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Abstract Test case prioritisation aims at finding an ordering which enhances a cer-
tain property of an ordered test suite. Traditional techniques rely on the availability of
code or a specification of the program under test. We propose to use string distances
on the text of test cases for their comparison and elaborate a prioritisation algorithm.
Such a prioritisation does not require code or a specification and can be useful for
initial testing and in cases when code is difficult to instrument. In this paper, we also
report on experiments performed on the “Siemens Test Suite”, where the proposed
prioritisation technique was compared with random permutations and four classical
string distance metrics were evaluated. The obtained results, confirmed by a statisti-
cal analysis, indicate that prioritisation based on string distances is more efficient in
finding defects than random ordering of the test suite: the test suites prioritized using
string distances are more efficient in detecting the strongest mutants, and, on average,
have a better APFD than randomly ordered test suites. The results suggest that string
distances can be used for prioritisation purposes, and Manhattan distance could be
the best choice.
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1 Introduction

For industrial size software applications, test suites usually include thousands of test
cases, and their execution can take several hours or even days. As an example, con-
sider a test suite for the Jonas J2EE middleware with 2689 test cases (Kessis et al.
2005). When applied to all 16 configurations of the middleware, it results in running
more than 43,000 test cases. The cost associated with a large test suite is essential and
to reduce it one has to achieve testing goals as early as possible, e.g., using a smallest
possible part of the test suite.

Test suite reduction (Harrold et al. 1993) is a technique for selecting a subset of
a given test suite, which shares a common characteristic with the full test suite. If
this characteristic is related, e.g., to code coverage and thus to fault detection power
then the same defects could be detected using fewer resources. The main risk of test
suite reduction is to lose useful test cases. Several experiments have been reported
in the literature, and they come to diverging conclusions. In Rothermel et al. (1998),
experiments indicate that test suite reduction may compromise fault detection. But
Wong in Wong et al. (1999) uses different case studies and does not notice significant
fault detection loss in reduced test suites. More recently, Heimdahl stated significant
fault-finding loss in other experiments (Heimdahl and Devaraj 2007).

Test case prioritisation (Rothermel et al. 2001) has similar motivations. It aims at
finding an ordering of test cases that maximizes the value of a fitness function which
reflects a certain testing goal, e.g., the number of detected bugs or code coverage.
Compared to test suite reduction, test case prioritisation appears to be safer, at least
from the fault detection viewpoint, since it does not discard test cases and simply
permutes them.

Both, reduction and prioritisation, techniques must be able to differentiate test
cases. If two test cases are found to be similar in some sense, one of them should be
discarded reducing a test suite or receive a lower priority when test cases are priori-
tized. Indeed, once one of them has been executed the chances that the second will,
e.g., reveal new errors may not be high. Several existing reduction and prioritisation
techniques are based on the availability of the code of a program under test. Execution
of the program under test is required to gather information, such as code coverage or
execution time, which is then used to remove or prioritize test cases.

In the approach proposed in this paper, the differentiation of test cases relies on
a sole basis of the text of the test cases, without exploiting knowledge about the
program under test. The text of the test cases corresponds either to the input data,
i.e. the values of the input parameters, or to the source code of the test cases, e.g.
in JUnit test cases. The approach addresses a wide class of applications for which
test cases can be treated as character strings. In fact, in many situations, it is easy
to transform test inputs into strings, as they are just a vector of values assigned to
input parameters. Such inputs have a textual representation which corresponds to a
(possibly long) string of characters. In the case of, e.g., JUnit test suites, test cases
take the form of a sequence of instructions encapsulated into a procedure or method.
Similarly, the text of such a procedure can be viewed as a string of characters. The
basic idea of prioritizing test cases is to assign high priority to a test case which
is most different compared to those already prioritized. The diversity of test cases
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represented as strings is assessed using the existing string distance metrics. To the
best of our knowledge, such an approach has not yet been experimentally assessed
for the purpose of test suite prioritisation.

This approach has several advantages, since the differentiation of test cases neither
relies on test execution nor requires a reference model or program under test. In this
sense the proposed approach is “minimal”: the only required information is already
encoded in the test suite.

The proposed approach relies on the hypothesis that test diversity enhances the
fault detection capability of tests and thus a string distance is a reasonable measure
of their diversity. If this is the case then a prioritisation algorithm which orders tests
according to the distances would increase the ability of the test suite to rapidly find
defects. A close approach is suggested in the area of protocol testing (Kovács et al.
2009). Unlike (Kovács et al. 2009), our metric is defined on inputs only, the expected
outputs are ignored. We choose not to consider outputs in our metric because they are
not always included in the test suite and their computation often requires executing
the test suite. This goes beyond our minimal approach relying only on the text of
the test suite. Nevertheless, in cases when the outputs are included in the text of the
test cases, e.g. using “Assert” statements in JUnit, our approach will take them into
account.

Since validation of the above hypothesis seems crucial for the proposed approach,
we report on experiments which compared the defect detection capabilities of test
suites prioritized on the basis of a string distance with random permutations. The
experiments used the Siemens programs (also known as “the Siemens Test Suite”)
(Hutchins et al. 1994) which constitute a standard benchmark for a prioritisation al-
gorithm. Since our algorithm can be parameterized by a chosen string distance, we
evaluated the algorithm using four standard distances. In particular, we present a rig-
orous experimental evaluation which includes statistical analyses (ANOVA analysis
and Tukey’s test) for assessing various experimental conditions. A preliminary report
on this work can be found in Ledru et al. (2009).

The remainder of the paper is organized as follows. Section 2 summarizes the
related work on prioritisation techniques, as well as on anti-random and adaptive
random testing which influenced this work. Section 3 presents four classical string
distances and discusses their application in test case comparison. In Sect. 4, a test
case prioritisation algorithm employing these distances is presented and illustrated on
a small example. Section 5 reports on our experimental comparison of the proposed
algorithm with a random prioritisation method using the Siemens Test Suite. Finally,
Sect. 6 draws the conclusions of this work.

2 Related work

In Rothermel et al. (2001), the prioritisation problem is defined as follows:

Given T , a test suite,
PT , the set of permutations P of T ,
f , a fitness function from PT to the real numbers,
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Find P ∈ PT such that

∀ P ′ ∈ PT | P ′ �= P · f (P ) ≥ f (P ′)

In other words, the goal is to find a permutation of the original test suite which max-
imizes a fitness function f . Prioritization is often considered in the context of re-
gression testing, when measurements of, e.g., code coverage can be performed on an
executable version of the program under test. It also relies on the assumption that
tests may be executed in any order, which allows to permute them.

Several prioritisation algorithms have been proposed, mainly based on code cov-
erage information (Wong et al. 1997; Rothermel et al. 2001; Elbaum et al. 2002;
Srivastava and Thiagarajan 2002; Jones and Harrold 2003; Li et al. 2007) or other
run-time information such as call trees (Smith et al. 2007). Several works rely
on formal specifications (Vuong and Alilovic-Curgus 1992; Kovács et al. 2009;
Feijs et al. 2002), unfortunately such specifications are rarely available, except per-
haps for safety critical and telecommunication domains. In Kovács et al. (2009) SDL
specifications are used mainly to extract names of signals; however experiments are
limited to two simple protocols. Recent work (Walcott et al. 2006) also takes into
account the execution time of each test case. Although code-based prioritisation re-
mains mainstream, Srikanth and Williams (Srikanth et al. 2005) rely only on the
traceability between test cases and requirements. Each requirement is evaluated based
on its risk to correspond to severe defects and its value for the customer; tests are
prioritized on their coverage of the most valuable or the most risky requirements. Pri-
oritization can also be applied to order the configurations in which test suites will be
run (Qu et al. 2008). In a similar way as for test suites, prioritisation of configurations
can be based either on run-time information or on links with specifications.

