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Abstract Design space exploration (DSE) aims at searching through various mod-
els representing different design candidates to support activities like configuration
design of critical systems or automated maintenance of IT systems. In model-driven
engineering, DSE is applied to find instance models that are (i) reachable from an
initial model with a sequence of transformation rules and (ii) satisfy a set of struc-
tural and numerical constraints. Since exhaustive exploration of the design space is
infeasible for large models, the traversal is often guided by hints, derived by sys-
tem analysis, to prioritize the next states to traverse (selection criteria) and to avoid
searching unpromising states (cut-off criteria). In this paper, we define an exploration
approach where selection and cut-off criteria are defined using dependency analysis
and algebraic abstraction of transformation rules. Additionally, we apply different
state encoding techniques to identify recurring states and reduce the number of vis-
ited states. Finally, we illustrate our approach on a cloud infrastructure configuration
problem and provide detailed evaluation on both synthetic and real applications. This
evaluation includes (i) the comparison of several exploration techniques, (ii) perfor-
mance measurements on multiple state encoding techniques and (iii) comparing two
implementation architectures of our design space exploration framework.
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1 Introduction

Design space exploration (DSE) is a process to analyze several “functionally
equivalent” implementation alternatives, which meets all design constraints in order
to identify the most suitable design choice (solution) based on quality metrics such
as cost or dependability. Design space exploration often appears as a challenging
problem in application areas, such as dependable embedded systems (Mohanty et al.
2002; Ristau et al. 2008) and IT systemmanagement, wheremodel-driven engineering
(MDE) techniques are already popular. DSE can be performed either during the design
process to find optimal designs or during runtime to help dynamic reconfigurations.

In traditional DSE problems, the design constraints and quality metrics are numeric
attributes to express cost, time or memory limits etc. However, systems with modular
software and hardware architectures (like AUTOSAR AUTOSAR Consortium 2013
in the automotive domain or large reconfigurable architectures) introduced complex
structural constraints that express restrictions on the graph-based model of the system
under design. These constraints may include restrictions related to the communication
architecture or allocation of software and hardware resources. Furthermore, during the
design of dynamically changing systems (e.g. reconfiguration of virtual servers over
physical ones), the design space exploration also requires the dynamic creation and
deletion of elements.

ExistingDSE approaches usually applymodel checkingwith exhaustive state space
exploration (Baresi and Spoletini 2006; Schmidt and Varró 2003; Edelkamp et al.
2006) or solve finite domain constraint satisfaction problems (CSP) (Kang et al. 2010;
Boyapati et al. 2002). In both cases, the high-level system models are often mapped
to low-level formalisms that can be used as inputs for model checking tools or CSP
solvers. Exhaustive approaches are well suited to problems where most of the design
space is traversed to identify rare solutions and explores states are efficiently stored.
CSP solvers are capable of efficiently apply branch-and-bound or other numerical
techniques to solve high number of equations that share variables. However, neither
approach can effectively handle structural constraints and dynamic manipulation of
elements.

To better align generic exploration techniques with specific problems, designers
often provide additional information (hints) about the system (e.g. from earlier expe-
rience or by some analysis) that can reduce the design space to a more feasible
size (Mohanty et al. 2002). The design process is often complemented with differ-
ent design and analysis and verification tools, which can also provide (mathematically
well-founded) hints about the model in the early stages of development. These hints
may express additional system properties, which can be incorporated in the DSE
process to assist the evaluation of alternate solutions.

Guided model-driven design space exploration aims to explore alternative system
designs efficiently by making use of advanced model-driven techniques (e.g. incre-
mental model transformations) and hints (obtained by analysis tools or provided by the

123



Autom Softw Eng (2015) 22:399–436 401

Fig. 1 Inputs and outputs of guided DSE

designer). These hints are interpreted during the exploration to continue along promis-
ing search paths (using selection criteria) and to avoid the traversal of unpromising
designs (by cut-off criteria). Additionally, the use of incremental techniques leads to
exploration strategies that are able to find additional (alternative) solutions, which are
close to an earlier solution. Figure 1 illustrates the inputs (goals, constraints, opera-
tions, initial design, hints and guidance) and outputs (alternative designs as possible
solutions) of guided design space exploration.

In our paper, we propose amodel-driven framework for guided design space explo-
ration, where the system states are graphs, operations are defined as graph transfor-
mation rules, while goals and constraints are defined as graph patterns. We extend our
previous work onmodel-driven design space exploration (Horváth and Varró 2011) by
incorporating hints during the exploration strategy,which are derived fromdependency
analysis of transformation rules and algebraic analysis on the Petri net abstraction of
the system (Varró-Gyapay and Varró 2006). Cut-off and selection criteria are defined
based on these hints (Hegedüs et al. 2010), and their evaluation guides the design
space exploration by identifying dead end states and prioritizing possible operations,
respectively.

Major contributions of this paper with respect to our previous work (Horváth and
Varró 2011; Hegedüs et al. 2010, 2011b, a) are (1) the formal definitions of the con-
cepts of guided design space exploration, (ii) the new implementation architecture
of our model-driven framework based on the Eclipse Modeling Framework, (iii) a
comparison of state encoding techniques used in our framework and (iv) a detailed
evaluation of our framework with multiple scenarios using relevant case studies.

2 Overview of the approach

In our paper, we describe a novel framework that combines themodel-driven approach
of design space exploration (DSE) with guided exploration techniques building on
hints from analysis and guidance through cut-off and selection criteria. The schematic
overview of the framework for guided design space exploration is illustrated in Fig. 2.

First, the design problem description specifies the domain where the exploration
takes place to produce solutions. It includes: (1) the initial state of the system at
the start of the exploration, (2) the set of manipulation operations (called labeling or
exploration rules) defined on the system, (3) goals described as structural or numerical
constraints, which need to be satisfied by solution states found by the exploration, and
(4) global constraints, which are satisfied by the initial and solution states and all
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Fig. 2 Model-driven guided
design space exploration

intermediate states on the trajectory between them. The detailed discussion of the
problem description is found in Sect. 4

The design space exploration performs the search for solutions by exploring the
design (or state) space of the problem description. It starts from the initial state and
traverses reachable states by applying the operations on the system (see Sect. 3). In
order to find a solution quickly exploration is often aided by an exploration strategy
(detailed in Sect. 7). A simple strategy (as proposed in Horváth and Varró (2011))
may use random selection in a depth first search or statically assign priority levels
to operations. However, a more advanced strategy should also determine whether a
given state will never lead to a valid solution (i.e. it is a dead end) and states reachable
from it should not be traversed. In a guided approach, the exploration strategy relies
on guidance, which uses hints for driving the traversal and identifying dead ends.

Hints are information originating from the designer or (as in our paper) from some
automated analysis carried out using formal methods that often abstract the design
problem description. The result of the analysis can be information regarding the num-
ber of operation applications (called as an occurrence vector), partial ordering of
operations, restricting the set of required operations etc. These results are often gen-
erated before the exploration in a preprocessing phase. Our guided approach uses
occurrence vectors and dependency relations between rules as hints (see Sect. 5).

Finally, the guidance calculates and interprets hints and provides decision support
for the exploration strategy (see details in Sect. 6). In our approach, guidance is defined
as the evaluation of cut-off and selection criteria based on the current state and the
hints (as defined in Hegedüs et al. 2010). Cut-off criteria identify dead end states and
bound the exploration, while selection criteria prioritize available rules in a state by
their likelihood of leading to a final (solution) state.

2.1 Challenges of guided design space exploration

While existing model-driven frameworks (e.g. GROOVE Rensink 2004a) are able to
explore the design space of smaller problems by exhaustively traversing reachable
states and checking global constraints and goals in each state, they use no global
information when selecting the applied labeling rules. Our guided approach, however,
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takes advantage of hints and guidance that help the exploration and addresses the
following challenges:

– identify decisions in the exploration: the framework should clearly separate the
guidance from the exploration strategy to easily allow the modification of both
parts of the framework.

– soundly reduce traversed design space: the guidance should reduce the number of
traversed states before finding solutions, but it must ensure that no valid solutions
are removed by the cut-off criteria.

– provide optimal solutions: the guided framework should find the solutions that are
optimal (with respect to a user-defined metric). Moreover, the framework should
be able to continue exploration to find other (less optimal) solutions if necessary.

– extensibility: the approach should be easily applicable on different design problems
and the set of criteria should be extensible. This is a key feature for adapting the
framework to various domains.

