈Di , Oi 〉 a test case and Ai be the
current output returned by a program P after the execution of its input Di . If Ai = Oi ,
tci is considered as a passing (i.e. positive), failing (i.e. negative) otherwise.

Definition 3 (Test suite)A test suite T = {tc1, tc2, . . . , tcm} is a set ofm test cases that
are intended to test whether the program P follows the specified set of requirements.

Definition 4 (Test case coverage) Given a test case tci and a program P, the set
of executed (at least once) statements of P with tci is a test case coverage Ii =
(Ii,1, . . . , Ii,n) where Ii, j = 1 if the j th statement is executed, 0 otherwise.

A test case coverage indicates which parts of the program are active during a
specific execution. For instance, the test case tc4 in Fig. 1 covers the state-
ments 〈e1, e2, e3, e4, e6, e7, e10〉. The according test case coverage is then I4 =
(1, 1, 1, 1, 0, 1, 1, 0, 0, 1).

2.2 Constraint satisfaction problem

A CSP consists of a finite set of variables X = {x1, . . . , xn} with finite domains
D = {D1, . . . , Dn} such that each Di is the set of values that can be assigned to xi ,
and a finite set of constraints C. Each constraint C(Y ) ∈ C express a relation over a
subset Y of variables X . The objective is to find an assignment (xi = di ) with di ∈ Di

for i = 1, . . . , n, such that all constraints are satisfied.

Example 1 Let be the following CSP:

X = {x1, x2, x3}
D = {D1, D2, D3} where, D1 = {1, 2}, D2 = {0, 1, 2, 3}, D3 = {2, 3}
C = {C1(x1, x2),C2(x1, x2, x3),C3(x1)} where,

C1(x1, x2) : x1 > x2
C2(x1, x2, x3) : x1 + x2 = x3
C3(x1) : x1 �= 0
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Here, the current CSP admits two solutions : (x1 = 2, x2 = 0, x3 = 2) and
(x1 = 2, x2 = 1, x3 = 3).

In Constraint Programming [see Rossi et al. (2006)], the resolution process consists
of iteratively interleaving search phases and propagation phases. The search phase
essentially consists of enumerating all possible variable–value combinations, until
we find a solution or prove that none exists. It is generally performed on a tree-
like structure. In order to avoid the systematic generation of all the combinations
and reduce the search space, the propagation phase shrinks the search space: each
constraint propagation algorithm (also called propagator) removes values that a priori
cannot be part of a solution w.r.t. the partial assignment built so far. The removal of
inconsistent domain values is called filtering. If all inconsistent values are removed
from the domains with respect to a constraint C , we say that C is domain consistent.

Consider for example the constraint C1(x1, x2) : x1 > x2. The propagator for this
constraintwill remove values 2 and 3 from D2. The repeated application of propagators
can lead to a successive reduction of domains until reaching a fixed point where no
value can be pruned. At this point, the search assigns a variable one of its values.
Whenever the domain of one of the variables becomes empty, the search backtracks
to explore alternatives.

Constraint programming provides a very expressive type of constraints. One can
denote the predefined constraints (i.e., arithmetic constraints), constraints given in
extension (list of allowed/forbidden combinations of values), and logical combination
of constraints. Another kind of constraints are reified constraints, also known as meta
constraints. A reified constraint b ↔ c involves a boolean variable b and a constraint
c, and it is equivalent to (b = 1∧ c)∨ (b = 0∧¬c). This kind of constraints is useful
to express propositional formulas over constraints, formulas that are common in data
mining (see Sect. 3).

3 Frequent itemset mining

This section gives a brief overview of the CP approach for itemset mining (De Raedt
et al. 2008; Guns et al. 2011).

3.1 Context and definitions

Let I be a set of distinct literals called items and T = {1, . . . ,m} a set of transaction
identifiers. An itemset (or pattern) is a non-null subset of I. The language of itemsets
corresponds toLI = 2I\∅. A transactional dataset is a setD⊆ I×T . Table 1 presents
a transactional datasetD where each transaction ti gathers articles described by items
denoted A, . . . , F . The traditional example is a supermarket dataset in which each
transaction corresponds to a customer and every item in the transaction to a product
bought by the customer.

Definition 5 (Coverage and Frequency) The coverage of an itemset x is the set of all
identifiers of transactions inwhich x occurs: coverD(x) = {t ∈ T |∀i ∈ x, (i, t) ∈ D}.
The frequency of an itemset x is the size of its cover: freqD(x) = |coverD(x)|.
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Table 1 Transactional dataset
D Trans. Items

t1 B E F

t2 B C D

t3 A E F

t4 A B C D E

t5 B C D E

t6 B C D E F

t7 A B C D E F

Example 2 Consider the transactional dataset in Table 1. We have for x = BEF that
coverD(x) = {t1, t6, t7} and freqD(x) = 3.

Constraint-based pattern mining aims at extracting all patterns x of LI satisfying
a query q(x) (conjunction of constraints), which usually define what we call a the-
ory (Mannila and Toivonen 1997): Th(q) = {x ∈ LI | q(x) is true}. A common
example is the frequency measure leading to the minimal frequency constraint. The
latter provides patterns x having a number of occurrences in the dataset exceeding a
given minimal threshold min f r : freqD(x) ≥ min f r . Another usual constraint is the
size constraint which constrains the number of items of a pattern x .

Example 3 Let us consider the following query q(x) = freqD(x) ≥ 5 ∧ si ze(x) = 2.
It addresses all frequent patterns (min f r = 5), having a size equal to 2. With the
running example in Table 1, we get four solutions : BE, BC, BD and CD.

In many applications, it appears highly appropriate to look for contrasts between
subsets of transactions, such as passing and failing test cases in fault localization (see
Sect. 4). The growth rate is a well-used contrast measure (Novak et al. 2009). Let D
be a dataset partitioned into two subsets D1 and D2:

Definition 6 (Growth rate) The growth rate of a pattern x from D2 to D1 is:

mgr (x) = |D2| × f reqD1(x)

|D1| × f reqD2(x)

Emerging Patterns are those having the growth rate greater than some given thresh-
old. Jumping Emerging Patterns are those which do not occur in D2. They are at the
core of a useful knowledge in many applications involving classification features such
as the discovery of suspicious statements in the program (see Sect. 5).

