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Abstract The variability of a product line is typically defined in models. However,
many existing variability modeling approaches are rigid and don’t allow sufficient
domain-specific adaptations. We have thus been developing a flexible and extensible
approach for defining product line variability models. Its main purposes are to guide
stakeholders through product derivation and to automatically generate product con-
figurations. Our approach is supported by the DOPLER (Decision-Oriented Product
Line Engineering for effective Reuse) meta-tool that allows modelers to specify the
types of reusable assets, their attributes, and dependencies for their specific system
and context. The aim of this paper is to investigate the suitability of our approach for
different domains. More specifically, we explored two research questions regarding
the implementation of variability and the utility of DOPLER for variability modeling
in different domains. We conducted a multiple case study consisting of four cases in
the domains of industrial automation systems and business software. In each of these
case studies we analyzed variability implementation techniques. Experts from our
industry partners then developed domain-specific meta-models, tool extensions, and
variability models for their product lines using DOPLER. The four cases demonstrate
the flexibility of the DOPLER approach and the extensibility and adaptability of the
supporting meta tool.
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1 Introduction and motivation

Software product lines aim at increasing the degree of reuse in software engineer-
ing. A software product line has been defined as “a set of software-intensive sys-
tems sharing a common, managed set of features that satisfy the needs of a par-
ticular market segment or mission and that are developed from a common set of
core assets in a prescribed way” (Clements and Northrop 2001). It has been demon-
strated that software product line engineering (PLE) is a successful approach in many
business environments (van der Linden et al. 2007; Clements and Northrop 2001;
Pohl et al. 2005).

Many software product lines today are developed and maintained using model-
based approaches. Models are used to define and communicate the often tacit knowl-
edge regarding the variability of systems and to support the derivation of new prod-
ucts. Defining the variability of a product line involves modeling the problem space
(i.e., the variability of the product line’s features and capabilities), the solution space
(i.e., the architecture and the components of the technical solution), and mappings be-
tween problem and solution space (i.e., traceability links between model elements in
both spaces). More specifically, modeling the problem space requires a language for
expressing the variability of stakeholder requirements. Examples are configuration
decisions or features available for selection during product derivation. The solution
space consists of diverse reusable assets representing, e.g., the architecture, code, test
suite, or documentation. Due to the complexity of real-world systems and the hetero-
geneous technologies used for implementing variability, solution space models need
to be managed at different levels of abstraction and across arbitrary development ar-
tifacts (Berg et al. 2005). The mappings between the problem space and the solution
space are important when configuring and assembling a product based on customers’
requirements. Establishing traceability between the two spaces is a prerequisite for
automation.

Numerous approaches have been proposed for modeling product lines, includ-
ing feature-oriented modeling languages (Czarnecki and Eisenecker 2000; Kang et
al. 1990), decision-oriented approaches (Campbell et al. 1990; Schmid and John
2004), UML-based variability modeling approaches (Gomaa and Shin 2002; Go-
maa 2005), architecture modeling languages (Dashofy et al. 2002), or orthogonal ap-
proaches (Pohl et al. 2005). However, despite many success stories (Steger et al. 2004;
Thiel and Hein 2002; Estublier and Vega 2005; Verlage and Kiesgen 2005) there are
still several obstacles inhibiting the widespread adoption of PLE. For instance, many
existing variability modeling tools are rigid and only allow minimal domain-specific
adaptations. It thus remains challenging for organizations to adapt available methods
and techniques to their particular development context.

A key goal of developing our DOPLER approach was therefore to make it exten-
sible and customizable to different domains. While earlier publications introduced
the modeling approach (Dhungana et al. 2007a, 2010b) and tool support (Dhungana
et al. 2007b) the focus of this paper is on investigating the utility and suitability
of our approach in different practical settings. It has been pointed out by several
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researchers that the research community lacks reports about industrial experiences
with variability modeling approaches (Berger et al. 2010). Our aim was thus to in-
vestigate how variability is represented in different industrial domains and how well
our approach meets the expectations of modelers in these environments. We describe
the DoplerVML variability modeling approach (Sect. 2) and the DOPLER meta-tool
(Sect. 3). We then report a multiple case study comprising four cases from different
domains and development environments (Sects. 4–5). We discuss results, benefits and
limitations and report lessons learned (Sect. 6). We also present related work (Sect. 7)
and round out the paper with conclusions (Sect. 8).