3 Guided design space exploration

The guided design space exploration approach is based on a general search process,
which traverses the design space starting from the initial state. This general process
includes a step (Evaluate criteria), which relies on the guidance and hints provided by
system analysis to the different exploration strategies (identify decisions challenge).
The search process, depicted in Fig. 3, consists of the following steps:

1. Check operation applicability First, labeling rules (of the design problem descrip-
tion) are checked for executability (i.e. whether they can be executed in the current
state of the model) and this information is passed to the criteria evaluation.

2. Evaluate criteria The cut-off and selection criteria are evaluated using the hints
(the rule dependencies and the occurrence vector) and the results are stored.

3. Cut-off? If at least one of the cut-off criteria were satisfied during the evaluation,
or there are no applicable rules, the state is a dead end and the branch is cut.

4. Select ruleThe design space exploration then selects the next applicable rule based
on the evaluation results.

Fig. 3 Workflow of the guided design space exploration
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5. Apply rule The selected rule is applied to the model resulting in a newmodel state.
6. Check new state The global constraints and goals are checked on the new state to

decide whether it is an invalid or solution state.
(a) Is valid state? If any of the constraint are violated, the state is invalid and

the exploration continues from the previous state. Note, that a state is also
considered invalid if the exploration has visited it earlier, since in this case the
reachable states are already explored from this state.

(b) Is solution found? If all of the goals are satisfied, the state is a solution.
7. Save solution When a solution model is found, the trajectory (with the executed

rules and corresponding model state information) is saved to a solution list.
8. Continue search Once the new model state is checked, the next applicable rule is

selected from a valid new state, otherwise from the previous state.

Design space exploration terminates either once a predefined number of solutions
are found (or if the found solution is acceptable by other, user-defined metrics) or if
there are no applicable rules within the limited search space. Since a hint does not
always represent a feasible trajectory, the exploration is restarted with an alternative
vector if more solutions are required to be found.

4 Design problem description

4.1 Motivating example: cloud configuration

Today services are often built on top of a cloud middleware (CM) using compo-
nents as building blocks to be able to scale dynamically to meet demands. Servers
(S) and high-availability clusters (Cl) can be deployed on the cloud middleware,
while databases (DB) are installed on servers and applications (App) are executed
over databases. Finally, servers can also be deployed on clusters and storage (St)
subsystems can only operate over clustered servers.

In order to provide an appropriate infrastructure for clients, the configuration of
the cloud infrastructure must meet certain requirements (including complex structural
constraints), e.g. an application and a storage subsystem is required for a cloud-based
web service. Such an infrastructure is shown in Fig. 4.

To satisfy this constraint the cloud configuration has to be designed in an appropriate
way. We assume that regular change management commands (including deletion or
creation, e.g. deploying a newdatabase) are issued by somemiddleware service broker.
If the current infrastructure of the cloud detects that the required parameters cannot
be satisfied by the actual cloud configuration, reconfiguration operations are to be
initiated, which lead the system into a state where all constraints are met. To deal with

Fig. 4 An example system
providing reliable service
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Fig. 5 Metamodel and instance model of the cloud infrastructure

changes of requirements and possible commands, guided design space exploration is
used tofind command sequences that should be executed to create a valid configuration.

4.2 Initial state

States are represented as instance models that conform to a metamodel. This meta-
model describes the problem domain and the initial state defines where the design
space exploration starts from.

Definition 1 (Graph) A graph G = (N , E, src, trg) is a 4-tuple with a set N of
nodes, a set E of edges, a source and a target function src, trg : E → N .

Definition 2 (Type and instance graphs) A type graph TG is a graph. An instance
graph G is typed over TG by a typing morphism t ype : G → TG.

We assume that type inheritance is also allowed in type graphs, where a given type
can be a specialization of other types, while those types are generalizations of the
given type. We refer to type graphs as metamodels and to instance graphs as instance
models of a metamodel. We will use this simple structure for describing models, while
more complete and formal treatment of metamodeling can be found e.g. in Atkinson
and Kühne (2003), Kühne (2006), Varró and Pataricza (2003).

The left part of Fig. 5 shows the metamodel for the cloud case study. The meta-
model contains a cloud component Node designated graphically as a rectangle. The
specific components Socket, Server, Database, Application and Storage are spe-
cialized from this node, Socket is a generalization ofCloud MW andCluster . Edge
deployedOn is a relation that connects two different components denoting that the
source node is deployed on the target node of this relation. The right part of Fig. 5
illustrates an instance model containing a database d deployed on two servers s1, s2
that are on cloud c. Note that in the rest of the paper, we omit deployedOn (dOn)
relations by illustrating the relation using vertical arrangement of components.

4.3 Goals and global constraints

Goals and global constraints of the design problem description are defined as functions
evaluated over matches of graph patterns (Ehrig et al. 1999).

Graph patterns (query) represent conditions that have to be fulfilled by a part of
the model and are frequently considered as the atomic units of model transforma-
tions (Varró and Balogh 2007). A match of a graph pattern is a set of nodes in the
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Fig. 6 Example goal and global
constraint

instance model that satisfies all conditions defined by the graph pattern. Formally
defined as follows:

Definition 3 (Graph pattern) A graph pattern gp = (sc,∨ j∈J nac j ) consists of (i)
structural conditions sc prescribing the existence of type conformant nodes and edges
and (ii) negative application condition nac = ¬gp, defined by a negative subpattern,
prescribes conditions which are forbidden in a specific context of sc.

Definition 4 (Match) A match m for a graph pattern gp = (sc,∨ j∈J nac j ) in an
instance model G denoted bym : gp −→ G means that: (i) ∃m : sc �→ G there exists
an injective, type conformant total morphism m from the graph sc to the instance
model G, (ii) ∀ j ∈ J�m′ ⊇ m where m′ : gpnac j −→ G: there is no match for any
of its embedded NACs that extends the match of the pattern gp.

The left part of Fig. 6 shows a graph pattern describing a database (DB node)
deployed on two servers (S) that are both deployed on the same cluster (Cl ). The
example goal specifies using this pattern requires that a solution model includes at
least 5 databases deployed on clusters, while the right part shows a global constraint,
that allows maximum 100 servers deployed on clouds altogether.

The examples in Fig. 6 use very simple numeric bounds on the size of the match
set but for the purposes of DSE more complex functions may be used. We have
experimented with goals that evaluate interdependent and symmetric matches as well.
However, it is important to note that the computationally expensive part of con-
straint and goal evaluation is done by pattern matching that can work fully incre-
mentally (Bergmann et al. 2008). Additionally, graph patterns with embedded NACs
provide expression power equal to first-order logic (Rensink 2004b), while advanced
features (e.g. transitive closure Bergmann et al. 2012b, match counting and evaluation
of expressions) further increase the usability of the language.

4.4 Operations

The operations that define the possible elementary manipulations on the problem state
are represented by graph transformation (GT) rules (Ehrig et al. 1999).

Definition 5 (Graph transformation rule) A graph transformation rule is a pair
r = (pre, post), where pre is the precondition (or left-hand side—LHS) pattern
determining the applicability of the rule and post is the postcondition (or right-hand
side—RHS) pattern that specifies the result model declaratively.
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Fig. 7 Graph transformation rules

Definition 6 (Activation) An activation act (rule,m) of a transformation rule rule is
a match m of the precondition pattern pre of the rule.

The reconfiguration actions of the ongoing example are captured by a set of graph
transformation rules inFig. 7.Anoverviewonusinggraph transformations for software
architecture reconfigurations can be found in Baresi et al. (2006).

The addCM rule adds a new cloud CM , addS creates a new server S deploying
it on top of a CM or cluster Cl , however, a Cl cannot have more than two S deployed
on it. Rule addCl produces a new Cl deploying it on top of a CM , addDb adds a
new database DB deploying it on top of two S that have no other Node deployed on
them, addApp creates a new application App deploying it on top of twoDB that have
no other Node deployed on them. Finally, addSt adds a new storage St deploying
it on two S that are deployed on the same Cl and have no other Node deployed on
them.

It is important that the set of goals, constraints and rules are easily extensible by the
designer (extensibility challenge). The design problem description is not hard-coded
into the exploration and can bemodified using a high-level textual language (Varró and
Balogh 2007). Our framework also supports dynamic handling of goals, constraints
and rules, e.g. to generate solutions for different subsets of rules.