The collection of patterns contains redundancy w.r.t. measures. Given a measurem,
two patterns xi and x j are said to be equivalent if m(xi ) = m(x j ). A set of equivalent
patterns forms an equivalent class w.r.t. m. The largest element w.r.t. the set inclusion
of an equivalence class is called a closed pattern.

Definition 7 (Closed pattern) A pattern xi ∈ LI is closed w.r.t. a measure m iff
∀ x j ∈ LI , x j � xi ⇒ m(x j ) �= m(xi ).
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The set of closed patterns is a compact representation of the patterns (i.e we can
derive all the patterns with their exact value for m from the closed ones).

Example 4 Consider the frequencymeasure (i.e.m = f req). In our running example,
if we impose that freqD(x) ≥ 5, we get 9 frequent patterns which are summarized by
four equivalence classes (and thus 4 closed frequent patterns). For instance, BCD〈5〉1
is a closed pattern for BC〈5〉, BD〈5〉,CD〈5〉,C〈5〉 and D〈5〉. The three other equiv-
alence classes are: B〈6〉, E〈6〉 and BE〈5〉.

Moreover, the user is often interested in discovering richer patterns satisfying prop-
erties involving several local patterns. These patterns define pattern sets (De Raedt and
Zimmermann 2007) or n-ary patterns (Khiari et al. 2010). The approach thatwe present
in this paper is able to deal with pattern sets such as the top-k patterns.

Definition 8 (top-k patterns) Let m be a measure, and k an integer. top-k is the set of
k best patterns according to m :

{x ∈ LI | freqT (x) ≥ 1 ∧ �y1, . . . , yk ∈ LI : ∀1 ≤ j ≤ k,m(y j ) > m(x)}

Example 5 In our running example, the top-4 closed frequent patterns (i.e., m =
f req) are: B〈6〉, E〈6〉, BE〈5〉, BCD〈5〉.

3.2 CP model for the itemset mining

As defined in Sect. 3.1, let D be a dataset where I is the set of its n items and T the
set of its m transactions. The set of items can be indexed by consecutive integers and
thus can be referenced by their indexes; consequently, without loss of generality, the
set of items I is supposed to be a set of n integers I = {1, . . . , n}. The transactional
dataset D can be represented with a 0/1 (m,n) transactional boolean matrix d, such
that

∀t ∈ T ,∀i ∈ I, (dt,i = 1) ↔ (i ∈ t).

Table 2 illustrates the transactional binary matrix of the transactional dataset given in
Table 1, where 1 (resp. 0) means that an article is (resp. is not) in a transaction. In (De
Raedt et al. 2008), the authors model an unknown pattern M ⊆ I and its associated
dataset T by introducing two sets of boolean variables:

– item variables {M1, M2, . . . , Mn} where (Mi = 1) iff (i ∈ M),
– transaction variables {T1, T2, . . . , Tm} where (Tt = 1) iff (M ⊆ t).

The relationship between M and T is modeled by reified constraints stating that,
for each transaction t , (Tt = 1) iff M is a subset of t :

∀t ∈ T : (Tt = 1) ↔
∑

i∈I
Mi × (1 − dt,i ) = 0 (1)

1 Value between 〈.〉 indicates the frequency of a pattern.
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Table 2 Binary matrix
Trans. A B C D E F

t1 0 1 0 0 1 1

t2 0 1 1 1 0 0

t3 1 0 0 0 1 1

t4 1 1 1 1 1 0

t5 0 1 1 1 1 0

t6 0 1 1 1 1 1

t7 1 1 1 1 1 1

Using the boolean encoding, it is worth noting that some measures are easy to
encode: freqD(M) = ∑

t∈T Tt and si ze(M) = ∑
i∈I Mi . So, the minimal frequency

constraint freqD(M) ≥ min f r (where min f r is a threshold) is encoded by the con-
straint

∑
t∈T Tt ≥ min f r . In the same way, the minimal size constraint si ze(M) ≥ α

(where α is a threshold) is encoded by the constraint
∑

i∈I Mi ≥ α.
Finally, the closedness constraint closed f req(M) ensures that a pattern has no

superset with the same frequency; it is encoded in (Guns et al. 2011) using equation (1)
as follows:

closed f req(M) ≡
[
∀i ∈ I : (Mi = 1) ↔

∑

t∈T
Tt × (1 − dt,i ) = 0

]
(2)

4 Fault localization by itemset mining

In this section, we first give our modeling of the fault localization problem as an
itemset mining under constraints. Then, we formalize the problem of fault localization
as finding the k most suspicious patterns and we detail our algorithm for mining top-
k suspicious patterns. Finally, we describe how to exploit the top-k patterns to return
at the end an accurate fault localization.

4.1 Modeling the fault localization as a constrained itemset mining

Let L = {e1, . . . , en} be a set of indexed statements composing a program P and
T = {tc1, . . . , tcm} a set of test cases. The transactional dataset D is defined as
follows: (i) each statement of L corresponds to an item in I, (ii) the coverage of each
test case tci forms a transaction in T . Moreover, to look for contrasts between subsets
of transactions, T is partitioned into two disjoint subsets T + and T −. T + (resp. T −)
denotes the set of coverage of positive (resp. negative) test cases.

Let d be the 0/1 (m,n) matrix representing the dataset D. So, ∀t ∈ T ,∀i ∈ I,
(dt,i = 1) if and only if the statement i is executed (at least once) by the test case t .
Figure 1 shows the transactional dataset associated to the program Character counter.
For instance, the coverage of the test case t5 is I5 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 1). As t5
fails, thus I5 ∈ T −.
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Let M be the unknown suspicious pattern we are looking for. As detailed in Sect.
3.2, we introduce two sets of boolean variables: item variables {M1, M2, . . . , Mn}
representing statements, and transaction variables {T1, T2, . . . , Tm} representing test
cases. So, M will represent a suspicious set of statements.