2 Decision-oriented variability modeling with DoplerVML

DoplerVML is a modeling language for defining product lines. It supports model-
ing the problem space using decision models and defining the solution space using
asset models which represent arbitrary types of reusable assets. Figure 1 depicts the
high-level meta-model of our approach. The key modeling elements are decisions for
representing a problem space view on the product line’s variability as well as assets
for defining an abstract view of the solution space in the degree of detail needed for
subsequent product derivation. Decisions and assets are linked with inclusion condi-
tions that define traceability between the problem space and the solution space.

The ultimate goal of PLE is to turn out products (Clements and Northrop 2001).
DoplerVML thus emphasizes product derivation by using decision models that spec-
ify the available customization options from the perspective of users. Based on the
decision values set by a user, the assets required for composing the product are au-
tomatically determined and product configurations can be generated. Unlike other
approaches to variability modeling the main purpose of DoplerVML is not the docu-
mentation and analysis of the domain. This means that DoplerVML models often do
not describe all available features and their dependencies (which is e.g., often done in
feature models for the purpose of analyses as we will also discuss in Sect. 7). Instead,
DoplerVML models focus on just the decisions that are needed to generate customer-
specific solutions. This means that no decisions are defined for parts of the product
line that are not variable.

Fig. 1 The core meta-model of DoplerVML. Modelers define domain-specific meta-models based on
these basic types, relationships, and attributes
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This section provides a thorough description of the key modeling elements of the
DoplerVML language1 illustrated with simple examples from a component-based
product line of our industry partner Siemens VAI.

2.1 Decisions

Decisions describe the variation points in a product line and define the set of choices
available at a certain point in time when deriving a product. Taking a decision involves
judging the merits of multiple options and then selecting a course of action among
the available alternatives to reflect customers’ requirements.

A decision is specified by a unique name and its decision type. Every decision cor-
responds to a decision variable which is comparable to a typed variable in program-
ming languages. A validity condition defines the set of allowed values (with respect to
the decision type and additional user-defined constraints). Further decision attributes
can be defined to provide additional information for the user. Decisions are typically
not isolated and depend on each other. For instance, taking a decision can lead to
new decisions and decisions can also be constrained by already taken decisions. For
this purpose, DoplerVML distinguishes hierarchical and logical dependencies (see
Fig. 1). A decision model consists of a set of decisions and their dependencies.

The Decision Type defines the range of values which can be assigned to a deci-
sion. The three predefined basic decision types in our modeling language are Boolean,
String and Number. We also provide an Enumeration type which has been introduced to
simplify the modeling process. In the example in Fig. 2 the decision model contains
the Boolean decisions UI, TT3D, and TimeLine3D as well as the number decision Num-

Strands. The decision FeedingMode is defined by an enumeration type describing the
available feeding modes (Top, Bottom, Horizontal, Vertical).

Decision Attributes are annotations on decisions for capturing information for
the modeler as well as the users taking decisions. For instance, a description allows
to further document the meaning of a decision. A question defines the text that is
presented to the user when enacting the decision model during product derivation.
The decision FeedingMode, for example, is presented to the user using the question
“Which feeding modes shall be supported?”

The Validity Condition restricts the value range determined by the basic deci-
sion type (which is often too broad). The validity condition of a decision can be seen
as a post condition which has to be fulfilled after a user takes a decision and be-
fore assigning a value to the decision variable. Validity conditions can be arbitrarily
complex Boolean expressions. An example of a validity condition specified for the
decision NumStrands is NumStrands>0 && NumStrands<=6.

The Visibility Condition specifies when a particular decision becomes relevant
to the user. The visibility condition thus defines hierarchical dependencies between
decisions. Figure 2 shows the visibility condition UI==TRUE specified for the decision
TT3D. A user will not be asked about 3D visualization if no user interface is to be
deployed. Visibility conditions also define the order of taking decisions. If there is a
visibility condition associated with a decision, the user has to first take the decisions

1The formal semantics of the DoplerVML modeling language are described in Dhungana et al. (2010b).
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Fig. 2 Simplified example of a DoplerVML decision model of a Siemens VAI product line

appearing in the visibility condition. This possibility of hierarchically arranging deci-
sions allows building models with few high-level decisions and lower-level decisions
presented to the user later only if necessary.