Test suite reduction or minimization is a related problem where one wants to select
a subset of the original test suite with similar properties as the full test suite. Although
many works rely on the availability of code coverage information (Harrold et al. 1993;
Jones and Harrold 2003), some other works do not require a code; they are based on
coverage of a specification of the program under test (Heimdahl and Devaraj 2007),
or coverage of the input syntax (Hennessy and Power 2005).

Unlike these works, our approach does not rely on availability of the code, its
specification or reference model, or even an input grammar. One may expect our ap-
proach to be more appropriate for initial testing and when code-based prioritisation is
not possible, especially when instrumentation of the code is too costly or impossible,
e.g., in case of testing distributed web applications.

A similar objective is pursued by H. Hemmati and his colleagues (Hemmati et al.
2010) who propose a test suite reduction algorithm based on the similarity of test
cases. Their study concludes that “Test cases that find the same faults tend to be
more similar to each other than with other test cases”, and that “test cases that find
different faults tend to be more different from each other than test cases that find the
same faults”. Unlike our work, they rely on a specific form of input data expressed
as sequences of guards or triggers. In this paper we propose an alternate and more
general way of measuring test case diversity, using standard string distances.

This work has also been influenced by the ideas of “anti-random testing” (Malaiya
1995; Yin et al. 1997) and “adaptive random testing” (Chen et al. 2004). The anti-
random testing approach (Malaiya 1995; Yin et al. 1997) aims at building a test suite
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by constructing new test cases which are the most distant possible from existing ones.
The idea of adaptive random testing comes from the work of Chen et al. (2004), based
on observations of Chan et al. (1996) that errors in software are usually clustered
and follow several “failure patterns”. Based on these observations Chen proposes
several improvements in random generation techniques. The basic idea is that if some
randomly generated test cases did not reveal an error, the next test case should not
be too close to any of the applied test cases. Actually, since errors are clustered,
each test case can be considered as a representative of its clustered neighborhood.
Based on this initial idea, a variety of techniques have been proposed (Mayer and
Schneckenburger 2006).

Adaptive random testing mainly applies to numerical programs, where input is
usually an n-dimensional vector of real numbers. It is difficult to adapt this approach
to non-numerical software, where input is less uniform than real numbers, and a dis-
tance between test cases is more difficult to determine. Our approach addresses these
problems, first, by using string distances to compare test inputs. These test inputs can
be numerical or not, or even mix numbers and non-numbers. Both numbers and non-
numbers are treated as text. Then, unlike anti-random and adaptive random testing,
which are generative approaches, it starts with an existing test suite and selects from
it test cases, one by one, which are most distant from the already selected ones. Since
inputs are available, we do not face the problem of constructing data satisfying some
distance constraints.

Anti-random strategies are applied in Jiang et al. (2009) to coverage based prioriti-
sation. Namely these results show that a pure coverage based prioritisation technique
is comparable with prioritisation techniques based on the Jaccard string distance on
the execution path, though for larger programs the level of detail of code coverage is
less important. Also this work evaluates several distances from a test case to a set of
test cases, based on the average, minimal, and maximal distance between the former
test case and the elements of the set. As a result, it recommends the usage of minimal
distance, and we use it in this paper. Unlike Jiang et al. (2009), Ramanathan et al.
(2008) evaluate two different approaches to prioritisation, a greedy and spectral one
and finds these approaches comparable on average, though in a few cases, a more
sophisticated spectral algorithm produces noticeably better results. Differently from
Ramanathan et al. (2008), Jiang et al. (2009), where only one string distance is used,
we evaluate four string distances, namely Cartesian and Manhattan distances along
with simple edit Hamming and Levenshtein distances.

3 Distances

3.1 Hamming distance

Hamming distance (Hamming 1950) is originally proposed to compare two se-
quences of bits of equal length. It computes the number of bits different in the two
sequences. For example, “1010” and “1001” are at a distance of 2, because two bits
differ. It can also be adapted to sequences of characters of the same length: “abcd” and
“abab” differ in the last two characters and have a distance of 2. Hamming distance
is easy to compute by a single pass on both sequences.
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In order to apply this distance to arbitrary test inputs, they should have the same
length. A simple way of achieving this is to complete the smallest string by a suffix
where each character is different from the corresponding character in the larger string.
For example, the distance between “ab” and “abcde” is computed by first completing
the smallest vector “abxxx” (where ‘x’ stands for char(0)) and then measuring
Hamming distance, which becomes 3.

3.2 Levenshtein or Edit distance

Hamming distance is not robust to insertions of characters within a string. For exam-
ple, the distance between “Y. Ledru” and “Yves Ledru” is 9, because the additional
characters of the first name shift the last name in the string. Levenshtein introduces
a distance that computes the smallest number of edit operations needed to transform
one string into another (Levenshtein 1965, 1966). Edit operations correspond to re-
placement, insertion or deletion of characters. In our example, the “.” has been re-
placed by “v” and “es” have been inserted. This gives a distance of 3 between those
strings.

Levenshtein distance applies to strings of different lengths. It is widely used in
text processing applications such as spell-checkers. Levenshtein also proposes an al-
gorithm to compute the distance, whose cost, both in time and memory, is O(m ∗ n)
where m and n are the lengths of the two strings.

3.3 Cartesian and Manhattan distances

A string of size n can be seen as a vector of characters in an n-dimensional space,
and characters can be associated to their ASCII code (or any other numerical coding).
It is thus possible to compute the classical distances in an n-dimensional space, like
Cartesian and Manhattan distances:

√
√
√
√

n
∑

i=1

(xi − yi)2 Cartesian or Euclidean distance

n
∑

i=1

|xi − yi | Manhattan distance

where x and y are the strings to compare. Similar to Hamming distance, when strings
have different lengths, the shortest one is filled with char(0).

For example the distances between “ab” and “cde” are1:
√

(99 − 97)2 + (100 − 98)2 + (101 − 0)2 = √
10209 = 101,04 (Cartesian)

|99 − 97| + |100 − 98| + |101 − 0| = 105 (Manhattan)

This example shows that the cost of insertion is rather high with these distances, e.g.,
each additional lowercase adds at least the offset of ‘a’, i.e., 97, to the distance.

1ASCII codes for a, b, c, d, e are 97, 98, 99, 100, 101 respectively.
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3.4 Caveats associated with string distances

String distances are based only on lexicographic information and do not capture the
semantics of the test cases. As a result, two test cases may be considered as distant
although they are not. Let us consider several simple examples.

The distance (Hamming or Edit) between “999” and “1000” is 4, while the dis-
tance between “1000” and “9000” is only 1. This shows that string distances do not
necessarily correspond to numerical distances. As a result, prioritisation of test cases
may sometimes appear counter-intuitive.

Given a sort algorithm, the distance (Hamming or Edit) between “sort(“1 2 3 4
5”)” and “sort(“20 40 60 80 100”)” is 11 (Edit) or 16 (Hamming). But both test cases
correspond to the same execution path, i.e. they sort a sequence of 5 elements given
in an ascending order. So they are semantically close, but this fact is ignored by a
string distance.

