
Autom Softw Eng (2011) 18: 199–224
DOI 10.1007/s10515-010-0079-3

Example-based model-transformation testing

Marouane Kessentini · Houari Sahraoui ·
Mounir Boukadoum

Received: 19 July 2010 / Accepted: 15 December 2010 / Published online: 4 January 2011
© Springer Science+Business Media, LLC 2011

Abstract A major concern in model-driven engineering is how to ensure the quality
of the model-transformation mechanisms. One validation method that is commonly
used is model transformation testing. When using this method, two important issues
need to be addressed: the efficient generation/selection of test cases and the definition
of oracle functions that assess the validity of the transformed models. This work is
concerned with the latter. We propose a novel oracle function for model transforma-
tion testing that relies on the premise that the more a transformation deviates from
well-known good transformation examples, the more likely it is erroneous. More pre-
cisely, the proposed oracle function compares target test cases with a base of exam-
ples that contains good quality transformation traces, and then assigns a risk level
to them accordingly. Our approach takes inspiration from the biological metaphor
of immune systems, where pathogens are identified by their difference with normal
body cells. A significant feature of the approach is that one no longer needs to de-
fine an expected model for each test case. Furthermore, the detected faulty candidates
are ordered by degree of risk, which helps the tester inspect the results. The valida-
tion results on a transformation mechanism used by an industrial partner confirm the
effectiveness of our approach.

M. Kessentini (�) · H. Sahraoui
DIRO, Université de Montréal, Montréal, Canada
e-mail: kessentm@iro.umontreal.ca

H. Sahraoui
e-mail: sahraoui@iro.umontreal.ca

M. Kessentini
College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

M. Boukadoum
DI, Université du Québec à Montréal, Montréal, Canada
e-mail: Boukadoum.mounir@uqam.ca

mailto:kessentm@iro.umontreal.ca
mailto:sahraoui@iro.umontreal.ca
mailto:Boukadoum.mounir@uqam.ca

200 Autom Softw Eng (2011) 18: 199–224

Keywords Model transformation testing · Artificial immune system · Traceability

1 Introduction

Model-Driven Engineering (MDE) aims to provide automated support for the cre-
ation, refinement, refactoring, and transformation of software models (France and
Rumpe 2007). One of the major challenges of MDE is to automate these procedures
while preserving the quality of the produced models (Czarnecki and Helsen 2003).
In particular, efficient techniques and tools for validating model transformations are
needed. One of them is model transformation testing (Lin et al. 2005).

Model transformation testing typically consists of synthesizing a large number of
different models as test cases, running the transformation mechanism on them, and
verifying the result using an oracle function. In this context, two important issues
must be addressed: the efficient generation/selection of test cases and the definition
of the oracle function to assess the validity of transformed models. This work is
concerned with the latter.

Defining the oracle function for model transformation testing is a challenge (Mottu
et al. 2008; Baudry et al. 2006). Many problems need to be solved. First, the defin-
ition of reference models to compare with the transformation outputs is not obvious
(Mottu et al. 2008; Lin et al. 2005; Kolovos et al. 2006). Second, for large models,
if the candidate transformation errors are given without any risk quantification, in-
specting them could be time and resource-consuming (Baudry et al. 2006). Finally,
transformation errors can have different causes such as transformation logic (rules) or
source/ target metamodels (Kuster and Abd-El-Razik 2006). Finally, to be effective,
the testing process should allow identification of the error causes (Baudry et al. 2006).

The primary contribution of this paper is to generate an oracle function “by exam-
ple” that addresses the above-mentioned issues. The presented work draws an analogy
between the detection of transformation errors and the detection of pathogens in the
human body. In the human immune system, the process relies on detecting abnormal
conditions; the more abnormal something is, the riskier it is considered. By analogy,
we propose an oracle function that compares target test cases with a base of exam-
ples containing good quality transformation traces, and then assigns a risk level to
the former, based on the dissimilarity between the two as determined by an artificial
immune system-based algorithm (Forrest et al. 1994). Consequently, one no longer
needs to define an expected model for each test case, and the traceability links help
the tester understand the error origins. Furthermore, the detected faults are ordered by
degree of risk to help the tester perform further analysis. For this, a custom tool was
developed to visualize the risky fragments found in the test cases in different colors,
each related to an obtained risk score.

The proposed approach is illustrated and evaluated with the known case of trans-
forming UML class diagrams (CD) to relational schemas (RS). The choice of CD-
to-RS transformation is motivated by the fact that it has been investigated by other
means and is reasonably complex; this allows focusing on describing the technical
aspects of the approach and comparing it with alternatives.

The remainder of this paper is as follows: Sect. 2 presents the relevant background
and the motivation for the presented work; Sect. 3 describes the AIS-based algorithm;

Autom Softw Eng (2011) 18: 199–224 201

an evaluation of the algorithm with industrial validation is explained and its results
are discussed in Sect. 4; the benefits and also the limitations of the approach are
presented in Sect. 5; Sect. 6 is dedicated to related work. Finally, concluding remarks
and future work are provided in Sect. 7.

2 Background and motivation

As showed in Fig. 1, a model transformation mechanism takes as input a model to
transform, the source model, and produces as output another model, the target model.
The source and target models must conform, respectively, to specific metamodels
and, usually, relatively complex transformation rules are defined to insure this.

We can illustrate this definition of the model transformation mechanism with the
case of class diagram to relational schema transformation. Figure 2 shows a simplified
metamodel of the UML class diagram (Bezivin et al. 2004), containing concepts like
class, attribute, relationship between classes, etc. Figure 3 shows a partial view of
the relational schema metamodel (Bezivin et al. 2004), composed of table, column,
attribute, etc. The transformation mechanism, based on rules, will then specify how
the persistent classes, their attributes and their associations should be transformed
into tables, columns and keys.

Once defined, the transformation mechanism needs to be tested to detect poten-
tial errors. As described in Fig. 4, the basic testing activities consist of designing test
cases, executing the model transformation on them, and examining the obtained re-

Fig. 1 Model transformation
mechanism

Fig. 2 Class diagram metamodel

202 Autom Softw Eng (2011) 18: 199–224

Fig. 3 Relational schema metamodel

Fig. 4 Model transformation
testing process

sults (Lin et al. 2005). This requires an oracle function that analyzes the validity of
the transformed models.

Much work has addressed the automatic generation of test cases (Lin et al. 2005;
Brottier et al. 2006; Baudry et al. 2002; Fleurey et al. 2004). This paper focuses on
the complementary issue of defining the oracle function, assuming that a set of test
data can be provided. There are many different ways to define this function, depend-
ing on the effort provided and the amount of information that is available (formal
specification, expected output, etc.) (Mottu et al. 2008). We distinguish between two
main categories of oracle function definitions for model transformation testing: model
comparison (Kolovos et al. 2006) and specification-conformance checking (Cariou et
al. 2004; Baudry et al. 2006).

