Autom Softw Eng (2016) 23:569-590 @ CrossMark
DOI 10.1007/s10515-015-0179-1

Multiple kernel ensemble learning for software
defect prediction

Tiejian Wang! - Zhiwu Zhang? . Xiaoyuan Jing! -
Ligiang Zhang!

Received: 16 June 2014 / Accepted: 24 March 2015 / Published online: 7 April 2015
© Springer Science+Business Media New York 2015

Abstract Software defect prediction aims to predict the defect proneness of new soft-
ware modules with the historical defect data so as to improve the quality of a software
system. Software historical defect data has a complicated structure and a marked char-
acteristic of class-imbalance; how to fully analyze and utilize the existing historical
defect data and build more precise and effective classifiers has attracted considerable
researchers’ interest from both academia and industry. Multiple kernel learning and
ensemble learning are effective techniques in the field of machine learning. Multi-
ple kernel learning can map the historical defect data to a higher-dimensional feature
space and make them express better, and ensemble learning can use a series of weak
classifiers to reduce the bias generated by the majority class and obtain better pre-
dictive performance. In this paper, we propose to use the multiple kernel learning to
predict software defect. By using the characteristics of the metrics mined from the
open source software, we get a multiple kernel classifier through ensemble learning
method, which has the advantages of both multiple kernel learning and ensemble
learning. We thus propose a multiple kernel ensemble learning (MKEL) approach for
software defect classification and prediction. Considering the cost of risk in software
defect prediction, we design a new sample weight vector updating strategy to reduce
the cost of risk caused by misclassifying defective modules as non-defective ones. We
employ the widely used NASA MDP datasets as test data to evaluate the performance
of all compared methods; experimental results show that MKEL outperforms several
representative state-of-the-art defect prediction methods.

B Tiejian Wang
wangtiejianl 116 @sina.com

State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan,
China

School of Computer, Nanjing University of Posts and Telecommunications, Nanjing, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-015-0179-1&domain=pdf

570 Autom Softw Eng (2016) 23:569-590

Keywords Software defect prediction - Multiple kernel learning - Ensemble learning -
Multiple kernel ensemble learning (MKEL)

1 Introduction

Software defect prediction is an important research topic in software engineering (Lyu
2007; Seliya et al. 2010; Nam et al. 2013), By means of metric based classification,
software modules can be classified typically into two categories: defective and non-
defective. Metric based defect prediction method can predict the defect proneness of
new software modules with software historical defect data, which is an efficient means
to relieve the burden on software code inspection or testing (Catal and Diri 2009; Hall
et al. 2011). The historical defect data is obtained by using McCabe (1976), Halstead
(1977) and other static software metrics, how to fully analyze and utilize the existing
historical defect data, and build more precise and effective classifiers has attracted
considerable researchers’ interest from both academia and industry.

Software historical defect data has a complicated structure (Gray et al. 2011; Shep-
perd etal. 2013), which will leads to negative influence on decision of classifiers unless
we focus on them when we design the software defect prediction algorithm (Ma et al.
2012; Luo etal. 2012; Gao et al. 2011; Ren et al. 2014). Kernel based learning method
(Schoelkopf et al. 1998; Scholkopf et al. 1999; Muller et al. 2001), however, can map
these data into a higher or even infinite dimensional kernel feature space with the
original data distribution information. In this way more information is excavated and
the classification performance is also improved. Compared with single kernel learn-
ing, multiple kernel learning (Ong et al. 2005; Lewis et al. 2006; Rakotomamonjy
et al. 2007; Zien and Ong 2007; GAonen and Alpaydin 2008; Damoulas and Girolami
2008; Gehler and Nowozin 2009; Kembhavi et al. 2009) can combine the mapping
ability of each single basic kernel function, which solves the kernel functions selec-
tion problem effectively. It can also assemble different kernel functions with different
characteristics, achieve better mapping capability by taking advantage of each basic
kernel function, make the data express better in the new feature space, and improve
the prediction accuracy significantly. In general, multiple kernel learning (MKL) can
handle some complicated situations such as heterogeneous information or irregular
multi-dimensional data, large scale problems, non-flat distribution of samples, etc.

Software historical defect data also has a marked characteristic of class-imbalance
(Khoshgoftaar et al. 2010; Zhou and Liu 2006; Menzies et al. 2007; He and Gar-
cia 2009; Gao et al. 2012), which means that defective modules are far less than
non-defective ones in most software systems. The class-imbalance problem leads to
negative influence on decision of classifiers (Ren et al. 2014). Many methods includ-
ing resampling techniques, ensemble learning and cost-sensitive learning have been
proposed to solve the class-imbalance problem (Sun et al. 2012; Dietterich 2000;
Valentini and Masulli 2002; Rokach 2010). Compared with other methods, ensemble
learning can obtain better predictive performance by integrating the learning results
in a series of weak classifiers. As one of the most popular ensemble learning methods,
Adaptive Boosting (known as “Adaboost”) updates the weight of the samples dynami-
cally according to the error rate of last learning, thus reduces the bias generated by the
majority class and solves the class-imbalance problem (Freund and Schapire 1997).

@ Springer

Autom Softw Eng (2016) 23:569-590 571

Research shows that ensemble learning has better prediction capability for software
historical defect data with the characteristic of “class-imbalance” in software defect
prediction (Rokach 2010).

1.1 Motivation

Combining multiple kernel learning with ensemble learning is of crucial necessity to
process these software historical defect data. It can not only map the historical defect
data to a higher-dimensional feature space to excavate more effective information, but
also solve the problem of class-imbalance. Moreover, multiple kernel learning problem
can be solved through ensemble learning method, which is called multiple kernel
boosting learning (Xia and Hoi 2013; Bi et al. 2004; Bennett et al. 2002). Compared
with the ordinary multiple kernel learning methods, multiple kernel boosting learning
can avoid the complex parameter optimization problem and adjust the accuracy of the
classifier according to different application requirements.

Additionally, misclassifying a defective software module as non-defective one is
much more dangerous than misclassifying a non-defective module as defective-prone
one in software defect prediction (Zheng 2010). That is because classifying a soft-
ware module as defective-prone implies that more testers should be invested in the
verification activities, in contrast, misclassifying a defective module as non-defective
carries the risk of system failure. However, this problem has yet been addressed in the
process of updating the sample weight in general multiple kernel boosting learning
method. Instead, the sample weight is adjusted directly according to the classification
results. So when multiple kernel boosting learning method is used for software defect
prediction, this problem should be focused on.

1.2 Contribution

In this paper, we propose a multiple kernel ensemble learning (MKEL) approach for
software defect prediction. And the contributions are summarized as following:

1. It is the first attempt to introduce the multiple kernel learning technique into the
field of software defect prediction to the best of our knowledge, although it has been
effectively applied to other domains. Through boosting method we get the most optimal
multiple kernel classifier, in consequence, our MKEL approach has the advantages of
both multiple kernel learning and ensemble learning for software defect prediction.