It is also often the case that two test cases, aimed at exercising very different fea-
tures of the system under test, have very close texts, as in the following examples.
Test cases for a square root program may well include “sqrt(1)” and “sqrt(-1)” which
correspond to completely different execution paths (the latter should raise an excep-
tion), but have a small Edit distance, 1.

Often a number of test cases have a common prefix, that leads a system into a
given state and then they exercise various features in that state. For example, the test
of an ATM may include test cases like “insert_card(); type_correct_pin(); debit(100)”
and “insert_card(); type_ correct_pin(); view_balance()” which differ only in the last
method call. Their Edit distance is 11 which may appear small compared to their
string lengths of 45 and 49.

The above examples indicate that string distances should be used with caution, as
for some classes of applications they may lead to unexpected conclusions. Neverthe-
less, they may well turn out to be useful for other types of applications. For example,
all distances identify two inputs differing only by one character and strings of dif-
ferent lengths. Also, Edit distance can find common substrings in two inputs. When
source code of test cases is considered, Edit distance detects common sequences of
instructions, and all distances can detect common prefixes.

In the absence of decisive empirical data, it is important to perform experiments
to assess the applicability of string distances for test prioritisation and minimization.
In this paper, we report results which shed some light on this issue.

4 Prioritization technique

4.1 Fitness function and algorithm

We propose a fitness function which is based on a distance between each test case
and the set of the preceding test cases in the test suite.

We generalize the notion of distance between two strings to the distance between
a test case t and a set of test cases T ′. Following (Jiang et al. 2009)’s conclusion that
minimal distance to the set is the most efficient, we define this distance measure as
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the distance between t and the closest element of set T ′. The distance between a test
case t and a set of test cases T ′ uses distance measure d between two test cases and
is defined as follows:

dd(t, T ′) = min{d(t, ti)|ti ∈ T ′ and ti �= t}
Our fitness function is then defined as the sum of distances between each test case

and the set of preceding test cases in a given permutation P = t1, . . . , tn of the test
suite T :

f (P ) =
n

∑

i=1

dd(ti , Ti−1) where

Ti−1 = T for i = 1 and

Ti−1 = {t1, . . . , ti−1} for i ≥ 2

Rather than aiming at finding a permutation of test cases which corresponds to a
maximum value of the fitness function, we opt for a greedy algorithm, which, at each
iteration, chooses a test case which is the most distant from the set of already ordered
test cases. When several elements are equidistant from this set, any of them may be
chosen. In the proposed algorithm the first element occurring in a given test suite is
chosen. One could also choose randomly between the equidistant elements.

Greedy algorithms are prone to the local maximum problem often resulting in a
suboptimal solution; however the exact solution is often computationally difficult.
The problem of maximizing the above fitness function (also known as a Minimum
Similarity Ordering problem) is NP-hard (Ramanathan et al. 2008), since its special
case is a well-known NP-hard graph problem, the Minimum Linear Arrangement
Problem (MinLA). MinLA is approximately within O(log n) and even within some-
what better (Charikar et al. 2006), however, the known approximation algorithms
still do not scale well. Thus, in practice the problem is usually solved using heuris-
tic search techniques, such as greedy, spectral, and simulated annealing, of which
the latter scales worst, but yields the best results. One of the simplest heuristic algo-
rithms is a greedy algorithm. The greedy algorithms are known to produce a good
solution on some problems, but not on others. For the purpose of prioritisation the
greedy algorithms perform quite well, on average on par with more sophisticated and
computationally expensive spectral algorithms, though in “the worst-case” situations
(when a local maximum significantly differs from a global one) they might result in
a significantly inferior solution (Ramanathan et al. 2008).

Given a test suite T , the following algorithm computes a prioritisation as a se-
quence P .

Compute the distances for each pair of test cases in T
Remove duplicates from T
Find an element t ∈ T with the maximum distance dd(t, T ),

T := T \ {t}, P := t
While T is not empty

Find an element t ∈ T with the maximum distance dd(t,P ),
T := T \ {t}, P := P.t (t is appended to the sequence)

Append duplicates to P
return P



Autom Softw Eng (2012) 19:65–95 73

As mentioned above, we consider a test suite as a set of test cases. Actually, it is
often a bag (multiset), i.e., some tests are duplicated. This may occur due to errors
in the generation process: the tool or the tester came twice to the same result. But
it may also be intentional: replicating a test case gives it a bigger weight in the test
suite and can, for example, increase the chance of choosing it in a random selection
process. Our algorithm identifies a duplicate by its zero distance to a preceding test
case in the suite, and removes it from the test suite. Once the test suite has been
prioritized, duplicates are appended to the resulting test suite to obtain a permutation
of the original test suite.

The most expensive operation of the algorithm is the computation of distances
between all test cases which are then used to choose a test case most distant from
already ordered test cases. The complexity of the algorithm is O(n2) where n is the
size of the test suite. We have implemented this algorithm in Java for each of the four
distances mentioned in Sect. 3. The experimental results in Sect. 5.4 indicate that
its execution on the largest suite which includes 5542 test cases takes only 16 to 26
seconds, for Hamming, Manhattan and Cartesian distances, but 38 minutes for Edit
Distance.

4.2 Example

To illustrate the proposed algorithm, we use an implementation of the Caesar cipher.
The Caesar cipher encodes a message by shifting its letters by a fixed number of
characters. For example “abc” with a shift of 3 becomes “def”. In our implementation,
we only apply the cipher to the 26 lowercase and uppercase letters of the alphabet.
The remaining characters keep their initial value. Moreover, the shift is performed
circularly over the lowercase and uppercase letters, so that each letter remains a letter
in the encrypted message (e.g. see test t3 in Table 1). Table 1 gives the 7 test cases of
our test suite and the expected outputs.

The first step of the algorithm computes all the distances between test cases. The
two parameters (input string and shift) are concatenated, separated by a white space,
into a single string before computing the distances between these strings. Table 2
gives a table for each of the distances (Cartesian, Edit, Hamming, Manhattan). For
example Hamming distance between t1 (“abc 1”) and t2 (“abc.xyz −1”) is equal
to 7, because the last seven characters of t2 differ from the corresponding characters
in t1.

Table 1 The test suite for the
Caesar cipher Test case Input string Shift Output string

t1 abc 1 bcd

t2 abc.xyz −1 zab.wxy

t3 a.Z 27 b.A

t4 AaZz 0 AaZz

t5 xyz 1 yza

t6 ééé 4 ééé

t7 a..z:A..Z 1234567 j..i:J..I
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Table 2 Distance arrays of the Caesar cipher example for each string distance

t1 t2 t3 t4 t5 t6 t7

Cartesian distance—C

t1 0.0 200.53 76.23 108.62 39.84 209.6 224.12

t2 200.53 0.0 180.47 200.72 204.45 289.34 213.33

t3 76.23 180.47 0.0 109.99 101.01 186.97 206.18

t4 108.62 200.72 109.99 0.0 123.77 213.82 197.07

t5 39.84 204.45 101.01 123.77 0.0 249.44 238.01

t6 209.6 289.34 186.97 213.82 249.44 0.0 261.91

t7 224.12 213.33 206.18 197.07 238.01 261.91 0.0

Edit/Levenshtein distance—E

t1 0 5 4 4 3 4 14

t2 5 0 7 8 5 9 15

t3 4 7 0 5 5 5 11

t4 4 8 5 0 4 5 15

t5 3 5 5 4 0 4 14

t6 4 9 5 5 4 0 15

t7 14 15 11 15 14 15 0

Hamming distance—H

t1 0 7 4 6 3 4 16

t2 7 0 9 10 10 10 16

t3 4 9 0 5 5 5 15

t4 6 10 5 0 6 6 16

t5 3 10 5 6 0 4 17

t6 4 10 5 6 4 0 17

t7 16 16 15 16 17 17 0

Manhattan distance—M

t1 0 454 117 197 69 366 847

t2 454 0 459 527 523 814 815

t3 117 459 0 198 186 359 730

t4 197 527 198 0 266 479 748

t5 69 523 186 266 0 435 916

t6 366 814 359 479 435 0 997

t7 847 815 730 748 916 997 0

A closer look at these tables reveals significant differences between the string dis-
tances. Hamming and Edit distances return integer values, in a small range (between
3 and 17). Manhattan distance also returns integers but in a larger range (between 69
and 997). Cartesian distance returns floating point numbers in a range between 39.84
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Input string Shift Edit distance
E t2 t3 t6 t7

abc.xyz −1 t2 0 7 9 15
a.Z 27 t3 7 0 5 11
ééé 4 t6 9 5 0 15
a..z:A..Z 1234567 t7 15 11 15 0

