
Autom Softw Eng (2013) 20:427–461
DOI 10.1007/s10515-013-0124-0

Supporting model-driven development using
a process-centered software engineering environment

Rita Suzana Pitangueira Maciel ·
Ramon Araújo Gomes · Ana Patrícia Magalhães ·
Bruno C. Silva · João Pedro B. Queiroz

Received: 1 April 2012 / Accepted: 19 March 2013 / Published online: 10 April 2013
© Springer Science+Business Media New York 2013

Abstract The adoption of Model-Driven Development (MDD) is increasing and it
is widely recognized as an important approach for building software systems. In ad-
dition to traditional development process models, an MDD process requires the se-
lection of metamodels and mapping rules for the generation of the transformation
chain which produces models and application code. In this context, software pro-
cess tasks should be performed in a specific sequence, with the correct input artifacts
to produce the output ones. However, existing support tools and transformation en-
gines for MDD do not have a process-centered focus that addresses different kinds
of software process activities, such as application modeling and testing to guide the
developers. Furthermore, they do not enable process modeling nor the (semi) au-
tomated execution of activities during process enactment. The MoDErNE (Model
Driven Process-Centered Software Engineering Environment) uses process-centered
software engineering environment concepts to improve MDD process specification
and enactment by using a metamodeling foundation. In MoDErNE, a software pro-
cess model may be enacted several times in different software projects. This paper
details the MoDErNE environment, its approach and architecture and also the case
studies through which the tool was evaluated.

R.S.P. Maciel (�) · R.A. Gomes · A.P. Magalhães · B.C. Silva · J.P.B. Queiroz
Computer Science Department, Federal University of Bahia, Salvador, Bahia, Brazil
e-mail: ritasuzana@dcc.ufba.br

R.A. Gomes
e-mail: ramon@dcc.ufba.br

A.P. Magalhães
e-mail: anapfmm@dcc.ufba.br

B.C. Silva
e-mail: brunocs@dcc.ufba.br

J.P.B. Queiroz
e-mail: jpqueiroz@dcc.ufba.br

mailto:ritasuzana@dcc.ufba.br
mailto:ramon@dcc.ufba.br
mailto:anapfmm@dcc.ufba.br
mailto:brunocs@dcc.ufba.br
mailto:jpqueiroz@dcc.ufba.br


428 Autom Softw Eng (2013) 20:427–461

Keywords Software process · Model-driven development · Process centered
software engineering

1 Introduction

Over the years, several software development supporting environments have been
proposed and used in practice as tools for the development process. Some of these
environments are dedicated to supporting specific tasks for a software development
process. For example, while an IDE (Integrated Development Environment) supports
software codification in a given programming language, a diagram editor supports
software modeling. In a single software development project several tools are gener-
ally needed to support software engineering activities. Throughout a software project,
developers should know their tasks, when to perform them and which tools to use.
The project manager should have an overview of the software process tasks, as well
as be aware of all the workflow of the tasks, the roles involved, income and outcome
artifacts, supporting tools, and any other important information about the process el-
ements and their relationships.

Therefore, all the process elements and their relationships can be described by a
given notation able to define what we call a Process Model. Process models should
define which software development activities are expected to be executed, when to
perform them and by whom. Process models should also identify tools to be used
and the format of documents to be created and manipulated. Software process model-
ing should facilitate the communication, understanding, reutilization, evolution, man-
agement and standardization of the process (Humprey and Kelner 1989). A process
model is said to be enacted when a development team follows the process model
definitions during the development life cycle.

The modeling of software processes is a non-trivial and time-consuming task
which means that defining a new process for each software project is unfeasible. One
of the key issues for supporting software processes is how software process models
and software engineering environments are related and how a supporting infrastruc-
ture can be derived from the information given in a software process model (Gregor
et al. 2001). This environment should support various types of activities involved
in software development and the literature usually refers to such an environment as
a PSEE (Process-centered Software Engineering Environment) (Gregor et al. 2001;
Ambriola et al. 1997). By using PSEEs a process has to be modeled first and then
it can be enacted in several projects. During process enactment, software develop-
ers are reminded of activities which have to be carried out, automatic activities may
be executed without human interaction and consistencies among documents are fa-
cilitated. In this context several PSEEs have been proposed (Arbaoui et al. 2002;
Lima et al. 2006; Montoni et al. 2006; Mohagheghi and Dehlen 2008), but many of
these have limitations such as restricted support for a specific software development
process, a focus restricted to management tasks while lacking features for enactment
support. Several PSEE concepts proposed in the literature have not been incorporated
as such in the first generation of PSEE environments but they have influenced the un-
derstanding of software processes and infrastructure needed to support it substantially



Autom Softw Eng (2013) 20:427–461 429

(Gregor et al. 2001). Consequently, several studies suggest a set of requirements and
evaluation frameworks for these environments in order to guide the development of
environments that wish to support software processes properly (Atkinson et al. 2001).

Apart from PSEE proposals, software development techniques are continuously
evolving in order to solve the main problems that affect the development and main-
tenance of software systems (Koch 2006). Model Driven Development (MDD) is an
approach that is primarily concerned with reducing the gap between the problem and
solution spaces. More specifically, the application of MDD relies on software imple-
mentation domains through the use of technologies that support systematic transfor-
mation of problem-level abstraction in software implementations (France and Rumpe
2007). System models are not only used for system documentation, but they actually
serve as a basis for the implementation phase. Each activity in the development pro-
cess requires a number of input models that produce further models as output. In this
way, the development of an application can be viewed as a set of transformations
that lead to the final system. MDD has changed not only the way systems are built
but also the way they are tested (Mussa et al. 2009). Model Driven Testing (MDT)
(Baker et al. 2007) is an approach based on MDD in which tests can be generated
from development models in an automated way through the use of transformations.
One of the most well known initiatives in this scenario is Model-Driven Architecture
(MDA) proposed by Object Management Group (OMG) (OMG 2003). MDA relies
on several OMG standards to perform MDD concepts. As MDA is an MDD realiza-
tion, in this text we use only the MDD acronym for software processes that use this
approach, including the ones which follow OMG standards.

Unlike traditional development process models (Rational Unified Process (RUP),
eXtreme Programming (XP), Open/UP, etc.), an MDD process requires the selec-
tion of metamodels and mapping rules for the generation of the transformation chain
which produces models and application code. In this context, if modeling and trans-
formation tasks are not properly performed, the desired final code will not be reached.
Thus, existing research in MDD practice has revealed the importance of software pro-
cesses and suitable tools, concluding that they are crucial for the use of the MDD ap-
proach in industry (Hutchinson et al. 2011a). The necessary techniques to apply MDE
correctly depend on tool support and integration in the software project (Hutchinson
et al. 2011a, 2011b).

Many tools have been designed to support MDD. These environments usually
have a specific focus on a transformation strategy or transformation engine in or-
der to automatically generate models, codes and test cases from a variety of models.
However, current MDD supporting tools are basically interested in defining and ex-
ecuting transformations which produce code and deployment artifacts from models
(e.g. AndroMDA,1 Blu Age2 and others) for a specific part of the software life cycle
or for a specific domain. Indeed, other activities in a software process are usually
not considered. They do not focus on the software process specification, neglecting
support for the integration of different process specification activities into the soft-
ware development process phases. On the other hand, tools for process modeling and

1AndroMDA.org Home—http://www.andromda.org/.
2Blu Age—http://www.bluage.com/en/en_home.html.

http://www.andromda.org/
http://www.bluage.com/en/en_home.html


430 Autom Softw Eng (2013) 20:427–461

specification (e.g. EPF3) lack integration to modeling tools and model transformation
engines. This scenario does not help software engineers who would like to use MDD
as a main software development approach or to adapt existing software processes.

This paper presents MoDErNE (Model Driven Process-Centered Software Engi-
neering Environment) which is an environment for model driven development that
uses process centered concepts to aid the adoption of MDD. The environment is
based on the MDD and MDT approaches for both system development and testing,
using SPEM (Software and Systems Process Engineering Metamodel) (OMG 2008)
concepts. Based on metamodels, model-driven processes can be instantiated. There-
fore this instance, a specific process model, can be enacted several times in different
software development projects.

By using and combining process-centered software engineering concepts and
a model-driven approach, our project offers an environment that supports model-
driven software process specification and enactment properly. It offers an environ-
ment where different strategies for modeling and transformations tasks can be speci-
fied and used in a proper sequence and in an integrated way as we aim to assist and
facilitate the use of the MDD approach in software processes.

MoDErNE approach was initially proposed in Maciel et al. (2009). The first ver-
sion of this tool, named Transforms (Silva et al. 2009), was only able to support soft-
ware development tasks. Currently, it comprises two modules with complementary
features: a Process Editor and a Process Executor. In the Process Editor, it is possi-
ble to specify process models using a specialization of the SPEM metamodel. It is
possible to specify several kinds of software development, testing and management
activities. In the Process Executor, it is possible to enact the processes previously
specified in the Process Editor using UML (Unified Modeling Language) diagrams
and transformations.

This paper is organized as follows: Sect. 2 presents related work; Sect. 3 describes
MoDErNE, the proposed solution; Sect. 4 focuses on case studies; four case studies
are used to evaluate MoDErNE. In this section, we present a summary of the results
of the first two case studies, while the latter two are presented in more detail. A more
detailed description of the first two can be seen in Maciel et al. (2009). Section 5
presents final remarks and future work.

2 Related work

In recent years a number of research initiatives related to MDD have emerged. We
can divide these into two categories which we explain in this section: processes and
methodologies for MDD; and languages and tools for model transformation. We also
describe some related work about PSEEs and how their legacy concepts connect to
our tool environment.