Like for T , transaction variables are partitioned into two disjoint subsets: variables
{T+

t } representing positive test cases T + and variables {T−
t } denoting negative test

cases T −. We define also the frequency measure on T + (resp. T −) as freq+(M) =∑
t∈T + T+

t (resp. freq−(M) = ∑
t∈T − T−

t ).
To reduce the redundancy among the extracted patterns, we have to impose

closed f req(M), which states that M must be a closed pattern w.r.t the frequency
measure. In our case, this constraint is imposed on T + and T − to ensure that M has
no superset with the same frequencies in the two sets. We encode this constraint using
equation (3), which is a decomposition of the closedness constraint (2) on T + and T −.

closed f req(M)

≡
⎡

⎣∀i ∈I : (Mi =1)↔
⎛

⎝
∑

t∈T +
T+
t ×(1−d+

t,i )=0

⎞

⎠∧
⎛

⎝
∑

t∈T −
T−
t ×(1−d−

t,i )=0

⎞

⎠

⎤

⎦

(3)

4.2 top-k suspicious patterns

The intuition behind the most of fault localization methods is that statements that
appear in the failing test cases are more likely to be suspicious, while the statements
that appear only in the traces of passed executions are more likely to be guiltless (Eric
Wong et al. 2010; Jones and Harrold 2005; Renieres and Reiss 2003). To extract the
most suspicious patterns (i.e. set of statements), we define a dominance relation �R
between patterns.

Definition 9 (Dominance relation) Given a bipartition of T into two disjoint subsets
T + and T −, a pattern M dominates another pattern M ′ (denoted M �R M ′), iff:

[
f req−(M) > f req−(M ′)

]

∨ [( f req−(M) = f req−(M ′)) ∧ ( f req+(M) < f req+(M ′))] (4)

The dominance relation states that M �R M ′, if M is more frequent than M ′ in
T −. If M and M ′ have the same frequency in T −, M should have a less positive
frequency to dominate M ′.

We also define the indistinct relation =R between patterns.

Definition 10 (Indistinct relation) Two patterns M and M ′ are indistinct (denoted by
M =R M ′), iff

[
f req−(M) = f req−(M ′)

]

∧ [
f req+(M) = f req+(M ′)

] ∧ [
(M �⊂ M ′) ∧ (M ′ �⊂ M)

]
(5)
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The indistinct relation states that two patterns can have the same level of suspi-
ciousness. According to the dominance relation �R, we define a top-k suspicious
patterns.

Definition 11 (top-k suspicious pattern) A pattern M is a top-k suspicious pattern
(according to �R) iff �P1, . . . Pk,∈ LI ,∀1 ≤ j ≤ k, Pj �R M.

Thus, M is a top-k suspicious pattern if there exists no more than (k − 1) patterns
that dominate M . A set of top-k suspicious patterns is defined as follows:

{M ∈ LI | elementary(M) ∧ �P1, . . . Pk,∈ LI ,∀1 ≤ j ≤ k, Pj �R M}

The constraint elementary(M) allows to specify that M must satisfy a basic
property. In our case, we impose that searched suspicious patterns have to satisfy the
following property:

elementary(M) ≡ closed f req(M) ∧ f req−(M) ≥ 1 ∧ si ze(M) ≥ 1,

which means that a suspicious pattern M must be closed in positive and negative test
cases, must include at least one statement and must appear at least in a negative test
case.

4.3 Mining top-k suspicious patterns

This section shows how the top-k suspicious patterns can be extracted using constraints
dynamically posted during search (Rojas et al. 2014). The main idea is to exploit a
dominance relation (noted �R) between sets of statements to produce a continuous
refinement on the extracted patterns thanks to constraints dynamically posted during
the mining process. Each dynamic constraint will impose that none of the suspicious
patterns already extracted is better (w.r.t�R) than the next pattern (which is searched).
This process stops when no better solution can be obtained.

Algorithm 1 extracts the top-k patterns (i.e., most suspicious patterns) according to
the dominance relation �R. It takes as input the positive and negative test cases (T +
and T −), a positive integer k, and returns as output top-k suspicious patterns. The
algorithm starts with a constraint store equal to elementary(M) (line 1). First, we
search for the k first suspicious patterns that are solutions of the current constraint store,
using the SolveNext (C) function (lines 2–4). The SolveNext (C) function asks a CP
solver to return a solution of C which is different from the previous returned solutions.
Initially, the first call of SolveNext (C) returns the pattern P1. The second call will
return a pattern P2 �= P1, and so on. During the search, a list of top-k suspicious
patterns S is maintained. Once the k patterns are found, they are sorted according
to decreasing order �R (line 5). Thereafter, each time a new pattern is found, we
remove from S the least preferred pattern w.r.t. �R (line 10), we add the new pattern
to S according to the decreasing order �R (line 11) and we add dynamically a new
constraint (M �R Sk) at line 7 stating that the new searched pattern M must be better
w.r.t. �R than the least pattern in the current top-k list S. Thus, the next solutions
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Algorithm 1: Extraction of top-k most suspicious patterns 〈S1, ..., Sk〉
Input T +,T −, k
Output S: top-k most suspicious patterns

1 C ← elementary(M); S ← ∅; i ← 1;
2 repeat
3 P ← SolveNext (C);
4 if P �= ∅ then S.add(P); i ← i + 1;
until (i > k) or (P = ∅);

5 Sort S according to decreasing order �R;
6 while P �= ∅ do
7 C.add(M �R Sk );
8 P ← SolveNext (C);
9 if P �= ∅ then

10 S.remove(Sk );
11 Insert P in S according to decreasing order �R;

end
end
return S;

should verify both the current set of constraints store and the new constraints added
dynamically. This process is repeated until no pattern is generated.

4.4 Fault localization by processing top-k suspicious patterns

Our top-k algorithm returns an ordered list of k best patterns S = 〈S1, . . . , Sk〉. Each
pattern Si represents a set of statements that can explain and locate the fault. From one
to another, some statements are appearing/disappearing according to their frequencies
in the positive/negative datasets ( f req−, f req+).

We propose in this section an algorithm (seeAlgorithm 2) that takes as input the top-
k patterns and returns a ranked list Loc ofmost accurate suspicious statements enabling
to better locate the fault (line 14). The returned list Loc includes three computed
ordered lists notedΩ1,Ω2 andΩ3. Elements ofΩ1 are ranked first, followed by those
of Ω2, then by elements of Ω3, which contains the least suspicious statements.

Algorithm 2 starts by merging the indistinct patterns of S (Definition 10), i.e. thus
having the same frequencies in failing and passing test cases, or equivalently having the
same level of suspiciousness. This treatment is achieved by the function Merge(S)

(line 1) which returns a new list SM. A pattern resulting from merging mutliple
patterns is a single pattern including all statements contained in original patterns. Let
us note that the returned list SM may be equal to the initial top-k list S if there are
no pair of patterns with the same frequencies ( f req−, f req+). Then, Algorithm 2
initializes Ω1 and Ω3 to the empty list. Ω2 is initialized by statements that appear in
the most suspicious pattern of SM (i.e. SM1) (line 3).