(a) (b)

Fig. 1 A subset of the Edit distance table and its 2D representation

Table 3 Position of test cases
in prioritized suites Test case C E H M Average

t1: abc 1 7 6 7 7 6.75

t2: abc.xyz −1 4 2 3 3 3

t3: a.Z 27 6 4 5 6 5.25

t4: AaZz 0 5 5 4 4 4.5

t5: xyz 1 3 7 2 5 4.25

t6: ééé 4 2 3 6 2 3.25

t7: a..z:A..Z 1234567 1 1 1 1 1

and 289.34. One may expect that Hamming and Edit distances, which use a smaller
range of values, will result in more equidistant test cases to choose from.

In the remainder of this example, we concentrate on a subset of the Edit Table,
Fig. 1(a), with tests t2, t3, t6, and t7. For illustration, we use a two-dimensional rep-
resentation of the distances between these test cases (Fig. 1(b)).

The first element of the prioritized test suite is the most distant test case with re-
spect to the remaining elements of the test suite. In Fig. 1, t7 is obviously the most
distant one. Its closest neighbor is t3 at distance 11, while the closest neighbors of t2,
t3 and t6 are at distances 7, 5, and 5 respectively. This corresponds to the intuition
we have when looking at the text of test cases (first two columns of Fig. 1(a), or
Table 1), t7 is clearly very different! A closer look at Table 2 shows that t7 is ac-
tually the most distant test case in each of the tables. It is the first element in the
permutation.

The remaining elements are chosen considering the elements already in the per-
mutation. Both, t2 and t6, are at distance 15 from t7, so, according to Sect. 4.1 we
choose the first one in the test suite, i.e., t2. The permutation thus becomes [t7, t2].
The remaining elements t3 and t6 are at distances 7 and 9 to the closest element in
the permutation. We choose t6, which is the most distant one, and finally t3. The final
permutation for the test suite of Fig. 1 is thus [t7, t2, t6, t3].

The results of computing the prioritized suites in our example for each distance
are presented in Table 3. Columns C, E, H and M give the position of the test cases
in the permutations corresponding to Cartesian, Edit, Hamming and Manhattan dis-
tances. The last column gives the average position of each test case. This example
shows that all permutations differ, so the choice of a particular string distance has a
significant influence on the result. Nevertheless, in all prioritized suites, t7 appears
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in the first position, and t1 has a rather low priority. The positions of t2, t3, and t4
do not vary much, but t5 and t6 may appear in very different positions. This exam-
ple indicates that string distances can be used to assess diversity of test cases. In the
next section, we report on an experiment which aims at confirming this on a standard
benchmark.

5 Experimental evaluation

5.1 Goal of the experiments

The proposed test case prioritisation technique based on string distances does not
use a program under test and thus can hardly be more efficient in finding bugs than
prioritisation techniques which use code coverage criteria. Therefore, to evaluate its
efficiency we should compare it with random prioritisation of a given test suite.

The proposed technique may yield different results for the four distance metrics,
thus, it is interesting to know how the choice of a particular string distance affects its
performance.

Therefore, our experiments aim at answering the following questions:

1. Is prioritisation based on string distances more efficient in finding defects than a
random ordering?

2. Which string distance leads to better results?

5.2 The Siemens Test Suite

The “Siemens programs”, also known as “Siemens Test Suite”,2 is a classical bench-
mark for various testing techniques. It was first introduced in an experimental study
on the efficiency of several coverage criteria (Hutchins et al. 1994). The benchmark
includes seven programs in the C programming language. The programs are rather
small, ranging from 173 to 565 lines including comments (141 to 512 lines excluding
blanks and comments). Each program comes with a base version, and several “mu-
tants”, i.e. variants of the program where faults have been seeded manually. Killing
a mutant consists in running a test which gives different outputs on the base version
and on the mutant. The second column of Table 4 gives the number of mutants for
each base program. In the case of replace and schedule2, the given test suites did not
detect (or “kill”) one of the mutants.3 These mutants were thus discarded from our
experiments.

Each program comes with a test pool. In many experiments, these test pools are
used to randomly select various smaller test suites with an average size being typically
less than 20. In this study, we use the whole test pool as a test suite, which guarantees

2We retrieved these programs from http://www.cc.gatech.edu/aristotle/Tools/subjects/. They can also be
retrieved from the Software artifacts Infrastructure Repository at http://sir.unl.edu (Do et al. 2005).
3We presume that this behavior of the test suite, which is different from the one reported in Hutchins
et al. (1994) comes from the use of a C compiler or operating system different from that of the original
experiment.

http://www.cc.gatech.edu/aristotle/Tools/subjects/
http://sir.unl.edu
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Table 4 The Siemens Test
Suite Program Nb.

of
mutants

Nb.
of
tests

Nb. of tests which detect the

Most often
killed mutant

Least often
killed mutant

printTokens 7 4130 186 (4.5%) 6 (0.15% )

printTokens2 10 4115 518 (12.6%) 33 (0.80%)

replace 31 (32) 5542 309 (5.6%) 3 (0.05%)

schedule 9 2650 294 (11.1%) 4 (0.15%)

schedule2 9 (10) 2710 65 (2.4%) 2 (0.07%)

tcas 41 1608 132 (8.2%) 1 (0.07%)

totinfo 23 1052 211 (20.1%) 2 (0.19%)

that the test suite is able to kill all mutants. Considering such large test suites offers
two interesting opportunities:

– It allows us to check whether the O(n2) complexity of our algorithm results in
prohibitive execution times.

– Some mutants are killed by a very small fraction of the test suite (0.05% in the
worst case), which decreases their probability to be killed early by a random test
suite. This may well happen in industrial test suites where a single test case could
be added after a bug report. Such test suites allow us to evaluate the ability of
our prioritisation algorithm to detect these test cases and place them earlier in the
prioritized test suite than in a random prioritisation.

Nevertheless, since the test pool was not intended to be used as a single test suite,
there may be a lot of redundancy between test cases, and these test pools may not
exhibit a behavior of industrial test suites of the comparable size.

Each test pool consists of test inputs only; the correct outputs must be computed
by running the base program. The third column of Table 4 gives the size of each test
suite. It ranges from 1608 to 5542 test cases. We count the number of tests which
detect the mutant which is killed most often, and the one killed least often, see the
fourth and fifth columns of Table 4. Since the programs are written in C their behavior
may depend on the compiler and the operating system used. We used gcc 4.1.3 under
Linux (Ubuntu 7.10). For each program, we used the full corresponding test suite.