3Eclipse Process Framework—http://www.eclipse.org/epf/.

http://www.eclipse.org/epf/


Autom Softw Eng (2013) 20:427–461 431

2.1 Processes and methodologies for MDD

Several methodologies have been proposed in the literature. Some of these include
MDA process for middleware specific services (Maciel et al. 2006), MDD process
for web applications (Koch 2006), MDA methodology for e-learning systems (Wang
and Zhang 2003), fault tolerance distributed software families (Guelfi et al. 2003),
KobrA (Atkinson et al. 2001) a method for the development of component-based
software with model driven techniques. The MDD approach to software development
has not only changed the way software systems are built and maintained but also the
way they are tested. In this context, several works have been proposed concerning
Model Driven Testing (MDT). Most of them (Hartmann et al. 2004; Yuan et al. 2008;
Mingsong et al. 2006; Bouquet et al. 2008) propose methods to generate test cases
from system models in order to increase automation in testing activities. In Javed et al.
(2007), for instance, the authors aim to generate test models from system models,
using use case and activity diagrams, annotations and transformation rules to derive
the test cases.

However, most of the approaches for MDD and MDT processes and methodolo-
gies are defined using non-standard notation and language. Most of them are specified
imprecisely in natural language with supplementary pictures and diagrams. In fact,
there is a lack of consistent terminology as there is no unified language to specify
MDD processes. Each one adopts ad hoc notations and different concepts are used
to define the activities and artifacts for the software development life cycle. In ad-
dition, each methodology is focuses on a specific application domain and several of
them comprise only a specific software project phase (e.g. architectural design, test-
ing, etc.). In this scenario the use of different strategies for a given software process
makes it difficult. Software process modeling using unified and consistent terminol-
ogy should make understanding, reutilization, management and standardization of
the process possible (Humprey and Kelner 1989).

2.2 Languages and tools for model transformation

The second research initiative is related to model transformation. Tool support plays
an important role in software development activities and in the model-driven devel-
opment context this is no different. It is essential and even more necessary due to the
intrinsic need for automatic model transformation and code generation. Therefore or-
ganizations which follow a model-driven approach also have to use a supporting tool
to automate, even partially, their transformations. The process for model-driven de-
velopment must then be accomplished with minimum tool support; otherwise it could
become unfeasible (Hutchinson et al. 2011a).

Transformation is an essential activity for model-driven development, many of the
approaches in the literature focus on this task. Several languages for model trans-
formation specification have been proposed as well as a number of transformation
engines to carry out the transformations. At present, there is a variety of open source
and proprietary MDD languages with different characteristics and features, such as:



432 Autom Softw Eng (2013) 20:427–461

ATL (Atlas Transformation Language)4 and QVT (Query-View-Transformation)5 for
model-to-model transformation; and MOFScript6 and Acceleo7 for model-to-text
transformation.

Other environments enable system modeling and provide predetermined transfor-
mations for specific platforms, programming languages and also for a specific phase
for software development life cycle (requirement, architecture, codification, etc.). For
example AndroMDA is an environment which follows the MDA approach and pro-
vides transformations from platform independent models (PIM) to the Java EE plat-
form. The transformations are provided in the so called cartridges and are added as
plug-ins for the environment. Another example is BluAge, which is a proprietary
tool that claims to facilitate the migration of legacy systems. The tool can extract
platform independent models from a legacy system code and provides transforma-
tion to generate code for a different platform, such as Java EE or.NET. WebRatio is
another proprietary tool used to develop web applications. It uses BPMN (Business
Process Management Notation) and WebML (Web Modeling Language) to repre-
sent the business logic and system requirements and then generates java code for
the Java EE platform. Other MDD tools can be easily found on the web, such as in
http://www.modelbased.net/.

In spite of the high number of MDD tools already proposed as well as those used
both in academia and industry, most focus primarily on model transformation execu-
tion, i.e. they are interested in defining and executing transformations which produce
code and deployment artifacts from models. Therefore they are used in specific tasks
and do not cover the whole development process life cycle. A development process
involves other important tasks which should be carried out during the process enact-
ment such as requirement analysis, testing, manual tasks etc. rather than just doing
model transformations. Recently, SPEM4MDE (Samba et al. 2011) has been pro-
posed. Similar to MoDErNE, SPEM4MDE approach uses SPEM as PML and its tool
also has a Process Editor and Enactment modules. For instance, the approach focus
relies on transformation definition and execution. The environment does not support
MDA and MDT specificities and its does not have several of PSEE desired features,
such as management tasks. Although transformations are an important aspect in MDE
processes, it is a part of these processes.

Recent studies about MDE practice reveal some issues that should be addressed
(Hutchinson et al. 2011a, 2011b; Mohagheghi and Dehlen 2008). Successful MDE
adoption appears to require a progressive and iterative approach as it is usually
adopted gradually, in specific stages or tasks of a software development process (test-
ing, coding, etc.). Despite the fact that software processes are recognized as being
important in successfully applying MDE, proposed model-driven methodologies or
processes have been considered unsuitable for use by participants of these studies.
Additionally, much effort is required to develop new transformations or customize
existing ones (Hutchinson et al. 2011b). Some findings point to specific issues with

4ATL—http://www.eclipse.org/atl/.
5QVT—http://www.omg.org/spec/QVT/1.0/.
6MOFScript—http://eclipse.org/gmt/mofscript/.
7Acceleo—http://www.acceleo.org/.

http://www.modelbased.net/
http://www.eclipse.org/atl/
http://www.omg.org/spec/QVT/1.0/
http://eclipse.org/gmt/mofscript/
http://www.acceleo.org/


Autom Softw Eng (2013) 20:427–461 433

regard to MDE tools, for example, they are expensive or need to be used in specific
ways (Hutchinson et al. 2011b). The decision to adopt an MDE approach is not made
with much understanding of the necessary process change (Hutchinson et al. 2011a).

PSEE is a process centered environment which gives support to various types of
activities during the software development life cycle. It provides many services for
the software developers by modeling and enacting already modeled processes. Inter-
est in the PSEE approach is not new. While the first generation of PSEE environ-
ments and characteristics was revised in Arbaoui et al. (2002) and Gruhn (2002),
the latest generation (after 2003), proposed in the last ten years has been analyzed
in Reza (2012). Initially, some PSEE desired requirements include process modeling
through a Process Modeling Language (PML), process models enactment, process
tasks ordering, process evolution, management and documentation. Several environ-
ments have been proposed (e.g. Cass et al. 2000; Weber et al. 2009; Zamli et al. 2005)
however, they have limitations in supporting process enactment and integrating dif-
ferent kinds of tools. To solve this problem, Gruhn (2002) proposed a middleware
solution focus.

Although a middleware platform approach was proposed as a solution, modern
PSEE prefers to focus on a certain software process domain (for web application,
model-driven, software product lines) to follow the strategies of software process def-
inition and then its enactment. The common functionalities of the latest PSEEs (e.g.
SPACE (Weber et al. 2009), VRML (Zamli et al. 2005), WebApSEE (Lima et al.
2006), Transforms (Silva et al. 2009), etc.) (Reza 2012) are: interactive assistance
throughout software development, automation of routine and labor-intensive tasks
and invocation and control of software development tools, process flexibility during
the enactment and software team distribution. However, they have failed to provide
security and mobility features. Besides these general functionalities, an MDD fo-
cused PSEE should allow users to represent MDD related process elements, such as
transformation and model artifacts. Furthermore, it should provide an enactment en-
vironment that supports both system modeling and model transformation, which are
essential activities within the MDD context. To the best of our knowledge, there is no
such environment available either in academia or in industry.

Currently MDD tools do not have process-centered features as they are not
designed for this, and current PSEEs do not address specific features for MDD
processes. We believe that it is important to have a tool which can help to de-
fine the activities, artifacts and roles of the software development process within
the MDD context as well as integrate different approaches and tools that auto-
mate model and transformation tasks and thus support the process enactment prop-
erly.

Our work attempts to provide an environment that supports both process modeling
and enactment for the MDD process context. In the model driven approach, system
models are metamodel instances. Our approach uses this same strategy for software
process specification. It comprises a set of metamodels to provide a standard notation
to specify a software process allowing the explicit representation of MDD related el-
ements, such as models and model transformations. Process element descriptions are
placed at the metamodel level, and consequently process models become instances of
these metamodels. The approach has several other PSEE characteristics adapted for



434 Autom Softw Eng (2013) 20:427–461

the MDD context, such as (semi) automation support for process activities, a collab-
orative environment and integration with other MDD related tools.

3 MoDErNE

MoDErNE is an approach and tool which supports the specification and enactment
of model-driven software processes in an integrated way using process-centered soft-
ware engineering concepts. Figure 1 gives an overview of the MoDErNE environ-
ment. It has two main goals: process specification, through Process Editor Module;
and process enactment, through Process Executor Module.

Process Editor comprises a UML profile editor; a transformation rule editor; and
process publication. The Process Executor comprises process enactment in collabo-
rative way following the previous process specification; UML modeling editor; and
transformation execution for code generation.

The MDD process specification includes definitions of management, development
and testing processes. These definitions follow a set of metamodels based on SPEM
2.0. The result of this is that MDD process models, which can be expressed as an
SPEM instance and which uses UML as a modeling language, may use this environ-
ment as a support tool. Additionally, we extended SPEM to adapt them to the MDA
context, e.g. Computation Independent Model (CIM), Platform Independent Model
(PIM) and Platform Specific Model (PSM) concepts.

The process is represented by models, which are instances of these metamodels
and they are basically made in UML diagrams. The process may be modeled by:
(i) a class diagram, to show the process elements in a visual representation; (ii) an
activity diagram to model phase/iteration sequence and their specific tasks (iii) a use

Fig. 1 MoDErNE’s main functionalities



Autom Softw Eng (2013) 20:427–461 435

case diagram to map responsibilities through associations between roles and tasks.
As well as this, a work breakdown structure is also available for those who prefer a
hierarchical visualization.

The Process Editor enables the creation of reusable software engineering best
practice libraries. For example, some of methodologies proposed and cited in Sect. 2
could be specified as a library. Thus, libraries can be used for: web applications, real-
time systems, testing services, etc. These libraries comprise elements such as tasks,
steps, roles and produced/consumed artifacts (i.e. UML models and transformation
rules) for the process specification. The definition of a new process begins by select-
ing library elements and organizing them in terms of phases and iterations, besides the
common process elements (i.e. phases, tasks and roles). MDD processes need some
new definitions such as model transformation and profiles. These definitions are sup-
ported as the environment provides a transformation rule editor (ATL, MOFScript
and QVT for instance) and a UML profile editor respectively. Process definitions are
stored in a repository to be later enacted by the Process Executor module.