From this set of most suspicious statementsΩ2, Algorithm 2will try to differentiate
these statements by taking advantage of the three following Properties 1, 2 and 3.

Property 1 Given a top-k patterns S, SM1 is an over-approximation of the fault-
location: ∀Si ∈ S : ( f req−

1 = f req−
i ) ∧ ( f req+

1 = f req+
i ) ⇒ Si ⊆ SM1
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Algorithm 2: Fault localization using top-k patterns

Input top-k patterns S = 〈S1, . . . , Sk 〉, frequecies of each Si : ( f req
+
i , f req−

i )

Output an ordered list of suspicious statements Loc = 〈Ω1, Ω2, Ω3〉
1 SM ← Merge(S);
2 Ω1 ← 〈〉 ; Ω3 ← 〈〉; Loc ← 〈〉;
3 Ω2 ← SM1; l ← |SM|;
4 foreach i ∈ 2..l do

5 ΔD ← Ω2\SMi ;
6 if ΔD �= ∅ then
7 Ω1.add(ΔD);
8 Ω2.removeAll(ΔD);

end

9 ΔA ← SMi\SMi−1;
10 ω ← ∅;
11 foreach b ∈ ΔA do
12 if (∀ω′ ∈ Ω3, ∀ω′′ ∈ Ω1 : b /∈ ω′ ∧ b /∈ ω′′) then ω ← ω ∪ {b} ;

end
13 if ω �= ∅ then Ω3.add(ω);

end
14 Loc.add All(Ω1); Loc.add(Ω2); Loc.add All(Ω3);

return Loc;

Thus, SM1 contains most likely the faulty statement, i.e. statements that are most
frequent in the negative dataset and less frequent in the positive dataset. However,
it may also contains other statements that are suspicious for a certain degree (over-
approximation). That is why, in Algorithm 2, Ω2 is initialized to SM1 at line 3.

Property 2 Given the sets of patterns SM (resulting from top-k patterns S) and an
over-approximation of the fault-location SM1 (Ω2), some statements of SM1 will
disappear in the next SMi ∈ SM : (SM1\SMi ) �= ∅.

In Algorithm 2, statements that disappear from Ω2 and appear in a given SMi are
noted ΔD (line 5). According to the frequency values, we have two cases:

1. SMi has the same frequency as SM1 in the negative dataset but SMi is more
frequent in the positive dataset thanSM1. Thus, statements ofΔD are less frequent
in the positive dataset compared with those of (Ω2\ΔD). So, statements ofΔD are
more suspicious than the remaining statements in Ω2\ΔD and should be ranked
first (removed from Ω2 (line 8) and added to Ω1 (line 7)).

2. SMi is less frequent than SM1 in the negative dataset. Again, statements of ΔD

should be ranked first and added to Ω1.

Consequently, Ω1 contains the most suspicious statements derived from the initial
state of Ω2. The remaining statements in Ω2 are those appearing in all patterns SMi

and are ranked second in terms of suspiciousness.

Property 3 Given the sets of patterns SM, and an over-approximation of the
fault-location SM1, some statements will appear in the next SMi ∈ SM :
(SMi\SM1) �= ∅.
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According to the Property 3, the statements that are not in SM1 and that appear in a
given SMi (line 9) are noted ΔA. So, ΔA should be added to Ω3 (line 13) and ranked
after Ω2 as the least suspicious statements in the program (line 14).

In summary, the first ordered list Ω1 ranks the statements of Ω2 according to their
order of disappearance in SM2..SMl (line 4). At the end of the algorithm, Ω2 will
contain the remaining less suspicious statements as compared to the ones of Ω1.
Finally, the ordered list Ω3 will contain statements, which do not belong to Ω2 but
appears gradually in SM2 to SMl .

5 Running example

In this section, we give an illustrative example to show the result of ourmethod through
a simple program named Character counter, introduced in (Gonzalez-Sanchez et al.
2011) and given in Fig. 1. The program contains ten executable statements, executed
on eight test cases noted from tc1 to tc8 with failing (tc1 to tc6), and passing test
cases (tc7 and tc8). In this example, the fault is introduced at line 3 where the correct
statement “let += 1” is replaced by “let += 2”. Figure 1 reports the cov-
erage of each statement with the value 1 if the statement is executed at least once
by the test case, 0 otherwise. According to our approach, the coverages of failing
(resp. passing) test cases form transactions of the negative (resp. positive) dataset
T − = {tc1, tc2, tc3, tc4, tc5, tc6} (resp. T + = {tc7, tc8}). Our constraint based
model presented in Sect. 4 aims at extracting the k most suspicious patterns. We
recall that the meaning given to the notion of suspiciousness is related to the fre-
quency of a given statement in the negative and/or positive datasets. This means that
the most suspicious statements are the ones with the highest negative frequency and/or
the lowest positive frequency. In this example, we select k equals to the number of
statements (i.e., k = 10) which is sufficient to reach a good accuracy (see Sect. 6) and
then we give a ranking on all statements in P from the most suspect to the guiltless
ones by processing the top-k patterns. Table 3 reports the top-k ranking of the different
patterns computed by the first step of our approach with their respective frequencies.
Table 4 gives the results obtained by Algorithm 2 taking as input Table 3 as a second
step of our approach.

Tarantula and growth rate measures Tarantula’s formula, which computes the
suspiciousness of a statement e in the considered program, is defined as follows:

suspiciousness(e) =
failed(e)
total failed

passed(e)
total passed + failed(e)

total failed

(6)

Formula (6) is very similar to the growth rate formula (given in Definition 6) which
measures the emergence of a given pattern from a dataset to another one (i.e., in our
case, from negative test cases to positive test cases). The two formulas evaluate the
amount of the negative frequency compared with the positive frequency; but Taran-
tula avoids dividing by a null positive frequency. In fact, the Tarantula values
have the same increase as the growth rate, and consequently, they both give the same
ranking of the statements suspiciousness, as illustrated in Table 5.
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Table 3 The top-k suspicious
patterns returned by Algorithm 1