Executing an activation act (rule,m) alters themodel by replacing the pattern defined
by LHS with the pattern of the RHS of the transformation rule rule (illustrated in
Fig. 8). This is performed by (1) taking the match m of the LHS in the model (2)
checking the negative application conditions, (3) removing a part of the model that
can be mapped to the LHS but not the RHS yielding an intermediate graph and (4)
adding new elements to the intermediate graph, which exist in the RHS but not in LHS
or updating existing elements, yielding the derived graph.

Definition 7 (Exploration step) An exploration step G
act
⇒ G ′ is the execution of the

activation act on the instance model G resulting in the modified model G ′.
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Fig. 8 A part of a design space

4.5 Design space exploration

The design space traversed by the guided exploration approach is represented by a
graph transition system (Rensink 2003) containing the states, which are reachable
from the initial state by executing the operations.

Definition 8 (Exploration sequence) An exploration sequence G0
act1
⇒ G1

act2
⇒
G2 
⇒ . . . is a sequence of exploration steps (executing an activation of a given
transformation rule).

An exploration sequence starting from G and yielding G ′ is denoted shortly by
G

∗
⇒ G ′, where ∗ denotes that one or more exploration steps may belong to the
sequence.

Definition 9 (Design space exploration problem) The design space exploration prob-
lem is a 4-tuple DSE = (G0, Op,Goal,Cons), where G0 is the initial state, Op is
the set of possible operations, Goal is the set of goals, Cons is the set of global
constraints.

Definition 10 (Solutions of design space exploration) The solutions of DSE is a pair
Sol = (DSE, ES), where ES is a set of exploration sequences and for each sequence
G0

∗
⇒ Gi ∈ ES, the final state Gi contains matches of the patterns in Goal, each
state in the sequence is reached by exploration steps from Op and does containmatches
of any pattern in Cons.

The solutions are found by constructing the possible execution sequences starting
from the initial state of the DSE problem.
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Definition 11 (Design space) A design space of a DSE problem is a graph DS =
(Nim, Ees, src, trg,Gcurr ), where the nodes Gi ∈ Nim are instance models, edges

are exploration steps G j
act
⇒ Gk ∈ Ees and the source and target of an edge are the

instance models before and after the execution of the step. The exploration starts from
the initial state G0 of DSE and the exploration steps use only operations from Op in
DSE . Finally, Gcurr ∈ Nim is the current state of the design space which is also the
target of the last exploration step.

A path in the design space is an exploration sequence also called a trajectory
between two states. A state Gi is reachable from G0 iff there is a trajectory in DS
from G0 to Gi .

In Fig. 8 an extract of the design space of the running example is shown. On the
left, the root of the design space is the start graph G0 where the system configuration
contains a CM , three S , and one DB components. Operations addS , addCl , and
addCM are applicable to G0, here we follow the execution of addS and addCl .

5 Hints

The design space exploration framework uses exploration sequences to reach solution
states. In order to guide the exploration efficiently, both the amount and order of
operation executions are useful hints.

5.1 Graph transformation rule dependency

Given the precondition-postcondition nature of GT rules used as operations, it is
possible to derive which rules might be affected by the execution of a given operation.
For example, executing an activation of GT rule r can alter the model in a way that
other rules, which were disabled before, become enabled (or the other way around),
thus the application of these rules depend on the application of r. The dependencies
between rules are independent of the instancemodels, and can be derived from the rule
definitions. This analysis can be carried out using various techniques, such as critical
pair analysis (Heckel et al. 2002) or conditional transformation-based dependency
analysis (Mens et al. 2006), and results in a matrix of dependencies between rules.

Definition 12 (Dependency graph) A dependency graph for a DSE problem is a
graph Dep = (Nop, Esd , src, trg), where the nodes Nop are the possible operations
Op of DSE and the edges Esd denote sequential dependency (i.e. for an edge e
the application of the source operation (src(e)) may affect the activations of target
operation trg(e)).

The result of the analysis is used to create a dependency graph (Dep, illustrated in
Fig. 9). Note that there may be arcs in both directions between two rules. As illustrated
on Fig. 9, rule addS depends on rules addCM, addCl , while rules addSt, addDB
depend on addS (the sets are represented by � raddS and raddS �, respectively).
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Fig. 9 Dependency graph
example

5.2 Transformation rule occurrence vector

We use a Petri net abstraction technique introduced for GTS in Varró et al. (2006),
which provides hints that estimate how many times each rule is applied in order to
reach a given state.

Definition 13 (Occurrence vector) A candidate occurrence vector σ is a solution of
the analysis of the Petri net abstraction, where σ (i) is the number of times that rule ri
is applied during the execution.

During the design space exploration, the number of times rule ri has been applied
in a given path is stored in the application vector (va) as va(i).

Definition 14 (Compliant exploration sequence) An exploration sequence of the
design space exploration is compliant with σ if va ≤ σ (the number of applications
is less than or equal to σ (i) for each rule ri ).

Throughout the paper we use the difference σ(i)− va(i) as the remaining applica-
tion number #i of rule ri . This number is stored as an attribute for nodes in Dep (see
Fig. 9) together with the state of ri that is either enabled or disabled in a given state.

Note that in some design problems, the occurrence vectors provided by the analysis
could be used as the least amount of executed rules instead of maximum. In such cases,
the guidance would be able to efficiently reach states where those rules are executed
in the predefined number of times. Naturally, it is possible to prepare design problems
where such guidance is not entirely beneficial (e.g. there are rules that are not part of
the occurrence vector but have to be executed earlier than those that are part of the
vector). In our paper, we use occurrence vectors as upper limit of execution on the
rules and instead apply alternative occurrence vectors when no solution is found for a
given one.

5.3 Using dependency graphs in design space exploration

The model state and the dependency graph are tightly connected for a given initial
graph and occurrence vector. Figure 10 illustrates how the application of a GT rule
affects the current state and the remaining application number. First, the current state is
depicted as the model M (representing the current cloud configuration) and remaining
application number and state of each node in the dependency graph Dep (in short, the
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Fig. 10 Executing an operation and its effects on the dependency graph

current dependency graph). The color of the nodes (e.g. naddS) of Dep represents the
state of the corresponding GT rules (raddS), green (dark) background for enabled, grey
(light) for disabled. The number near each node is the remaining application number
(e.g. #addS = 3).

In the course of design space exploration, the next GT rule, which is applied (raddS
in the example) is selected from the set of enabled rules. The application has the
following effects on the models: (a) model M changes according to the rule definition
(here, a new server S is added to cloudCM), the newmodel is illustrated as M ′ (b) the
#addS ismodified to represent that the rule is applied (it decreases from 3 to 2) (c) Dep
is also changed to Dep′, as #addS decreased and the applicability of GT rules may
change (here raddDB becomes enabled). The design space exploration then continues
from M ′ by selecting a rule based on the dependency graph Dep′.

Note that both the Petri net abstraction and the dependency analysis of rules are
techniques more tailored for design problems with dynamic creation and deletion of
elements. While they can be applied in special problems where a graph-based model
is used but the operations do not create or delete elements, they may be less efficient
in guiding the exploration.

6 Guidance

6.1 Overview of cut-off and selection criteria

Cut-off and selection criteria are used as guidance to decide in which order the states of
the design space are explored. We define formal criteria over the current dependency
graph, which are evaluated to support decisions:

Definition 15 (Cut-off criteria) A cut-off criterion is a function cut : (DS, Dep) �→
bool, where DS is the design space and Dep is the current dependency graph, which
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returns true if further exploration from the current state Gcurr of DS cannot lead to a
goal state with a compliant trajectory.

When a cut-off criterion returns true, the exploration continues from another state
instead of executing an operation in the current state.

Definition 16 (Selection criteria) A selection criterion is a function sel : (DS, Dep)
�→ Op, where DS is the design space and Dep is the current dependency graph, which
returns an ordered list of operations that have activations in the current state Gcurr of
DS.

A given rule ri is placed before an other rule r j , if the execution of ri is more
promising, based on Dep and the current state, than the execution of r j .

6.2 Criteria for guided design space exploration

We used the following cut-off and selection criteria (Hegedüs et al. 2010), which are
meaningful when dealing with guided DSE.

– Non-compliant path (Look-ahead) cut-off criterion If the application of any GT
rule would make the current execution path non-compliant with the occurrence
vector, it can be cut.