For the first category, current MDE technologies and model repositories store and
manipulate models as graphs of objects. Thus, when the expected output model is
available, the oracle compares two graphs. In this case, the oracle definition prob-
lem has the same complexity as the graph isomorphism problem, which is NP-hard
(Khuller and Raghavachari 1999). In particular, we can find a test case output and an
expected model that look different (contain different model elements) but have the
same meaning. So, the complexity of these data structures makes it difficult to pro-
vide an efficient and reliable tool for comparison (Baudry et al. 2006). Still, several
studies have proposed simplified versions with a lower computation cost (Alanen and
Porres 2003). For example, Alanen and Porres (2003) present a theoretical frame-
work for performing model differencing. However, they rely on the use of unique
identifiers for the model elements.

To illustrate the specification conformance category, we present two contributions:
design by contract (Cariou et al. 2004) and pattern matching (Baudry et al. 2006).

For design by contract, the idea is that the transformation of source models into
target models is coupled with a contract consisting of pre- and post-conditions.
Hence, the transformation is tested with a range of source models that satisfy the pre-

Autom Softw Eng (2011) 18: 199–224 203

conditions to ensure that it always yield target models that satisfy the post-conditions.
If the transformation produces an output model that violates a post-condition, then the
contract is not satisfied and the transformation needs to be corrected. The contract is
defined at the metamodel level and conditions are generally expressed in OCL.

The second method of specification-conformance checking uses patterns that are
defined as model fragments, instead of pre-conditions, and for each pattern, a set
of post-conditions. Then, the process of pattern matching consists in checking the
presence of a pattern in a source model. When a pattern is present, the oracle function
evaluates the associated post-conditions on the output model. The difference with
design by contract approaches is that both patterns and post-conditions are specified
in terms of example of models rather than in terms of metamodel concepts.

Specification-based oracles are difficult to define. Indeed, the number of con-
straints to define can be very large to cover all transformation possibilities (Baudry
et al. 2006). This is especially the case of contracts related to one-to-many map-
pings. Moreover, being formal specifications, these constraints are difficult to write
in practice (Cariou et al. 2004). In pattern matching, the constraints are described at
the model level and may lead to a fastidious task to define them for each possible
instance of the source metamodel (Cariou et al. 2004).

To address the preceding issues, we propose a new oracle definition inspired from
the immune system (IS) paradigm that will be described in the next section.

3 Approach

This section describes the principles that underlie the proposed method for model
transformation testing. It starts by presenting the metaphor that inspired our work,
the artificial immune system (AIS). Then, we provide the details of the approach and
our adaptation of the AIS algorithm to the model transformation testing problem.

3.1 Immune system metaphor

The role of an immune system (IS) is to protect its host organism against harm-
ful disease caused by invaders (pathogens) and/or malfunctioning cells. A biological
immune system reacts to adverse environmental changes by identifying and eliminat-
ing antigens, which are substances or organisms that are recognized by the body as
foreign, and which stimulate the immune response. A detailed presentation of the bi-
ological immune system is provided in Kuby et al. (1997). This paper adapts the first
phase of AIS operation to identify/detect transformation traces that present a high-risk
of containing errors, when testing a transformation outcome.

The main task of the immune system is to survey the organism using detectors,
in search of malfunctioning cells and invaders such as bacteria or viruses. Every
element that is recognizable by the immune system is called an antigen. The original
body cells that are harmless to it are termed self (or self antigens) while the disease-
causing elements are named non-self (or antigens). The immune system is able to
sort them out.

The classification process into self/non-self is complex and produces a large num-
ber of randomly created detectors. A negative selection mechanism eliminates detec-

204 Autom Softw Eng (2011) 18: 199–224

tors that match the cells in a protected environment where only self cells are assumed
to be present. Non-eliminated detectors become naive detectors and die after some
time. Furthermore, detectors that do match an antigen are quickly multiplied; this ac-
celerates the response to further attacks. Also, the newly-produced detectors are not
exact replicates of each other, with the mutation rate being an increasing function of
detector-antigen affinity Dasgupta et al. (2003).

The elements of the natural immune system that are used in our model transfor-
mation testing procedure are mapped as follows.

• Body: the transformation mechanism to evaluate.
• Self-Cells: model transformation traces without faults.
• Non-Self Cells (Antigen): model transformation traces that present a high-risk of

having faults.
• Detector: example of transformation trace that is very dissimilar to all “clean”

traces (self-cells).
• Affinity: similarity between a detector and a model transformation trace to evaluate.

The next section presents the principle of our AIS-inspired approach.

3.2 Traceability-based approach for model transformation testing

We start by describing the overall process of the proposed procedure, illustrating it
with the case of class diagram to relational schema transformation. Then, we detail
our adaptation of the negative selection algorithm to the model transformation testing
problem.

3.2.1 Overview

As showed in Fig. 5, our approach can be divided into three important components:
the input/output of the testing process, the base of examples, and the main algorithm.
We describe these components next.

3.2.1.1 Input/output The Input of our testing mechanism is a test case (TC). A TC
includes a source model, its equivalent target model generated using the transfor-
mation mechanism to test, and the traceability links between the two models. More
formally, a TC is a triple 〈SMT, TMT, UT〉, where SMT denotes the source model to
test, TMT denotes the generated target model, and UT is a set of test units. A test unit
defines the mappings to produce a particular element in the target model (thus, there
exists one test unit per element). Since a model element (e.g., Table) may contain
sub-elements (e.g., Columns), an element test unit also includes the mapping for the
sub-elements.

The creation of a database schema from a UML class diagram, as described in the
example of Fig. 6, is a TC where SMT is the class diagram and TMT is the relational
schema generated by the transformation mechanism to evaluate. This TC contains
five test units UT that correspond to the number of tables.

To ease manipulation of the test cases, the source and target models are described
using a set of predicates that encode the included elements. The predicate types corre-
spond to the different concepts of the source and target metamodels (class, attribute,

Autom Softw Eng (2011) 18: 199–224 205

Fig. 5 Overall process of our approach

Fig. 6 Test case

etc. for class diagrams). The definition of their parameters has to be decided accord-
ing to the properties and relationships of these concepts. For example, Class Position
in Fig. 6 is described as follows:

Class(Position).
Attribute(Title, Position, String, _).
Attribute(SalaryMin, Position, Int, _).
Attribute(SalaryMax, Position, Int, _).

The first predicate indicates that Position is a class, and the second that Title is an
attribute of that class with a non-unique value (“_” instead of “unique”). The two
other predicates describe the remaining two attributes of class Position.