2. Considering the cost of risk in software defect prediction, we design a new
sample weight vector updating strategy. In the training process of MKEL, we increase
the weights of the defective samples and decrease the weights of the non-defective
samples according to the classification results, so as to focus more on those defective
modules, reduce the cost of risk of misclassifying defective modules as non-defective
ones and gain better prediction.

In this paper, we conduct experiments on twelve NASA datasets, which are public
and widely used for software defect prediction. The experimental results demonstrate
that the proposed approach outperforms several representative methods. The remainder
part of this paper is organized as follows. Section 2 introduces the related work.

@ Springer

572 Autom Softw Eng (2016) 23:569-590

(1) Labeling (2) Feature Extraction
1

O Non-defective
@ Defective

Learner

pTTTTTTTTTTTTTTTT S ,r"_"_""_""""""""""i""""‘.
Predicted label | ! i
<_: -k .

Pl 4— i

—A--l-> i

¢! Training Samples |

(4) Classification (3) Building a Prediction Model

Fig. 1 Software Defect Prediction Process

Section 3 describes the proposed approach. Section 4 introduces the experimental
setup. Section 5 shows the experimental results and analysis. Section 6 presents threats
to validity of the models and the conclusion is drawn in Section 7.

2 Related work

Software defect prediction technology can be generally categorized into two types:
static and dynamic defect prediction technology. The illustration of typical static defect
prediction process is shown in Fig. 1. The first step is to collect software modules in
software archives and then label them. A software module can be labeled as defective
or non-defective according to whether it contains defects or not. Then, the values of
defect prediction metrics, such as McCabe, Halstead metrics and et al., are used as
module attributes. The module attributes and labels are used to train a learner for
building a prediction model. With the prediction model, the new query modules can
be whether they are defective or non-defective.

Many traditional classification methods in machine learning have been adopted
for static software defect prediction, such as SVM (Xing et al. 2005; Elish and Elish
2008; Gray et al. 2009; Yan et al. 2010, Bayes (Turhan and Bener 2007, 2009; Amasaki
etal. 2003; Wang and Li 2010), decision tree (Khoshgoftaar and Seliya 2002a, b; Wang
etal. 2012; Breiman 2001; Gayatri et al. 2010), neural network (Thwin and Quah 2005;
Paikari et al. 2012), dictionary learning (Jing et al. 2014), and etc. In order to solve the
class-imbalance problem, many methods are used in software defect prediction, such
as resampling (Menzies et al. 2007), ensemble learning (Sun et al. 2012; He and Garcia
2009; Wang and Yao 2013; Seiffert et al. 2009; Aljamaan and Elish 2009), and cost-
sensitive (Zheng 2010; Bezerra et al. 2011; Seliya and Khoshgoftaar 2011; Sun et al.
2007). Sun et al. (2012) presented a coding-based ensemble learning method, which
converts imbalanced binary-class data into balanced multiclass data and builds a defect
predictor on the multiclass data with a specific coding scheme. Based on the successful

@ Springer

Autom Softw Eng (2016) 23:569-590 573

class-imbalance learning method AdaBoost.NC (He and Garcia (2009)), Wang et al.
(2013) presented a dynamic version of AdaBoost.NC, which can adjust its parameter
automatically during training process. Zheng (2010) presented cost-sensitive boosting
algorithm to improve neural network classifiers for defect prediction, which incorpo-
rates the misclassification costs into the weight-update rule of boosting, such that the
classification performance on those samples with higher misclassification costs can
be improved.

In order to improve the accuracy of the prediction model, some researchers con-
sider introducing kernel method to software defect prediction. The historical defect
data were first mapped into a higher-dimensional feature space and then the software
modules were classified and predicted in that kernel space. Ma et al. (2012) used a
single kernel function to map the defect prediction data into a higher-dimensional
feature space, and then used Kernel principal component analysis (KPCA) method
for software defect prediction. Luo et al. (2012) mapped the defect prediction data
into a higher-dimensional feature space in the same way, but Kernel partial least
squares (KPLS) method was used for software defect prediction. Ren et al. (2014)
used asymmetric Kernel partial least squares classifier (AKPLSC) and asymmetric
Kernel principal component analysis classifier (AKPCAC) to solve the class imbal-
ance problem by applying kernel function to the classifiers. All of them constructed
an asymmetric classifier in kernel space, so as to improve software defect prediction
by compensating the bias of the regression model caused by class-imbalance.

In general, multiple kernel learning method has obvious advantage compared with
single kernel learning method, so in this paper we use multiple kernel learning method
to predict the defect proneness of software modules and propose multiple kernel
ensemble learning (MKEL) algorithm. Different form previous algorithms, our MKEL
algorithm integrates the advantages of multiple kernel learning and ensemble learning,
and applies multiple kernel learning to software defect prediction in boosting frame-
work for the first time. Moreover, in the parts of weight vector updating, according to
the characteristic of historical defect data, we take the cost of risk problem in software
defect prediction account to improve the defect prediction performance.

3 Our approach

3.1 Problem formulation

For a given set of training software modules D = {(x;, y;),i = 1,2,---, N} and a
collection of M kernel functions K = {k; : X x X - R, j =1,2,---, M}, where x
is a vector of module attributes, y € {—1, 41} is the module label, k is the basic single
kernel function. MKEL aims to learn a multi-kernel-based classifier f (x), which is an
ensemble of kernel classifiers using the collection of M kernels trained from the given
training software historical defect data, and then predict the defect proneness of new
software modules with the multi-kernel-based classifier f(x). Typically, we express
such a multi-kernel-based classifier as:

T
) =D fi(x), ()
t=1

@ Springer

574 Autom Softw Eng (2016) 23:569-590

where T is the total number of boosting trials, f; is a kernel-based hypothesis learned
fromthe rth (1 <t < T) boosting trial, and ¢ is its associated weight in the final clas-
sifier. The main challenge of MKEL is to develop an effective boosting scheme to learn
the optimal kernel-based hypothesis f; and its combination weight «; at each boosting
trial. When T boosting trials are completed, we get T kernel-based hypothesis and
their combination weights; the final MKEL classifier is an ensemble of them. Once the
MKEL classifier is got, it can be used to make defect prediction for new query modules.

3.2 Multiple kernel learning

Given a supervised machine learning problem (x;, y;) € X x Y, we can map the input
samples into a new feature space FF = {®(x)|x € X} through nonlinear mapping
®:X - F x - &(x),thenuse the new representation to consider original learning
problem. The kernel method is to replace the dot-product < ®(x), ®(x) > in kernel
feature space by a kernel function k (x, x’) in the original feature space. The commonly
used kernels include Polynomial kernels, Gaussian radial basis function (RBF) kernels,
and etc. The Polynomial kernels has the form k(x, x') = (< x, x’ > +60)?, and RBF
kernels can be expressed as k(x, x') = exp(—y || x—x' || %). Combining different char-
acteristics of different kernel functions contribute to get the advantages of multiple ker-
nels and achieve better mapping capability, which is known as multiple kernel learning.