Patterns of statements f req+ f req− Rank

S1 : {e1, e2, e3, e10} 0 6 1

S2 : {e1, e2, e10} 1 6 2

S3 : {e1, e10} 2 6 3

S4 : {e1, e2, e3, e4, e10} 0 5 4

S5 : {e1, e2, e4, e10} 1 5 5

S6 : {e1, e2, e3, e4, e6, e10} 0 4 6

S7 : {e1, e2, e4, e6, e10} 1 4 7

S8 : {e1, e2, e3, e4, e5, e10} 0 3 8

S9 : {e1, e2, e3, e4, e6, e7, e10} 0 2 9

S10 : {e1, e2, e3, e4, e6, e8, e9, e10} 0 2 9

Table 4 The most suspicious
statements with their ranks
returned by Algorithm 2

Statements Rank List

e3 1 Ω1

e2 2 Ω1

{e1, e10} 4 Ω2

e4 5 Ω3

e6 6 Ω3

e5 7 Ω3

e7 10 Ω3

{e8, e9} 10 Ω3

Table 5 The most suspicious
statements with their ranks
returned by Tarantula and
Growth rate measure

Statements Tarantula Growth rate Rank

e3 1 ∞ 1

e5 1 ∞ 1

e7 1 ∞ 1

e2 0.66 2 4

e4 0.62 1.67 5

e6 0.57 1.33 6

e1 0.5 1 8

e10 0.5 1 8

e8 0.4 0.67 10

e9 0.4 0.67 10

According to the Algorithm 2 (line 1), as a first step and before ranking the
statements, we merge all patterns with the same frequencies (i.e., the same level of
suspiciousness). From Table 3, we have ∀i < 9,SMi = Si , and the two last patterns
S9, S10 will be merged in one pattern SM9 that will contain all statements in S9 and
in S10.
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By comparing the results and the ranking strategy of our method (Table 4 ) with
those given by Tarantula in Table 5 (2nd column) and the growth rate (3th column)
we draw the following observations:

• First, in our results, the fault, that is introduced in e3, is ranked first and is the most
suspicious statement. According to our Algorithm 2, this statement is in the most
suspicious pattern SM1 having frequencies ( f req+ = 0, f req− = 6). We point
out that e3 disappears in the next pattern SM2 having frequencies ( f req+ =
1, f req− = 6). Here, e3 appears in SM1 and disappears in the next SMi ,
which means that e3 must be added as a disappeared statement to ΔD (at line 5)
and removed from Ω2 (line 8). But, Tarantula considers the three statements
e3, e5, e7 as the most suspicious with the same rank although these statements
have different frequencies in negative test cases. In fact, Tarantula is unable to
distinguish between them.

• By using Tarantula, the statements {e5, e7} are ranked before {e2, e4, e6},
whereas statements {e2, e4, e6} are more suspicious since they are more present
in failing test cases than {e5, e7}. This weak ranking is due to the low precision
provided by Tarantula’s formula (6). This weakness is offset by the notion of
appearing statements. Let us come back to our example, the statements e4 and e6
are not in the most suspicious pattern SM1 and they appear in the next patterns.
Consequently, these statements are added as appearing statements to ΔA (line 9)
and then added to Ω3.

• Concerning the statements {e8, e9} and {e1, e10}, Tarantula reveals that these
statements have the same suspiciousness without distinguishing them. Our
approach gives the same results and the same suspiciousness because we got them
in the same time (same group). In our approach the statement e7 has also the same
suspiciousness as {e8, e9} because these statements appear in different patterns but
these patterns have the same frequencies, so these statements will be in the same
pattern after the merging step.

This comparison between the effectiveness of Tarantula and our constrained
mining method reveals clearly the accuracy of our method which exploits better the
relationships between the statements of the program.

6 Experiments

This section reports several experimental studies. First, we present the benchmark pro-
grams we used for our experiments (see Sect. 6.1). Second, we detail our experimental
protocol for evaluating our approach (see Sect. 6.2). Third, we study and discuss the
influence of parameter k for mining top-k suspicious patterns (see Sect. 6.3). Fourth,
we compare our results with those obtained with Tarantula (Jones and Harrold
2005) and we study the impact of varying the size of the test cases on performances
of the two approaches (see Sects. 6.4 and 6.5). Finally, we study and analyze the CPU
times of our approach (see Sect. 6.6).
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Table 6 Faulty programs from the Siemens suite (111 programs)

Program Description Faulty
versions

LOC LEC Test cases

Replace Pattern replacement 29 514 245 5542

PrintTokens2 Lexical analyzer 9 358 200 4056

PrintTokens Lexical analyzer 4 348 195 4071

Schedule Priority scheduler 5 294 152 2650

Schedule2 Priority scheduler 8 265 128 2680

TotInfo Information measure 19 272 123 1052

Tcas Altitude separation 37 135 65 1578

LOC lines of code in the correct version, LEC lines of executable code

6.1 Benchmark programs

As benchmark programs, we considered the Siemens suite, which is the most common
program suite used to compare the different fault localization techniques. The suite
contains seven C programs, faulty versions of these programs, and test suites for each
category of program.2

We recall here that the Siemens programs suite is assembled for fault localization
studies aswell as for fault detection capabilities of control-flow and data-flow coverage
criteria. In our experiments, we exclude 21 versions that are, roughly speaking, out
of scope of localization task (e.g., segmentation faults).3 On the whole, we have 111
programs with faults summarized in Table 6.

6.2 Experimental protocol

First of all, we need to knowwhich statement is covered by a given execution. For that,
we use theGcov4 profiler tool to find out the statements that are actually executed by a
given test case. Gcov can be used also to know how often each statement is executed.
This being said, in our approach we need only the coverage matrix. Thus, we run the
program P with a test case and we compare the returned result to the expected one.
If the returned result matches with the expected one, we add the according test case
coverage to the positive transactional dataset; otherwise we add it to the negative one.

We implemented our approach as a tool named F- CPminer. The implementation
was carried out inGecode,5 an open and efficient constraint programming solver. Our
implementation includesAlgorithm1 formining top-k suspicious patterns (seeSect. 4)

2 A complete description of Siemens suite can be found in (Hutchins et al. 1994).
3 In our approach, it is possible to tackle versions with segmentation faults by considering them as negative
examples. In these cases, the last instruction which is mostly at the origin of the error, is not seen by the
execution trace. Moreover, Gcov is not able to generate properly the covering instructions. Thus, these
faulty versions pose many out-of-scope issues which disturb a safe discussion of the experimental results.
4 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
5 www.gecode.org.
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and Algorithm 2 that processes the top-k patterns and returns at the end an accuracy
fault localization with a ranking on statements according to their suspiciousness. All
experiments were conducted on a 3.10 GHz processor Intel Core i5-2400 with 8 GB
of memory, running Ubuntu 12.04 LTS.