206 Autom Softw Eng (2011) 18: 199–224

Fig. 7 Transformation unit
coding

The traceability links relate the predicates in the source model to their equivalents
in the target model. In our work, these links are automatically generated by adapting
an existing metamodel, implemented in Kermeta (Falleri et al. 2006). An example
traceability link that relates an association link to a column is as follows:

Association(0, 1, , n, _ , Position, Employee) : Column(idPosition, employee, fk).

The mappings are specified by the sign “:”. For instance, the mapping between Asso-
ciation(0, 1, , n, _ , Position, Employee) and Column(idPosition, employee, fk) means
that the association link between Position and Employee maps to the primary-foreign
key (pfk) idPosition in table Employee.

The different test units are sets of these mappings. For example, UT5 is described
as follows:

Begin UT5
Class(Position) : Table(position).
Attribute(SalaryMin, Position, Int, _) : Column(idPosition, position, pk),

Column(salaryMin, position, _).
Attribute(SalaryMax, Position, Int, _) : Column(salaryMax, position, _).
Attribute(Title, Position,String, _) : Column(title, position, _).
End UT5

Each test unit can be viewed as a sequence (string) composed of the following pred-
icate types: class (C), attribute (A), method (M), generalization (G), aggregation (F),
and association (S). For example, in Fig. 7, we present U5 as the sequence of predi-
cates CAAA, which corresponds to the transformation of a class with three attributes.

The sequence of predicates must follow the specified order of predicate types (C,
A, M, G, F, S) to ease the comparison between predicate sequences. When several
predicates of the same type exist, we order them according to their parameters. For
example, if a class contains several attributes, the corresponding predicates are or-
dered by considering first the uniqueness, and then the types. In the example of class
Position, as all the attributes are not unique, the predicates of SalaryMin and Salari-
tyMax (Int) appear before the one of Title (String).

The output of our transformation mechanism is a set of test units containing risky
traces, i.e. traces with potential transformation errors. Their risk score is determined
by an AIS-based algorithm based on dissimilarity with the base of examples. These
two components of our approach are described in the next subsections.

3.2.1.2 Base of examples The base of examples (BE) is composed of a set of trans-
formation examples (TE). A transformation example is a mapping of model elements
from a source model to a target model. Similar to a test case, a TE is essentially made

Autom Softw Eng (2011) 18: 199–224 207

Fig. 8 AIS-based algorithm
overview

of transformation units. Thus, it is a triple 〈SME, TME, UE〉, where SME denotes the
source-model example, TME denotes the corresponding target model, and UE is a set
of example units that relate model elements in SME to their equivalents in TME. The
definition of a transformation example is similar to that of a test case, and the same
predicates representation is used, as described above. However, the target model and
the test units of TC are generated by the transformation mechanism whereas those of
TE exist independently from the mechanism to test.

3.2.1.3 Main algorithm Figure 8 gives the overview of our AIS-based algorithm.
The detection process has two main steps: detector generation and risk estimation
(similarity function). Detectors are a set of units generated from those in the base
of examples. These units define the reference for good transformation traces. The
detector generation process is accomplished by using a heuristic search that simulta-
neously maximizes the difference between the detectors and the units, and between
the detectors themselves. The same set of detectors could be used to evaluate different
transformation mechanisms based on different formalisms, and it could be updated
as the base of examples grows.

The second step of the detection process consists of comparing the test case units
to all the detectors. A test case unit that shows similarity with a detector is considered
to be risky; the higher the similarity, the riskier the test case unit is. Both detector
generation and risk estimation steps use similarity scores. Before detailing the two
steps, we describe the similarity function used in this work.

3.2.2 AIS-based algorithm

In this section, we start by explaining how to determine the similarity between two
units. The resulting similarity score is used for detector generation and risk estimation
as described later.

3.2.2.1 Similarity between transformation units To calculate the similarity between
two units, we adapted to our context a dynamic programming algorithm used in bioin-
formatics to find similar regions between two sequences of DNA, RNA or proteins:
the Needleman-Wunsch alignment technique (Carrillo and Lipman 1988). Figure 9
provides an illustration of the algorithm.

The Needleman-Wunsch global alignment algorithm recursively updates a matrix
S of similarity scores for already-matched sub-sequences. The dimensions of S are

208 Autom Softw Eng (2011) 18: 199–224

Fig. 9 Global alignment
algorithm (Carrillo and Lipman
1988)

set by the lengths of the sequences to align. For two sequences a = (a1, . . . , an) and
b = (b1, . . . , bm), S is of dimensions n × m, and each of its element si,j corresponds
to the best alignment score for sub-sequences of a and b, ai to bj , of lengths i and
j , respectively, considering the previously aligned elements of the sequences. The al-
gorithm can introduce gaps (represented by “−”) to improve sub-sequence matching.
The number of introduced gaps corresponds to the number of times that the maxi-
mum value for each line in the matrix is not in the diagonal. The alignment algorithm
depends on the predicate order in the sequences, hence the precise order that is de-
scribed in the previous section.

The algorithm operates as follows: If a gap is inserted in a or b, it introduces a
penalty of g in the similarity assessment (see below). In our adaptation, we choose
the widely-used value of 1 for the penalty g (Carrillo and Lipman 1988). Then the
algorithm attempts to match the predicates of each pair of sub-sequences ai and bj ,
by using a similarity function simi,j to return the reward or cost of matching ai to bj ,
and the similarity score for ai and bj is updated. Formally, si,j is defined as follows:

si,j = Max

⎧
⎪⎨

⎪⎩

si−1,j − g //insertgapfor bj

si,j−1 − g //insertgapfor ai

s−1,j−1 + simi,j //match

where si,0 = 0 and s0,j = 0.
Our adaptation of the Needleman-Wunsch algorithm is straightforward. We simply

assign a value to g and a way to measure similarity between individual predicates to
derive simi,j .

Since our model description uses predicate logic, we define a predicate-specific
function to measure similarity. First, if the types differ, the similarity is 0. Since we
manipulate sequences of predicates, and not strings, simi,j behaves as a predicate-
matching function PMij that measures the sought similarity in terms of the parame-
ters of predicates pk and qk associated to the different characters of ai and bj . This
similarity is the ratio of common parameters in both predicates. Formally, simi,j is
defined as follows:

simij = PMij

max(|ai |, |bj |)
where,

PIMij =
max(|ai |,|bj |)

∑

k=1

number of equivalent predicates parametres(pk, qk)

max(|pk|, |qk|)

Autom Softw Eng (2011) 18: 199–224 209

Fig. 10 Best sequence
alignment between U5 and T15

The similarity between sequences a and b is obtained by normalizing this absolute
measure sn,m with respect to the maximum of their lengths n and m:

Sim(a, b) = sn,m

max(n,m)

To illustrate the use of the global alignment algorithm, consider the evaluation of
test unit UC5 described previously, based on its similarity to unit UE15 taken as an
example unit (reference traces). UE15 is defined as follows:

Begin UE15
Class(Teacher) : Table(Teacher).
Attribute(Level, Teacher, String, _) : Column(Level, Teacher, _).
Attribute(Name, Teacher, String, _) : Column(Name, Teacher, _).
Generalization(Person, Teacher) : Column(IDTeacher, Person, _).
End UE15

Using the sequence coding described in Sect. 3.2.1.1, the predicate sequence for
UC5 is CAAA and the one for UE15 is CAAG. The alignment algorithm finds the
best sequence alignment as shown in Fig. 10. There are three matched predicates be-
tween UC5 and UE15: one class (C), and two attributes (A). If we consider the second
matched predicates Attribute(Title, Position, String, _) : Column(idPosition, position,
pk), Column(title, position, _) from UC5 and Attribute(Level, Teacher, String, _) :
Column(Level, Teacher, _) from UE15, their matching corresponds to element (2, 2)
in the matrix. The attribute predicates (and their parameters) are similar, but not the
transformation of these attributes since we do not have a primary key created in the
second trace. The resulting similarity is consequently (1 + 1 + 0)/3 = 0.66, and this
value is added to the maximum of elements (1,2), (1,1) and (2,1) which is 1. Thus,
the value of the matching is 1.66.

In our example, we have after normalization:

Sim(UC5,UE15) = s4,5/max(4,4) = 2.66/4 = 0.65

3.2.2.2 Detectors generation This section describes how a set of detectors is pro-
duced starting from the base of examples. The generation is inspired by the work of
Gonzalez and Dasgupta (2003), and follows a genetic algorithm (Goldberg 1989).
The idea is to produce a set of detectors that best covers the possible deviations from

210 Autom Softw Eng (2011) 18: 199–224

the base of examples. As the set of possible deviations can be very large, its coverage
may require a huge number of detectors, which is infeasible in practice. For example,
pure random generation was shown to be infeasible in Gonzalez and Dasgupta (2003)
for performance reasons.

We therefore consider detector generation as a search problem. A generation al-
gorithm should seek to optimize the following two objectives:

• Maximize the generality of the detector to cover the non-self by minimizing the
similarity with the self.

• Minimize the overlap (similarity) between detectors.

These two objectives define the cost function that evaluates the quality of a solution
and, then, guides the search. The cost of a solution D (set of detectors) is evaluated
as the average cost of the included detectors. We derive the cost of a detector di as
an average between the scores of the lack of generality and the overlap, respectively.
Formally, we have:

cos t (di) = LG(di) + O(di)

2
The lack of generality is measured by the matching score LG(di) between the pred-
icate sequence of a detector di and those of all units UEj in the base of examples
(BE). It is defined as the average value of the alignment scores Sim(di,UEj) between
di and units UEj in BE:

LGdi
=

∑
UEj ∈BE Sim(di,UEj)

|BE|
Similarly, the overlap Oi is measured by the average value of the individual
Sim(di, dj) between detector di and all the other detectors dj in solution D:

Oi = 1 −
∑

dj ,j �=i Sim(di, dj)

|D|
The preceding cost function is used in our genetic-based search algorithm. Ge-
netic algorithms (GA) implement the principle of natural selection (Goldberg 1989).
Roughly speaking, a GA is an iterative procedure that generates a population of in-
dividuals from the previous generation using two operators, crossover and mutation.
Individuals having a high fitness have higher chances to reproduce themselves (by
crossover), which improves the global quality of the population. To avoid falling in
local optima, mutation is used to randomly change individuals. Individuals are repre-
sented by chromosomes containing a set of genes.

For the particular case of detector generation, we use the predicate sequences as
chromosomes, with each predicate representing a gene. We start by randomly gener-
ating an initial population of detectors. The size of this population will be discussed
in Sect. 4. It is maintained constant during the evolution. The fitness of each detector
is evaluated by the inverse function of cost.

The fitness determines the probability of being selected for crossover. We imple-
ment the selection process using a wheel-selection strategy (Goldberg 1989). In fact,

Autom Softw Eng (2011) 18: 199–224 211

for each crossover, two detectors are selected by applying the wheel selection twice.
Even though detectors are selected, crossover only happens with a certain probabil-
ity. Sometimes, based on a set probability, no crossover occurs and the parents are
directly copied to the new population.

The crossover operator allows creating two offspring o1 and o2 from the two se-
lected parents p1 and p2. We used the 1-point crossover procedure, defined as fol-
lows:

• A random position k, is selected in the predicate sequences.
• The first k elements of p1 become the first k elements of o1. Similarly, the first k

elements of p2 become the first k elements of o2.
• The remaining elements of, respectively, p1 and p2 are added as second parts of,

respectively, o2 and o1.

For instance, if k = 2, p1 = CCAAGS and p2 = CAAAS, then o1 = CCAAS and
o2 = CAAAGS.

The mutation operator consists of randomly changing the traceability links asso-
ciated to some characters. For example, we change a trace that transforms a class to
table by another one that transforms an association link to a table.

3.2.2.3 Risk estimation The second step for detecting a potential transformation
error is risk assessment. Since the test units are also represented by predicate se-
quences, each sequence is compared to the detectors obtained in the previous step
by using the alignment algorithm. The risk for potential errors associated to test unit
UCi is defined as the average value of the alignment scores Sim(UCi , dj), obtained
by comparing UCi to respectively all the detectors of a set D. Formally,

riskUCi
=

∑
dj ∈D Sim(UCi , dj)

|D|
By using the previous definition, the test units can be ranked according to their risks
of containing potential transformation errors.

4 Evaluation

To evaluate our approach, we conducted an experiment with industrial data. We start
this section by presenting the two kinds of transformation errors we considered in
this study. Then we describe our experimental setting. Finally, we report and discuss
the obtained results.

In addition to our oracle performance, we evaluate the impact of the example base
size on transformation error detection quality. Furthermore, we show how a human
tester can easily validate the detected faults using our visualization tool. Finally, we
discuss the benefits and limitations of the proposed approach to model transformation
testing.

4.1 Considered transformation errors

We considered errors belonging to the two following categories:

212 Autom Softw Eng (2011) 18: 199–224

Fig. 11 Transformation input:
class diagram

4.1.1 Metamodel coverage

This type of error occurs when the transformation is defined without a complete cov-
erage of the metamodel elements. This leads to the problem that parts of some input
models cannot be transformed. To illustrate metamodel coverage errors, consider the
class diagram metamodel presented in Fig. 2. Figure 11 shows a class diagram in-
stance that conforms to this metamodel. Suppose that the transformation mechanism
does not include rules transforming the metamodel element Association. When exe-
cuting the transformation mechanism, we have these two incomplete traces:

Association(payable_by, Command, Bill, 1..n, _) : _
Association(pays, Client, Bill, 1, _) : _

However, in our base of examples all association links have corresponding transfor-
mations. Thus, one of the generated detectors has an example of this faulty trace. The
result is that this trace will be considered to be risky.