The synthetic kernel in multiple kernel learning is a convex combination of different
kernel functions. It can be expressed as the weighted sum of basic kernels as K (x, x) =
Zﬁf:l Bk (x, x'), where B, is the weight parameter of basic kernels. Within the
framework of multiple kernel, the representation of samples in the feature space is
translated to how to select and confirm basic kernels and their weight parameter. The
goal of a regular multiple kernel learning is to identify the optimal combination of M
basic kernels, denoted by 8 = (61, - - - 6p7) by the following maximum margin learning
principle, which can be cast into the following optimization problem:

min min || f ”HK(G) + Czl(f(xz) Vi), 2

0eA feHgq 2

where A = {0 € RY|6TeM = 1}, KO)¢.) = XM, 0k, 1), yi) =
max(0, I — y; f(x;)), ey represents a vector of M dimensions with all its elements
being 1. Formulation 2 can also be turned into the following min-max optimization
task:

min max aTeN——(otoy) ZQJ,K (xoy)t, 3)

OeA acl

where K/ € RV*N with K}, , = kj(x, x4), E = {a]a € [0, C]V}, and o defines the
element-wise product between two vectors. We can see that formulating this problem
as an optimization task will lead to large amount of complex calculation, and to avoid
this drawback, boosting method is used to calculate the parameters of the synthetic
kernel in the multiple kernel learning.

@ Springer

Autom Softw Eng (2016) 23:569-590 575

The initial training set
The whole training set and the weight vector

Basic kernel

 — ? Weak classifiers’
[classifiers combination weight
 E—
—» ¢
I— —» Classifier 1 [
O Non-defective —
O Defective Sample 1~n

o : Multiple kernel

classifier

—| Classifier 2 H»| ¢

=]

i |

— [
| I—

 I—

- :
::l —» Classifier t [P
Sample 1~n

Fig. 2 Schematic representation of Adaboost

3.3 Multiple kernel ensemble learning

To learn a classifier with multiple kernels, we follow the typical procedure of a popular
and successful boosting algorithm, i.e., Adaboost. Specifically we repeatedly learn
some basic kernel classifiers through a series of boosting trials after the training set is
initialized, and then integrated them according to their combination weights, thus we
get the final MKEL classifier. The whole process can be expressed in Fig. 2.

Before boosting trials, the training set needs to be initialized firstly. We can perform
a random sampling strategy directly on the entire training set, and then take these
selected samples as the MKEL initial training set. After the training set initialization is
completed, a distribution of weights D; needs to be engaged to indicate the importance
of the training samples for learning. Initially, these weights are all equal. At each
boosting trial, we will adjust the weight vector D, according to certain strategy, for
the sake of focusing on those samples that need to be concerned at next boosting trial.

Once the initial training set and the weight vector D, are obtained, boosting trials
can be started. The key issue of the ¢th boosting trial is how to learn the kernel-based
classifier f;(x) from these training data. In single kernel case, f;(x) can be learned
by applying any regular kernel method, e.g., SVM used in our study, but in the case
of multiple kernel, situation becomes more complex. In order to get f; (x), we firstly
learn one single kernel classifier f;/ (x) with each single kernel k/ using a regular
kernel method. Based on the set of M base classifiers, we can further measure the
misclassification performance of each classifier f;/ (x) with kernel k; over distribution
D; of the whole collection of training data:

e=e(f @)=)3 D) (7) # 3i)-)

i=1

@ Springer

576 Autom Softw Eng (2016) 23:569-590

As a result, the best classifier with the smallest misclassification rate can be figured
out and taken as the weak classifier f;(x) for the ¢th boosting trial:

fit)y = argmin e(f (x)). 5)

f.jell - M)

To get the final classification from all of these weak classifiers, each of the classifiers
is assigned a weight o in AdaBoost. For the 7th boosting trial, f;(x)’s combination
weight o; can be determined with the error rate based on the following formula:

1 (1_81‘)
@ = ~1In . (©6)
2 &t

After got f;(x) and its combination weight o, the #th boosting trial is finished. Before
next trial started, we must update the weight vector D, in the (¢ + 1)th boosting trial
according to the result of the 7th boosting trial. General boosting methods adjust the
weight vector directly only according to the classification results, so that the samples
that are correctly classified in the tth boosting trial will decrease in weight, and the
misclassified samples will increase in weight. The goal of this effort is to focus on the
misclassified samples in next boosting trial (Sun et al. 2007).

In software defect prediction we should pay more attention to defective samples,
the reason is that misclassifying a defective software module as non-defective is much
more dangerous than misclassifying a non-defective module as defective-prone. In
order to put more emphasis on defective samples, class labels need to be taken into
account when adjust the weight vector D, . For defective samples, if they are incor-
rectly predicted in the fth boosting trial, their weight will be increased; if they are
correctly predicted, their weight will keep unchanged; For non-defective samples, if
they are incorrectly predicted in the #th boosting trial, their weight will keep unchanged,
if they are correctly predicted, their weight will be decreased. The sample weight vector
Dy is calculated by:

if the module is defective (y; = 1):

. D) Loif f(xi) =i
Dii () = gor b > [eaf if Fa) £ @
if the module is non-defective (y; = —1):
L D) e if i) =
D@ = 5y > [1 if foi)#yi ©

After D, is calculated, AdaBoost starts on the (¢ 4+ 1)th iteration. When all of the
training and weight-adjusting iterations are completed, 7" basic kernel classifiers and
their combination weights are got, the final MKEL classifier is an ensemble of them:

T
fx) =sign (Z arfz(x)), ©)

t=1

@ Springer

Autom Softw Eng (2016) 23:569-590 577

and the details of the proposed MKEL algorithm are shown in Algorithm 1.

Algorithm 1. The MKEL algorithm
1. INPUT:

training data: (x,,y)), ..., (x,,y,)

kernel functions: k()ixxx —> R, j=1, -, M
initial distribution p (j)=1/N,i=1, .., N

2. for ;=1,...7 do

3. sample a set of » samples using distribution p,
4. for j—y, .. do
5. train weak classifier with kernel K
S x> {=1L+1}

6. compute the training error over p,:

N

=2 D ()= y)

i=1
7. end for

8. select the best classifier with the minimal error rate

fi(x)= argmin &(f’(x))= argmin ZD(I)(f () =y,

J gl My S el MY =1

9. choose a, :%ln(l—&)

t

10. update D, ()"

if y,=1:
b (=20 L i fx)=y,
T SumD) e if f(x) =y,
else if y,=—1:
Db (=R _ e i)=y,
T sum®D) 1 i f(x) =y,
end if
11. end for

12. outpUT: f(x):sign(ia,f}(x))

4 Experimental setup

In this section, we describe the experimental setup in detail, including the benchmark
datasets, evaluation measures, and experiment design.