For each Siemens program, the main text of all test cases is gathered in a file
named “universe”. Each line of the file corresponds to a single test case and gives the
list of arguments passed to the program under test. For example, the first line of the
“universe” file of tcas is:

958 1 1 2597 574 4253 0 399 400 0 0 1

In such a case, it is easy to turn this line into a string of characters which will be used
by our prioritisation algorithm. The resulting string is:

"958 1 1 2597 574 4253 0 399 400 0 0 1"
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In other programs, the test cases also refer to external files, stored in a directory
named “inputs”. For example, the first two lines of the “universe” file of replace are

’-?’ ’a&’ < ../inputs/temp-test/1.inp.1.1
’ ’ ’@%@&’ < ../inputs/temp-test/777.inp.334.1

These test cases use redirection of the standard input to external files which include
additional inputs for the test cases. We could have measured the distance between the
strings including the names of the files. But it is obviously more interesting to replace
the file names by their contents. The following table lists the contents of these two
files.

File name Contents

../inputs/temp-test/1.inp.1.1 |abcd| -a |abcd|

../inputs/temp-test/777.inp.334.1 |abcd| |abcd|

Therefore, the tool implementing the prioritisation technique was configured to
detect references to external files and replace them with the actual contents of the
file, prefixed with “<” to keep track of what was inlined. The resulting strings used
by our prioritisation are thus:

"’-?’ ’a&’ < |abcd| -a |abcd| "
"’ ’ ’@%@&’ < |abcd| |abcd| "

5.3 Measuring the efficiency of a prioritized test suite

In order to evaluate the efficiency of a prioritized test suite in finding defects, we
will determine, for each mutant i, the position of the first test which kills the mutant
(TFi ). To illustrate our evaluation method, we use a random permutation of the tests
of printTokens. The first two columns of Table 5 show the test’s number for each
killed mutant. The third and fourth column of Table 5 show the number of killed
mutants along with the number of executed tests. This dependence is illustrated in
Fig. 2. It indicates that the number of mutants killed grows rather rapidly and, after
713 of the 4130 tests of the test suite, all defects are detected.

Based on such measurements, we can compute the APFD (Average Percentage of
Faults Detected) (Rothermel et al. 2001), which is a classical measure to evaluate the

Table 5 Measures from a
randomly prioritized test suite
for printTokens

Mutant Killed by test (TFi ) Nb. of tests Nb. of mutants killed

v1 713 11 2

v2 46 21 4

v3 11 46 5

v4 298 298 6

v5 21 713 7

v6 21

v7 11
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Fig. 2 APFD of a randomly
prioritized test suite for
printTokens

efficiency of a prioritized test suite. Other measures are based on code coverage (Li et
al. 2007); however, we only measure the efficiency by APFD and sometimes by the
test suite’s ability in killing the strongest mutants. APFD measures the percentage of
the gray area, underlying the curve in Fig. 2, compared to the whole rectangle of the
figure. A higher APFD corresponds to a better fault detection rate. APFD is higher
when every mutant is killed earlier, so it measures a combined performance for the
whole population of mutants.

In Elbaum et al. (2002), APFD is computed as follows:

– Let n be the number of test cases and m be the number of mutants.
– Let TFi be the index of the first test case which reveals fault i (i.e. kills mutant i).

APFD = 1 − TF1 + TF2 + · · · + TFm

n ∗ m
+ 1

2 ∗ n

For example, let us consider the simple example of Fig. 3 (taken from Rothermel et
al. 2001). In this example, the test suite includes five tests (n = 5). They were applied
to ten mutants (m = 10). The APFD of this test suite is 50%. It can be computed as

APFD = 1 − 1 + 1 + 2 + 2 + 3 + 3 + 3 + 5 + 5 + 5

5 ∗ 10
+ 1

2 ∗ 5
= 1 − 30

50
+ 1

10
= 0.5

The earlier a prioritized test suite kills the first and last mutants the higher its
APFD. The APFD measured for Fig. 2 is 96.13%. In most of our experiments, APFD
will be over 95%. This is due to the fact that the test suites are much larger than the
average number of tests needed to kill all the mutants. In Fig. 2, all mutants are killed
by 17% of the tests, and 5 out of 7 mutants are killed by only 1.1% of the test suite.
In Rothermel et al. (2001), Rothermel et al. use much smaller test suites, with an
average size less than 20, which resulted in much smaller APFDs, like in Fig. 3. Thus
an absolute value of APFD is not very informative; what matters is how APFD varies
for permutations of the same test suite.
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Mutant
i

Killed
by TFi

1 1
2 1
3 2
4 2
5 3
6 3
7 3
8 5
9 5

10 5

Nb. of
tests

Nb. of
mutants
killed

0 0
1 2
2 4
3 7
4 7
5 10

Fig. 3 Results of a small test suite (taken from Rothermel et al. 2001) and graphical representation

Table 6 Number of tests to kill
a percentage of the mutants with
the test suite in Table 5

% of mutants killed 25% 50% 75% 100%

Nb. of tests 11 21 109 713

Measuring the impact on strong mutants By “strongest” mutant, we mean a mutant
which is the latest mutant killed by a given test suite. In order to see how prioritized
test suites behave for various strengths of mutants, we compute the number of tests
needed to kill 25%, 50%, 75% and 100% of the mutants (Table 6). These values are
linearly interpolated when the percentage does not correspond to a natural number of
mutants. The linear interpolation is computed as follows:

– Let m be the number of mutants.
– Let p ∈ {25%,50%,75%} be a percentage.
– Let q be m ∗ p, the number of mutants corresponding to a given percentage. Let

int(q) and frac(q) be the integer part and fractionary part of q respectively. If
frac(q) �= 0, then linear interpolation is needed.

– Let i and j be the first tests which kill at least int(q) and int(q) + 1 mutants
respectively. Linear interpolation is computed as i + (j − i) ∗ frac(q). If the result
is not a natural number, it is rounded following the rules of integer calculation in
java.

For example, in Table 6, 75% of 7 mutants corresponds to 5.25 mutants (p =
75%,m = 7, q = 5.25). Since the fractionary part of q is not null (frac(q) = 0.25),
we must perform linear interpolation. It takes 46 tests to kill 5 mutants (i = 46),
and 298 mutants are needed to kill 6 mutants (j = 298), we interpolate linearly the
number of tests corresponding to 5.25 mutants as 46 + (298 − 46) ∗ 0.25 = 109.

In fact, these linear approximations are rather artificial. They are thus given here as
an indication of how the prioritized suites perform for various strengths of mutants.
Still, most of our conclusions are based on 100% of mutants and APFD measure-
ments.
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5.4 The experiments

The main goal of our experiments is to compare the efficiency of the proposed test
case prioritisation technique based on string distances with random prioritisation. The
experiments were performed for each Siemens program. In order to obtain average
measures for the random permutations, we created 31 random permutations of the
original test suite. The Central Limit Theorem of statistics tells us that if the sample
size is sufficiently large, the distribution of the sample average of the random vari-
ables approaches the normal distribution. The sample size is usually considered to
be sufficiently large if it exceeds 30. As discussed in Sect. 4.1, in a given test suite
there might be several equidistant test cases, and the results of the proposed algo-
rithm depend on the initial ordering of tests, therefore, we have decided to apply our
prioritisation algorithm to each of the 31 random permutations.

5.4.1 Test suites considered in our experiments

Each Siemens program was tested using:

– 31 random permutations of the original test suite,
– four prioritized versions of each random permutation (4 ∗ 31 = 124 prioritized test

suites), corresponding to the four string distances presented in Sect. 3.