4.1.2 Transformation logic errors

These errors happen when the transformation, or part of it, is not implemented cor-
rectly. This can lead to models that do not conform to the target metamodel. This in-
cludes constraints violation. For example, an important constraint in relational mod-
els is that each table should have a primary key. Consider a transformation with a
rule that maps attributes to columns and another rule that maps unique attributes to
primary keys. If we consider class Bill in Fig. 11, this does not contain a unique
attribute. We end-up then with a table without a primary key:

Class(Bill) : Table(Bill).
Attribute(Amount, Bill, _) : Column(Amount, Bill, _).
Attribute(IssueDate, Bill, _) : Column(IssueDate, Bill, _).
Attribute(DeliveryDate, Bill, _) : Column(DeliveryDate, Bill, _).

However, in our base of examples, all tables have primary keys. Thus, one of the gen-
erated detectors has an example of this faulty trace. Thus this trace will be considered
to be risky.

Autom Softw Eng (2011) 18: 199–224 213

4.2 Experimental setting

We used 12 examples of CD-to-RS transformations, provided by an industrial part-
ner acting in the beverage industry, to build an example base EB = {〈SMEi , TMEi ,
UEi〉 | 1 ≤ i ≤ 12}. This company decided to migrate all its existing applications to
distributed ones (intra-web) with a common database. As a result, different database
schemas had to be generated from the existing applications written in object-oriented
code. To this end, the development and maintenance department started by reverse-
engineering these projects to class diagrams. Then they transformed the obtained di-
agrams to relational schema using a commercial tool. In a third step, they completed
and corrected the schemas manually.

The projects we obtained from the company are related to three application do-
mains: product management, marketing, and fleet management including geolocal-
ization. For each transformation example, we had the class diagram and the manually
corrected relational schema. After receiving the examples, we inspected them manu-
ally to ensure that they were free of transformation errors.

As Table 1 shows, the size of class diagrams varies from 28 to 92 elements, with
an average of 58. Altogether, the 12 examples defined 193 test units corresponding to
the number of tables in the 12 schemas (Sect. 3).

We selected as transformation mechanism to test, MTIP, a tool written in Ker-
meta (Bézivin et al. 2005). Kermeta implements a state-of-the-art declarative model
transformation language suitable for Model-Driven Development (MDD) and data
transformation. It is implemented as an Eclipse plugin that leverages the Eclipse
Modelling Framework (EMF) to handle models based on MOF, UML2, and XML
Schema. The transformation traces are collected automatically by adapting an exist-
ing metamodel in Kermeta (Falleri et al. 2006).

We used a 12-fold cross validation procedure. For each fold, we manually in-
troduced different transformation errors into the transformation mechanism (rules)
and subsequently transformed one of the 12 examples (test case 〈SMTk , TMTk ,
UTk〉). The 11 remaining ones formed the base of examples for the testing
({〈SMEj ,TMEj ,UEj 〉 | j �= k}). Thus, each fold concerned one different example.
The test units were ranked by order of risk, and those that were reported to have a risk
higher than 0.75 were checked for correctness. The correctness of our testing method
was based on precision and recall capabilities assessments. These were defined as
follows:

Precison = number of true positive transformation errors

total number of detected transformation errors

Recall = number of true positive transformation errors

total number of actual transformation errors

Are considered as true positive all units that have a risk higher than 0.75 and that
were actual errors. For our experiment, we randomly generated 50 detectors (about a
quarter of the number of existing units in the base of examples) with a maximum size
of 15 predicates (Sect. 3).

214 Autom Softw Eng (2011) 18: 199–224

4.3 Transformation errors detection results

As showed in Table 1, the riskiest test units detected by our approach contained trans-
formation errors in all folds of the validation procedure. The measured average pre-
cision was 91%, with most errors detected with at least 82% precision. The measured
average recall of 98% was greater, indicating that nearly all the errors were detected.
For over half the total number of folds, 100% recall was obtained, indicating the de-
tection of all expected errors. Furthermore, the precision and recall scores were not
correlated with the size of the source model.

We also investigated the types of transformation errors that were identified. As
mentioned previously, the possible error sources were during specification of the
model transformation mechanism: (i) the metamodels; (ii) the transformation logic
(rules). Table 2 shows that, for fold SM5, chosen because it represent the average
size and precision/recall scores, our affinity function (risk score) can be a good esti-
mator for detecting transformation errors. In fact, the units located at the top of the
list are all true positive, and the unique incorrect (unexpected) detected error is lo-
cated last. Furthermore, the units containing two kinds of errors are typically detected
with higher risk values (UC68 and UC69). The same observations can be drawn for
all folds, showing that the used risk score offers an effective and efficient manner for
the tester to validate the detected errors.

An important consideration is the impact of the example base size on transfor-
mation error detection quality. Drawn for SM5, the results of Fig. 12 show that our
approach had good precision in situations where only few examples were available.
As the results shows, the precision score seems to follow an exponential curve: it
rapidly grows to acceptable values and then slows down. First, it improved from 22%
to 75% as the example base size increased from 1 to 6 examples. Then, it only grew
by an additional 18% as the size went from 6 to 11 examples.

Table 1 12-fold cross
validation Source Number of Number of transformation Precision Recall

Model elements errors introduced manually

SM1 72 13 82% 93%

SM2 83 14 93% 94%

SM3 49 11 92% 100%

SM4 53 16 88% 100%

SM5 38 9 90% 100%

SM6 47 12 100% 100%

SM7 78 16 84% 95%

SM8 34 8 100% 100%

SM9 92 14 82% 93%

SM10 28 9 100% 100%

SM11 59 13 93% 100%

SM12 63 15 94% 100%

Average 58 12 91% 98%

Autom Softw Eng (2011) 18: 199–224 215

Table 2 Errors detected in SM5
Test units with Risk Met-model Transformation logic

numbers error error

UC68 0.93 X X

UC69 0.91 X X

UC70 0.96 X

UC71 0.91 X

UC72 0.89 X

UC73 0.94 X

UC74 0.96 X

UC75 0.89 X

UC76 0.77

Fig. 12 Example-size variation

We executed our algorithm on a standard desktop computer (Pentium CPU running
at 2 GHz with 1 GB of RAM). The execution time is shown in Fig. 13. As suggested
by the curve shape, the time increased linearly with the number of elements. Thus, our
approach appears to be scalable from the performance standpoint. Only a few seconds
were needed to test the transformation mechanism to evaluate. This execution time
does not include that for detector generation since the detectors are only generated
once and can serve to evaluate several transformation mechanisms afterwards. This
feature is a major advantage of using detectors versus comparing the test units to all
units in the base of examples, which can be infeasible in time when the number of
units is very large (Forrest et al. 1994).