To exemplify the use of the Process Editor, it is useful to consider an organization
that wants to adapt their RUP process for the MDD approach. In the process edi-
tor we should specify the reusable elements such as disciplines (e.g. Requirements
and Analyze & Design), tasks (e.g. define requirements, define scope and so on), the
workproducts involved (e.g. use case model, class model) and the performed roles
(e.g. system analyst). We should also specify dynamic definitions such the phases
(inception, elaboration, construction and transition phases) and iterations (e.g. the
elaboration phase has two iterations) using the tasks previewed modeled. Besides
these definitions, MDD processes require other specifications: it is also necessary to
develop the appropriate transformations for the process and select the source and tar-
get profiles (e.g. we can develop a transformation to transform inception phase model
the first version of elaboration the phase model). These activities also involve new
roles (e.g. process specifier, transformation specifier and transformation developer)
that only exist in MDD processes. The resulting process, named RUPMDD, was then
organized into two different libraries: (i) ruplib and (ii) inception2elaboration. Ruplib
keeps the RUP process definition and inception2elaboration keeps the ATL transfor-
mations files and UML profiles that enable the model transformations from one phase
to another. The specification of the sequence in which process tasks from these two
libraries must be performed are also defined using MoDErNe Process Editor support.

The main goal of the Process Executor is the enactment of a process previously
specified in the Editor and stored in the repository. Phases, iterations and their tasks
are followed in the sequence as specified in the process editor. The execution of these
tasks is managed by the Executor showing a task status that indicates if the task is
finished, in progress, pending, etc. The Process Executor integrates modeling and
runs transformation tools. When executing a modeling task, a modeling editor (i.e.
UML2Tools) is available with the appropriate diagram elements and profiles spec-
ified for the task. When executing a transformation task, a transformation tool is
presented (i.e. MOFScript or ATL engine) to run the rules specified in the process.
Following the process tasks sequence the developer can create his/her models and
transform them until code generation. Any other modeling tool can be used and im-
port the XMI (XML Metadata Interchange) file to use as input in a transformation



436 Autom Softw Eng (2013) 20:427–461

rule. As the process comprises validation tasks, test cases may also be generated for
software validation. MoDErNE also allows the development team to work in a collab-
orative way to build a software system. When starting software development a team
is defined according to the roles specified for the process and associated to each task.
Each person in this team can execute different tasks at the same time during process
enactment.

Any kind of task may be specified for the process and will be available in the
sequence when enacted. However, only modeling tasks (producing UML workprod-
ucts) or transformation tasks (related to transformation workproducts) are associated
to the UML editor and transformation engines. Using our example of the RUPMDD
process, the Process Executor shows the inception, elaboration, construction and tran-
sition phases sequentially with their iterations and tasks. When a user (associated to a
specific role) selects a task to perform, the appropriate tool is shown according to the
Process Editor specification. For example, when system analyst performs the define
requirements task a UML editor is automatically opened with the appropriate meta-
model for the use case diagram specification, when a transformation task is selected,
the associated transformation is executed, and so on.

The following sections explain our approach in greater detail. Section 3.1 focuses
on the metamodeling foundations on which MoDErNE is based. Section 3.2 explains
the tool architecture and Sect. 3.3 details its main modules and functionalities.

3.1 MoDErNE’s metamodels

In this section we present the metamodels on which MoDErNE is based and that
represent software processes that use MDD techniques. They make the modeling and
instantiation of MDD, MDT and management processes elements explicit and have
specialized semantics that facilitate automated support during the process enactment.
Just as metamodels are used to describe application models of the same domain,
they can also describe the software processes models that guide the development
of these applications. Therefore, our main goal is to provide a mechanism with a
metamodeling foundation in order to create an effective way to support a model-
driven development process specification and enactment.

According to the OMG model layers shown in Fig. 2, a specific software devel-
opment project is located at level M0, i.e. the layer where a development team works
on a project enacting a process which is specified in the level above (M1). RUP, XP

Fig. 2 OMG Model layers



Autom Softw Eng (2013) 20:427–461 437

and other processes are situated at M1. Process models at M1 are designed according
to a process metamodel (i.e. a metalanguage to specify process models) which cor-
responds to level M2. For instance, SPEM was used to design the well-known RUP
process model. As highlighted in Fig. 2, our approach is located at level M2. Thus, an
MDD process model (located at level M1) can be designed and will be available for
the development of new projects at level M0. Consequently, any process definition
modeled in M1 can be used during the process enactment in M0 providing specific
features according to it specification. The definition of MDD, MDT and management
process concepts at metamodel level (M2) is important to provide a meaningful way
to design software processes with explicit characteristics of these kinds of processes.
The specified semantic for each element is important because it will be used in the
process enactment (i.e. use the profile associated to a specific phase to validate the
input models, associate a transformation engine to a transformation rule artifact, etc.).

Our approach is composed of a set of metamodels, based on SPEM 2.0, which re-
fer to each aspect of a software process (development, testing or management) in an
MDD context. According to SPEM, software process specification should be divided
into two dimensions: static concepts, which are made up of disciplines, tasks, steps,
roles and workproducts, forming what they call Method Content; and dynamic con-
cepts, which include phases, iterations and taskuses, forming the so-called Process.

The Method Content involves co-related elements that can be reused in many pro-
cess models. We specialize a MethodContent in three different types, representing
the various processes needed in a software development lifecycle: the Core Method-
Content, which represents general MDD development process elements; the Method-
ContentForTesting, which describes testing process elements following the MDT ap-
proach; and the ManagementMethodContent, which focuses on project management
based on PMBOK.

It is therefore possible to specify the development, testing and management pro-
cesses independently. This can increase the potential reuse of one kind of process
with others. For instance, the same testing process (specified in the MethodContent-
ForTesting) could be used with many different development processes (located in the
Core Method Content). This independent process specification can also facilitate the
work of independent teams for development, testing and project management.

After modeling each process independently, they have to be integrated in a unified
process that covers all software development aspects (Fig. 3).

Fig. 3 Software process integration



438 Autom Softw Eng (2013) 20:427–461

As explained before, the Process is used to represent dynamic aspects of software
processes, such as phases and iterations. It references the static elements defined
in a MethodContent package to perform a complete process specification. A soft-
ware process instantiated in a Process package can use elements of different kinds
of MethodContents and can therefore reference development, testing and manage-
ment elements. Thus, the Process package is responsible for the process integration,
selecting elements of each Method Content and distributing them to the phases and
iterations of a process instance.

A model-driven development process called OpenUP/MDD (OpenUP Component
2008) is a variation of the Open Unified Process for MDD. This process was specified
according to the SPEM 2.0 standard using the EPF tool,8 which is an environment
for software process modeling following SPEM. As a result, OpenUP/MDD is an
instance (i.e. a metamodel instance) of the SPEM metamodel. Unlike this process,
we decided to add the MDD concepts at the metamodel level.

Our hypothesis is that by using metamodeling techniques to describe several as-
pects of software processes, they can be integrated in a flexible manner enabling
better software process specification and enactment.

The following subsections explain each metamodel that forms part of our ap-
proach.

3.1.1 Core metamodel

The use of MDD requires process definitions associated with modeling activities and
transformation rules to compose the transformation chain. These elements are not
usually found (explicitly) in traditional software development processes. Therefore,
we selected some of the SPEM 2.0 concepts and specialized them in order to cover
specific aspects of the MDD context. Again, it is important to highlight that our hy-
pothesis focuses on the explicit modeling and instantiation of process elements with
specialized semantics which can facilitate the process design and enactment. The core
metamodel is illustrated in Fig. 4.

As explained before, the Method Content package represents the process static
elements. A Discipline groups a set of related Tasks that are performed by Roles.
A Role defines the responsibilities of an individual or a group of individuals. A Task
may comprise many Steps to describe meaningful work. During the process enact-
ment, Workproducts as input and output artifacts can be consumed/produced. In this
approach a Workproduct can be specialized into four kinds of artifacts: a UML model,
transformed/generated during the process enactment; a Transformation, to any kind
of transformation; a Transformation Rule, which contains the rules for automatic
model transformation and code generation; an Extra Model, textual specifications
or supplementary notation necessary for the project; and a Profile, which gives addi-
tional and specialized semantics for system modeling according to a specific applica-
tion domain or platform. Tasks are also performed in a specific tool (Modeling Tool
or Transformation Tool) which can be modeling tools (e.g. magic draw) or transfor-
mation tools (e.g. ATL engine).

8Eclipse Process Framework—http://www.eclipse.org/epf/.

http://www.eclipse.org/epf/


Autom Softw Eng (2013) 20:427–461 439

Fig. 4 Core metamodel (adapted from Maciel et al. 2009)

Based on static definitions many processes are modeled using metamodel dynamic
concepts. A Process may comprise many Phases specialized in modeling CIM, PIM,
PSM (OMG 2003) and also in Codification. Moreover, an ExtraPhase can be speci-
fied representing an additional stage apart from modeling and codification. The mod-
eling phases can be associated with profiles to support modeling tasks. Each Phase
can contain one or more Iterations that specify the TaskUses necessary to carry out a
task.

According to this metamodel, in MoDErNE a MDD process can be diagrammat-
ically specified by the construction of three kinds of UML diagrams (class, use case
and activity diagrams), following the concepts of the metamodel. It is therefore pos-
sible to model class “Software Architecture Definiton” or “Service Interface Design”
and associate to the PIM phase stereotype, according to the MDD process character-
istics. Furthermore, a Transformation Rule artifact, modeled as a class named “Use-
CaseToClass”, which maps use case elements into class, can be associated to another
element stereotyped as Transformation to form, for example, a transformation chain.