– Permanently disabled rule cut-off criterion The current path can be cut if there is
a disabled rule, which still has to be applied based on the occurrence vector, but
rules that may enable it will not be applied.

– Independent rule application selection criterion Applicable rules with no forward
dependency should be applied as early as possible to reduce the number of different
applicable operations later in the trajectory.

– Maximal forward-dependant application path selection criterion Among the
applicable rules at any given state of the exploration, the rule that affects more
applications should be applied earlier in the trajectory.

The criteria defined over the dependency graph are evaluated at every state using
an algorithm described in Hegedüs et al. (2010) (interpret hints challenge). The main
steps of the algorithm are: (1) a starting point is selected from the criterion, (2) the
list of nodes satisfying the starting point are created, (3) the operations of the criterion
are applied on each node and (4) the result is assembled as a boolean value (cut-off
criteria) or an ordered list of rules (selection criteria).

7 Exploration strategy

Guided exploration strategies can be categorized by the used hints and guidance. We
specified two guided strategies (see Fig. 11), the first uses occurrence vectors only as
hints (occurrence), while the other uses rule dependency as well (full guidance).
Note that the full guidance strategy uses rule priorities only if two labeling rules were
evaluated as equal by the guidance. These strategies are compared to the fixed priority
depth-first search strategy.
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Fig. 11 Comparison of exploration strategies by used hints

Figure 12 illustrates the design space exploration for these techniques on a simple
example. The circles denote the traversed states which are numbered according to the
traversal order, while the applicable rules are listed beside them. Downward arrows
illustrate rule applications, while upward (and dotted) arrows represent backtracking
from invalid or cut-off states. The same rule can be applied multiple times at a given
state if more than one applicable match is found in the graph (see state 2 on the right
side). The termination of the exploration is done based on the evaluation of found
solutions. In a very simple case, we terminate if the path leading to the last found
solution contains a total number of rule applications equal to a problem-specific limit
(i.e. it is the shortest trajectory to a solution model).

Note that many other, more complex termination techniques are possible, for exam-
ple by extending labeling rules with costs and terminating when solutions identified
by a total cost less then a predefined limit are found (Varró-Gyapay and Varró 2006).
Additionally, in DSE it is often required to provide multiple solutions and apply an
evaluation on the quality of these afterwards. This evaluation may define quantitative
goals instead of simple boolean function, e.g. in the case study it would be possible to
count the number of components, evaluate possible redundancy structures or optimize
resource usage (if such information is added to the model). Finally, similar evaluation
is done in flexible CSPM (Horváth and Varró 2011), where hard and soft goals are
defined and solutions have to (i) satisfy all hard goals and (ii) their quality is calcu-
lated as a linear function on the weight of the fulfilled soft goals (similarly to weighted
CSP).

Comparison of exploration strategies In the case of the fixed priority strategy, the
next applied operation is the one with the highest priority among the applicable ones.
In the example, first r1 is applied then r2. From state 2, first r1 is applied leading to
state 3 without applicable rules. After backtracking, r3 is applied instead. Note that
after this point all reachable states from state 2 and state 1 are explored before trying
r2 in state 0 (which finally leads to an optimal solution). Moreover, as the depth-first
technique is used in the fixed priority exploration strategy, the first solution found by
that strategy is often several times longer than the optimal, suboptimal solutions are
used as depth limits to force the exploration to find shorter solutions.

The occurrence strategy applies operations based on the occurrence vector provided
by the system analysis. The example in Fig. 12 shows that r2 should be applied twice
and r3 once. Therefore, r1 is not applied in state 0 or 2 (highlighted) in order to be
compliant with the occurrence vector. In states 3 and 4, the exploration backtracks (as
no more rule applications are allowed by the vector) and then continues to find the
solution in state 6.
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Fig. 12 Comparison of exploration strategies

The full guidance exploration strategy (illustrated in the right side of Fig. 12) takes
the dependency relations between rules into account in addition to the occurrence
vector. Therefore, in state 1 (highlighted) it selects r3 for the next application. Rule r2
is applicable on two matches in state 2, the first leading to a dead-end state, while the
second application leads to a solution in state 4. Note that the selection in state 1 leads
to a reduced traversed design space compared to the occurrence exploration strategy
(reduce traversed design space challenge).

8 Implementation details

We implemented the first version of our model-driven framework for guided design
space exploration on top of the Viatra2 model transformation framework (Hegedüs
et al. 2011b). In this paper we present a new implementation architecture that builds
on the Eclipse Modeling Framework (EMF) (Sect. 8.1). We also discuss the challenge
of identifying recurring states during the exploration using state encoding techniques
(Sect. 8.2).

8.1 EMF-based impementation

The Eclipse Modeling Framework The Eclipse Project (2012a) has become a de facto
standard modeling representation in the Eclipse ecosystem. EMF provides metamod-
eling capabilities and handles instance models, however it does not include model
transformation and model query support that are required for design space explo-
ration. In the following we describe the technologies that were integrated to provide
guided design space exploration over EMF models (Fig. 13).
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Fig. 13 Overview of the EMF-based guided DSE framework

Metamodels and instance models The metamodel of a domain is created using the
Ecore metametamodel which defines the concept of EClasses (types) and ERefer-
ences (relations). Based on the metamodel, EMF uses a generative approach to pro-
vide capabilities to create, manipulate, store and load instance models for the defined
metamodel.

Model queries for goals and global constraints There are several tools available for
querying EMF instance models, including EMF-Query2 The Eclipse Project (2012b),
EMF Search The Eclipse Project (2012c) and Eclipse-OCL The Eclipse Project
(2012d).We chooseEMF-IncQuery (Bergmann et al. 2012a),which is an incremental
query evaluation framework that uses the pattern matching technology (RETE net-
work) of Viatra2 over EMFmodels. Incremental evaluation is important for the DSE
framework for efficiency including evaluating goals, global constraints, and operation
preconditions in each state.

Operations We define operations using EMF-IncQuery model query definitions as
preconditions and simple Java code for model manipulation that is parameterized by
the match of the precondition query.

ForDSE,weneed to efficientlymanage the possible activations in an instancemodel
of an arbitrary set of operations that havemodel queries as preconditions and to provide
a common way for executing an operation with a selected activation. EMF-IncQuery
includes an event-driven rule engine (where events are the incremental changes in
query results) which supports the execution scenarios including the manual selection
and execution of activations required for DSE.

Backtracking and exploration The EMF transaction framework supports the exe-
cution of complex commands that are composed of a series of primitives (such as
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create, add, remove, set) and are undoable or redoable as required. The transaction
handling is used by creating composite commands for each operation execution. These
commands can be undone when the exploration backtracks.

Dependency graph and criteria evaluation The representation of the dependency
graph uses EMF and was developed to be independent from the representation of
instance models. The criteria definitions and the criteria evaluation algorithm (guid-
ance) are implemented in Java as separate components, and are connected to the
guided design space exploration strategy . Therefore, it can be used with the EMF-
based DSE implementation. However, we do not have an automated way of inspecting
the simple Java code to perform the abstraction from transformation rules to Petri
Nets. Note that the precondition queries can be evaluated automatically as the query
language of EMF-IncQuery is declarative and query specifications can be processed
as models. We used the industry leading IBMCPLEX 1 optimization tool, which sup-
ports the calculation of alternate solutions (occurrence vectors used for initializing the
dependency graph). The edges of Dep are computed from the transformation rules
using the Condor 2 dependency analyzer tool.

8.2 State encoding techniques

The exploration may encounter the same model state on different trajectories and has
to identify such states in order to avoid the re-exploration of states reachable from that
state (see Step 6.a in Sect. 3). In the graph transition system illustrated in Fig. 8 several
states are reached through different trajectories, for example by adding a server or a
cluster on the same middleware in different order.

8.2.1 Identifying recurring states

Recurring states can be identified by iterating through each already visited state in
the search space and comparing the current state to them. However, there are multiple
reasons that make this approach infeasible:

– The exploration is performed over a single instance model and (a) it would have to
be copied in each explored state for comparison (infeasible formemory limitations)
or (b) each comparison would require the re-exploration of each explored state
(infeasible for runtime limitations).

– Model comparison itself as a single operation is also challenging and often slow.
– The complete search space does not fit into available memory, therefore fully
explored parts of the search space are deleted to free up memory for the part that
is explored currently.