216 Autom Softw Eng (2011) 18: 199–224

Fig. 13 Execution time

As showed in Fig. 14, a human tester can analyze the detected risky test units with
a graphical visualization tool. We developed a custom utility that displays the risky
test units with different colors related to the obtained risk score, and with the “clean”
traces colored in green. The human tester can validate, for example, only units that
present a potential risk that are colored in red. Furthermore, the traces help the tester
understand the origin of an error. To allow dealing with the transformation of large
models, the traces can be viewed at different levels of granularity. For example, the
tester can only show the links between model elements, or between sub-elements.
Furthermore, he can only visualize the traces having potential risk (Fig. 14(b)).

5 Discussion

In this section, we discuss several issues concerning the detection of transformation
errors. Especially, we describe some advantages and limitations related to our ap-
proach.

In our approach, there is no need to define an expected model for each test-
case or to define pre- and post-conditions as oracles; we only use similarity to good
transformation examples. The approach can be seen to propose a way to detect and
order transformation errors by importance, using a risk score. Moreover, our ora-
cle definition is independent from the transformation mechanism to evaluate or the
source/target formalisms, and it helps the tester understand the origin of errors by
visualizing the traceability links with different colors.

Still, our approach has issues that need to be addressed. First, its performance de-
pends on the availability of good transformation examples, which could be difficult
to collect. Second, the assumption that the base of examples does not contain trans-
formation errors may be too strong, and not easily verified in practice. On the positive

Autom Softw Eng (2011) 18: 199–224 217

Fig. 14 Interactive transformation errors detection using our tool: (a) all traces and (b) only risky traces

side, our results show that a small number of examples may be sufficient to obtain
good testing results. This alleviates the two previous limitations, and may even offer a
solution because the number of needed examples is small. It consists of generating a
few test cases using the transformation mechanism to test and, then, of manually de-

218 Autom Softw Eng (2011) 18: 199–224

Fig. 15 Detectors variation vs. solution quality (precision)

tecting and correcting potential transformation errors. The resulting cases then form
the base of examples.

To reduce the number of necessary examples, these examples are decomposed
into units. However, the definition of units sometimes depends on the source/target
metamodels of the test-case. Thus, our proposed methodology could sometimes be
dependent on the source/target metamodels, but this potential dependency is accept-
able in comparison to the state of the art that will be discussed in the next section.

Another potentially important aspect of our detection technique is the generation
of a sufficient number of detectors. In our experiments, we generated 50 detectors,
which corresponds to a quarter of the units present in the base of examples. We eval-
uated the precision of our approach when varying the number Nd of detectors, with
Nd = {20,50,90,120}. Our results, shown in Fig. 15, reveal that precision stops im-
proving when the number of detectors is higher than the quarter of the total number
of units in the base of examples. In addition, Fig. 16 shows the execution time nec-
essary to generate different numbers of detectors. We observe that this time appears
to vary linearly with respect to the diagram sizes for all the number of detectors. In
conclusion, our experimentation results indicate that a reasonable number of detec-
tors (quarter of the transformation units in the base of examples), generated in less
than one minute, is sufficient to obtain good detection results.

An additional issue is the selection of interesting detectors since the detection re-
sults might vary depending on which detectors are used, and ours were randomly
generated (though guided by a meta-heuristic). To ensure that our results are rela-
tively stable, we compared the results of multiple executions for detector generation.
We found that approximately the same transformation errors are found after every
execution and the differences only exist for low-risk test units. We therefore believe

Autom Softw Eng (2011) 18: 199–224 219

Fig. 16 Detectors variation vs. execution time

that our technique is stable with regard to detector choice since the result variability
only relates to the least risky classes.

6 Related work

The work proposed in this paper crosscuts many research topics. In the remainder
of this section, we present representative contributions in five of these topics: test-
case generation, oracle function definition, search-based testing, by-example model
transformation, and traceability and transformation.

6.1 Test case generation

Fleurey et al. (2004, 2008) and Steel and Lawley (2004) discuss the reasons why test-
ing model transformation is distinct from testing traditional implementations: the in-
put data are models that are complex in comparison to simple-type data. Both papers
describe how to generate test data in MDA by adapting existing techniques, including
functional criteria (Fleurey et al. 2004) and bacteriologic approaches (Baudry et al.
2002). Lin et al. (2005) propose a testing framework for model transformation, built
on their modeling tools and transformation engine, that offers a support tool for test
case construction, test execution and test comparison; but the test models are manu-
ally developed in their work. As our work does not address test case generation, it can
be integrated with the previous approaches without the need to define the expected
model for each test case.

One of the most widely-used techniques for test-case generation is mutation analy-
sis. Mutation analysis is a testing technique that aims to evaluate the efficiency of a

220 Autom Softw Eng (2011) 18: 199–224

test set. Mutation analysis consists of creating a set of faulty versions, or mutants, of
a program with the ultimate goal of designing a test set that distinguishes the program
from all its mutants. Mottu et al. (2006) have adapted this technique to evaluate the
quality of test cases. They introduce some modifications in the transformation rules
(program-mutant). Then, using the same test cases as input, an oracle function com-
pares the results (target models). If all the results are the same, we can assume that
the input cases were not sufficient to cover all the transformation possibilities. In our
work, the goal is not to evaluate the quality of a data set but to propose a generic or-
acle function to detect transformation errors. Our oracle function compares between
some potential errors (detectors) and transformation traces to evaluate. However, in
mutation analysis, the oracle function compares between two target models, one gen-
erated by the original mechanism (rules) and another after modifying the rules. In
addition, our technique does not create program variations (rules modifications) but
traces variation that differs from good ones. We modified the transformation mecha-
nism to introduce errors artificially only to validate our approach. Finally, the muta-
tion analysis technique needs to define an expected model for each test case in order
to compare it with another target model obtained from the same test case after modi-
fying the rules (mutant).

Some other approaches are specific to test case generation for graph-transfor-
mation mechanism. Küster (2006), addresses the problem of model transformation
validation in a way that is very specific to graph transformation. He focuses on the
verification of transformation rules with respect to termination and confluence. His
approach aims at ensuring that a graph transformation will always produce a unique
result. Küster’s work is concerned with the verification of transformation properties
rather than the validation (testing) of their correctness. Darabos et al. (2006) investi-
gate the testing of graph transformations. They consider graph transformation rules
as the transformation specification and propose to generate test data from this specifi-
cation. Their technique focuses on testing the pattern matching activity that is consid-
ered the most critical of a graph transformation process. They propose several faulty
models that can occur when performing the pattern matching as well as a test-case
generation technique that targets those particular faults. Compared to our approach,
Darabos’ work is specific to graph-based transformation testing. Baudry et al. (2006)
propose a technique for generating test cases for code generators. The criterion they
propose is based on the coverage of graph transformation rules. The generated test
cases consider both individual rules and rule interactions. Sampath et al. (2007) pro-
pose a similar method for the verification of model processing tools such as simu-
lators and code-generators. They use a method that generates test-cases for model
processors starting from a metamodel. This method, like the previous contributions,
is concerned with test-case generation which is not the goal of our contribution.