3.1.2 Metamodel for testing

A specific metamodel for testing processes has been built to enable the explicit defi-
nition of process elements concerning model-driven testing within an MDD process.
It is based on several concepts of an IEEE Standard (IEEE 2008). The IEEE Stan-
dard was chosen because it proposes a complete testing process and documentation,
providing test activities for each part of the software life cycle.

The metamodel for Testing is illustrated in Fig. 5. Some meta-classes were special-
ized from the Core Metamodel (Fig. 4).They include concepts which can be treated



440 Autom Softw Eng (2013) 20:427–461

Fig. 5 Metamodel for testing (adapted from Maciel et al. 2011)

specifically for testing specification, and also some of them can be handled in model
transformations. Task, Role and Workproduct are concepts that belong to the Method
Content package of the Core metamodel, making the connections between both meta-
models. The associations and/or generalizations with the concepts of the MethodCon-
tent package complement the comprehension of the metamodel for testing.

A TestingTask is a kind of Task which is constrained by the OCL (Object Con-
straint Language) rules described at the top of Fig. 5. The leftmost OCL rule indi-
cates that a TestingTask must have, as input or output, at least a Workproduct which is
a TestingWorkProduct. The rightmost OCL rule requires that the main Role, responsi-
ble for a TestingTask execution, must be a TestingRole, which is a role in the process
especially involved in testing activities.

A TestingWorkProduct, an artifact for testing, can be generated or consumed by a
TestingTask. The TestPlans, for instance, are the documents that contain the planning
information related to the test, such as the schedule of its implementation and exe-
cution, and are usually developed in the early phases of the process. The TestCases
represent the code that is going to execute the system in order to find errors. Test-
Design and TestProcedure represent the structural and behavioral aspects of the test
respectively and adapted to MDT context, there are testing model artifacts. TestReport
and TestLog are workproducts produced after the execution of the tests to document
the results. TestTraceabilityMatrix track what requirements are being tested by a test
case and ExtraTestWP represents extra documentation occasionally needed by the
test activities.

The Transformation class, of the Core metamodel, was extended to the Testing-
Transformation. This allows exclusive treatment when transformations are carried out
for MDT. Transformation rules for MDT should generate at least a TestingWorkProd-



Autom Softw Eng (2013) 20:427–461 441

uct, using a TestingProfile or not, which can define specific modeling notation for
modeling tests, such as U2TP (UML 2.0 Testing Profile) (OMG 2005).

As we explained before, a Process package can use more than one MethodContent
for distinct purposes. It is important to note that the test metamodel was modeled
as a SPEM MethodContent which can be reused in several and different software
processes.

3.1.3 Metamodel for process management

The metamodel for Project Management is based on the PMBOK (Project Manage-
ment Body of Knowledge) (PMI 2008). A slice of this metamodel is illustrated in
Fig. 6. PMBOK was chosen because this approach presents several disciplines for
the process management life cycle. We tried to follow the well-established concepts
of PMBOK associating and extending the concepts of the Core metamodel (Fig. 4).

Like the other metamodels, the ManagementDiscipline is the specialization of Dis-
cipline from MethodContent. It is divided into nine kinds of disciplines corresponding
to the nine knowledge areas of PMBOK, such as Project Scope Management, Project
Time Management and Project Cost Management. Due to the lack of space here, we
only show three of the nine disciplines in Fig. 6.

A ManagementTask is a specialization of Task from MethodContent. Management
tasks are also divided into nine kinds of tasks to represent the management tasks
corresponding to the so called 42 “processes” in the knowledge areas in PMBOK.
Similarly, only three of the nine tasks are illustrated in the metamodel slice shown
in Fig. 6. Finally, a Stakeholder (specialization of Role from MethodContent) is re-
sponsible for one or more ManagementTasks. The idea is similar to the relationship
between TestingRole and TestingTask from the metamodel of Fig. 5. The stakeholders

Fig. 6 Management metamodel (slice)



442 Autom Softw Eng (2013) 20:427–461

are consequently responsible for generating the artifacts (ExtraModel) which are the
inputs and outputs of each ManagementTask. The project management can be defined
through management tasks across an MDD process or it can be defined separately as
a ManagementProcess itself.

3.2 MoDErNE’s architecture

Based on the previously explained metamodels, MoDErNE has been developed to
support MDD development testing and management process modeling and enact-
ment. MoDErNE’s general architecture is shown in Fig. 7. The tool contains two main
modules with complementary resources, namely the ProcessEditor and the Proces-
sExecutor components. The ProcessEditor is responsible for the process specification
following the conceptual metamodels. The ProcessExecutor supports the enactment
of the processes previously specified in the ProcessEditor.

The two main components communicate with each other through a repository
which is a relational database (MySQL database). Either the process models, cre-
ated in the ProcessEditor, or artifacts such as the application models created during
the development lifecycle in the ProcessExecutor remain in this repository.

A client-server architecture style is used to provide collaborative enactment of the
process. A RMI (Remote Method Invocation) based component (Server) communi-
cates various instances of the ProcessExecutor to the same repository. This repository
is accessed and controlled by the PersistenceControl component. By using Process-
Executor, the developers can persist models, code and other artifacts and make them
accessible to other team members. This collaborative environment plays an important
role as software team distribution and cooperation is one of the key functionalities
that should be provided by PSEEs.

Fig. 7 MoDErNE’s general architecture (adapted from Gomes et al. 2011)



Autom Softw Eng (2013) 20:427–461 443

The main modules are implemented as RCP (Rich Client Platform) products un-
der the Eclipse platform. It is thus possible to use Eclipse’s graphic widgets as well
as some of the several plug-ins developed for this platform, such as: ATL and QVT
for model-to-model transformation rule editing and execution; MOFScript, for the
editing and execution of model-to-text transformation rules; GMF (Graphical Model-
ing Framework)9 for the customized diagram graphic editor creation and generation;
EMF (Eclipse Modeling Framework), for modeling and automatic code generation
of process models, which are based in the metamodels; and UML2Tools10 and Pa-
pyrusUML,11 which are both plug-ins for the modeling of profiles and other UML
artifacts. As an Eclipse RCP product, MoDErNE also provides extension points that
make it possible to expand support to the process enactment, by integrating other
useful Eclipse plug-ins to the environment.

Based on the metamodels and on the specified process, the tool identifies the ele-
ment type and invocates the correct plugin to support an activity. MDT support as well
as project management support is provided as an Eclipse plug-in. Therefore, the user
can choose whether to have testing and management support or not. There are four
plug-ins (Fig. 7—lighter grayscale) in MoDErNE: MDTProcessEditor and Manage-
mentProcessEditor extend the ProcessEditor functionalities, enabling the modeling
and editing of testing and management processes respectively; and MDTProcessEx-
ecutor and ManagementProcessExecutor, extend the ProcessExecutor functionalities
in order to support the enactment of the MDT and management processes previously
created in the ProcessEditor.

The ProcessEditor component uses a MVC (Model View Controller) pattern. The
Editor provides three different means of specifying and visualizing process elements:
(i) BreakdownStructure is a view that represents the process in a hierarchical struc-
ture (ii) Diagrams is a view in which the process is represented by UML diagrams
(classes, use cases or activities) (iii) TextualEditors consists of a set of editors that
extend the editors provided by the Eclipse Platform and enable process data edit-
ing. These views reflect information about the processes that are encapsulated in the
Model subcomponent. Changes made in a process class diagram, for example, are
thus propagated to the other views. The Controller subcomponent coordinates the
communication between the Model and Views so that different views correspond to a
single Model element.

The following sections detail the functionalities provided by the two main modules
of the environment: the ProcessEditor and the ProcessExecutor.

3.3 MoDErNE modules

The following sections detail each one of these modules using the Integrated Process
as an example. This process uses the specification of the MDA process for middle-
ware specific services proposed in Maciel et al. (2006) and MDT process proposed
in Maciel et al. (2011). This MDA process goal is to develop middleware services

9GMF—-www.eclipse.org/gmf/.
10UML2Tools—http://www.eclipse.org/modeling/mdt/?project=uml2tools.
11PapyrusUML—http://www.papyrusuml.org.

http://www.eclipse.org/gmf/
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.papyrusuml.org


444 Autom Softw Eng (2013) 20:427–461

in Java EE or CORba CCM platforms, based on application functional requirements.
Initially, this process was defined in an ad hoc manner and then specified using MoD-
ErNE metamodels. The MDT process generates test cases for JUnit platform from
UML models stereotyped using U2TP profile.

The Integrated Process specification uses two reusable libraries (SPEM method
content) named middleware service develop, with only strategies for middleware
services development, an instance of the Core Metamodel (Sect. 3.1.1); and model
driven test, with only strategies for software validation and test generation, based on
the MDT metamodel (Sect. 3.1.2). Its specification is stored in the repository to be
used by the Process Executor in several other software development projects. The
Process Executor section illustrates the Integrated Process enactment in a case study
that develops a bank application.

To perform the Integrated Process specification and enactment without MoD-
ErNE, the software development team had to use some different kinds of tools: (i)
for process specification (e.g. EPF), (ii) UML editor diagram according metamodel
stereotypes process needs (iii) an engine for model-to-model transformation (iv)
model-to-text transformation engine, and (v) for process management. Using MoD-
ErNE, the development team will have, in addition to the features of each tool men-
tioned above, a repository to store the artifacts that were used and produced in each
task available. Moreover, the process specification works as a support for task delega-
tion among project members, as well as a guide for task sequence and workproducts
required for each tasks.

3.3.1 MoDErNE process editor

To specify a new process, the first step is to select existing method content or define
a new method content library with the disciplines, tasks, roles and workproducts that
will be used in the process definition. After this, processes can be specified. A process
can use all method content elements or only some of them.