To make a fair comparison between our F- CPminer and Tarantula, we have
implementedTarantula andwe evaluated the statement suspiciousness as presented
in (Jones and Harrold 2005). We used a common metric in fault localization, the
exam score (Wong and Debroy 2009) that measures the effectiveness of a given
fault localization technique. The exam score gives the percentage of statements that
a developer will check before the one containing the fault. It is clear that the best
approach is the one that has the lowest percentage of exam score.

Tarantula and F- CPminer can return a set of equivalent statements in terms of
suspiciousness (i.e., with the same suspiciousness degree). In this case, the effective-
ness depends on which statement is to check first . For that reason, we report two
exam scores, the optimistic and the pessimistic one, denoted respectively o- exam

and p- exam. We talk about o- exam (resp. p- exam) when the first (resp. last) state-
ment to be checked in the set of equivalent statements is the faulty one. We also
define a third metric, Δ- exam = o- exam − p- exam, representing the margin of the
exam score. In other words, Δ- exam represents the distance between the optimistic
and the pessimistic score.

6.3 Comparing various values of k for mining top-k suspicious patterns

Ourfirst experiment aims to select the best value of k leading to the bestΔ- exam score.
Here, a small value forΔ- exam means that the method gives small sets of statements
with equivalent suspiciousness, which leads to an accurate localization. We recall that
Algorithm 1 for mining top-k suspicious patterns takes as input parameter k. For this
experiment, we selected three programs fromReplace, Schedule2 andTcas of different
sizes (resp. 245, 128 and 65 executable statements). We have varied the value of k
from (n/5) to (5 × n), where n represents the program size in terms of executable
statements.

Figure 2 shows the impact of k on the precision of the returned Δ- exam score
(i.e., the distance between the optimistic and pessimistic exam values). The first
observation that we can make is that by increasing the value of k, we reduce the
distance between o- exam and p- exam (i.e., Δ- exam). The second observation
is that starting from a value of k greater or equal to the program size measured in
executable statements (i.e., n), Δ- exam becomes stable. Throughout the rest of this
section and according to our tests, k is fixed to the program size.

6.4 F-CPMINER versus TARANTULA

Table 7 gives an exam score based comparison between F- CPminer and Taran-

tula on the 111 faulty programs of Siemens suite. For each class of program (e.g.,
Tcas includes 37 faulty versions), we report the averaged number of positive test
cases |T +|, the averaged number of negative test cases |T −|, the value of k used in
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Fig. 2 Comparing various values of k

F- CPminer for mining top-k suspicious patterns (corresponding to the program size),
the averaged p- exam,o- exam andΔ- exam values± the standard deviation for each
class of programs.

The first observation is that F- CPminer wins on 5 program classes out of 7 accord-
ing to the reportedo- exam and p- exam values. For instance, ifwe take PrintTokens2
class with its 9 faulty versions (see Table 6), using F- CPminer the fault is localized
after examining only 2.66% of the code in the pessimistic case (p- exam) with a
standard deviation less than 4 and only 1.72% in the optimistic case (o- exam) with
a standard deviation less than 3%. On the other side, Tarantula needs to examine
16.44% in the pessimistic case and 15.5% of the code in the optimistic case, in both
cases, the standard deviation is greater than 17%.

Our second observation relates to Δ- exam values that are better in Taran-

tula than F- CPminer in most cases. It is worth mentioning that Δ- exam relies
heavily on the value of k (see Fig. 2). Using k equal to the program size leads us to
a difference not exceeding 4% for one program class and 1% for the other classes
comparing to Tarantula.

In order to complement the results given by Table 7, we report in Table 8 a pairwise
comparison between Tarantula and F- CPminer on the 111 faulty programs. For
each category of program (e.g., Tcas), we give the number of programswhereTaran-
tula orF- CPminer wins by comparing the exam scores (o- exam and p- exam).We
also report the case when the exam values are equal (i.e., tie game).

The results of Table 8 match with the results given in Table 7, where F- CPminer is
the winner on 5 out of the 7 classes. For instance, if we take the Tcas program class
and by comparing the o- exam (resp. p- exam) value, F- CPminer is more accurate
on 19 (resp. 20) faulty programs, while Tarantula is better only on 6 (resp. 4) faulty
programs. Finally, both approaches obtain the same o- exam (resp. p- exam) on 12
(resp. 13) programs.

FromTables 7 and 8, a general observation is thatF- CPminer is highly competitive
as compared to Tarantula. Indeed, F- CPminer wins on almost 60% of benchmark
programs (61–62 out of 111 programs), while Tarantula is doing better on 25%
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Table 8 Pairwise comparisons between Tarantula and F- CPminer

Winner Replace Print2 Print Sched Sched2 Totinfo Tcas Total

F- CPminer (12,12) (6,6) (2,2) (1,1) (7,7) (14,14) (19,20) (61,62)

Tarantula (16,15) (0,0) (0,0) (4,4) (1,1) (2,0) (6,4) (29,24)

tie game (1,2) (3,3) (2,2) (0,0) (0,0) (3,5) (12,13) (21,25)

(p- exam, o- exam)

Fig. 3 Tarantula and F- CPminer effectiveness comparison

of benchmark programs (24–29 out of 111 programs). Finally, the two approaches
behave similarly on 15% of the benchmark programs (21–25 out of 111 programs).