Our main goal is to compare prioritized test suites to random test suites. Neverthe-
less, for reference purposes, we also tested each program using the following three
test suites:

– the original, non permuted, test suite,
– the original test suite in inverted order,
– A simple code-based prioritisation of the original test suite, corresponding to a

variant of Rothermel’s total statement coverage prioritisation (Rothermel et al.
2001). This prioritisation method sorts the test cases in descending order of line
coverage. So the test cases covering the largest number of lines of code are exe-
cuted first. When two test cases cover the same number of lines of code, we keep
the ordering of the original test suite.

While we experimented with 31 versions of the random and prioritized test suites,
there is only one version of the three reference test suites, because the inverted test
suite and the code-based prioritisation are deterministically computed from the orig-
inal test suite.

5.4.2 APFD measurements

Figure 4 gives the average APFDs measured for each program and each prioritisation
method. It also shows the confidence interval (at 95%) for each of these average
values. The horizontal axis displays the various prioritisation methods. R stands for
the random permutation; C, E, H, and M for the prioritisation with Cartesian, Edit,
Hamming, Manhattan distance, respectively. Figure 4 also shows the value of APFD
for the original test suite (denoted as O), the inverted original test suite (denoted
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Fig. 4 APFD (average and confidence interval at 95%) for each prioritisation method (higher values are
better); small values for O , I and P may be outside of the diagram

as I) and the code-based prioritisation of the original test suite (denoted as P). Since
these are not average values, but correspond each to a single measurement, there is
no associated confidence interval. The vertical axis gives the APFD, expressed as a
percentage. We only display the 90–100% range. In some cases, e.g. tcas, the APFD
for O, I, or P may be less than 90% and falls out of the diagram. The APFD values
are also given in the sixth column of Fig. 5.

5.4.3 Average number of tests to kill various percentages of mutants

The first columns of Fig. 5 give the average number of tests needed to kill 25%,
50%, 75% and 100% of the mutants, for each program. Figure 6 displays them on a
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logarithmic scale. We choose a logarithmic scale because the number of tests needed
to kill the first mutants is usually small (less than 100) while the number of tests
needed to kill the last mutants is usually ten to a hundred times larger. Choosing
a logarithmic scale allows us to put all results in the same graphic. In the case of
random and distance-based prioritized suites, these values are the average of the 31
measurements. In the case of O, I, and P, it is the single measurement performed.

5.4.4 Execution time

We also measured the time needed to prioritize test cases for each of the programs
and each string distance. Since test suites have different sizes, the time to prioritize
them varies significantly, however computing distance arrays like the ones in Table 2
consumes most of it. Table 7 shows the time required to prioritize the original test
suite for each program and each distance. The measurements were performed on an
Intel Pentium M processor at 1.6 GHz with 1 Gb of RAM, under Linux (Ubuntu
7.10). This table reveals that Edit distance consumes significantly more time than the
three other distances, due to its algorithmic complexity.

5.5 Statistical analysis using Tukey’s HSD Test

We first compare the distance-based prioritization (CEHM) with the random per-
mutation (R). The other test suites (OIP) are considered later. In our experiments, the
independent variable is the kind of prioritisation method used. It takes five values cor-
responding to the four distances and to random prioritisation: Cartesian, Edit, Ham-
ming, Manhattan, Random. The dependent variables are the number of tests needed
to kill 25%, 50%, 75%, and 100% of the mutants, and the APFD. The experiments
are repeated for each of the Siemens programs.

A statistical analysis of these data was conducted to check whether the differ-
ences between the average values of the dependent variables are significant. We first
successfully checked normality of distribution and variance homogeneity of the de-
pendent variables. We then performed a variance analysis (ANOVA) (Snedecor and
Cochran 1957) to test the differences between average values of the dependent vari-
ables corresponding to each of the independent variables, i.e. the various distance-
based and random prioritization. As shown in Tables 8 and 9, ANOVA analysis re-
vealed significant differences in most cases. Only four cases were judged not signif-
icant by ANOVA. They are marked as “not significant” in Table 8 (printTokens for
100% killed, and totinfo for 100% killed and APFD) and Table 9 (totinfo for 50%
killed). This means that for these four cases, the differences between the various pri-
oritisation methods are not statistically significant.

In all other cases, ANOVA tells us that at least one of the prioritization has an
average value significantly different from the others. ANOVA does not tell us which
prioritisation is different. Therefore, we performed Tukey’s HSD (Honestly Signifi-
cant Difference) test (Braun and Tukey 1994) on the obtained data. Tukey’s HSD test
compares the averages of all series of results and decides whether those are signif-
icantly different. The results of Tukey’s HSD test are given in Tables 8 and 9. The
first line of each cell of Table 8 and 9 gives the ranking of the various prioritisation
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Fig. 5 Average number of tests needed to kill 25%, 50%, 75%, 100% of the mutants (lower values are
better) and APFD (higher values are better). Legend for the prioritisation methods: C: Cartesian distance,
E: Edit distance, H : Hamming distance, M : Manhattan distance, R: Random permutation, O : Original
testsuite, I : Inverted testsuite, P : Prioritized using line coverage
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Fig. 6 Graphical representation
on a logarithmic scale of the
number of tests needed to kill
25%, 50%, 75%, 100% of the
mutants for each prioritisation
method



86 Autom Softw Eng (2012) 19:65–95

Table 7 Time (ms) needed to
prioritize each original test suite C E H M

printTokens 6228 130068 5704 6476

printTokens2 6296 130184 5616 6616

replace 22353 2316445 16893 26214

schedule 3384 121360 3296 3788

schedule2 3548 126456 3400 3964

tcas 1516 14728 1476 1820

totinfo 744 15937 748 728

Table 8 Ranking of the various prioritisation methods with respect to the number of tests
needed to kill 100% of the mutants, and to the APFD

methods. The first column of Table 8 corresponds to the number of tests needed to
kill 100% of the mutants. The second column represents the APFD. In a given cell,
we order the prioritisation methods, from the best to the worst. Moreover, the priori-
tisation methods whose results are not significantly different are grouped in the same
hexagon. For example, considering the APFD for printTokens2, there is no statisti-
cally significant difference between all distance-based prioritization (H, E, C, and M),
but they are all statistically better than random prioritisation (R). In some cases there
is an overlap between groups of methods. For example, the highest value of APFD for
printTokens is achieved using Hamming Distance (H). But H is not statistically differ-
ent from E (Edit) or M (Manhattan). Random prioritisation (R) is statistically worse
than H and E, but R is not statistically different from M or C. Finally M is statistically
better than C. Table 9 gives the results of Tukey’s test for the lower percentages of
mutants killed (25% to 75%).

Tables 8 and 9 also consider the original test suite (O), the inverted original test
suite (I) and the code-based prioritized suite (P). Since these correspond to a sin-
gle measurement, and not the average value of several measurements, we cannot use
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Table 9 Ranking of the various prioritisation methods with respect to the number of tests needed to kill
25%, 50% and 75% of the mutants

Tukey’s test which compares two average values. Therefore, we computed the confi-
dence interval at 95% for each series of results, and checked whether or not O, I, and
P fall into this confidence interval. If this is the case, the single value is not statisti-
cally different from the average value. The results of these comparisons are displayed
on the second line of each cell of Tables 8 and 9. When a single value is not statis-
tically different from one or several average values, we draw a rectangle around the
single value which stretches under the average values. For example, considering the
“100% killed” cell of printTokens, it shows that P is statistically better than all other
prioritisation methods. I is not statistically different from E and H, but is statistically
better than M, C, and R. This cell also shows that O is statistically worse than all
other prioritisation methods.