Due to these limitations, we need to represent the current state of the exploration in
a concise way that can be stored and efficiently compared to previously stored states.

1 http://www.ibm.com/software/integration/optimization/cplex-optimizer/
2 http://roots.iai.uni-bonn.de/research/condor/
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The concise representation of the current state is called state encoding, while the result
for a given state is called the state code.

In the following we describe the challenges in state encoding and present possible
techniques that can be used for DSE.

8.2.2 Challenges of state encoding

There are a number of challenges related to the specification of state encodingmethods:

– Deterministic: applying the encoding to the same state must always result in the
same state code.

– Under-approximating: if two different states have the same state code, then each
solution reachable from one state is reachable from the other as well.

– Fast: the time to calculate the state code for a given state and check whether it
was already explored should not be orders of magnitude slower than one iteration
of the search process (see Sect. 3).

– Minimal: state codes should not contain redundant information or data that is
common in all state codes. This is important as the DSE framework has to store a
large number of state codes.

8.2.3 Comparison of state encoding techniques

We developed several different state encoding techniques for the DSE framework,
which are compared in Fig. 14.

The state encoding techniques are classified along the following aspects:

– Metamodel dependent state encoding techniques (Op, OpIncr, Mod and Mod-
Full ) are customized for encoding instance models of a given metamodel, while
the remaining techniques (Ind and IndIncr ) can be applied on an arbitrary meta-
model. While the former techniques can take advantage of the specific structure
of the metamodel and provide faster computation or smaller state codes, the latter
are reusable in the framework for any design problem description.

– The information that identifies a state can be the operations that were executed to
reach the encoded state (Op andOpIncr ) or the instance model in the current state
(Mod, ModFull, Ind, IndIncr ). Techniques that use the operations calculate state
codes by evaluating the current trajectory from the initial state and can identify
equivalent trajectories. When the instance model is used for encoding, the state

Fig. 14 Comparison of state encoding techniques
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Fig. 15 State encoding example

code usually includes information on each element in the model and the relations
between them.

– Since the execution or backtracking of applying an operation involves model
manipulations that change only a small part of the model (or the trajectory), it
is possible to create incremental state encoding techniques that update the state
code of the previous state based on the change (OpIncr and IndIncr ). The other
techniques perform the encoding without prior knowledge of the previous state,
state code or the last change and calculate the state code only from the current
state (Op, Mod, ModFull and Ind ).

– Finally, some techniques are only partially precise (Op, OpIncr andMod ), which
means that they can associate the same state code to states that are significantly
different and depending on the design problem description, they may violate the
under-approximating challenge of state encoding. On the contrary, there are tech-
niques that are fully precise (ModFull, Ind and IndIncr ) and will ensure that two
states will only have equal state codes if the states themselves are also equal.

Figure 15 illustrates the state codes calculated by the different state encoding tech-
niques we listed in Fig. 14. The two instance models on each side contain two mid-
dleware and two cluster nodes, but on the left the clusters are on different middleware
nodes, while on the right they are on the same one. Techniques that are only partially
precise associate the same state code for the two instance models.

Operation-based encoding Techniques Op and OpIncr take the execution of opera-
tions in the trajectory and encode them in a sorted list. Thismeans that if two trajectories
include the same operations in different order, then the two states have the same state
code. The state code also includes the activation of each operation as well. However,
if the specific elements in the activation are used, then equal states will get different
state codes, since a cluster node created by one application of the addCl operation
will be different from the one created by another application of the same operation.
On the contrary, if only the types of nodes are used, then the encoding will only be
partially precise, as illustrated by Fig. 15.

Partially precise model encoding The partially precise technique Mod uses the
instance model for encoding. It stores the type of each element and the type of the
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elements that are targets of deployedOn relations to the given element. For example,
the instance models in Fig. 15 contain two cluster nodes deployed on middleware
nodes, which is encoded as Cl(CM;CM). Furthermore, the middleware nodes are
not deployed on any nodes, which is encoded as CM(0; 0). Note that the state code
of both instance models is the same although they are clearly different. That is why
we specify the fully precise state encoding technique ModFull .

Fully precise model encoding The ModFull technique extends Mod by identifying
that storing the deployedOn relations only in one direction leads to partially precise
encoding. To ensure that instancemodels with the same state code are truly structurally
the same, state codes calculated by ModFull include the inverse of deployedOn
relation as well. This means that for each element, the state code will include the types
of elements that are deployed on the given element. Therefore, the state code for the
instance model on the left side of Fig. 15 will include CM(0−Cl; 0−Cl), while the
same part for the right side will contain CM(0 − ClCl; 0 − 0).

Metamodel independent encoding Finally, all the above techniques were customized
for the metamodel of the cloud case study, but we can also define techniques that
calculate state codes for instance models of arbitrary metamodels, as long as the
metamodels themselves are also available at the time of the encoding. The technique
Ind calculates the state code of an instance model by taking each element and finding
their type in the provided metamodel. Then the possible relations for the given type
and their inverses are encoded similarly toModFull . Instead of iterating through each
element every time the state encoding is performed, the incremental technique IndIncr
stores the partial state codes corresponding to the elements in the instance model and
updates these stored values based on the model changes related to the execution or
backtracking of an operation. This incremental approach can add a bit of overhead for
handling model changes but also means that calculating the state code takes less time.

9 Evaluation of the approach

We evaluate our model-driven framework for guided design space exploration in four
different measurement scenarios. Apart from synthetic benchmarks (1,3-4), we also
evaluate a real application of guided DSE (2).

1. First, we demonstrate that the full guidance strategy can be more efficient than the
other strategies (namely, fixed priority and occurrence, which we used for previous
measurements in Horváth and Varró (2011)) as it traverses considerably fewer
states and does not introduce significant overhead, thus provides better runtime in
most test sets than the other approaches.

2. Next, we evaluate a different kind of guided exploration that uses local violations
of structural constraints to generate quick fixes for domain-specific modeling lan-
guages and demonstrate that the added information makes the approach feasible
in a live modeling scenario, unlike exploration without guidance.
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3. We compare the different state encoding techniques on the cloud case study and
demonstrate that by identifying equivalent states they allow the exploration to scale
to larger design spaces.

4. Finally, we show our initial results with an EMF-based implementation of our
framework and compare it to the existing Viatra2-based framework.

In each scenario, we introduce the test sets used in the evaluation and the environ-
ment and method used for the measurement, then we evaluate the results. The reader
is directed to Horváth and Varró (2011) for comparison of (the previous version of)
the DSE framework with other tools (e.g. SICStus Prolog CLP(FD), KORAT and
GROOVE).

9.1 Scenario 1: dependency graph guided exploration

9.1.1 Test sets used in the evaluation

For evaluation, we used the cloud case study presented in Sect. 4.1 and a service
configuration case study (presented in Varró-Gyapay and Varró (2006)). These cases
are relevant in the context of model-driven DSE as they represent both design time and
runtime exploration problems, respectively, and it allows comparison with previous
results (Varró-Gyapay and Varró 2006; Horváth and Varró 2011)

Both case studies included multiple test sets (see Fig. 16). PowerOn test sets deal
with empty initial models, while Reconfigure test sets deal with existing models
which must be modified to satisfy goals. In the cloud test sets, the goals describe
the number of required components (e.g. 2 applications and 2 storage in PowerOn
Small ). Furthermore, global constraints are raised to give some limit to the priority
based strategy (e.g. a cloud middleware should have at most 100 nodes installed).
Finally, theClustered Database test set requires databases to be deployed on clusters
(see Fig. 6).

In the service configuration test sets, the models represent a set of services that are
reconfigured runtime (e.g. removing faulty or starting new instances) to meet some
QoS requirements. The constraints in these test sets define the maximum number of
services, while goals describe the number of active services and that faulty services
are removed.

The size of the models are given after the name of the problem, in the cloud test
sets the required applications and storage subsystems, while in the service test sets
the maximum number of services, faulty and active services in the initial model and
active services in solutions.

9.1.2 Evaluation environment and method

The evaluation was carried out 5 times for each test set and strategy in the following
way3: (1) the initial model is loaded into Viatra2, (2) the goals, constraints and

3 For measurements we used a computer with Intel Centrino Duo 1.66 GHz, 1.5 GB memory (Java heap
size), Windows 7 Professional 32 bit, Eclipse 3.6.1, Viatra2 3.2
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Fig. 16 Results for exploration until optimal solution († denote test sets where exploration did not terminate
in all tests)

operations are added to the framework, (3) the exploration component is initialized and
runtime measurement is started (using wall time with OS-level nanotime precision).
Next, (4) the design space exploration framework looks for an optimal solution. Finally,
(5) the runtime measurement is stopped and the results are saved. The exploration is
limited to 1 million visited states.