6.2 Oracle function definition

Mottu et al. (2008) describe six different oracle functions to evaluate the correct-
ness of an output model. These six functions can be classified in the three categories
discussed in Sect. 2. Thus, they are completely different from our proposal.

Autom Softw Eng (2011) 18: 199–224 221

In Brottier et al. (2006), the authors suggest to manually determine the expected
outcome of the transformation and compare it with the actual outcome of the trans-
formation by using a simple graph-comparison algorithm, since the compared models
conform to the same metamodel. While this makes model transformation testing fea-
sible, our view is that manually constructing the expected outcome is not an efficient
and scalable approach.

Varró and Pataricza (2003) have developed a formal framework for describing
model transformation. The formal framework relies on models represented as typed
attributed graphs. Concerning the transformation correctness, they have developed an
approach based on planner algorithms to prove the syntactic correctness of a transfor-
mation. Syntactic correctness refers to the property that the result of a transformation
corresponds to a certain previously specified syntax, and can be achieved by specify-
ing a graph grammar for both the source and target languages.

More generally, when many test models are necessary, writing an oracle for each
test case is time consuming and error prone. Generic oracles are more interesting
since they are written only once, and could be used with all the test cases. Another
limitation of the existing approaches is that they consider a particular model transfor-
mation technique and use its specificities to validate the corresponding transformation
mechanisms. This has the advantage of having specific validations but make these
approaches difficult to adapt to other transformation techniques. For our approach,
the oracle function is generic and independent from the transformation techniques.
Moreover, we do not have an explicit specification of the transformation mechanism
to evaluate (properties, constraints, or contracts).

6.3 Search-based testing

Our approach is inspired by contributions in the domain of Search-Based Software
Engineering (SBSE) (Harman 2007). SBSE uses search-based approaches to solve
optimization problems in software engineering. Once a software engineering task is
framed as a search problem, many search algorithms can be applied to solve that
problem. Search-based techniques are have been used for problems in software test-
ing (Baresel et al. 2002, 2004; McMinn 2004). Especially, genetic algorithms have
been extensively used for test data generation. The general idea behind the proposed
approaches is that possible test suites define a search space and that a test adequacy
criterion is coded as a fitness function. This later guides the selection of the best
test suite in this space. A wide variety of testing problems have been targeted using
search techniques, including structural, functional and non functional testing, safety
testing, mutation testing, integration testing and exception testing (McMinn 2004).
In our work, we use a genetic algorithm with a completely different perspective. In-
deed, the idea is to generate artificial situations that are different from known good-
transformation traces. Then, these artificial traces are used not as test cases but as
oracle functions.

To our knowledge, there exist very few works in software engineering that use
an AIS techniques. The closest one to our work proposes a software defect predic-
tion model by means of an artificial immune recognition system (AIRS) along with
correlation-based feature selection (CFS) (Catal 2007). In our work, in addition to
target a different problem, we do not use AIRS, but the negative selection algorithm.

222 Autom Softw Eng (2011) 18: 199–224

6.4 By example model transformation

The AIS approach proposed in this paper is based on using examples. Various such
by-example approaches have been described in the literature (Varro and Balogh 2007;
Kessentini et al. 2008, 2010; Wimmer et al. 2007; Sun et al. 2009; France and Rumpe
2007). The most similar one is Model Transformation By Example (MTBE), which
was proposed in Kessentini et al. (2008), France and Rumpe (2007). Varro and Balogh
(2007) propose a semi-automated process for MTBE using Inductive Logic Program-
ming (ILP). The principle of their approach is to derive transformation rules semi-
automatically from an initial prototypical set of interrelated source and target mod-
els. In a previous work (Kessentini et al. 2008, 2010; France and Rumpe 2007) we
proposed MOTOE (MOdel Transformation as Optimization by Example), a novel
approach to automate model transformation using heuristic-based search. MOTOE
uses a set of transformation examples to derive a target model from a source model.
The transformation is seen as an optimization problem where different transforma-
tion possibilities are evaluated and a quality associated to each one depending on its
conformance with the examples at hand. A similar approach to MTBE, called Model
Transformation By Demonstration (MTBD), was proposed in Sun et al. (2009). In-
stead of the MTBE idea of inferring the rules from a prototypical set of mappings,
users are asked to demonstrate how the model transformation should be done, through
direct editing (e.g. add, delete, connect, update) of the source model so as to simulate
the transformation process.

In conclusion, when compared to existing by-example approaches, our proposal
appears to present the first contribution that uses examples for model transformation
testing.

Despite these efforts in MTBE work, and considering the nature of the algorithms
that are used, there is no evidence that a solid base of examples can generate target
models without errors.

6.5 Traceability and transformation

In our approach, the definition of transformation examples is based on traceability
(Varró and Pataricza 2003). Traceability usually allows tracing artifacts within a set
of chained operations, where the operations may be performed manually (e.g. craft-
ing a software design for a set of software requirements) or with automated assistance
(e.g., generating code from a set of abstract descriptions). Most work on traceability
in MDE uses it for detecting model inconsistency and fault localization in transfor-
mations. In our proposal, the goal is not to generate traces but to use clean trace
information as input in order to detect transformation errors.

7 Summary

In this article, we presented a new oracle function definition for model transforma-
tion testing that does not need to define the expected model for each test case. The
technique is based on the metaphor of a biological immune system using negative se-
lection. We propose an oracle function that compares between the targeted test cases

Autom Softw Eng (2011) 18: 199–224 223

and a base of examples containing good quality transformation traces and assigns a
risk level, which will define the oracle function to the former based on the dissimi-
larity between the two. Furthermore, we use a custom tool to help the human tester
visualize the detected risky fragments in test cases, using different colors related to
the obtained risk scores.

We illustrated our approach with a transformation mechanism for UML class di-
agrams to relational schemas. In this context, we conducted a validation with real
industrial models. The experiment results clearly indicated that the detected risky
fragments (transformation errors) are comparable to those detected by a human tester
(precision and recall of more than 90%).

Our method also suffers from some limitations as discussed in Sect. 5. In partic-
ular, our oracle function may require considerable effort to find and collect transfor-
mation examples.

Future work should validate our approach with more complex transformation
mechanisms like sequence diagram to colored Petri nets in order to conclude about
the general applicability of our methodology. Also, in this paper, we only looked at
the first step of immune systems: the detection of risk. The second step is problem
correction. The colonial selection algorithm (Sun et al. 2009) could be adapted for
finding the best immune response, i.e. the one corresponding to the optimal sequence
of corrections to apply for correcting errors by automatically regenerating some rules
from examples.