Figure 8 shows the method content Model Driven Test with elements defined for
the Test Implementation Discipline. It illustrates how class diagrams can be used to
represent the method content elements and their relationships. In the figure there is
a Discipline called Test Implementation which comprises a set of tasks such as Gen-
erate Component Test Cases and Execute Component Test. It also shows the input
and output Workproducts which are used and generated by each task. For example,
Generate Component Test Cases task uses as input Test Design and TestModelToTest-
Code workproducts and, as output Component Test Case. The available class editor
shows a tool pallet with the CORE and Testing metamodel concepts to be used in
the process edition. It is important to note that each element is stereotyped according
to these metamodels. This allows us to give specific treatment to such elements. For
instance, the tool can recognize that the TestModelToTestCode artifact is a transforma-
tion rule (as it is stereotyped as TestingTransformation) and then provides users with
the integrated ATL environments for rule creation and edition. It is possible to use
transformations developed outside MoDErNE tool, if they were developed in ATL,
QVT of MOF-Script, by importing their transformation code as a Transformation
artifact.



Autom Softw Eng (2013) 20:427–461 445

Fig. 8 Method Content class diagram example

Fig. 9 Process Editor

Figure 9 illustrates the Process Editor screen divided into four sections. Pane box
(A) presents the process being edited—the Integrated Process—, its breakdown struc-
ture and elements (tasks, roles, workproducts, etc.). In pane (A) we can see two differ-
ent MethodContents: the Middleware Specific ServicesMethodContent, which has el-
ements concerning the development process, and the Model Driven TestMethodCon-
tentForTesting, which comprises the elements regarding the testing process, such as
testing roles (Test Analyst, Test Modeler and Tester) and testing workproducts (Com-



446 Autom Softw Eng (2013) 20:427–461

ponent Test Design, Component Test Case, etc.), as well as certain artifacts related
to it, such as the UML 2.0 Testing profile (U2TP). Panes (B) and (D) correspond to
visual modeling areas in which the user can create and edit process elements through
UML diagrams. Pane (B) illustrates a use case diagram, used to assign responsi-
bilities to the various process roles. In the example shown in Pane (B), a Domain
Analyst is responsible for the Review Generated BP Composition, Decompose Pro-
cess and Transform BP (CIM) to CCA (PIM) process tasks. Pane (D), on the other
hand, contains an activity diagram, which represents the activity flow of one process
iteration. This represents the sequence of activities of the Technology Modeling it-
eration required to generate code from the PSM Model and the application unit test
cases, using ATL Language. It contains two main flows: one comprises Review Gen-
erated PSM and Generate Code tasks regarding the development process; and the
other contains Generate Component Test Design, Generate Component Test Proce-
dures and Generate Component Test Cases tasks, which are testing activities. Panes
(C) and (E) contain option palettes which support the creation of the process models,
instances of the extended SPEM metamodels from Sect. 3.1.

3.3.2 MoDErNE process executor

The first activity to be executed when initiating a new project is to select a process
from the repository. The entire environment is configured according to the process
definition: phases, iterations and tasks are organized in a hierarchical structure ready
to be used. Figure 10 illustrates an Executor screen for the bank application develop-
ment project. It is divided into two panes. Pane (A) contains the process previously
specified in the Editor (Figs. 8 and 9) and selected for the project. In this area, the
project manager can assign roles to other users enabling access control to the tasks.
This will be used to control the collaborative development of the project.

Although all the tasks of the specified process can be visualized by each develop-
ment team member, task execution is individual. Role definition is used to manage the
collaborative project controlling access to each task by each specific role. Different
people may work on the same project at the same time but on different tasks.

Furthermore, the tasks have an icon that indicates whether they are being per-
formed ( ), have already been finished ( ), have not yet started but are ready to
start ( ), or have not started and depend on another task that has not yet finished
( ).

Pane (B) consists of the modeling environment in which the developer can cre-
ate the application models. According to the workproduct stereotype specified for
each task in the process specification, MoDErNE associates and makes the necessary
tool available to support the task performing. For example, in Fig. 10(B), the user
is performing the GenerateComponentTestCase task. This task was specified to pro-
duce a workproduct stereotyped as a TestDesign (as can be seen in Fig. 8), which is
a UMLModel. Therefore, MoDErNE opens a UML class editor for the Transaction-
TestCase class diagram modeling. The UML profiles specified in the process in the
Editor are automatically available to use in the Executor and its stereotypes can be ap-
plied by the developer while the diagrams are being created. U2TP (UML 2.0 Testing
Profile), a profile for system testing, is available in the environment and whenever a



Autom Softw Eng (2013) 20:427–461 447

Fig. 10 Process Executor

testing task is performed it is enabled, allowing users to annotate their models with the
stereotypes of the profile. This feature is possible because an UMLModel workprod-
uct can be associated to a Profile workproduct according to the Core metamodel (see
Fig. 10 popup).

In the Fig. 10 example, unit test cases are being modeled and the user can apply
U2TP defined stereotypes. These test case models can later be transformed into JUnit
test case codes for the JUnit platform.

Figure 11 illustrates MoDErNE’s support for model transformation enactment.
Whenever the performed task were associated to a workproduct stereotyped as a
Transformation, the correct transformation engine is automatically shown to the
user. The example in Fig. 11 exemplifies a MOFScript transformation rule (UML-
ClassTransformation.m2t) to generate test code from test models. The user selects
the previously created input model and then executes the transformation generating
the testing code.

4 Case studies

This section presents our work on the evaluation of our environment through case
studies that have been carried out. Evaluating software process specification and en-
actment is not an easy task due to the complexity of usage scenarios. In general, many
people enact on processes but few of them specify or model a software process. We
have carried out different case studies over recent years in different contexts and sce-
narios using some GQM-based (Goal-Question and Metric) assessment techniques,
except in the first one. For the case studies we establish a main goal, pose some ques-
tions, draw up a scale for questions, answers and metrics concerning the goal. Each



448 Autom Softw Eng (2013) 20:427–461

Fig. 11 MoDErNE’s support for model transformations

case study can encompass one more experiment. After each experiment, a question-
naire is applied. Then the answers are recorded and analyzed. After each experiment
we analyze the artifacts produced in the process specification and enactment tasks.

Table 1 summarizes the four main case studies we carried out. The first one ex-
plored the experience of the specification of an MDD process for the development
of specific middleware services, and in this study we did not use GQM-based assess-
ment as it was performed in our research laboratory. The second case study was the
specification of an MDA process for web-based applications which was performed
together with a company in industry (Sect. 4.2). The third and fourth case studies en-
compassed different kinds of MDD and MDT scenarios: process specification, under-
standing a previously specified process and process enactment using the MoDErNE
environment (Sect. 4.3). Case Studies for Management process context have not been
performed yet as these functionalities are still undergoing validation.

4.1 First and second case studies

As these case studies were detailed in Maciel et al. (2009), this paper gives an
overview in order to support our findings about the proposed tool. The first study
(SC1-S1), the MDA process for middleware services modeling, aims to verify our ap-
proach and tool feasibility. The MDA process goals presented in Maciel et al. (2011)
encompass the specification and implementation of portable specific middleware ser-
vices. The process specification lifecycle comprises four phases: CIM, called Domain



Autom Softw Eng (2013) 20:427–461 449

Table 1 Case studies and scenarios

Case Study Process
Specification

Process
Enactment

Process
Understanding

SC1-S1
√

– –

SC2- S2
√

– –

SC3-S3
√

– –

SC3-S4 –
√

–

SC4-S5 – –
√

SC4-S6 –
√ √

Model, which corresponds to the context in which the service should be applied in-
cluding enterprise information viewpoints; PIM, called Design Model, responsible
for the computational view including services offered and their operations; PSM,
called Operational Model, to add a Technology viewpoint to the specification on a
specific platform; and codification. This process is used in several projects in our
research laboratory, but it was originally described without any standard language.
Tables, illustrations and textual documents were used to represent the process specifi-
cation. An engine was developed to support the automation of model transformations
related to the process (Maciel et al. 2009). However, the difficulties in understanding,
reusing and evolving the process structure and behavior across development teams
became evident. After using the MoDErNE environment the process elements could
be specified through the standard concepts according to SPEM and specialized def-
initions following our Core metamodel (Fig. 4, Sect. 3). Thus, the process became
easier to understand and present to new people interested in the process structure and
behavior. The process also became easier to evolve after these modeling, new testing
and development tasks were added.

The second case study (SC2-S2) was to model a process from a real company
called PRODEB (Data-Processing Company of Bahia State) which was important
to assess the applicability of our approach. This study involved the modeling of the
PRODEB process for the development of web applications using the MDD approach.
PRODEB had been using the AndroMDA tool for a couple of months during the de-
velopment of a web-based application. However, they encountered limitations related
to the tool environment especially because the process definitions (phases, activi-
ties, artifacts, roles, transformations etc.) were not specified and documented. There-
fore, the process knowledge had not been registered so far. Furthermore, as MDD
is an emerging technology not all the professionals were familiar with it. Most of
the PRODEB staff did not understand why they had to stereotype UML elements
or why they had to elaborate some models, which are necessary activities for the
AndroMDA tool. In this context, we worked together with the team of profession-
als from PRODEB for a couple of months to model the PRODEB process using our
approach. At the end of this period, a questionnaire with six questions was applied.

Additionally, in this case study we observed that difficulties in process compre-
hension, mostly related to the execution sequence of activities, were eliminated. At
several moments developers suggested ways to improve the specification of the cur-
rent MDA process. As the process was designed by the professionals from PRODEB



450 Autom Softw Eng (2013) 20:427–461

Table 2 GQM summary for assessing MoDErNE process specification

Goal Question Metric

(G1) Verify the
applicability of the
MoDErNE environment
for process specification.

(Q1.1) Is it possible to clearly
define the sequence of phases?

(M1.1) Degree of ease and
comprehension to define process
phases

(Q1.2) Is it possible to clearly
define the tasks?

(M1.2) Degree of ease and
comprehension to define process
tasks

(Q1.3) Is it possible to clearly
define the roles involved in each
task?

(M1.3) Degree of ease and
comprehension to define process
roles and associate them with tasks

(Q1.4) Is it possible to clearly
define the workproducts and their
(input/output) associations with the
tasks?

(M1.4) Degree of ease and
comprehension to define
workproducts and associate them
with tasks

(Q1.5) Does the MoDErNE tool
support process specification
properly?