The APFD cell of totinfo is a little more complex because it features intersecting
rectangles for I and P. It means that I is not statistically different from E and H, and
that P is not statistically different from E, H, R, and M.

5.6 Analysis of the results

5.6.1 Comparison of distance-based and random prioritization

Addressing the question “Is prioritisation based on string distances more efficient in
finding defects than a random ordering?”, we use Table 8, the sixth column of Figs. 5
and 4, which indicate that APFDs for the distance-based prioritized suites is definitely
better than for the randomly-ordered ones for programs printTokens2, schedule, and
schedule2. This is confirmed by the statistical analysis. In the case of printTokens,
two of the four prioritized suites are significantly more efficient than the randomly
ordered suites. The remaining prioritized suites are not statistically different than the
randomly ordered suites. In the case of totinfo, the statistical analysis shows that the
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Table 10 Overall ranking for
killing the strongest mutant and
APFD

Prioritization
method

Sum of tests to
kill last mutant

Rank Sum of
APFDs

Rank

Random 6067.23 5 665.39 5

Cartesian 2978.58 2 673.4 4

Edit 3114.81 3 674.33 3

Hamming 3752.81 4 674.47 2

Manhattan 2486.10 1 676.87 1

difference is not significant. So in five of the seven case studies, prioritized suites are
statistically either better than or equal to the randomly ordered ones.

In the case of replace and tcas, the randomly ordered test suites perform signifi-
cantly better than several distance based prioritization. Actually, this is not surprising
for tcas. As shown in Sect. 5.2, the inputs of tcas are numerical values and we pro-
vided several examples in Sect. 3.4 where string distances do not capture correctly
the distance between numerical values. Concerning replace, Edit distance performs
the best, which is not surprising when looking at the first two lines of inputs given
in Sect. 5.2. Actually these two lines have common substrings (e.g. |abcd|) which
may appear at different positions. Edit distance is well suited to detect such similari-
ties.

Tables 8 and 9, Figs. 5 and 6, provide more details to better understand these re-
sults. They show that for schedule2 the prioritized test suites outperform the randomly
ordered suites for any percentage of mutants. For printTokens2, randomly ordered
suites are significantly worse to kill the first and the last mutants, and appear in the
last position for the intermediate percentages. For schedule, prioritized suites prevail
for the highest percentages. For totinfo, differences are not statistically different, but
prioritized test suites are better until 75% of the mutants, while the randomly ordered
test suites are quicker to kill the last mutant. For replace and tcas, randomly ordered
test suites are faster until 75% of the mutants, although Hamming-based prioritisation
is not statistically different for tcas. But prioritized test suites are statistically quicker
to kill the last one in both cases. As shown in Fig. 5, prioritized test suites are better
to kill the last mutant for 6 of the 7 programs. Table 8 shows that the difference is sig-
nificant for 5 programs and that randomly permuted test suites are never significantly
better in killing the last mutant. Only for totinfo, the random permutation is more
efficient than the distance based prioritisation, but the difference is not statistically
significant. This is confirmed by Table 10 where column 2 shows the sums of the
average number of tests needed to kill the last mutant for all 7 programs. On average,
prioritized suites achieve that nearly twice as fast as the randomly ordered suites, with
Manhattan distance providing the best results. The fourth column of Table 10 gives
the sum of the seven APFDs. Once again, prioritized test suites are better than the
randomly ordered ones, and Manhattan distance provides the best results. For com-
pleteness sake, Table 11 gives these rankings for lower percentages of mutant killings.

The experimental results indicate that

– prioritized test suites are more efficient than randomly ordered test suites in detect-
ing the strongest mutants. This is confirmed by Tukey’s test.

– On average, prioritized test suites have a higher APFD than randomly ordered ones.
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Table 11 Overall ranking for lower percentages of mutant killing

Prioritization
method

Sum of tests
to kill 25%
of mutants

Rank Sum of tests
to kill 50%
of mutants

Rank Sum of tests
to kill 75%
of mutants

Rank

Random 102.61 1 269.29 1 772.71 4

Cartesian 247.74 5 482.26 5 777.06 5

Edit 143.55 2 312.19 2 671.39 2

Hamming 203.23 4 364.42 3 655 1

Manhattan 175.03 3 412.42 4 745.23 3

In Sect. 3.4, we pointed out that string distances do not capture all semantic dif-
ferences between test cases. Therefore, it is not surprising that the prioritisation al-
gorithm using such a distance produces quite diverse results on the Siemens Test
Suite. Nevertheless, the resulting prioritized test suites are more efficient overall than
randomly ordered ones. This indicates that string distances capture nevertheless sig-
nificant information about diversity of test cases.

5.6.2 Comparison with the reference test suites

For completeness and reference sake, we also provide the measures corresponding to
the original test suite (O), the inverted original test suite (I), and a simple code-based
prioritisation (P).

Regarding the original test suite, it appears that its APFD is significantly worse
than all distance-based prioritization. We get a similar result considering its ability to
kill the last mutant, except in the case of tcas where Hamming distance is better than
O, but not statistically different. Regarding lower percentages (Table 9), this is not
necessarily true, but in a majority of cases, especially at the highest percentages, it
appears to be worse than distance-based prioritization. For the Siemens test suite, it is
always more effective to use a distance-based prioritisation of the test suite than the
original test suite. One may conjecture that, when the test engineer did not care about
the ordering of the original test suite, distance-based prioritisation will be effective.

The inverted original test suite (I) gets better results, it even appears to have the
best APFD of all methods in the case of totinfo. One explanation for these good
results is that the last test cases of the original test suites may have been added to
address specific mutants which are difficult to kill. This also explains why the original
test suite has difficulties in killing these mutants whose killing tests appear at the end
of the suite.

The results of the code-based prioritisation (P) may appear surprising: P is the best
method in two cases (printTokens and printTokens2); it is not statistically different
than most methods in one case (totinfo) and is statistically worse than all distance-
based prioritization in four cases (replace, schedule, schedule2, and tcas). This can
be explained by the rather simple prioritisation algorithm used for this code-based
prioritisation. We conjecture that better results would be obtained using additional
statement coverage prioritisation (Rothermel et al. 2001), where each test case is
chosen to improve the coverage of the previous ones in the prioritized test suite.
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Using total statement coverage as prioritisation criterion, test cases with the highest
coverage appear first in the test suite, but there is a chance that these are similar test
cases which kill the same mutants. This is confirmed by the fact that P gets excellent
results to kill the first mutants: it is always better or not statistically different than
all distance-based prioritization. Unfortunately, considering the strongest mutants,
they may correspond to test cases which address only an exceptional behavior and
have small code coverage. As a result, these tests appear late in the prioritized test
suite, reducing its ability in killing the last mutant, and impacting APFD. Moreover,
since our test suites are significantly longer than the ones used in Rothermel et al.
(2001), the difficulty to kill the last mutants may have enormous impact on APFD.
For example, consider replace where P performs well until 75%, but needs 5461 test
cases to kill the last mutant.

Nevertheless, these measures on O, I, and P were mainly performed to provide
some reference numbers. They actually indicate that distance-based prioritisation per-
forms relatively well compared to these references.