@ Springer

578 Autom Softw Eng (2016) 23:569-590

Table 1 20 Metrics selected from NASA datasets

Metrics Description

loc McCabe’s line count of code for each module

10Code Halstead’s line count of code for each module
10Comment Halstead’s count of lines of comments for each module
10Blank Halstead’s count of blank lines for each module
10CodeAndComment Halstead’s count of code and comments for each module
v(g) Cyclomatic complexity for each module

ev(g) Essential complexity for each module

iv(g) Design complexity for each module

Total_Op Total number of operators for each module
Total_Opnd Total number of operands for each module

Uniq_Op Number of unique operators for each module
Uniq_Opnd Number of unique operands for each module

Total operators and operands for each module

N Volume for each module

1 Program length for each module

d Difficulty for each module

i Intelligent content for each module
b Error estimate for each module

e Programming effort for each module
t Programming time for each module

4.1 Benchmark datasets

In this paper, we experiment with 12 datasets from NASA Metrics Data Program
(MDP) to verify the applied effects of the proposed algorithm. NASA benchmark
datasets are publicly available and have been widely used for software defect predic-
tion. Each dataset represents a NASA software system or sub-system, which contains
the corresponding defect-marking data and various static code metrics (Gray et al.
2011). Static code metrics are measured by static software metric methods including
Halstead and McCabe measures, these metrics contain lines of code (LOC), operand
and operator counts, readability, complexity and etc., we list the 20 common basic
metrics and their descriptions in Table 1.

Table 2 gives the brief properties of 12 NASA datasets, including the total number
of attributes, the number of defective and non-defective modules, and the ratio of them.
It is obviously that every dataset has the characteristic of class-imbalance. It should be
noted that the original data contains various duplicate entries, and to make our results
more credible, these datasets have been cleaned to remove the duplicate parts (Gray
etal. 2011).

@ Springer

Autom Softw Eng (2016) 23:569-590 579

Table 2 NASA benchmark datasets after data cleaning

Datasets Number of Number of defective Number of non- Ratio between
attributes modules defective modules defective and non-
defective modules

CM1 38 42 285 0.15:1
IM1 22 1672 6083 0.28:1
KC1 22 314 878 0.36:1
KC3 40 36 158 0.23:1
MC1 39 46 1930 0.02:1
MC2 40 44 81 0.54:1
MWI 38 27 228 0.12:1
PC1 38 61 650 0.09:1
PC2 37 16 729 0.02:1
PC3 38 134 939 0.14:1
PC4 38 177 1110 0.16:1
PC5 39 471 1220 0.39:1

Table 3 Defect prediction metric

Predict as defective Predict as non-defective
Defective modules A B
Non-defective modules C D

4.2 Evaluation measures

In software defect prediction, probability of detection (Pd), probability of false alarm
(Pf), precision and accuracy are four important measures to evaluate the performance
of prediction model. They can be defined by using A, B, C, and D in Table 3. Here,
A, B, C, and D are the number of defective modules that are predicted as defective,
the number of defective modules that are predicted as defective-free, the number of
defective-free modules that are predicted as defective, and the number of defective-free
modules that are predicted as defective-free, respectively.

Pd denotes the ratio is the number of defective modules correctly classified as defec-
tive to the number of defective modules, which is defined as A/(A + B). Pf denotes
the ratio is the number of defective-free modules wrongly classified as defective to the
number of defective-free modules, which is defined as C/(C + D). Precision denotes
the ratio is the number of defective modules correctly classified as defect to the number
of modules that are classified as defective, which is defined as A/(A + C). Accuracy
denotes the ratio is the number of modules that are correctly classified to the number
of total modules, which is defined as (A + D)/(A + B 4+ C + D).

From the definitions of Pd and precision, it can be concluded that a higher Pd means
the prediction model intends to find out defective modules as much as possible, and a

@ Springer

580 Autom Softw Eng (2016) 23:569-590

higher precision means the prediction model intends to predict defective modules as
correct as possible. For software defect prediction, we hope that the prediction model
not only can find out more defective modules, but also can make fewer mistakes, which
means that a good prediction model desires to achieve high value of Pd and precision.
However, there exists trade-off between these two measures, high Pd is on the expense
of low precision, and vice versa. Therefore, a comprehensive measure to combine Pd
with precision is necessary when we evaluate the performance of defect prediction
model. This is the F-measure, the harmonic mean of Pd and precision, which can be
defined as:

F —measure = 2*Pd* precision/ (Pd + precision) .

The value of F-measure ranges from O to 1, the higher the value, the better the pre-
diction model performance. Compared with other evaluate measures, F-measure can
evaluate the prediction model comprehensively and effectively, meanwhile, F-measure
is reasonably stable and not susceptible to the influence of parameter adjustment.

4.3 Experimental design

To verify the effect of MKEL approach, we conduct some experiments. The experi-
mental setup is as follows: for each of the NASA MDP datasets, we randomly selected
50% of the defective and non-defective samples as training set, and the remaining
50 % were used for test. Moreover, for the purpose of getting a more general result,
we repeat each algorithm 20 times on every dataset and report average performances.

We create a set of 30 base kernels, i.e., RBF kernels with 21 different widths
(2’10, 279, ..., 2]0) on all features, Polynomial kernels of degree 1 to 9 on all
features. We map every NASA MDP dataset to a higher-dimensional kernel space
respectively by using these 30 base kernels. For SVM, the popular LIBSVM toolbox
is adopted as the SVM solver.

The boosting training set are initialized as follows: for each NASA MDP training
set, we randomly select 40 % of the training samples as suggested in Xia and Hoi
(2013), then take them as the initial boosting training set. By default, we set the total
number of boosting trials 7" to 100, so the final MKEL classifier will be an ensemble
of 100 kernel-based weak classifiers.

5 Experimental results

In order to evaluate the performance of our MKEL approach, we compare it with
two state-of-the-art class-imbalance learning methods for software defect prediction
including coding based ensemble learning (CEL) (Sun et al. 2012) and dynamic version
of AdaBoost.NC (DVA) (Wang and Yao 2013). And the comparison also embraces
several representative software defect prediction methods, including weighted Naive
Bayes (NB) (Wang and Li 2010), Compressed C4.5 decision tree (CC4.5) (Wang
et al. 2012), Cost-sensitive Boosting Neural Network (CBNN) (Zheng 2010) and
Asymmetric Kernel Principal Component Classification (AKPCC) (Ma et al. 2012).

@ Springer

Autom Softw Eng (2016) 23:569-590 581

For running these previous algorithms mentioned above, we adopt their default settings
and chose the suggested parameters by the literatures (Random forest is used as the
basic classifier of CEL since it has better performance in the literature. DVA employs
10-fold cross-validation, and 9/10 partitions are used at each time of building models,
among them, 8/9 data serve as a training set and 1/9 data serve as a validation set.
CBNN employs a fivefold cross-validation and cost ratio varies from 1 to 20. RBF
kernel is used for AKPCC). For all the experiments, we repeat each algorithm 20 times
on every NASA MDP dataset. In this section, we present the experimental results of
our MKEL approach and other compared methods.

Table 4 shows the Pd and Pf values of our approach and other compared methods
on 12 NASA datasets. For each dataset, Pd and Pf values of all methods are the mean
values calculated from the results of 20 runs. The average Pd and Pf values across
all datasets of MKEL are 0.68 and 0.26. Due to Table 4, we can observe that the
Pd values of MKEL are higher than the corresponding values of all other methods.
The results indicate that the proposed MKEL approach takes the misclassification
costs into consideration, which makes the prediction tend to classify the non-defective
modules as the defective ones in order to obtain higher Pd values. The results of Pf
values suggest that in spite of not acquiring the best Pf values on most datasets, MKEL
can achieve comparatively better results in contrast with other methods.