9.1.3 Evaluation of results

The table in Fig. 16 shows the results of measurements using the case study models.
For each test set, we measured the average length of the shortest discovered solution
trajectory (the number of applied rules), the average number of visited states during
the design space exploration and the average runtime of the exploration.

We made the following observations based on the results from the different cases:

Find optimal solution We observed that the usage of occurrence vectors as hints in the
exploration ensures that the first solution found by such strategies is optimal as well
(optimal solutions challenge). In our observations, the fixed priority strategy, finds
longer solutions first and traverses a large number of states even in case 4 (which is
the smallest), before finding an optimal solution.

Low overhead of criteria evaluation The evaluation of cut-off and selection criteria
is performed at every new traversed state, and it might (in principle) slow down the
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Fig. 17 Reduction in visited states by the full guidance strategy

exploration considerably. However, our observation is that criteria evaluation has very
low overhead (less than 5% of the overall runtime). The full guidance strategy requires
some initial bookkeeping (building dependency graph and initializing criteria), but
afterwards, it traverses 1,000 states in roughly 600ms (similarly to the other strategies).

Rule dependency increases efficiency In all test sets, the full guidance strategy tra-
verses significantly fewer states than the occurrence strategy. Note that the only
test set when the fixed priority strategy traverses less states is test set 6, where the
occurrence vector is recalculated at least 20 times before finding a feasible solution.

It is important to note that in these test sets, the full guidance approach outperforms
the occurrence strategy by identifying infeasible occurrence vectors with less explo-
ration. Figure 17 illustrates how the number of traversed states for these two strategies
when exploring infeasible occurrence vectors in test set 5. The graph clearly shows
that the full guidance strategy explores half of the states in average that the occurrence
does. Note that in test set 2, the occurrence strategy did not find a solution inside the
limit in some instances.

To sum up the results of the evaluation, we observed that:

– The combined use of occurrence vectors and rule dependency for cut-off and
selection criteria based guidance outperforms our previously published strate-
gies (Horváth and Varró 2011). The full guidance strategy finishes in less time
than (1) the occurrence strategy in all 6 test sets (with at least 25%) and (2) the
fixed priority strategy in 5 out of 6 test sets (with at least 60%).

– The added computation required for criteria evaluation increase runtime only by
5% in average.

– The under-approximation of the occurrence vector based analysis ensures that
guided exploration strategies always find optimal solutions first.

9.1.4 Limitations

Our guided DSE relies on the quality of the hints provided for the design problems.
Thismay be a limitation in the following cases: (1) if the occurrence vector is infeasible
and it includes a large number of rule applications (similarly to test set 6) and (2) if
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the dependency graph (Dep) is close to a complete directed graph, the guidance of
the cut-off and selection criteria is less effective. Finally, a large Dep (in case of large
set of operations) may increase the overhead of criteria evaluation.

9.2 Scenario 2: quick fix generation for domain-specific modeling languages

9.2.1 Test sets used for the evaluation

We defined the generation of quick fixes that correct inconsistencies in domain spe-
cific models as a design space exploration problem in a previous paper Hegedüs et
al. (2011a). In this scenario, the initial state of the exploration is an instance model
containing a number of inconsistencies. The operations are elementary model manip-
ulations that preserve syntactic correctness (by e.g. syntax-driven editing). The goal
of the exploration is to eliminate the inconsistencies corresponding to a given model
element e without introducing additional inconsistencies into the model.

We use the Business Process Model And Notation (BPMN Object Management
Group 2013) as an illustrative case study. BPMN is a well-known and widely used
standard, flowchart-like notation system for specifying business processes. We eval-
uate the approach on two real BPMN projects, obtained from an industrial partner
from the banking sector. One project is a corporate customer registering workflow,
composed of five processes and approximately 250 model activities in total. The other
project is a corporate procurement workflow, composed of three processes and around
70 model activities.

In Hegedüs et al. (2011a) we presented a guided exploration strategy that uses the
inconsistencies in the model as hints for the selection criteria. In each iteration of the
search process, each model element included in the inconsistencies that also include
the selected model element e are collected into a set V . Then the possible activations
of the operations are collected and only those activations that include an element in V
are selected. Between those activations, we use simple priorities for each operation.
Since the execution of the operation modifies the model, the set V may change.

To demonstrate that this guidance increases the efficiency of the exploration, we
use a breadth-first search exploration strategy that only uses priorities and imitates a
fixed quick fix strategy encoded into a development environment. We show that the
guided strategy finds possible quick fixes in less time and thus makes our approach
applicable as an assistance for model editing.

9.2.2 Evaluation environment and method

The evaluation was carried out by adding inconsistencies to each process and running
the quick fix generation approach independently. We performed measurements4 five
times for each test set including different total and local number of inconsistencies in
the model.

4 All measurements were carried out on a computer with Intel Core i5 2.3 GHz processor, 2.5 GB DDR3
memory (Java heap space), Windows 8 Professional 64 bit, Eclipse 3.8, BPMN 1.2, Viatra2 3.3
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Fig. 18 Quick fix generation for DSMLs (N/E/S/P: no. of nodes/edges/subprocesses/ pools, |V(M)|:
total number of violations, |Ve(M)|: no. of violations for selected element, T : time [ms], DT : standard
deviation of time, S: no. of visited states, DS : standard deviation of visited states)

The measurement of a given test set was done as follows: the inconsistent BPMN
model is loaded intoViatra2, the inconsistency rules and operations are added to the
framework, the DSE framework is initialized and time measurement is started. Next,
the exploration looks for three different solutions and gathers them in a list, once it is
done the timemeasurement is stopped. Finally, the results are saved and the framework
is disposed to return the environment to the initial state. We limited the measurement
to 300,000 states for test sets with one local inconsistency and 1,000,000 states for
other test sets.

9.2.3 Evaluation of results

The table in Fig. 18 shows the results of ourmeasurements using the case studymodels
(with the size of the models given under their name). For each model we measured
the performance for the given number of total and local inconsistencies. For each test
set, we measured the number of visited states and the time of quick fix generation
for both the guided and BFS exploration strategies. Finally, measurement results are
given with the mean values along with deviations.

Wemade the following observations based on the results from the different models:

One local violation (#1 − 2, 5 − 10, 13 − 16) In these test sets the guided strategy
generated quick fixes in less than 2.2 s in all test sets except #14, where finding three
different solutions takes 19 s. However, the BFS strategy performs at least one order
of magnitude slower in most test sets. In test set #10 the exploration takes more than
100 s, while in test set #14 it is unable to find three solutions within the measurement
limits.
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Locality (#5, 12, 14, 15) The higher number of local violations for the selected ele-
ment leads to slower fix generation, while the total number of violations in the model
does not affect the performance significantly. For example, finding three solutions for
test set #3 takes more than one minute and the exploration of more than 50,000 states
with the guided strategy, while in test set #12 the exploration takes more than 12 min.
However, we found that even with complex DSMLs such as BPMN visiting one state
only takes between 2 and 4ms, independently of the number of states explored before
(at least in the scope of the measurements this held).

Model size (#3, 10 − 12, 14) The guided strategy is less sensitive to the size of the
instance model than the BFS strategy. This is a direct consequence of our guided
approach, which applies operations on elements specified by local violations. The
operations have a higher number of activations in larger models, which means that the
BFS strategy has to try each activation, while the guided strategy can focus on local
modifications.

To summarize, it is feasible to generate quick fixes for DSMLs with the guided
strategy, in most cases without interrupting the editing process (i.e. with a response
within 3 s). However, exploring the same design space with a simple BFS strategy is
much slower and often infeasible.

9.2.4 Limitations

The guided exploration strategy of the quick fix generation assumes that each well-
formedness constraint includes all elements in the violations that are related to the
constraint violation. Additionally, if the set of possible operations is not representative
of the model editing of the domain, then the quick fixes found by the exploration may
not be helpful to the user (e.g. if the quick fix consists of deleting the neighborhood
of the selected element).