References

Alanen, M., Porres, I.: Difference and union of models. In: UML’03, USA (2003)
Baresel, A., Sthamer, H., Schmidt, M.: Fitness function design to improve evolutionary structural testing.

In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1329–
1336 (2002)

Baresel, A., Binkley, D.W., Harman, M., Korel, B.: Evolutionary testing in the presence of loop-assigned
flags: A testability transformation approach. In: International Symposium on Software Testing and
Analysis (ISSTA 2004), Omni Parker House Hotel, Boston, MA, July 2004, pp. 108–118 (2004).
Appears in Softw. Eng. Notes 29(4)

Baudry, B., Fleurey, F., Jezequel, J.-M., Traon, Y.L.: Automatic test cases optimization using a bacterio-
logical adaptation model: Application to .net components. In: ASE (2002)

Baudry, B., Dinh-Trong, T., Mottu, J.-M., Simmonds, D., France, R., Ghosh, S., Fleurey, F., Traon, Y.L.:
Model transformation testing challenges. In: IMDT Workshop (2006)

Bezivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: OOPSLA/GPCE 2004 Workshop
(2004)

Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: MTIP workshop. Available from: http://sosym.dcs.kcl.ac.uk/
events/mtip05/long_cfp.pdf (2005)

Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test generation for model
transformations: an algorithm and a tool. In: Proceedings of SSRE (2006)

Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of model transformation
contracts. In: Proceedings of Workshop OCL and MDE (2004)

Carrillo, H., Lipman, D.: The multiple sequence alignment problem in biology. SIAM J. Appl. Math. 48(5),
1072–1082 (1988)

Catal, C., Diri, B.: Software defect prediction using artificial immune recognition system. In: Proceedings
of IASTED international Multi-Conference, pp. 285–290 (2007)

Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: OOSPLA 2003, Ana-
heim, USA (2003)

http://sosym.dcs.kcl.ac.uk/events/mtip05/long_cfp.pdf
http://sosym.dcs.kcl.ac.uk/events/mtip05/long_cfp.pdf

224 Autom Softw Eng (2011) 18: 199–224

Darabos, A., Pataricza, A., Varro, D.: Towards testing the implementation of graph transformations. In:
Proceedings of GT-VMT Workshop Associated to ETAPS’06, Vienna, Austria, pp. 69–80 (2006)

Dasgupta, D., Ji, Z., Gonzalez, F.: Artificial immune system (ais) research in the last five years. In: IEEE
Congress on Evolutionary Computation (1), pp. 123–130. IEEE, New York (2003)

Falleri, J.-R., Huchard, M., Nebut, C.: Towards a traceability framework for model transformations in
Kermeta. In: Proceedings of the European Conference on MDA Traceability Workshop, Bilbao, Spain
(2006)

Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: testing model transformations.
In: 15th IEEE International Symposium on Software Reliability Engineering (2004)

Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.: Qualifying input test data for model transformations. In:
Software and Systems Modeling (2008)

Forrest, S., Perelson, A.S., Allen, L., Kuri, R.C.: Self nonself discrimination in a computer. In: Proceedings
of the 1994 IEEE Symposium on Research in Security and Privacy (1994)

France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap. In: ICSE
2007: Future of Software Engineering (2007)

Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,
Reading (1989)

Gonzalez, F., Dasgupta, D.: Anomaly detection using real-valued negative selection. Genet. Program.
Evolv. Mach. 4(4), 383–403 (2003)

Harman, M.: The current state and future of search based software engineering. In: Proceedings of the
29th International Conference on Software Engineering (ICSE 2007), 20–26 May, Minneapolis, USA
(2007)

Kessentini, M., Sahraoui, H., Boukadoum, M.: Model transformation as an optimization problem. In: Proc.
MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Berlin (2008)

Kessentini, M., Sahraoui, H., Boukadoum, M.: Search-based model transformation by example. J. Softw.
Syst. Model. (2010). doi:10.1007/s10270-010-0175-7

Khuller, S., Raghavachari, B.: Graph and network algorithms. ACM Comput. Surv. 28(1), 43–45 (1999)
Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model comparison: a foundation for model composition and

model transformation testing. In: Proc. GaMMa (2006)
Kuby, J., Kindt, T.J., Osborne, B.A., Goldsby, R.A.: Immunology, 3rd edn. Freeman, New York (1997)
Küster, J.M.: Definition and validation of model transformations. Softw. Syst. Model. 5(3), 233–259

(2006)
Kuster, J., Abd-El-Razik, M.: Validation of model transformations—first experiences using a white box

approach. In: MoDeVa’06 (2006)
Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. In: Model-Driven Software

Development. Springer, Berlin (2005)
McMinn, P.: Search-based software test data generation: A survey. Softw. Test. Verif. Reliab. 14(2), 105–

156 (2004)
Mottu, J.-M., Baudry, B., LeTraon, Y.: Mutation analysis testing for model transformations. In: Proceed-

ings of ECMDA’06 (European Conference on Model Driven Architecture), Bilbao, Spain (2006)
Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: Oracle issue. In: Proc. of ICST08

(2008)
Sampath, P., Rajeev, A.C., Ramesh, S., Shashidhar, K.C.: Testing model-processing tools for embedded

systems. In: IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 203–214
(2007)

Steel, J., Lawley, M.: Model-based test driven development of the Tefkat model- transformation engine.
In: ISSRE’04, pp. 151–160. IEEE, New York (2004)

Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In: MoDELS09 (2009)
Varro, D., Balogh, Z.: Automating model transformation by example using inductive logic programming.

In: ACM Symposium (SAC 2007) (2007)
Varró, D., Pataricza, A.: Automated formal verification of model transformations. In: Jürjens, J., Rumpe,

B., France, R., Fernandez, E.B. (eds.) CSDUML 2003: Critical Systems Development in UML; Pro-
ceedings of the UML’03 Workshop, Technical Report, pp. 63–78. Technische Universität, München
(2003)

Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation generation by-
example. In: HICSS-40 Hawaii International Conference on System Sciences (2007)

http://dx.doi.org/10.1007/s10270-010-0175-7

	Example-based model-transformation testing
	Abstract
	Introduction
	Background and motivation
	Approach
	Immune system metaphor
	Traceability-based approach for model transformation testing
	Overview
	Input/output
	Base of examples
	Main algorithm

	AIS-based algorithm
	Similarity between transformation units
	Detectors generation
	Risk estimation

	Evaluation
	Considered transformation errors
	Metamodel coverage
	Transformation logic errors

	Experimental setting
	Transformation errors detection results

	Discussion
	Related work
	Test case generation
	Oracle function definition
	Search-based testing
	By example model transformation
	Traceability and transformation

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