Table 5 shows the mean and standard deviation of F-measure values of our approach
and the compared methods across 20 random running on 12 NASA datasets. The aver-
age F-measure value across all datasets of MKEL is 0.48, and the standard deviation
of F-measure values across all datasets of MKEL is 0.03. It can be seen that our
approach achieves higher F-measure values than those of other compared methods on
all datasets, which indicates that the proposed approach achieves preferable prediction
effects.

To statistically analyze the F-measure results used in Table 5, we conduct a statistical
test, i.e., Mcnemar’s test (Yambor et al. 2000). This test can provide statistical signifi-
cance between MKEL and other methods. Here, the Mcnemar’s test uses a significance
level of 0.05, that is, if the p value is below 0.05, the performance difference between
two compared methods is considered to be statistically significant. Table 6 shows the
p values between MKEL and other compared methods on 12 NASA datasets, where
only one value is slightly above 0.05. According to Table 6, the proposed approach
indeed makes a statistically significant difference in comparison with other methods
for software defect prediction.

In above experiments, we create a set of 30 base kernels as multiple kernel learning,
select 40% of the training samples randomly as the initial boosting training set, and
set the total number of boosting trials 7 to 100. When update the sample weight
vector, we use a MKEL boost sample weight vector updating strategy by gradually
increasing the weights of the defective samples and decreasing the weights of the non-
defective samples. We use SVM as the basic kernel classifier. The average F-measure
value across all datasets of MKEL is 0.48 under these settings. In order to validate
the influence of these factors, we repeat the experiment by using different number of
base kernels, weight updating strategies, sampling ratios, boosting trails, and basic
kernel classifiers. The average F-measure values are shown in Table 7, where M is the
number of base kernels (M = 1 means single kernel), and w is the initial sampling

@ Springer

582

Autom Softw Eng (2016) 23:569-590

Table 4 Experimental results: Pd and Pf comparisons on NASA’s 12 datasets

Datasets NB CC4.5 CBBN CEL DVA AKPCC MEKL
CM1

Pd 0.54 0.23 0.59 0.36 0.71 0.29 0.75

Pt 0.21 0.11 0.26 0.14 0.29 0.16 0.33
IM1

Pd 0.14 0.37 0.54 0.32 0.51 0.19 0.56

Pt 0.32 0.17 0.29 0.14 0.33 0.06 0.31
KCl1

Pd 0.31 0.40 0.69 0.37 0.48 0.32 0.78

Pf 0.06 0.12 0.30 0.13 0.34 0.14 0.39
KC3

Pd 0.46 0.41 0.51 0.29 0.65 0.29 0.65

Pt 0.21 0.16 0.25 0.12 0.43 0.13 0.33
MC1

Pd 0.36 0.27 0.48 0.39 0.27 0.55 0.55

Pt 0.11 0.12 0.21 0.18 0.14 0.35 0.13
MC2

Pd 0.35 0.64 0.79 0.56 0.71 0.44 0.79

Pf 0.09 0.49 0.54 0.38 0.45 0.23 0.28
MW1

Pd 0.49 0.29 0.61 0.25 0.52 0.33 0.64

Pt 0.19 0.09 0.25 0.11 0.13 0.14 0.21
PC1

Pd 0.36 0.38 0.54 0.46 0.65 0.38 0.69

Pt 0.11 0.09 0.17 0.13 0.45 0.09 0.31
pPC2

Pd 0.27 0.33 0.61 0.35 0.31 0.50 0.61

Pf 0.14 0.15 0.40 0.30 0.17 0.19 0.16
PC3

Pd 0.28 0.34 0.65 0.41 0.41 0.34 0.56

Pt 0.09 0.08 0.25 0.13 0.16 0.13 0.29
PC4

Pd 0.39 0.49 0.66 0.48 0.76 0.52 0.80

Pt 0.13 0.07 0.18 0.06 0.04 0.11 0.27
PC5

Pd 0.32 0.50 0.79 0.37 0.69 0.50 0.81

Pf 0.14 0.02 0.08 0.13 0.16 0.24 0.08

ratio. General boost weight updating strategy adjusts the weight vector directly only
according to the classificationresults (i f f (x;) = yi, Dy+1(i) = D;(i)e™% /Sum(D),
if f(xi) # yi, Diy1(i) = D;(i)e* /Sum(D)). The results in Table 7 indicate that

@ Springer

Autom Softw Eng (2016) 23:569-590 583

Table 5 F-measure values on 12 NASA datasets from different prediction methods

Datasets Algorithms
NB CC4.5 CBBN CEL DVA AKPCC MEKL
CM1 0.32 0.25 0.32 0.27 0.35 0.21 0.40
(0.05) (0.09) (0.05) (0.10) (0.08) (0.06) (0.04)
IM1 0.33 0.34 0.38 0.33 0.38 0.31 0.45
(0.01) (0.01) (0.04) (0.02) (0.06) (0.03) (0.02)
KC1 0.38 0.39 0.41 0.36 0.39 0.35 0.50
(0.02) (0.03) (0.04) (0.04) (0.01) (0.04) (0.04)
KC3 0.38 0.38 0.38 0.33 0.35 0.29 0.44
(0.06) (0.09) (0.06) (0.09) (0.10) (0.10) (0.05)
MC1 0.12 0.20 0.15 0.16 0.13 0.25 0.41
(0.04) (0.10) (0.05) (0.03) (0.06) 0.07) (0.02)
MC2 0.45 0.48 0.56 0.49 0.48 0.49 0.63
(0.09) (0.09) (0.05) 0.07) (0.08) (0.10) (0.03)
MW1 0.31 0.27 0.33 0.27 0.35 0.33 0.49
(0.05) (0.11) (0.06) (0.05) (0.09) 0.1 (0.03)
PC1 0.28 0.32 0.32 0.32 0.39 0.35 0.50
(0.05) (0.06) (0.04) 0.07) (0.03) (0.05) (0.01)
PC2 0.11 0.17 0.08 0.11 0.15 0.23 0.30
(0.04) (0.10) 0.11) (0.03) (0.09) (0.06) (0.01)
PC3 0.29 0.30 0.38 0.36 0.38 0.39 0.46
(0.05) (0.06) (0.03) (0.04) (0.06) (0.03) (0.05)
PC4 0.36 0.49 0.46 0.48 0.50 0.43 0.55
(0.03) (0.06) (0.12) (0.04) (0.03) (0.10) (0.03)
PC5 0.33 0.48 0.36 0.36 0.44 0.35 0.68
(0.06) (0.03) (0.04) (0.04) (0.05) (0.04) (0.02)
Average 0.31 0.34 0.34 0.32 0.36 0.33 0.48
(0.05) (0.07) (0.06) (0.05) (0.06) 0.07) (0.03)

multiple kernels achieve better performance than single kernel. Multiple kernels and
the weight vector updating strategy improve MKEL performance mostly, by contrast,
initial sampling ratio, and basic classifiers the number of boosting trials influence
performance relatively inconspicuously. We conduct a statistical test to analyze the
F-measure results used in Table 7, the p values are shown in Table 8.