Decision Effects specify logical dependencies between decisions. For example,
the decision about the number of strands has an effect on the options available for the
decision concerning the available feeding modes. Logical dependencies are described
using conditions that are checked after a decision has been taken and actions that need
to be executed depending on the condition. Decision effects are modeled using a set
of rules with pre-defined actions such as setting values of other decisions. They are
specified in the form: if 〈condition〉 then 〈action〉 where condition is a Boolean expression
defined using decision variables and action is a function affecting decision variables.
A rule is activated or triggered when its condition evaluates to TRUE.

We present a few examples of rules for the actions assert, bind, and update:
We use the Assert action for dependencies among decisions, where certain condi-
tions always need to hold. For example, a constraint in the form (v1==n1) implies

(v2==n2) could be specified using the rule if (v1==n1) then assert (v2==n2) or simply
assert (!(v1==n1)||(v2==n2)). Assert does not change the value of the variables but only
makes sure that the condition holds. Whenever there is a need to change the values
of the decision variables we use the Bind action, e.g., if (v1 == n1) then setValue(v2, n2).
setValue is an example of a binding action (the actual syntax and semantics of the
actions are defined by the language selected for specifying decision dependencies for
the domain of interest). In general, a binding action is comparable to a constraint in
constraint satisfaction problems (CSPs) where a condition implies a binding. In con-
trast to the assertion action, binding actions change the actual value of the decisions.
The binding and assertion rules may be combined arbitrarily. The semantics of rules
used for assertion and binding is identical to constraints specified using Boolean ex-
pressions in CSPs. We use the Update action if we want to manipulate not only the
values but also different attributes of decisions. For instance, depending on the value
of one decision, the validity condition of another decision might change. Such an up-
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date action could also be used to change the specification of the model at runtime if
desired.

2.2 Assets

Assets are used to represent solution space artifacts available in a product line. Exam-
ples are software components, test cases, or documentation fragments. For a concrete
domain, asset types are specified together with their attributes and possible dependen-
cies. For instance, an asset type Component might have an attribute File of type URL

pointing to its actual definition and a requires dependency to asset type Property being
an initialization parameter. The flexibility of asset models is achieved by defining a
domain-specific asset meta-model that addresses domain-specific concepts based on
the generic core DoplerVML meta-model depicted in Fig. 1.

An asset model is a collection of the assets that describes the solution space at
the level of abstraction that allows subsequent derivation of products. The domain-
specific meta-model defines the granularity of the reusable building blocks. While for
certain product lines variability is realized at the coarse-grain level of components it
might be necessary to consider even individual lines of code in other cases. It is
critical to understand this granularity when defining the asset types.

An Asset Type is a refinement of the generic element Asset defined in the core
meta-model. For instance, the three asset types Component, Resource, and Property are
used to define a component-based product line of our industry partner Siemens VAI.
The structure and organization of the solution space is specific for the domain and
industrial context at hand. In particular, the definition of asset types for a specific
domain depends on the granularity needed for subsequent automation. Building such
a model thus requires knowledge about the domain and the organization’s implemen-
tation practices as we will demonstrate in the case studies.

Asset Attributes are used to define additional properties of assets. For instance, in
Fig. 3 the component asset CastHMI has four attributes and the property asset Feeding

Mode has five attributes.
Asset Dependencies define relationships between assets. Structural dependencies

are used to specify the physical organization of the assets. This can for example mean
the way how assets are packaged or divided into sub-systems. Structural dependen-
cies are represented with relationship links like consists of, contributes to, is prede-
cessor of, or is successor of. Functional dependencies specify relationships stemming
from the underlying implementation of a system. They describe the logical organi-
zation of the assets and can be represented with relationship links like requires or
excludes.

Inclusion Conditions link assets to decisions. They describe the context and situa-
tion when a particular asset is required in the desired product. One inclusion condition
can refer to several decision values. E.g., the inclusion condition of component Caster

might expect one decision to be FALSE and another to be TRUE. In other words, as-
sets are “aware” of the decisions as they influence their selection for a product while
decisions are “unaware” of the assets realizing them.