5.6.3 Choice of a distance

When a given application is considered, a careful look at the nature of its inputs may
lead to favor one distance over the others. For example, in the case of replace, we saw
that Edit distance appears well-adapted to detect common substrings in the inputs. In
the case of tcas the numerical nature of the inputs may lead to discard string distances
in favor of a numerical distance, but this would require extensions of the prioritisation
tool.

Nevertheless, in cases when the structure of the input does not suggest the use of a
specific distance, one can favor a distance which yields good results on average. Ad-
dressing the question “Which string distance leads to better results?”, we consider
Table 10 which indicates that Manhattan distance provides the best overall results.
The third and fifth columns give the ranking of each prioritisation method. Table 12
details the ranking for all programs (excluding randomly ordered test suites). The
table shows that each distance may be ranked the best for a given program and Ta-
ble 8 shows that the differences between distance based prioritisation methods are not
statistically significant in many cases. But on average, Manhattan distance is most ef-
ficient in killing the last mutant. Nevertheless considering APFD, Edit and Hamming
distances have the same average ranking as Manhattan distance.

A closer look at Fig. 4 reveals that confidence intervals depend on the distance
chosen for prioritisation. Actually, Cartesian distance has the smallest confidence in-
tervals for all programs. This suggests that prioritisation based on Cartesian distance
is more deterministic than the other. This could be conjectured from Table 2 because
Cartesian distances are floating point numbers, and two test cases are less likely to be
equidistant to already selected tests. Manhattan distances occur as natural numbers,
but their range of values is much larger than that of Edit and Hamming distances. This
explains why the APFDs associated to Manhattan distances have a smaller confidence
interval than the ones corresponding to Edit or Hamming distances.

We conclude that Manhattan distance appears to offer a good compromise between
efficiency and determinism of the resulting test suite, moreover, the cost of comput-
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Table 12 Rankings of criteria
for each program Program Kill 100% mutants APFD

C E H M C E H M

printTokens 4 1 2 3 4 2 1 3

printTokens2 1 2 3 4 3 2 1 4

replace 3 2 4 1 4 1 3 2

schedule 2 4 3 1 2 3 4 1

schedule2 2 4 3 1 2 3 4 1

tcas 1 3 4 2 3 4 1 2

totinfo 4 1 2 3 4 1 2 3

Average rank 2.4 2.4 3.0 2.1 3.1 2.3 2.3 2.3

ing the Manhattan distance is rather small, especially in comparison to Edit distance
which has a O(m ∗ n) complexity, as witnessed by Table 7.

5.7 Threats to validity

Threats to construct validity correspond to the choice of the right measures. APFD
is a classical means for measuring the efficiency of a prioritized test suite. In our
experiment, we also measured the number of test cases needed to kill the last mutant,
which measures the capability of the prioritisation technique to kill the “strongest”
mutant. Other measures (APBC, APDC and APSC), based on code coverage, have
been proposed by Li et al. (2007), and their use should probably be considered in
further work.

Threats to internal validity correspond to potential faults in our implementations
of the prioritisation algorithm, the string distances, the measures such as APFD or
the statistical analyses. Actually, our implementations have been coded with care.
They have been tested on small examples, such as the one in Sect. 4.2, and the re-
sults were verified manually. We also reused several classes of our implementation
to compute several metrics about the test suites, and to experiment with test suite re-
duction techniques (not reported in this paper). So we expect that these have reduced
the likelihood of errors in our implementations. Regarding statistical analysis, it was
performed by an expert in the field using professional statistical software (SAS4).

Threats to external validity address the following question: are the subjects of
our studies representative of real programs and real test suites? The Siemens Test
Suite is a classical and mandatory benchmark for prioritisation studies. It was used
in several significant research works in the field (Rothermel et al. 2001; Li et al.
2007). Nevertheless, its representative character has already been largely debated.
The programs are rather small, faults of the mutants are seeded, and test suites have
been constructed to ensure certain coverage and fault detection capabilities. Moreover
the test pools were not intended to be used as a full test suite. This motivates our
future work to apply the proposed technique to larger and more industrial programs.

4http://www.sas.com.

http://www.sas.com
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Nevertheless, in this study, we were less interested in the length of programs than
in the size of test suites, which count several thousands of test cases each. Actually,
our algorithm features a O(n2) complexity due to the computation of the distances
between all pairs of test cases. It is thus sensible to the size of the test suite. In real
programs, such as Jonas (Kessis et al. 2005), test suites contain thousands and even
tens of thousands test cases.

Another threat to external validity is the format of the test data. In the Siemens
programs, test data are given in textual format, although they vary from numerical
data for the tcas program to arbitrary sequences of characters for the printTokens
program. None of these test suites correspond to structured programs such as JUnit
tests, and this should be considered in future work.

6 Conclusion

In this paper we proposed and evaluated a new prioritisation technique, based on
string distances between test cases in a given suite. Our technique does not require
the availability of an implementation or a specification of the program under test
to prioritize the test suite: it only relies on the information present in the test suite.
This allows using this prioritisation technique for initial testing, in cases when the
implementation has significantly changed since the last execution of the test suite,
and in cases when code instrumentation is difficult.

We elaborated a simple greedy algorithm for test prioritisation and performed
experiments using four classical string distances. The experiments relying on the
Siemens Test Suite were performed to compare the proposed prioritisation tech-
nique with random ordering of test cases. The experimental results indicate that the
test suites prioritized by the proposed technique are more efficient in detecting the
strongest mutants. A statistical analysis based on Tukey’s test confirmed that the dif-
ference in efficiency is statistically significant. The results lead to conclude that, on
average, the proposed technique has a better APFD (Average of the Percentage of
Faults Detected) than randomly ordered test suites. These conclusions are only valid
on average, however, in some instances a random ordering may outperform the pro-
posed technique, since string distances do not necessarily reveal semantic differences
between test cases. The obtained experimental results also indicate that on average,
Manhattan distance gives better results than the other string distances.

As future work, it might be interesting to investigate other string distances and
experiment with industrial applications. While experiments with larger real programs
are in our plans, experiments (Jiang et al. 2009) with edit-distance prioritisation show
that for larger applications the effect of the string distance based prioritisation is even
more profound.

At the same time, it would be interesting to consider additionally other non-
classical string distances, see, e.g., Cohen et al. (2003).

In order to reduce the threats to external validity, further experimentations are
needed with other, in particular larger programs and test suites. Along with APFD
and killing the strongest mutants, other measures could also be considered to assess
the efficiency of the prioritized test suites.
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Another possibility is to try to extract more semantics from a given test suite, by
using more specific distances or taking more information into account. Test cases are
often structured objects, for example, JUnit test cases follow the Java syntax. In such
cases, it might be more appropriate to measure a distance between the syntax trees
of the test cases. Such a technique would still be independent of the availability of
the system under test, but might capture significant semantic information to compare
test cases. Also, one may consider a combination of inputs and outputs of the test
cases in the computation of the string distances. Taking outputs into account is in-
teresting when small differences in the inputs may result in significant differences in
the outputs (e.g. computing the square root of 1 and −1). This no longer follows the
“minimal” approach of this paper, but it makes sense in cases when execution of the
test cases is cheap and it is easy to determine the corresponding outputs.

Finally, our current work is to adapt the proposed approach to reduce a test suite.
Using string distances, it is relatively easy to reduce a test suite to a subset such
that the distance between each element of the original test suite to the reduced test
suite is less than a given threshold. Varying such a threshold provides a means of
controlling the size of the reduced test suite. We have already implemented such a
reduction technique and are investigating possibilities for defining a threshold based
on statistical information extracted from the test suite.
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