9.3 Scenario 3: state encoding techniques

9.3.1 Test sets used for the evaluation

We used the cloud case study metamodel for comparing the different state encoding
techniques detailed in Sect. 8.2. The design space exploration uses the same set of
operations as before, but we have removed the goals and any guidance from the design
problem description to be able to measure the performance of the encoding techniques
by exploring the complete design space of the cloud case study to a specific depth.

9.3.2 Evaluation environment and method

The evaluation was carried out using the EMF-based implementation architecture by
starting the exploration from the empty model and traversing all reachable states with
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Fig. 19 Visited states by depth first search

Fig. 20 Exploration and encoding time with different state encoding techniques

a depth-first search that has limited depth5. Each measurement was performed at least
10 times for each encoding technique.

9.3.3 Evaluation of results

We present measurement results for the number of different visited states in the design
space to a given depth (Fig. 19) and the total time the exploration took to traverse the
complete design space to a given depth (Fig. 20).

We made the following observations based on the results in Fig. 19 for the different
encoding techniques:

Often recurring states We found that while the exploration traverses almost 2 million
states even for a depth limit of 10, the number of different state codes is orders of
magnitude lower, 1,131 for the partially precise techniques and 2,567 for the fully
precise techniques. This also shows that most of the operations in this case study can
be performed in different order and still reach the same state (similar to the interleaving
of concurrent events in distributed systems).

Scaling to deeper search We can see that while the number of visited states increases
super-exponentially, the number of different states scales well even to a 18 depth.
As discussed, the state codes are kept in memory while most of the search tree can
be disposed during a depth-first search. This means that by identifying equivalent
states, the memory needs of the exploration are lowered while the possible depth of
the exploration is increased.

5 All measurements were carried out on a computer with Intel Core i7 3.4 Ghz processor, 2.5 GB DDR3
memory (Java heap size), Windows 7 Professional 64 bit, Eclipse 4.2
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We also evaluate the results on the exploration time for the different techniques,
shown in Fig. 20:

Low overhead for state encoding. While the application of a state encoding technique
means that the state code is calculated in each state, this calculation does not cause
considerable overhead. Combined with the fact that most of the design space is not
explored when a state is identified as a recurring state means that the total time of the
exploration is much lower than without using encoding.

Reusable encoding techniques Wecan see that using ametamodel dependent encoding
technique (ModFull ) can be twice as fast as ametamodel independent technique (Ind ).
On one hand, by defining the encoding on the specific metamodel, it is possible to take
into account the characteristics of such instance models and optimize the encoding
accordingly.On theother hand, ametamodel independent technique is reusablewithout
modification for any design problem description while still performing in the same
order of magnitude.

Incremental techniques We found that updating the state codes incrementally results
in a faster state encoding even with the increased overhead on changes. While in the
case of operation encoding (OpIncr ) the gain is minimal, incremental encoding of the
instance model (IndIncr ) can be almost twice as fast as calculating the complete state
code each time (Ind ). The difference in gain is caused by the fact that even in greater
depth, the length of the trajectory (the number of operations) is quite low, while the
size of the instance model can get larger. The incremental model encoding would be
especially useful when the initial state already contains a large instance model, while
the model modifications of a given operation execution is relatively few.

9.3.4 Limitations

Four out of the total six state encoding techniques were specifically developed for the
case study used for the evaluation. Therefore state encoding techniques that follow
similar approach may not work well for different metamodels or problems. Addition-
ally, the test sets used in the measurements did not include industrial size models,
therefore the scalability of the techniques is not measured with regards to model size.
It is possible that only an incremental technique would be acceptable in such cases.

9.4 Scenario 4: Viatra2-based versus EMF-based implementation

9.4.1 Test sets used for the evaluation

The comparison between the Viatra2-based and EMF-based implementations of the
DSE framework uses the cloud case study as well. Similarly to the first scenario, the
exploration is performedwith different goals. In theClusteredDB Small andClustered
DB Big test sets, the goal is to have two or three database nodes deployed on clustered
servers, with an optimal trajectory consisting of 9 or 13 operations, respectively. In
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Fig. 21 Comparison of Viatra2-based and EMF-based implementation

the Simple Power On test set, the goal is to have one application and one storage node
deployed, with an optimal trajectory consisting of 14 operations.

9.4.2 Evaluation environment and method

The main goal of the measurements6 was to get an overview about the performance
characteristic of the simple EMF-based solution opposed to the Viatra2-based one.
Both engines used a depth-first search exploration strategy and were executed with-
out guidance and also with priorities. Note that state encoding is not used in these
measurements.

Each test set was measured multiple times and recorded the length of the shortest
solution found and whether it is the optimal one, the number of visited states for
the given exploration (with a limit of 500,000 states) and the total runtime of the
exploration (in milliseconds).

9.4.3 Evaluation of results

Figure 21 presents the measurement results for the three scenarios.
Our key observations from the results are the following:

Similar functionality In all test sets, the shortest trajectory leading to a solution and the
number of visited states is very close in both implementations. This shows that theDSE
framework can be realized using differentmodel representations and technologies. The

6 All measurements were carried out on a computer with Intel Core i5 2.5 GHz processor, 2.5 GB DDR3
memory (Java heap size), Windows 7 Professional 64 bit, Eclipse 4.2
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slight difference between the results is due to the fact that there is random choice in
the selection of the next activation.

Slower transaction handling The exploration time is about 1.5–2 times longer for the
EMF-based solution than it is for the Viatra2-based one. Based on further profiling,
it is clear that the transaction handling of the Viatra2 framework, that is specifically
designed for model transformations, is much more efficient than the EMF Transac-
tions framework (based on the times spent in the lock/unlock/commit calls during
transaction handling). Additionally, change propagation in EMF about model manipu-
lations involves a lot of operations with collections and those increase the exploration
time.

9.4.4 Limitations

The EMF-based solution is only a proof of concept at the current state of development
which needs further optimization and incorporation of additional techniques in order
to reduce the state space and cut off unnecessary branches in the search tree. A more
efficient transaction handling or just simply an efficient operation redo functionality
(as there are no parallel access present which would require transactions) in EMF
model management would result in better performance characteristics.

9.5 Summary

We selected these scenarios when evaluating our DSE framework to measure the
applicability and performance from different perspectives. To summarize our main
observations are:

– The results of the guided exploration using a dependency graph showed that our
criteria-driven approach can reduce the design space further thus increasing the
efficiency of the exploration, while also ensuring the optimal solutions are found
early (Sect. 9.1).

– The quick fix generation for BPMN processes is a real application that demon-
strated that a guided approach can support the editing process by acceptable
response times (Sect. 9.2).

– The evaluation of state encoding has shown that the application of encoding tech-
niques can reduce the number of visited states far more than the overhead that their
calculation adds to the overall exploration runtime (Sect. 9.3).

– Finally, the comparison between the newEMF-based architecture and the previous,
Viatra2-based implementation indicates that the framework can be applied to
offer DSE over EMF models (Sect. 9.4).

It is important to note that in each scenario we also identified certain limitations
(Sects. 9.1.4, 9.2.4, 9.3.4 and 9.4.4) that require future work and additional evalua-
tion on other case studies to further enhance the described exploration strategies and
techniques.
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10 Related work

Model-driven guided design space exploration implemented over graph transforma-
tions is a novel idea in the field, however, similar approaches are not unprecedented
in a broader research scope as described below.

The formal foundations of model-driven DSE used in our approach is described
in Horváth and Varró (2011). In our previous work, (Varró-Gyapay and Varró 2006)
introduces the usage of occurrence vectors for hints in the optimization of GT systems,
while (Hegedüs et al. 2010) defines the dependency graph and the evaluation algorithm
for arbitrary cut-off and selection criteria. We introduced the concept of quick fixes
for DSMLs in Hegedüs et al. (2011a). Finally, this paper extends our ASE 2011
paper Hegedüs et al. (2011b) that introduced the design of the guided DSE framework
and guided exploration strategies based on the dependency graph as hint. The major
contributions of the paper are (i) the formal definitions of the concepts of guided
design space exploration, (ii) the new implementation architecture based on theEclipse
Modeling Framework, (iii) the description of different state encoding techniques and
(iv) a detailed evaluation of our framework with multiple scenarios.