6 Threat to validity
The study has limitations that are common with most of the empirical studies in

the literature. The proposed MKEL approach uses a randomly selecting strategy to
initialize the training set, which means that the initial training set is built by randomly

@ Springer

Autom Softw Eng (2016) 23:569-590

21-01 X €T°€ ¢z—01 X 9S°p 01-0T X 8€'T =01 X €1°€ 601 X 10°L #1-01 X 08'T $0d
,—01 X 8L°€ L1-01 X 98°€ g-01 X 6TF 01-01 X LT 901 X IT'L 91-01 X 9L°C ¥0d
101 X 9€°€ 6—01 X 8€'T c—01 X €0°F ¢ 01 X I 601 X 1L'9 g-01 X 10°1 €2d
g-01 X 66'I 601 X 179 01-01 X T6'1 £100°0 g-01 X L9'] 11-01 X 1t°0 zod
201 X 11°1 -0l X 1T°€ ¢-01 X 09T ,-01 X €6°T 9-01 X It'€ g0l X €9° 10d
L1S00 ¢1-01 X 05°€ ¢-01 X §9'1 ¢-01 X 09T p—0T X 9€°C 0T X TT'T TMIN

g—01 X $0'E #1-01 X 6T'T 901 X 0L c-01 X 1€ ¢-01 X 18°C g-01 X SI'l O
9-01 X 61'f 2-01 X 11T ¢-01 X #°0 ,—01 X €9'1 11-01 X 1T°€ 6-01 X 91'C 1O
g-01 X 9T'T 601 X 8L 9-01 X 19°€ p—0T X 8T'T 69000 9-01 X TTE o)
g—01 X L9°S g—0T X ¥€'S 21=01 X 0L'T ,-01 X €56 g—0T X €6°T ¢1-0T X 8€9 103
L0 X €T'1T 21-01 X LE'T ¢1-0T X $S°€ 900°0 p1-0T X 0£'C 11-01 X 6T TN
g—01 X 9T'T g—0T X 60T ¢-01 X 08'T 501 X 19°T ,-01 X IS°€ ¢-01 X €T°€ 1IND

D0V VAd 4D NNED $P00D N

THIIN sjaseled

584

sjeselep YSVN ¢ U0 spoyjouwt paredwiod 1oyjo pue TSN Uoom)aq sonfea 4 9 d[qe],

pringer

As

585

Autom Softw Eng (2016) 23:569-590

L0 090 €50 9t°0 9¢€°0 1670 0S°0 LSO 70 9t°0 610 LEO or'0 1$310J wopuey

9t°0 S9°0 L0 €€0 Se0 S0 €60 860 S S0 LEO or'0 9¢°0 sakeq 2AIEN

L0 19°0 050 00 €e0 61°0 870 19°0 970 €70 S0 970 6€°0 YO
IoyIsse[o dIseq

L0 £€9°0 1670 770 €0 050 61°0 ¢so 0S°0 €70 0S°0 70 or'0 0SI =L

L0 690 8¥°0 61°0 00 1670 9¢°0 L9°0 6€°0 L0 9t°0 170 6€°0 0s=.1
s[ewn Sunsoog

81°0 99°0 61°0 LSO o €70 080 990 8¢€°0 90 050 610 [S(] %09 =1

L0 650 16°0 €60 €0 6€°0 S¢S0 LSO or0 90 L0 70 8¢€°0 %0 ="
onei Surjdwes

810 89°0 [S0] 9%°0 0€0 050 610 £9°0 170 0 0s°0 S or'0 1500Q THIN

S0 IS0 IS0 8¢0 €e0 IS0 L0 860 0s°0 9¢°0 8¢€°0 6€°0 8¢€°0 1S00Q [eIdUD)
Sunepdn jySrop

61°0 99°0 9¢°0 [SS0] €e0 050 160 99°0 [34l0] 8¢0 SS0] 6€°0 170 0s=mn

S0 090 1670 170 8CT0 S 4] 617°0 090 LEO 6€°0 6€°0 810 8€°0 oc=n

wo 60 LY'0 6€°0 €€0 00 70 SV 9¢°0 6€°0 [S(] LEO or0 1=n
s[ouIoy oseq

ERIASIN Sod ¥O0d €0d cod 10d TMIN TON IOIN 30| |10 TINL TIND

s1ojowrered Juarogip Sursn Aq s}aseiep VSN 1 JO ON[eA oInsedw-J 95eIoAy L d[qeL

pringer

AQs

Autom Softw Eng (2016) 23:569-590

9o-01 X9€9 0l X€TE -0l XIST [0l XG9T -0l X6LT g0l XLEY [1-0I XE€6'C -0 X8ET ¢ 01 X€C9 ¢ Ol XL8S ,_0I X8E9 ¢od
e1-01 X TGS 5-01 X I¥'S -0 X 8TS 401 X69°¢ €010°0 ¢ -0 X I8Y ¢;-01 X6¥'8 (01 XO0TT o0l XITE ¢-0I XELB -0 X9TT ¥2d
€100°0 ¢ -0l X €ET ¢-0I X IT8 -0 X IL'€ ¢ -0l X €T ;-01 X L8S 701 X88'S o0l X160 -0l XI¥L -0 XS6'T (-0 X9C'I €2d
6-0T X89F (0T XE€6'T ¢-01X€B0 o0l X6TT (-0 X860 [z-01 X80 ¢-0IXLI'T (- OIXLET -0IXI68 (-0 X89¢ 61000 °od
01 X €TC -0 X IS99 ¢-0I X96'T ¢;-0I X160 ;-0 XTO'I TE00'0 g-01 XBT'T [;-01 X€9T o0l XL6'l ¢-0IX6TL ¢ O0IXEI'T 10d
=0T X 6€T ¢-01 X989 0l XEFT -0l XLET (-0l XEOL o-0IXLET ¢-01XBES ¢ 0 XIGE (-0l X8ET ,-01X99T -0 X691 TMIN
o1-01 X €F'S (Ol X L¥F'T o0l X650 g -0IXSET ;-0 XG6€ ¢-0I X106 ,-0I*X69T IT000 401 X €ST -0 X ITT (-0l X €T O
6-0T X9L0 ¢;-0T X9€T 01 XL8E ¢ -0l XI8E ¢ -0IX98T ,0IXI€T [;-0IX8SE g 0IXST9 o 0IX0Ey -0l *XSSE ,_0IXTTE 1O
=0 X LET 40l X IL0 (01 X IS°S 9L00°0 0@ X98°¢ 101 x9Sy ,_0I X9T+v 0l X1€8 -0l X€ST ,_0IX6ST - 0IXETY 30):
p—01 X9TT 0T X8E'T 70000 0T X LEE 70T X SES ;-0 X ST'E ¢ 0I XTET (-0 X8ET 10000 -0 X 6€¢€ -0 XITS [1o)'}
=01 X 86V ¢-0I X659 401 X¥8E -0l XTES 00l X89C ,-0IX6€0 1;-0IXLOE - OIX9LT - O0IX8CT ,-0IXsey ,_0IX¢€TT AL
11-0T X 1T8 (-0T X LTE -0 X9T'L 0T X0€F -0 X80'L 01 X808 [-0IX€ETS (- 0IX6ET ¢-0IX6TT (-0IX8EE (01 XI€T TIND
18910 sokegq
wopuey AN D 0ST =L 0S =L %09 =11 %07 =11 0S =W 0T=m =W
Sunepdn
JyStom
IQYISSB[O OISty srern Sunsoog oner Suriduweg [eI0UdD) S[ouIay aseq
(10yrsse[o d1seq WAS ‘Sunepdn JySom TZYW 001 = L ‘%0F = 7 °0¢ = W) TININ s1esere