(M1.5.1) Degree of effort to put in
the process specification using our
tool

(M1.5.2) Time spent on processes
specification

(M1.5.3) Degree of expected effort
in the next process specification

could better understand their own work and they used our meetings to discuss new
definitions and elements to improve their process. We can therefore conclude that our
approach contributed to the comprehension, evolution, reuse and enactment of the
MDA processes we worked on.

4.2 Third case study

In the third case study, the goal was to evaluate the applicability of the MoDErNE
tool. This case encompasses two different scenarios. The first scenario (SC3-S3) was
to verify MoDErNE Process Editor in relation its support for process specification
and the second was to verify the MoDErNE Process Executor with regard to its sup-
port for process enactment (SC3-S4).

The participants in this study were fourteen graduates working in the industry.
Most of them were systems analysts working for software factories and banks.

First of all, we gave them some lectures about MDD concepts, technologies and
also provided training on our approach and tool totaling 16 hours divided into 4 days
in one week (4 h/day). The questionnaire which was answered individually by each
participant was divided in two parts: the first concerning the MoDErNE Process Edi-
tor regarding process specification and modeling; and the second regarding the MoD-
ErNE Process Executor.

4.2.1 (SC3-S3) assessing the authoring of an MDD process in MoDErNE editor

In the first scenario from the third case study (SC3-S3) we elaborated a different sce-
nario as our goal was also to evaluate the applicability of the MoDErNE environment



Autom Softw Eng (2013) 20:427–461 451

Fig. 12 Answers about the simplicity of defining tasks, roles, workproducts and phases

Fig. 13 (a) Time and (b) Effort spent on process specification

regarding the MDD process specification without our intervention. Then we orga-
nized the students into 4 groups and asked them to specify an MDD process from
their experience at work using the MoDErNE Process Editor. We gave them a dead-
line, but the specification time was not restricted. They had all the time they needed
to organize themselves in their group to do the job and deliver the process. After the
process specification the resulting process models were checked.

After process delivery, we also applied a questionnaire and started analyzing the
process specification. The questionnaire had a total of 15 questions related to the
(GQM) method for the generation of necessary questions and metrics concerning our
initial goals, some of which are detailed in Table 2. A GQM question can be related
to one or more questionnaire answers, while the answer for a question is related to a
GQM metric for a question. For metric measures, the answers have a scale reference
(e.g. some effort, high effort, low effort, etc.). The collected results and our analysis
are presented below.

The following figures show some results from questions regarding tool support
in the MDD process specification. The charts in Figs. 12, 13 and 14 show some
results from the questionnaire. The first one (Fig. 12) presents the answers related to
questions about the simplicity of defining tasks, roles, workproducts and phases, and
is related to questions Q1.1 to Q1.4 from Table 2. The scale for the answer was 5—
Easily, 4—Reasonably, 3—Satisfactorily, but with some difficulty, 2—Inadequate,
1—Could not.

Most of the participants’ answers demonstrated that it was possible to define all
the process elements (Fig. 12), despite many never having worked with the MDD
approach, and some of them not having worked with a previously defined process.



452 Autom Softw Eng (2013) 20:427–461

Fig. 14 Answers about phases and task visualization and understanding

Besides the aspects discussed from the results summarized in the above charts and
from analyzing the process models resulting from the experiment, it was also possible
to observe that all the processes defined by the participants had well-defined model-
ing (CIM, PIM and PSM) and codification phases, including tasks and steps, roles
assignment, associated workproducts and also transformation rules. Therefore, it can
be concluded that our approach and tool enabled process definition with the expected
characteristics of a traditional software process while also adding the peculiarities of
an MDD process.

Figure 13 shows the results regarding adequate support for the MDD processes
specification aspects in MoDErNE (Table 2, Q1.5, M1.5.1 and M1.5.2). To measure
these aspects we asked three questions about the time and effort taken to perform the
process specification tasks.

Figure 13(a) indicates that half of the participants spent less than eight hours in
their group meetings for the process specification, answered by each group member.
Less than a half spent more than eight hours and two participants did not answer the
question. Figure 13(b) indicates that more than half of them considered that it took
little effort while 42 % participants thought it took considerable effort.

Regarding the degree of expected effort in the next process specification (M1.5.3),
most of the participants (93 %) agree that the effort put into the process specification
would not be repeated in the future if they used the MoDErNE environment for spec-
ifying the new process. That is, the time spent learning the approach and tool would
not be repeated. We also should consider that the process definitions in the method
content remain available for reuse. This can possibly reduce time and future effort in
process specifications.

Some participants had difficulty understanding some process definitions as pre-
sented in the tool, however, none of them rated the process comprehension as pre-
sented in the tool negatively. The effort put into the process specification is valuable
but necessary. Most of them classified such effort as reasonable but not enough to
rate it as a negative point. Besides, part of that effort would not be repeated on future
occasions when using the tool.

Considering such aspects as: (i) the training time for both MDD approach and
tool, (ii) students inexperience with process specification tasks, (iii) the resulting pro-
cess models were well formed according to the XMI (XML Metadata Interchange)
format, we can say that MoDErNE facilitated the MDD process specification task in
the experimental scenario.



Autom Softw Eng (2013) 20:427–461 453

Table 3 GQM summary for assessing MoDErNE process enactment

(G2) Verify the applicability
of the MoDErNE tool for
process enactment.

(Q2.1) Is it possible to visualize
and understand the process phases
during the process enactment
supported by the MoDErNE tool?

(M2.1) Degree of comprehension
of process phases during the
process enactment

(Q2.2) Is it possible to visualize
and understand the process tasks
during the process enactment
supported by the MoDErNE tool?

(M2.2) Degree of comprehension
of process tasks during the process
enactment

(Q2.3) Is it possible to clearly
create, edit and visualize the UML
artifacts produced during the
process?

(M2.3) Degree of comprehension
of handling with UML artifacts

(Q2.4) Is it possible to clearly
execute the model-to-model
transformations during the process
enactment?

(M2.4) Degree of comprehension
of executing model-to-model
transformations

(Q2.5) Is it possible to clearly
execute the model-to-code
transformations during the process
enactment?

(M2.5) Degree of comprehension
of executing model-to-code
transformations

(Q2.6) Is the process
representation provided by the
MoDErNE tool during the process
enactment easy to understand?

(M2.6) Degree of comprehension
of the process representation
provided by the MoDErNE tool
during process enactment

(Q2.7) What is your general
impression of the MoDErNE tool
for the process enactment?

(M2.7) Recommendation degree of
the MoDErNE tool for supporting
the processes enactment.

4.2.2 (SC3-S4) assessing a MDD process enactment in the MoDErNE process
executor

In the fourth scenario in the third case study (SC3-S4) our goal was to evaluate the
applicability of the MoDErNE environment regarding the MDD process enactment.
A key point in the MDD process enactment is to produce models according the meta-
model stereotypes and execute the transformations properly. Developers must know
the exact task sequence to generate correct models and code. The case study goal was
to observe MoDErNE’s support for these tasks.

The participants were the same as in the first experiment of the third case study.
In this experiment each one had to enact several tasks (modeling and transformation)
from the MDA process for middleware service modeling to implement services for
a school library management application. These services had to have operations to
support book loans, namely, borrow a book, return a book, apply a fine, include,
delete and update a book. Like in the scenario described in the previous section, the
questionnaire had a total of 15 questions. These questions are related to GQM method
for the generation of necessary questions and metrics concerning our goals, of which
eight are detailed in Table 3. For the first six questions we used the following scale
to rate the questionnaires answers: 5—Easily, 4—Reasonably, 3—Satisfactorily, but
with some difficulty, 2—Inadequate, 1—Could not.



454 Autom Softw Eng (2013) 20:427–461

Fig. 15 Answers about transformation tasks, process representation and general impressions

Figure 14 shows the participants’ answers about process phases and task visualiza-
tion and understanding (Q2.1to Q2.3). Most answered that it was easy and reasonable.
They also answered that it was easy and reasonably easy to perform modeling and
transformation tasks during the process enactment (Fig. 15, Q2.4 through Q2.5). Af-
ter process enactment, the artifacts (models and code) were checked. One participant
failed to generate the models correctly and therefore it was not possible to generate
service code.

Q2.6 (Fig. 15) shows the answers about the MoDErNE process representation.
As explained in Sect. 3, process elements can be visualized through UML diagrams
or breakdown structures. While UML diagrams give more details about tasks and
artifacts, it is easier to find and access process elements in a breakdown structure.

The last question, regarding their general impression of MoDErNE (Q2.7 of
Fig. 15) we used a different scale: 5—Extremely positive, 4—Positive with few re-
strictions, 3—Positive, but with important restrictions, 2—Negative. A few positive
points I could find, 1—Extremely negative. I did not see a positive side. The major-
ity evaluated the MoDErNE tool support for process enactment extremely positively
or positively with some restrictions. Some open answers show that there were some
bugs in the tool presented.

Considering that the participants in the experiment were new to the model-driven
approach and the service models and the code were correct, we can say that MoD-
ErNE facilitated the MDA process enactment tasks in this case study scenario.

4.3 Fourth case study

In this case study we had the largest number of participants: twenty-nine. We set
up a scenario to observe the tool support for a process that used both MDD and
MDT techniques. The case study encompassed two scenarios: (i) one to understand a
process previously specified in the MoDErNE Editor and (ii) the second to enact this
process in the MoDErNE Executor.

The process used in this case study was an abbreviated version of the MDA process
for middleware service modeling in which new tasks to test the service were included.
The new resulting process contained only modeling, transformation and testing tasks.
The specified process contained eight tasks for modeling, implementation and testing
of middleware services, 4 of which were transformation tasks (CIM-PIM, PIM-PSM,
PSM-code, Test Model → Junit). In this case, the domain being modeled was for a
banking application with operations for withdrawal, deposit and bank balances.



Autom Softw Eng (2013) 20:427–461 455

Table 4 GQM summary for assessing MoDErNE process specification

Goal Question Metric

(G3) Verify the understanding
of a previously specified
process in the MoDErNE tool

(Q3.1) Is it possible to clearly
identify the process phases, task
and roles?