10.1 Graph transformation based approaches

The approach in Ermel et al. (2011) is similar to our approach as it also exploits
the dependencies between GT rules using critical pair analysis. Here, GT systems
are enhanced with control flow as well and the dependency information helps in
discovering possible runtime problems. Model checking approaches to analyze GT
systems are similar to our approach as they also perform state space exploration.
One can categorize them as compiled approaches such as Schmidt and Varró (2003),
Edelkamp et al. (2006), Baresi et al. (2008), dos Santos et al. (2004), Baresi and
Spoletini (2006),which translate graphs andGT rules into off-the-shelfmodel checkers
to carry out verification, and interpreted approaches like Rensink (2004a), Baldan
and König (2002), König and Kozioura (2006), which store system states as graphs
and directly apply transformation rules to explore the state space, similarly to our
approach. They place emphasis on exhaustive traversal (e.g. by optimizing the storage
of individual states), while we aim at finding solutions quickly using guidance and
hints.

10.2 Model-driven design space exploration techniques

The DESERT tool suite (Neema et al. 2003) provides model synthesis and constraint-
based DSE for DSMLs with structural semantics using ordered binary decision dia-
grams for encoding and pruning the design space. Saxena and Karsai (2010) presents
a generic DSE framework extending upon DESERT by supporting arbitrary analysis
tools and includesmodel transformations formapping design problems to intermediate
and low-level formats.

TheOCTOPUS Toolset (Basten et al. 2010) uses an intermediate representation for
design problem specification and performs DSE using integrated analysis tools. It has
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been successfully applied to design software-intensive embedded systems (Basten et
al. 2013).

The Gaspard Framework (Gamatié et al. 2011) is specifically focused on the
design of massively parallel embedded systems and uses multilevel modeling where
high-level UML models are automatically refined to allow design space exploration
to evaluate performance characteristics through simulations.

These are all compiled approaches, where the design problems are specified as
models and model transformations are applied to derive inputs for tools that will
execute the exploration. These tools are often specifically designed for efficient explo-
ration, however some information from the exploration (e.g. the explicitly explored
states) may not always be available or back-translatable. On the contrary, we use
model transformations as a way to perform the exploration itself. We proposed using
information from analysis tools to guide this model transformation based exploration,
which provides opportunity to apply conceptually different methods for guidance (e.g.
dependency analyzer).

An efficient design space exploration approach was also presented built on the
FORMULA framework in Jackson et al. (2013). The design problem is described
using domain-specific languages, exploration is done with symbolic execution and an
SMT solver is used to check the satisfiability of a set of constraints generated by the
symbolic execution.

Schatz et al. (2010) developed an interactive, incremental process using declarative
transformation rules for driving the exploration. The rules are modified interactively
to improve the performance of the exploration, which can be considered as a guidance.
However, the hints do not originate from analysis, contrary to our approach.

Meedeniya et al. (2011) presents a framework for the automatic deployment of soft-
ware components to hardware architecture that uses design space exploration to find
deployment alternatives that offer near-optimal reliability characteristics. The design
problem consists of architecture models annotated with reliability-relevant proper-
ties, while the exploration uses an evolutionary algorithm to find possible alternatives.
Similarly to our approach, global constraints prevent the exploration of infeasible
solutions.

10.3 Guided design space exploration techniques

Existing DSE techniques sometimes use guidance information to reduce the number
of alternatives that are evaluated.

Mohanty et al. (2002) use “human in the loop” guidance in addition to symbolic
search techniques for finding candidates, which are then analyzed using low-level
simulation to find the final design. In Ristau et al. (2008), different chip design alter-
natives are evaluated using implementation specific information from earlier designs
(e.g. cycle counts and energy consumption) or estimates by experienced designers.
The hints are a collection of values, while guidance is used for selecting optimal map-
pings. These approaches use hints andguidance for reducing the design space, although
hints originate from earlier experience or human interaction, not formal mathematical
analysis of the design problem.
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10.4 Structural constraint solving

Structural constraint solving aims to find object graphs that satisfy given constraints
both on attributes and (object) structures by exploring a (usually) bounded number of
possible object graphs. The CUTE Sen et al. (2005) framework uses a combination of
symbolic and concrete execution to derive path constraints for each separate execution
paths. Java PathFinderVisser et al. (2004) is based onGeneralized Symbolic Execution
that first introduced the use of model checkers for solving structural constraints.

KORAT Boyapati et al. (2002) performs specification based testing by using a
predicate representing the properties (constraints) of the desired output structures and
explores the input state space of predicates using bounded exhaustive testing.

In all of these approaches hints are given in the form of explicit bounds on the
size of the state space. However, they cannot restrict how solutions are achieved from
the initial model, meaning that no constraints can be defined to hold on states visited
during a solution trajectory. In our case it is supported by global constraints and explicit
rule definitions, thus resulting in fundamentally different search strategies.

10.5 Metaheuristic based search strategies

There are several single-solution based metaheuristic techniques used in search based
software engineering for the optimization of various design space exploration prob-
lems (Talbi 2009).

Guided local search based techniques (Voudouris et al. 2010) uses a predefined
schema to inject penalties into their guidance functions. Simulated annealing based
techniques (Bouktif et al. 2006) are similar to hill climbing approaches with the abil-
ity to avoid local optimum solutions by permitting moves to less fit states, with a
decreasing probability over time.

Common in these techniques that they use an iterative traversal algorithms to
improve candidate solutions with regards to their measure of quality (e.g., guidance
function). However, with no hints available about the global optimum these tech-
niques rely only on neighboring states when selecting the next step on the contrary
our approach uses hints like the occurrence vector for finding the optimum solution.

10.6 State encoding techniques in graph-based validation tools

State encoding techniques are often used in graph-based validation tools where the
exhaustive exploration of all possible graphs also introduces the challenge of storing
a large number of graphs and identifying equal or isomorphic states.

The GROOVE model checker (Rensink 2004a) stores changes or deltas between
states similarly to our incremental state encoding techniques (Rensink 2005). The
idea was proposed earlier by Mens (1999), while the GRAS database (Kiesel et al.
1995) has also used this approach. GROOVE also three steps for checking equality,
by introducing graph certificates (similar to state codes), isomorphism checking (with
an improved approach presented in Rensink (2007)) and graph equality.
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Godefroid et al. (1995) presented a state caching method that identifies the possible
interleaving of concurrent executions and ensures that most states are visited only
once during the exploration. In Stern and Dill (1996) hash compaction is combined
with state caching to further increase efficient storing of the explored states.

11 Conclusion and future work

Design space exploration can be used in Model-driven engineering for problems that
involve searching through a large number of possible alternatives and selecting solu-
tions that satisfy design goals and global constraints.

Guided DSE exploration uses hints to reduce the number of states traversed when
searching for solutions. Hints are used (i) to identify dead-end states (cut-off criteria)
and (ii) to order applicable rules in a given state (selection criteria).

In the current paper, we defined a model-driven framework for guided DSE, which
uses rule dependency and occurrence vectors as hints for the exploration strategy.
Evaluation of the exploration strategies using a cloud configuration problem showed
that our criteria-driven approach can reduce the design space further thus increasing
the efficiency of the exploration.

Guided exploration is also applied in a real application for generating quick fixes
to help business process designers in correcting violations of well-formedness con-
straints. The evaluation results show that guidance is required to achieve response time
acceptable to use during the editing process.

We presented a new implementation architecture that builds on the de facto indus-
trial standard EclipseModeling Framework and the EMF-IncQuery incremental query
evaluation framework. We have evaluated the new architecture against the previous
version of our DSE framework based on the Viatra2 model transformation frame-
work and argue that even in an early phase it performs well.

OurDSE frameworkuses state encoding to identify states thatwere already explored
earlier in the process and thus further reduce the number of traversed states. We
specified six encoding techniques that are evaluated on the cloud reconfiguration case
study. The evaluation showed that these techniques can significantly reduce the design
space.

Future work We are actively working on improving our EMF-based architecture
and are planning to explore techniques to further increase the scope of guided explo-
ration. The dependency graph can be further extendedwith additional information such
as including the goals and constraints in the graph or adorning dependency relations
with the cause of the dependency.

We are investigating ways for better reusing the design space when exploring sub-
sequent occurrence vectors to identify states where the traversal should continue. We
are also working on defining problem-specific criteria and specialized algorithms to
increase the efficiency of the approach.

We are also interested in evaluating similarity of solutions based on automorphism
groups as an extension to state encoding and guide the exploration to find dissimilar
solutions, as suggested by one of our reviewers.
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Finally, we are planning to apply design space exploration to new problems that
we encounter in our cooperation with industrial partners.
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