586

sjoserep VSN ¢ UO SSUIIOS JUSIIIP I9YI0 pue TN Usamlaq sonfes d § d[qeL,

pringer

As

Autom Softw Eng (2016) 23:569-590 587

selecting samples from the original data. It is particularly conspicuous for the problem
of class-imbalance in the MC1, PC1 and PC2 dataset even after data cleaning. For these
datasets, it will be more likely that none of defective modules are selected in the initial
training set. When the boosting training set is initialized, step must be taken to ensure
that both of defective and non-defective modules are included in the initial training
set.

The analysis and conclusion presented in this paper are based upon the metrics
and defect data obtained from NASA projects. In spite of the generalization of our
empirical results, the same analysis for another software system may provide different
results, especially from a different application domain. However, the proposed MKEL
approach can be extended to any software system for high quality and less testing
effort. A software quality practitioner can utilize the process of developing a useful
defect predictor in the presence of the problem of class-imbalance or when there are
a large number of software metrics to work with.

7 Conclusion

Although multiple kernel learning has been shown effective in other domains, to the
best of our knowledge, we are the first attempt towards improving software prediction
performance by introducing multiple kernel learning technique. Aiming at the char-
acteristics of defect data, we specifically design a multiple kernel ensemble learning
(MKEL) classifier to predict defective modules. By using multiple kernel trick, it can
fully exploit the information of historical data to improve the predict power. During
the training course, we devise a new initialization strategy to make a balance between
defective and non-defective software modules, and we also use a new weight update
strategy which makes the defective software modules always to be focused on, so
MKEL provides an effective solution for software defect prediction.

As compared with several state-of-the-art representative software defect predic-
tion methods, the experiments on 12 NASA datasets show that the proposed MKEL
approach performs better under the same experimental environment, it significantly
improves the average F-measure values on all datasets. In addition, the initialization
and the weight update strategy we used during the training stage solve the class-
imbalance problem and decrease the cost of misclassification risk effectively, and they
also make the average F-measure values improved on all datasets compared with the
general strategies. All of these confirm that our MKEL approach can fully exploit
the characteristics of historical data and improve the predict performance, so it is an
effective solution for software defect prediction task.

References

Aljamaan, H.I., Elish, M.O.: An empirical study of bagging and boosting ensembles for identifying faulty
classes in object-oriented software. In: Proceedings of the IEEE Symposium on Computational Intel-
ligence and Data Mining, Nashville, TN, USA, pp. 187-194 (2009)

Amasaki, S., Takagi, Y., Mizuno, O., Kikuno, T.: A Bayesian belief network for assessing the likelihood of
fault content. In: International Symposium on Software Reliability Engineering, pp. 215-226 (2003)

@ Springer

588 Autom Softw Eng (2016) 23:569-590

Bennett, K.P.,, Momma, M., Embrechts, M.J.: MARK: a boosting algorithm for heterogeneous kernel models.
In: Proceedings of 8th ACM-SIGKDD International Conference on Knowledge Discovery and Data
Mining, Edmonton, Canada: ACM, pp. 24-31 (2002)

Bezerra, E. Miguel, Oliveiray, A.L.I., Adeodatoz, PJ.L.: Predicting software defects: a cost-sensitive
approach. International Conference Systems, Man, and Cybernetics, pp. 2515-2522 (2011)

Bi,J., Zhang, T., Bennett, K.P.: Column-generation boosting methods for mixture of kernels. In: Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Seattle, USA: ACM, pp. 521-526 (2004)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Syst. Appl. 36, 7346—
7354 (2009)

Damoulas, T., Girolami, M.A.: Probabilistic multi-class multi-kernel learning: on protein fold recognition
and remote homology detection. Bioinformatics 24(10), 1264-1270 (2008)

Dietterich, T.G.: Ensemble methods in machine learning. Mult. Classier Syst. 1857, 1-15 (2000)

Elish, K., Elish, M.: Predicting defect-prone software modules using support vector machines. J. Syst.
Softw. 81(5), 649-660 (2008)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55(1), 119-139 (1997)

Gao, K., Khoshgoftaar, T.M.: Software defect prediction for high-dimensional and class-imbalanced data.
SEKE, pp. 89-94 (2011)

Gao, K., Khoshgoftaar, T.M., Napolitano, A.: A hybrid approach to coping with high dimensionality and
class imbalance for software defect prediction. Mach. Learn. Appl. 2, 281-288 (2012)

GAonen, M., Alpaydin, E.: Localized multiple kernel learning. In: Proceedings of the 25th International
Conference on Machine Learning. Helsinki, Finland: ACM, pp. 352-359 (2008)

Gayatri, N., Nickolas, S., Reddy, A.V.: Feature selection using decision tree induction in class level metrics
dataset for software defect predictions. In: The World Congress on Engineering and Computer Science,
pp. 124-129 (2010)

Gehler, P.V., Nowozin, S.: On feature combination for multiclass object classification. IEEE Int. Conf.
Comput. Vis. 2, 221-228 (2009)

Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: The Misuse of the NASA metrics data program
data sets for automated software defect prediction. in EASE 2011. Durham (2011)

Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: Using the support vector machine as a classification
method for software defect prediction with static code metrics. Eng. Appl. Neural Netw. 43, 223-234
(2009)

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault prediction
performance in software engineering. Softw. Eng. 38(6), 1276-1304 (2011)

Halstead, M.H.: Elements of Software Science (Operating and Programming Systems Series). Elsevier
North-Holland, New York (1977)

He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263-1284
(2009)

Jing, X.Y., Ying, S., Zhang, Z.W., Wu, S.S., Liu, J.: Dictionary learning based software defect prediction. In:
Proceedings of the 36th International Conference on Software Engineering. Hyderabad, India: ACM,
pp. 414-423 (2014)

Kembhavi, A., Siddiquie, B., Miezianko, R.: Incremental multiple Kernel learning for object recognition.
Int. Conf. Comput. Vis. 2, 638-645 (2009)

Khoshgoftaar, M.T., Gao, K., Seliya, N.: Attribute selection and imbalanced data: problems in software
defect prediction. In: International Conference on Tools with Artificial Intelligence, pp. 137-144
(2010)