(M3.1) Degree of eases and
comprehension regarding process
elements

(Q3.2) Is it possible to clearly
identify the artifacts input and
output?

(M3.2) Degree of ease and
comprehension regarding process
artifacts

(Q3.3) Is it possible to clearly
identify the transformation tasks?

(M3.3) Degree of ease and
comprehension regarding
transformation tasks

(Q3.4) Does MoDErNE Editor tool
support MDD and MDT process
specification properly?

(M3.4.1) Degree of ease and
comprehension regarding the
testing role assessing

(M3.4.2) Degree of ease and
comprehension regarding the
testing and development artifacts

(M3.4.3) Degree of ease and
comprehension regarding the
testing and development tasks and
their sequences

(M3.4.4) Degree of MoDErNE
Editor support regarding the
understanding of a process
specification.

The case study was divided into four moments. Initially a one and a half hour
lecture was given highlighting MoDErNE’s features, showing examples of use. Then,
they had to use the MoDErNE Process Editor, then the MoDErNE Process Executor
and finally they had to answer the questionnaire.

The questionnaire was divided into three parts with a total of 25 questions. The
first part with five questions was designed to identify the participants’ experience and
professional profiles. The other questions were about the metrics established for the
experiment using GQM. The scale for the answer was 5—Easily, 4—Reasonably,
3—Satisfactorily, but with some difficulty, 2—Inadequate, 1—Could not.

The participants were students and staff invited from two different universities: the
Federal University of Bahia (UFBA) and the Federal University of Campina Grande
(UFCG). Regarding the participants’ profile, sixty percent described themselves as
systems analysts with experience from four to six years. Eighty percent already knew
the MDD approach, but had never used it in practice.

4.3.1 (SC4-S5) understanding a process specification through MoDErNE process
editor

In the first scenario in the fourth case study (SC4-s5), participants browsed through
the process specification in the MoDErNE Editor in order to understand the process
elements and task that they would perform later. Soon after the completion of each



456 Autom Softw Eng (2013) 20:427–461

Fig. 16 Answers about process element comprehension

Fig. 17 Answers about implement and testing process elements comprehension

experiment, the participants answered a questionnaire available on the web. Table 4
shows the questions and corresponding metrics.

Figure 16 shows the answers to questions Q3.1 to Q3.3 of Table 4. Although it
was the participants first contact with MoDErNE, they answered that they did not
have difficulty identifying the phase, tasks, roles, workproducts and transformation
rule process elements. As the process mixes both implementation and testing tasks
we wanted to observe if the participants could distinguish the testing tasks from the
others. Figure 17 shows the answers about these aspects (Q3.4 question 4), most
answered that this distinction could be made.

From the answers it can be said that the MoDErNE Editor made the understanding
of the implementation and testing activities in this case study scenario possible. While
they were browsing the process specification some doubts arose, for example, where
to find the button to generate some workflow task diagram. This observation and other
similar ones indicate that we have to improve our graphic interface in order to make
it more user-friendly.

4.3.2 (SC4-S6) assessing testing and development software process tasks through
MoDErNE executor

In this scenario we wanted to observe if, after the process description and brief con-
tact, the participants would be able to perform the assigned tasks. First the partici-
pants should create the CIM model of the application, which contains the withdrawal
business process representation. Then, they should execute the first tasks related to
the transformation chain, making CIM to PIM and PIM to PSM transformations. On
completion of the PIM to PSM transformation, the participants had to execute the first
testing activity which was to create models stereotyped with U2TP to represent the



Autom Softw Eng (2013) 20:427–461 457

Table 5 GQM summary for assessing MoDErNE Process Enactment

Goal Question Metric

(G4) Verify the applicability
of the MoDErNE Executor
module for process enactment
for integrated process.

(Q4.1) Is it possible to follow the
task sequence?

(M4.1) Degree of ease and
comprehension regarding task
sequence

(Q4.2) Is it possible to perform all
the process tasks?

(M4.2) Degree of ease to complete
process task

(Q4.3) Is it possible to clearly
visualize the transformation task
input and output artifacts?

(M4.3) Degree of ease and
comprehension regarding
transformation task artifacts

(Q4.4) Does MoDErNE
environment support MDD and
MDT process enactment properly?

(M4.4.1) impression for process
enactment facilitation

(M4.4.2) Possibility of carrying
out the process without the tool.

Fig. 18 Answers about the processes task enactment

unit test cases, having the PSM model as input. This test case generates the applica-
tion’s unit test case codes for the JUnit platform by a MOFScript transformation rule.
The last task was to generate the application code by applying another MOFScript
transformation to the PSM model which had previously been generated.

In the text we did not detail the MDT technique to adopt in the processes. The
participants performed the modeling tasks, model to model and model to code trans-
formation tasks without our intervention. However, to perform the transformation
testing task a template of a model test artifact was given to the participants. They
had to complete the model with U2TP stereotypes and then had to perform the trans-
formations to generate the test cases for the JUnit platform. After this, they had to
answer the questionnaire presented in Table 5.

Figure 18 shows the answer concerning question Q4.1 to Q4.3 from Table 5. Most
participants could follow the task sequence and performed all the tasks and visual-
ized the artifacts associated to the transformation tasks. Two participants could not
perform all the tasks. One of them reported that they could not perform the testing
tasks. Another could not finish the process specification browsing activity on time,
therefore he did not perform any task. During the process task enactment, some ques-
tions were asked about the correctness of the models. Participants were a little in-
secure about performing transformation tasks without being sure that their models
were correct. The Modeling task has some tool support for UML profile stereotype



458 Autom Softw Eng (2013) 20:427–461

application. If a UML diagram has an associated profile, by clicking the right button
on the mouse one stereotype from a list can be chosen that shows only the stereotype
that could be applied to each UML diagram element. However, developers wanted
to check not only that the diagram was “syntactically correct” but also about its se-
mantic correctness. At the time they were informed that they could see this semantic
correctness after the transformation task, if the output model or code was generated
correctly. However, considering a longer transformation chain, an error in a stereo-
type application could become hard to find.

Regarding their impressions about the process enactment facilitation (M4.4.1)
most of the participants (87 %) agree that MoDErNE tool makes the process exe-
cution easier and 96.7 % of them agree that they would not be able to execute the
process without MoDErNE’s help (M4.4.2). It can be said that this tool supported
MDD and MDT process enactment properly in the case study scenario.

4.4 Lessons learned and study constraints

The MDD approach has been used in our research laboratory in various projects
(Bispo et al. 2010; Maciel et al. 2005; Magalhães et al. 2011). Initially we specified a
process in a completely ad-hoc way, using natural language. After searching, trying
to use and adapt some tools for our process transformation without success, an engine
using the Java language to perform the transformations was developed. Taking into
account our experience in the specification and use of MDD processes and studies
that indicate the need for adequate processes and tools as a key point to facilitate the
use of MDD, MoDErNE was proposed and developed.

The case studies were designed to evaluate specific aspects of model-driven devel-
opment using MoDErNE: (i) specification and enactment of a process, (ii) integration
and use of different strategies for testing and model driven languages and transfor-
mation engines, (iii) understanding of a process previously specified.

The first three case studies performed showed positive results in the specification
and implementation of model-driven processes while the fourth shows positive results
regarding process understanding using MoDErNE tool. Process enactment, evaluated
in the third and fourth case studies also achieved positive results. It is important to
highlight that the fourth case study proposed scenario is related to the integration
of two different strategies in the same process. Despite this, the participants could
understand the process, distinguished development and testing activities as well as
executing them.

Empirical assessment usually takes into account the amount of data collected from
the subjects. However, in the case of an activity of process specification it is difficult
to involve a high number of people in the experiments. There are few professionals in
organizations involved in this kind of task. In general, many people enact on processes
but few specify or model a software process. This observation has already been iden-
tified in our previous studies and it is also confirmed here. Empirical assessment in
this area facilitates more qualitative analysis than quantitative analysis. Therefore, in
the assessment of the process enactment it is easier to collect larger amounts of data,
facilitating better quantitative analysis in contrast with assessing process specifica-
tion. Furthermore, in real scenarios developers perform specific tasks (requirement



Autom Softw Eng (2013) 20:427–461 459

elicitation, programming, testing, etc.) in a software process, few are involved in dif-
ferent types of tasks. In addition, the MDT and MDD approaches require skills not
yet required in traditional process software.

Additionally, metrics to assess the process enactment are more mature in the liter-
ature and are also easier to apply in the software industry, such as metrics to evaluate
productivity and cost. Nevertheless, metrics to assess process modeling and specifi-
cation (apart from its enactment) need to be better developed in software engineering.

We should also highlight that the conclusions obtained from our studies are re-
stricted to the particular set of participants. In other words, our analysis regarding
the advantages and drawbacks of using our approach and tool may not be directly
generalized to other contexts. However, these studies have allowed us to make useful
assessments about whether the specification and enactment of MDD processes with
a supporting tool is worth studying further. In addition, the studies have also allowed
us to make a useful evaluation of the applicability of the MoDErNE tool concerning
the specification and enactment of MDD processes, and this can be a starting point
for other assessments.

5 Conclusion

This paper presented MoDErNE, an environment that supports software process mod-
eling and enactment based on SPEM 2 concepts for the MDD approach. In MoD-
ErNE, the software process should be specified as an instance of metamodels that
describes software process elements that make MDD and MDT concepts explicit.
MoDErNE possesses several tools to support different kinds of activities in the MDD
and MDT process context. The MDD requires some developer skills, which are not
yet widely used in traditional software processes (metamodeling, transformations,
etc.). Supporting tools play an important part in establishing MDD use in industry on
a wider scale.

In MoDErNE, once a process is specified, it may be used in development appli-
cation projects. Different methods and techniques can be specified and integrated
into a single process description and then customized to its own needs. Using our
environment the software process specification has the same conceptual and nota-
tional framework. The proposed metamodels become a point of convergence for
process integration, specification and enactment. This facilitates the understanding
of models both by development teams and by software process automation ap-
proaches.