Figure 3 shows the effectiveness comparison, based on p- exam and o- exam,
between Tarantula and F- CPminer. The x-axis reports the exam values while y-
axis reports the cumulative percentages of located faults on the 111 programs. Let us
start with the pessimistic case (i.e. p- exam). Until 10% of exam, both approaches
behave similarly by locating more than 40% of faults. From 10 to 20%, we observe
a difference of 10% of located faults in favour of F- CPminer (i.e., 60% for F-
CPminer instead of 50% of located faults for Tarantula). For values of exam in
the interval [20%, 40%], this difference is reduced up to 6%. Between 60 and 70%,
Tarantula arrives to catch up F- CPminer by locating more than 84% of the faults.
However, F- CPminer enables to detect 100% of faults with a exam value equal to
80%, while Tarantula needs to reach 100% of exam to locate all the faults. For
the optimistic case (i.e. o- exam) showed with dashed curves, F- CPminer is acting
quickly from the beginning by locating more faults than Tarantula. It is important
to stress that the two curves do not intersect and the one of F- CPminer is always
above the one of Tarantula. Let us note that after 30% of exam, F- CPminer in the
pessimistic case detects the same percentage of faults (i.e., 74%) than Tarantula in
the optimistic case.
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In order to strengthen the previous results, we carried out a statistical test using
the Wilcoxon Signed-Rank Test, where we are not able to assume a normal distri-
bution of the population (Lyman Ott et al. 2001). Here, the one-tailed alternative
hypothesis is used with the following null hypothesis (Tarantula more efficient
than F- CPminer): H0 : The exam score using F- CPminer ≥ The exam score
using Tarantula. That is, the alternative hypothesis H1 states that our F-

CPminer examined a fewer number of statements before locating the fault than
Tarantula (F- CPminer more efficient than Tarantula). With this test, we are
able to conclude that the use of F- CPminer is more efficient than Tarantula (H1
accepted) with 79.99% confidence in the pessimistic case (p- exam) and 97.99%
confidence in the optimistic case (o- exam). This test strengthens the previous results
on the comparison of F- CPminer with Tarantula.

Overall, we can conclude that F- CPminer enables to locate most of the faults more
quickly than Tarantula in terms of effectiveness (i.e., exam metric). Moreover, by
considering the cumulative exam over all the 111 faulty programs (i.e. the total num-
ber of executable statements that have to be checked for the whole of the 111 faulty
programs), F- CPminer has to check 2861 of statements against 3482 for Taran-
tula using p- exam (gain of 17%). With o- exam, F- CPminer needs to check 1808
statements against 2496 for Tarantula (gain of 27%).

Finally, we point out the following observations over the tested 111 programs :

– For 110 programs, the faulty statement is in the first pattern (i.e., SM1).
– For 96 programs, the faulty statement is in the first statement disappearing from
SM1.

– For 14 programs, the faulty statement is located in Ω2.
– For only one program, the faulty statement is located in Ω3.

These observations show clearly the effectiveness of the ranking strategy adopted by
Algorithm 2.

6.5 Impact of the size of test cases on fault localization accuracy

In this section, we study the impact of test cases on F- CPminer and Tarantula. For
that, we have varied the number of test cases given as inputs by varying the sizes of
datasets T + and T −. For each program, we reduced the size of its datasets from 100
to 10% by removing randomly at each time 10% of test cases. At each time, we report
the exam score (o- exam and p- exam) for F- CPminer and Tarantula. In this
section, we selected four programs to present (PrintTokens2-v3, Tcas-v28, TotInfo-
v18 and Replace-v22) that we consider quite representative in terms of program and
datasets sizes. Figure 4 reports the results on the selected programs.

PrintToken2-v3For this instance of program,when considering the full datasets (100%
of test cases), F- CPminer and Tarantula obtain approximately the same results in
terms of exam score. Once we start reducing the number of test cases, we observe
that F- CPminer keeps approximately the same accuracy until 10% of test cases. In
the other side, Tarantula exhibits a chaotic behavior where the accuracy decreases
(i.e (exam score) increases) significantly after a reduction of 60% of test cases by
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Fig. 4 Impact of the size of the datasets on the performances of F- CPminer and Tarantula

reaching a score of 30% of code to exam. These observations are made on 6 versions
where only one is from the same PrintToken2 class.

Tcas-v28 For this instance, F- CPminer and Tarantula obtain approximately the
same results in terms of exam score with a slight gain in favour of our tool. We can
observe that datasets reduction have no substancial impact on the accuracy of the two
tools. This result is observed on 32 versions where 14 versions belong to the same
Tcas class.

TotInfo-v18 Here, F- CPminer shows a stable behavior and more or less the same
accuracy during the datasets reduction, while Tarantula is greatly impacted by this
reduction (i.e., the exam score changes in a strange manner). The same observations
are made on 22 versions where 8 of them are from TotInfo class.

Replace-v22 For this instance, we can see that the two approaches are more or less
affected by reducing the size of the datasets, Tarantula is still more stable until
a reduction of 50% of test cases. F- CPminer is stable from 75 to 35% of datasets
reduction. For this case, the same observations (i.e., the two approaches are affected
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Table 9 Comparing the CPU
times for the two steps of
F- CPminer on different
programs (in seconds)

Program k Top-k extraction
(Algo. 1)

Top-k processing
(Algo. 2)

Replace 245 147.69 ± 86.02 0.051 ± 0.015

PrintTokens2 200 146.25 ± 65.89 0.045 ± 0.013

PrintTokens 195 61.49 ± 34.35 0.030 ± 0.003

Schedule 152 27.41 ± 15.28 0.012 ± 0.004

Schedule2 128 12.66 ± 05.37 0.016 ± 0.004

TotInfo 123 2.53 ± 01.01 0.014 ± 0.006

Tcas 65 0.16 ± 00.02 0.001 ± 0.000

by the reduction) are made on 34 other versions from which 7 programs belong to the
Replace class.

These observations are particularly informative and highlight the fact that our
approach can be less sensitive to the number of considered test cases. This is especially
true when we have 60 programs out of 111 where F- CPminer behaves in the same
manner (stable behavior) as the three first programs (see Fig. 4). And this is especially
true where on 62 programs Tarantula follows a chaotic behavior and only on 17
programs, the behavior of Tarantula is more stable than F- CPminer. Thanks to the
quality of our top-k patterns extraction and to the processing step,which enables to ana-
lyze the dependencies between the extracted patterns. This is not the case for Taran-
tula , where the adding or removing of test cases can lead to less accurate results.

6.6 Analyzing CPU times for F-CPMINER

This section analyzes the CPU times of our approach. It is important to recall that
Tarantula approach evaluates the suspiciousness degree of each statement using
the formula 6 without taking in account any statement dependencies. Therefore, the
combinatorial explosion due to the possible combinations of statements is not tackled
byTarantula. Consequently, theCPU times obtained byTarantula are very shorts
(in milliseconds).

Table 9 reports for each class of program both the average CPU times and the stan-
dard deviation for the two steps performed by F- CPminer (i.e. the top-k extraction
corresponding to Algorithm 1 and the post-processing step corresponding to Algo-
rithm 2).