Khoshgoftaar, T.M., Seliya, N.: Software quality classification modeling using the SPRINT decision tree
algorithm. In: Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelli-
gence, Washington, DC, USA, pp. 365-374 (2002)

Khoshgoftaar, T.M., Seliya, N.: Tree-based software quality estimation models for fault prediction. IEEE
Symposium on Software Metrics, pp. 203-214 (2002)

Lewis, D.P., Jebara, T., Noble, W. S.: Nonstationary kernel combination. In: Proceedings of the 23rd Inter-
national Conference on Machine Learning. Pittsburgh, USA: ACM, pp. 553-560 (2006)

Luo, G.C., Ma, Y., Qin, K.: Asymmetric learning based on Kernel partial least squares for software defect
prediction. IEICE Trans. 95-D(7), 2006-2008 (2012)

@ Springer

Autom Softw Eng (2016) 23:569-590 589

Lyu, M.R.: Software reliability engineering: a roadmap. In: Proceedings of the 2007 Future of Software
Engineering (FOSE’07). Washington, DC, USA: IEEE Computer Society, pp. 153—-170 (2007)

Ma, Y., Luo, G.C., Chen, H.: Kernel based asymmetric learning for software defect prediction. IEICE Trans.
95-D(1), 215-226 (2012)

McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308-320 (1976)

Menzies, T., Greenwald, J., Frank, A.: Datamining static code attributes to learn defect predictors. IEEE
Trans. Softw. Eng. 33(1), 2-13 (2007)

Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect predictors. IEEE
Trans. Softw. Eng. 33(1), 2-13 (2007)

Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel based learning
algorithms. IEEE Trans. Neural Netw. 12(2), 181-201 (2001)

Nam, J., Pany, S.J., Kim, S.: Transfer defect learning. In: International Conference on Software Engineering,
pp- 382-391 (2013)

Ong, C.S., Smola, A.J., Williamson, R.C.: Learning the kernel with hyperkernels. J. Mach. Learn. Res. 6(7),
1043-1071 (2005)

Paikari, E., Richter, M.M., Ruhe, G.: Defect prediction using case-based reasoning: an attribute weighting
technique based upon sensitivity analysis in neural networks. Int. J. Softw. Eng. Knowl. Eng. 22(5),
747-768 (2012)

Rakotomamonjy, A., Bach, F., Canu, S.: More efficiency in multiple kernel learning. Int. Conf. Mach. Learn.
20(24), 775-782 (2007)

Ren, J., Qin, K., Ma, Y., Luo, G.: On software defect prediction using machine learning. J. Appl. Math.
2014(785435), 8 (2014)

Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33, 1-39 (2010)

Schoelkopf, B., Smola, A., MullerK, R.: Nonlinear component analysis as a kernel eigenvalue problem.
Neural Comput. 10(5), 1299-1319 (1998)

Scholkopf, B., Mika, S., Burges, C.J.C., Knirsch, P.,, Muller, K.R., Ratsch, G.: Input space versus feature
space in kernel-based methods. IEEE Trans. Neural Netw. 10(5), 1000-1017 (1999)

Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J.: Improving software-quality predictions with data sampling
and boosting. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(6), 1283-1294 (2009)

Seliya, N., Khoshgoftaar, T.M., Hulse, J.V.: Predicting faults in high assurance software. In: IEEE Interna-
tional High Assurance Systems Engineering Symposium, pp. 26-34 (2010)

Seliya, N., Khoshgoftaar, T.M.: The use of decision trees for cost-sensitive classification an empirical study
in software quality prediction. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(5), 448-459 (2011)

Shepperd, M., Song, Q.B., Sun, Z.B., Mair, C.: Data quality: some comments on the NASA software defect
data sets. IEEE Trans. Softw. Eng. 39(9), 1208-1215 (2013)

Sun, Y., Kamel, Mohamed S., Wong, Andrew K.C., Wang, Y.: Cost-sensitive boosting for classification of
imbalanced data. Pattern Recognit. 40(12), 3358-3378 (2007)

Sun, Z.B., Song, Q.B., Zhu, X.Y.: Using coding based ensemble learning to improve software defect
prediction. IEEE Trans. Syst. Man Cybern. Part C 42(6), 1806-1817 (2012)

Thwin, M.M.T., Quah, T.S.: Application of neural networks for software quality prediction using object-
oriented metrics. J. Syst. Softw. 76(2), 147-156 (2005)

Turhan, B., Bener, A.: Software Defect Prediction: Heuristics for Weighted Naive Bayes. In: International
Conference on Software and Data Technologies, pp. 244-249 (2007)

Turhan, B., Bener, A.: Analysis of naive bayes’ assumptions on software fault data: an empirical study.
Data Knowl. Eng. 68(2), 278-290 (2009)

Valentini, G., Masulli, F.: Ensembles of learning machines. Neural Netw. 3-20 (2002)

Wang, T., Li, W.H.: Naive Bayes software defect prediction model. International Conference on Computa-
tional Intelligence and Software Engineering, pp. 1-4 (2010)

Wang, J., Shen, B.J., Chen, Y.T.: Compressed C4.5 models for software defect prediction. International
Conference on Quality Software, pp. 13-16 (2012)

Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2),
434-443 (2013)

Xia, Hao, Hoi, Steven C.H.: MKBoost: a framework of multiple kernel boosting. IEEE Trans. Knowl. Data
Eng. 25(7), 1574-1586 (2013)

Xing, F., Guo, P, Lyu, M.R.: A novel method for early software quality prediction based on support
vector machine. In: Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering, Chicago, Illinois, USA, pp. 213-222 (2005)

@ Springer

590 Autom Softw Eng (2016) 23:569-590

Yambor, W.S., Draper, B.A., Beveridge, J.R.: Analyzing PCA-based face recognition algorithms: eigenvec-
tor selection and distance measures. In: Proceeding of the 2nd Workshop on Empirical Evaluation in
Computer Vision, Dublin, Ireland, pp.1-15 (2000)

Yan, Z., Chen, X.Y., Guo, P.: Software defect prediction using fuzzy support vector regression. Adv. Neural
Netw. 6064, 17-24 (2010)

Zheng, J.: Cost-sensitive boosting neural networks for software defect prediction. Expert Syst. Appl. 37(6),
45374543 (2010)

Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance
problem. IEEE Trans. Knowl. Data Eng. 18(1), 63-77 (2006)

Zien, A.,Ong, C.S.: Multiclass multiple kernel learning. In: Proceedings of the 24th International Conference
on Machine Learning. New York, USA: ACM, pp. 1191-1198 (2007)

@ Springer

	Multiple kernel ensemble learning for software defect prediction
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Related work
	3 Our approach
	3.1 Problem formulation
	3.2 Multiple kernel learning
	3.3 Multiple kernel ensemble learning

	4 Experimental setup
	4.1 Benchmark datasets
	4.2 Evaluation measures
	4.3 Experimental design

	5 Experimental results
	6 Threat to validity
	7 Conclusion
	References