Using MDD and process-centered software engineering concepts in a com-
bined way can help software process systematization and automation. In this sce-
nario, we expect that software processes can be used as a software themselves.
As software, it has a specification and automated support for performing tasks. Fi-
nal users (developers) can run these tasks several times, at different moments to
achieve business process goals, which in this context is an application develop-
ment.

Although the management metamodel is integrated in the environment, its func-
tionalities are under validation and it was not possible to include them in the recent



460 Autom Softw Eng (2013) 20:427–461

case studies. Several case studies were performed and it was possible to verify the
applicability of our environment. As future work, we are planning to conduct case
studies with different software processes proposed in the literature, broadening the
scope of evaluation for different MDD approaches.

Acknowledgement This work is partially funded by FAPESB, project number 5156/2008, and grant
number PES0091/2008.

References

Ambriola, V., Conradi, R., Fuggetta, A.: Assessing process-centered software engineering environments.
ACM Trans. Softw. Eng. Methodol., 283–328 (1997)

Arbaoui, S., et al.: A comparative review of process-centered software engineering environments. Ann.
Softw. Eng. 14 (2002)

Atkinson, C., Paech, B., Reinhold, J., Sander, T.: Developing and applying component-based model-driven
architectures in KobrA. In: Enterprise Distributed Object Computing Conference (EDOC ’01) (2001)

Baker, P., Dai, Z., Grabowski, J., Haugen, O., Schieferdecker, I., Williams, C.: Model-Driven Testing:
Using UML Testing Profile. Springer, New York (2007)

Bispo, C.P., Maciel, R.S.P., David, J., Ribeiro, I., Conceição, R.: Applying a model-driven process for a
collaborative service-oriented architecture. In: Proceedings of the 14th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), 2010, vol. 1, Shangai, pp. 378–383
(2010)

Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.: A test generation solution to automate software
testing. In: Proc. of the 3rd International Workshop on Automation of Software Test, pp. 45–48
(2008)

Cass, A.G., Lerner, B.S., Sutton, S.M., McCall, E.K., Wise, A., Osterweil, L.J.: Little-JIL/Juliette: a pro-
cess definition language and interpreter. In: Proceedings of the 22nd International Conference on
Software Engineering, Limerick, Ireland (2000)

da Silva, B.C., Magalhães, A.P., Maciel, R.S.P., Martins, N., Nogueira, L.: Transforms: Um Ambiente de
Apoio a Modelagem e Execução de Processos de Software Dirigido por Modelos. In: XXIII Brazilian
Symposium on Software Engineering, Tools Session, Fortaleza, Brazil (2009)

Engels, G., Schäfer, W., Balzer, R., Gruhn, V.: Process-centered software engineering environments: aca-
demic and industrial perspectives. In: Proceedings of the 23rd International Conference on Software
Engineering (ICSE ’01), pp. 671–673. IEEE Computer Society, Washington (2001)

France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap. In: Proceed-
ings of Future of Software 2007 (FOSE’07), pp. 35–54 (2007)

Gomes, R., Maciel, R., Silva, B., Silva, F., Magalhães, A.: MoDErNE: model driven process centered
software engineering environment. In: Proceedings of CBSoft 2011—II Brazilian Conference on
Software: Theory and Practice, Tools Session 2011, São Paulo, Brazil (2011)

Gruhn, V.: Process-centered software engineering environments, a brief history and future challenges. Ann.
Softw. Eng. 14(1–4), 63–382 (2002)

Guelfi, N., et al.: DRIP catalyst: an MDE/MDA method for fault-tolerant distributed software families
development. In: OOPSLA Workshop on Best Practices for Model Driven Software Development,
Canada (2003)

Hartmann, J., Vieira, M., Axel Ruder, H.: UML-based test generation and execution. White paper, Siemens
Corporate Research (2004)

Humprey, W., Kelner, M.: Software modeling: principles of entity process models. SEI Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania (CMU/SEI-89-TR-2) (1989)

Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices in industry. In: Proceed-
ings of the 33rd International Conference on Software Engineering (ICSE ’11), Waikiki, Honolulu,
pp. 633–642 (2011a)

Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of MDE in industry.
In: Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11), Waikiki,
Honolulu, HI, USA, pp. 471–480 (2011b)

IEEE: IEEE Standard for Software and System Test Documentation. IEEE Std 829-2008, IEEE Computer
Society (2008)



Autom Softw Eng (2013) 20:427–461 461

Javed, A., Strooper, P., Watson, G.: Automated generation of test cases using modeldriven architecture. In:
Proc. of the ICSE 2nd International Workshop on Automation of Software Test (AST) (2007)

Koch, N.: Transformation techniques in the model-driven development process of UWE. In: Workshop
Proc. of the 6th Intl. Conference on Web Engineering, ICWE ’06, Palo Alto, California, vol. 155.
ACM, New York (2006)

Lima, A., et al.: Gerência Flexível de Processos de Software com o Ambiente WebAPSEE. In: 20th Brazil-
ian Symp. on Software Eng, Florianópolis, Brasil (2006)

Maciel, R.S.P., Rosa, N.S., Ferraz, C.G.: InterDoc: reference architecture for interoperable services in
collaborative writing environments. In: 9th International Conference on Computer Supported Coop-
erative Work in Design (CSCWD 2005), vol. 1, Coventry, pp. 289–295 (2005)

Maciel, R., Silva, B.C., Mascarenhas, L.A.: An Edoc-based approach for specific middleware services
development. In: Proc. 4th Workshop on MBD of Computer Based Systems, Postdam, Germany,
p:135–143. IEEE Press, New York (2006)

Maciel, R., Silva, B., Magalhães, A., Rosa, N.: An integrated approach for model driven process model-
ing and enactment. In: XXIII Software Engineering Brazilian Symp, Fortaleza, Brazil, pp. 104–114
(2009)

Maciel, R., Gomes, R., Silva, B.: On the use of model-driven test process specification and enactment by
metamodelling foundation. In: Proceedings of IADIS International Conference Applied Computing,
Rio de Janeiro, vol. i, pp. 51–58 (2011)

Magalhães, A.P., David, J.M.N., Maciel, R.S.P., da Silva, B.C., Silva, F.A.: Modden: an integrated ap-
proach for model driven development and software product line processes. In: V Brazilian Sympo-
sium on Software Components, Architectures and Reuse (SBCARS 2011), Sao Paulo, pp. 21–30
(2011)

Matinnejad, R., Ramsin, R., An analytical review of process-centered software engineering environments.
In: Proceedings of IEEE 19th International Conference and Workshops on Engineering of Computer-
Based Systems, pp. 64–73 (2012)

Mingsong, C., Xiaokang, Q., Xuandong, L.: Automatic test case generation for UML activity diagrams.
In: Proc. of the International Workshop on Automation of Software Test, pp. 2–8 (2006)

Mohagheghi, P., Dehlen, V.: Where is the proof?—a review of experiences from applying MDE in industry.
In: Proceedings of the 4th European Conference on Model Driven Architecture, ECMDA-FA ’08,
pp. 432–443. Springer, Berlin (2008)

Montoni, M., et al.: Taba workstation: supporting software process deployment based on CMMI and MR-
MPS.BR. In: Product-Focused Software Process Improvement. LNCS, pp. 249–262. Springer, Berlin
(2006)

Mussa, M., Ouchani, S., Sammane, W., Hamou-Lhadj, A.: A survey of model-driven testing techniques.
In: Ninth International Conference on Quality Software, pp. 167–172 (2009)

OMG: MDA Guide. Version 1.0.1 (omg/2003-06-01) (2003)
OMG: UML 2.0 Testing Profile, Final Adopted Specification. Version 1.0, July (2005). Available at:

http://www.omg.org/spec/UTP/1.0/IEEE2008
OMG: Software Process Engineering Metamodel Specification, Version 2.0 (2008)
OpenUP Component—MDD (2008). Available at: http://www.eclipse.org/epf/openup_component/mdd.

php
PMI: A Guide to the Project Management Body of Knowledge, 4th edn. Project Management Institute

(PMI), Newtown Square (2008)
Samba, D., Lbath, R., Coulette, B.: Specification and implementation of SPEM4MDE, a metamodel for

MDE software processes. In: Proceedings of the 23rd International Conference on Software Engi-
neering Knowledge Engineering (SEKE’2011), Miami Beach, pp. 646–653 (2011)

Wang, H., Zhang, D.: MDA-based development of e-learning system. In: Proc. 27th International Com-
puter Software and Applications Conference, Texas, California p. 684. IEEE Press, New York (2003)

Weber, S., Emrich, A., Broschart, J., Ras, E., Ünalan, Ö.: Supporting software development teams with a
semantic process and artifact-oriented collaboration environment. In: Proc. SOFTEAM’09 (2009)

Yuan, Q., Wu, J., Liu, C., Zhang, Z.: A model driven approach toward business process test case generation.
In: Proc. of the 10th International Symposium on Web Site Evolution (WSE), pp. 41–44 (2008)

Zamli, K.Z., Mat Isa, N.A., Khamis, N.: The design and implementation of the VRPML support environ-
ments. Malays. J. Comput. Sci. 18(1), 57–69 (2005)

http://www.omg.org/spec/UTP/1.0/IEEE2008
http://www.eclipse.org/epf/openup_component/mdd.php
http://www.eclipse.org/epf/openup_component/mdd.php

	Supporting model-driven development using a process-centered software engineering environment
	Abstract
	Introduction
	Related work
	Processes and methodologies for MDD
	Languages and tools for model transformation

	MoDErNE
	MoDErNE's metamodels
	Core metamodel
	Metamodel for testing
	Metamodel for process management

	MoDErNE's architecture
	MoDErNE modules
	MoDErNE process editor
	MoDErNE process executor


	Case studies
	First and second case studies
	Third case study
	(SC3-S3) assessing the authoring of an MDD process in MoDErNE editor
	(SC3-S4) assessing a MDD process enactment in the MoDErNE process executor

	Fourth case study
	(SC4-S5) understanding a process specification through MoDErNE process editor
	(SC4-S6) assessing testing and development software process tasks through MoDErNE executor

	Lessons learned and study constraints

	Conclusion
	Acknowledgement
	References