The first observation that can be made is that extracting top-k patterns is the most
costly step for F- CPminer. This is in part explained by the very high number of
candidate patterns (i.e. |LI |). However, in our experiments, the CPU times are not
exceeding 235 s for the worst case (see Replace programs) and it is less than 0.2 s in
the best case (see Tcas programs). The second observation that can be made is that the
CPU times spent by the post-process step for a final localization of the faulty statement
is negligible (of order of milliseconds for the best and worst cases).

Figure 5 shows theCPU times variation for extracting top-k patterns for the 29 faulty
versions (from v1 to v29) of the Replace program. For this class, the standard deviation
of CPU time is quite large (i.e., 86.02 s) according to an average CPU time equal to
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Fig. 5 CPU times variation for top-k extraction (Algorithm 1) for Replace program

147.69 s. The deviation is not negligible due to the fact that all program versions take
the same test cases but different T + and T − according to the introduced fault. For
instance, for v5, (|T −|, |T +|) = (271, 5271) and F- CPminer requires about 400
s. to extract the top-k patterns. For comparison, for v24, (|T −|, |T +|) = (3, 5539)
and F- CPminer needs less CPU times to complete the extraction of top-k pattens
(22 s). In fact, extracting top-k patterns from a small negative dataset (i.e. T −) and a
considerable positive dataset (i.e. T +) is not time consuming. This is especially true
when the extracted patterns are the more frequent ones in the negative dataset and less
frequent ones in the positive dataset.

Impact of the size of test cases and parameter k on CPU times Figure 6 shows the
impact of varying the size of the dataset (i.e. test case) and the value of k on the
CPU times for the top-k extraction. For this experiment, we have selected the program

Fig. 6 Impact of varying the size of the dataset and the value of k on CPU times

123



Autom Softw Eng (2017) 24:341–368 365

Replace(v5), which represents the worst case for extracting top-K . We can observe
that CPU time decreases considerably when reducing the number of test cases (see
Fig. 6a). The same trend is observed when varying the value of k (see Fig. 6b).

In fact, the extraction of top-k patterns is closely related to the size of the transac-
tional datasets (test cases coverage) and the value of k. The behavior of Fig. 6b can
be explained by the fact that with a large value of k, a large number of patterns are
extracted and the least patterns of the top-k list have low values of frequency. This
increases drastically the number of candidate patterns to be explored by Algorithm 1
and thus the CPU times. In contrast, with small values of k, the least patterns in
the top-k list tend to have high values of frequency. Consequently, constraints added
dynamically during the mining process (line 7 of Algorithm 1) will refine the prun-
ing condition leading to more and more powerful pruning of the search space. This
explains the decreasing of CPU times.

7 Related works

In this section, we present some related works in the area of fault localization.

Using failing/passing executions As introduced previously, Tarantula (Jones and
Harrold 2005) is one of the most popular fault localization technique that records
information linked to failing/passing executions in terms of how each test case covers
statements. Another technique rather close to Tarantula is the one proposed by
(Cleve and Zeller 2005) and based on program states. The technique compares states
of passing and failing test cases. In a previous work (Zeller 2002), Zeller shows that
locating a fault just by considering the search space (variables, values) is not sufficient
in general. Indeed, it is possible to return statements as faulty ones by comparing
the different states in passing/failing test cases, but a fault in a program can produce
a difference on all next states in the program. In (Cleve and Zeller 2005), a search
during execution is performed to locate the first transition that leads to a fail. But
these techniques do not differentiate between two failing (resp. passing) test cases,
and consequently they ignore the dependencies between statements that can help us
to locate the fault.

Using dependence analysis Other techniques take in account the cause effect chains
with a dependence analysis by using, for instance, program slicing (Agrawal et al.
1993). The disadvantage here is that fault can be located in a quite large slice (static
slicing) and/or can be time/space consuming (dynamic slicing). In the same perspec-
tive, Renieris and Reiss (2003) use the notion of nearest neighbor, where they confront
a failing trace with the nearest passing trace. Here the distance between two traces
is expressed with the difference between the set of executed statements. In the case
where no nearest passing trace can be obtained, the technique builds the program
dependence graph and checks the adjacent nodes of the failing trace one by one with
the hope of finding the location of the fault.

Using data mining In (Cellier et al. 2009), Cellier et al. propose a data mining process
DeLLIS which computes program element clusters and shows dependencies between
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program elements. They compute all differences between execution traces and, at the
same time, gives a partial ordering of those differences. In (Cellier et al. 2008), Cellier
et al. propose a methodology that combines between association rules to search for
possible causes of failure and formal concept analysis to assist in fault localization.
They try to identify rules between statement execution and corresponding test case
failure, and then measure the frequency of each rule. (Nessa et al. 2008) generate
statement subsequences of length N , referred to as N-grams, from the trace data.
The failed execution traces are then examined to find the N-grams with a rate of
occurrence higher than a certain threshold in the failed executions.A statistical analysis
is conducted to determine the conditional probability that an execution fails given that
a certain N-gram appears in its trace.

Our approach aims at exploiting recent progress on cross-fertilization between data
mining and constraint programming in order to model the fault localization problem as
finding the top-k patterns of statements occurringmore frequently in failing executions
and less frequently in the passing executions. These top-k patterns are then processed
by analysing their dependencies, in order to infer a ranking on the suspiciousness
degree of the statements.

8 Conclusion

In this paper we have proposed a new approach based on itemset mining and constraint
programming to deal with fault localization problem. Our approach proceeds in two
steps. In the first step, we have formally defined the problem of locating faults in
programs as a mining task using CP for modelling and solving the arising constraints.
Solving the underlying CP model enables us to get the top-k most suspicious set of
statements . The second step aims at ranking in a more accurate way the whole top-k
statements by taking benefit of two main observations (i) where faults are introduced
in a program can be seen as a pattern (set of statements), which is more frequent in
failing executions than passing ones; (ii) the difference between a more suspicious
pattern and a less suspicious one is a set of statements that appears/disappears in one
or the other; this difference helps us to know more about the location of the fault.
We have shown how these two properties can be exploited in an ad-hoc ranking algo-
rithm producing accurate localization. Finally we have compared experimentally our
approach implemented in F- CPminer with Tarantula on a set of faulty programs.
The results we obtained show that our approach enables to propose a more precise
localization as compared to Tarantula.

As future works, we plan to experiment our approach on programs with complex
faults (more than one faulty statement). We also plan to explore other observations
on the behavior of a faulty program and adding them as constraints for mining the
location of faults.
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