Assets are also included if required by other assets. For example, the property
Casting Lines is part of the final product if the component Caster is included due to the
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Fig. 3 A partial asset model depicting a set of available assets, their attribute values, and relationships
among them. The inclusion conditions refer to the decisions defined in Fig. 2

requires dependency between the two assets. Modeling functional asset dependencies
significantly reduces the number of inclusion conditions needed. Only few assets will
have direct links to the decisions. More often assets will be included in a final product
because of technical dependencies as shown in the aforementioned example.

3 The DOPLER meta-tool for defining and enacting variability models

Product line practices vary largely in different organizations and domains due to dif-
ferent types of reusable assets, architectural styles, programming languages, devel-
opment tools, etc. Unfortunately, many existing variability modeling tools are rigid
and only allow minimal domain-specific adaptations. Our goal was thus to develop
configurable and extensible tool support based on DoplerVML that can be tailored
to different domains (Grünbacher et al. 2009). We have thus developed an extensible
meta-tool for defining and enacting DoplerVML models as part of our Eclipse-based
DOPLER tool suite. DOPLER allows creating a meta-model to define the asset types,
attributes and dependencies. A domain-specific variability model editor is then auto-
matically provided for a defined meta-model. Modelers and end users can “enact”
the variability models meaning that the tools allow users to take decisions based on
the models and are capable of determining the required assets of a product. The tool
also offers a number of extension points. This allows organizations to easily add new
capabilities like model verification tools or generators by exploiting the tool’s plug-in
architecture.

3.1 Defining meta-models

The core meta-model from Fig. 1 can be refined for a specific domain using DO-
PLER’s meta-model editor (cf. Fig. 4). The base type Asset provides the three de-
fault attributes Name, Description, and IncludedIf. Further attributes can be added by the
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Fig. 4 DOPLER meta-model editor

modeler to take into account domain-specific characteristics. For instance, a modeler
needs to define a File attribute for the asset types Component and Resource, as well as
key and value attributes for the asset type Property to prepare the tool for the model
shown in Fig. 3. DOPLER currently implements the default attribute types Boolean,
Expression, File, List, Number, String, Paragraph, and URL. The tool currently imple-
ments eight basic types of relationships between assets. We support the generic types
parent, child, inclusion, exclusion, implementation, abstraction, predecessor, and successor.
When defining a new relationship in the meta-model (e.g., Component requires Com-

ponent) the modelers select one of these pre-defined types to determine its semantics.
For example, there may be several instances of the generic parent relationship such as
contained in, contributes to, is part of, is constituent of in a DoplerVML meta-model.
The list of assets to be included in a derived product is determined based on the types
of links in the asset model.

The meta-model editor in Fig. 4 depicts a new asset type Component defined as the
subtype of the default type Asset. It inherits the default attributes Name, Description,
IncludedIf and defines the two new attributes File and VariantType. One can also see
the different relationships between the type Component and other asset types, e.g.,
requires * Property and contributesTo * Resource.

3.2 Editing decisions and assets

DOPLER’s variability model editor allows creating variability models conforming to
a specific meta-model. For instance, Fig. 5 shows the variability model editor that is
automatically provided by the tool suite based on the meta-model depicted in Fig. 4.
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Fig. 5 DOPLER variability model editor

The editor follows the concept of master-tree (e.g., elements shown in a tree compa-
rable to the file system visualization in the Windows Explorer) and elements-details
(for a selected element, details can be edited).

The Decision panel allows defining the decision model. The tool supports four
basic types of decisions (Dhungana et al. 2010b): Boolean decisions are used to repre-
sent yes/no questions. Besides the states TRUE and FALSE the state undefined is used to
distinguish between the answers “yes/no” and “not yet decided”. An example is the
UI decision shown in Fig. 2. Number decisions are used mostly for parameter values,
where the user decides on a numerical value. An example is the NumStrands decision
shown in Fig. 2. String decisions are frequently needed as input to domain-specific
generators. Enumeration decisions are used whenever different alternatives for one
variation point need to be modeled. An example is the FeedingMode decision shown
in Fig. 2. The Decision panel allows defining the decision attributes needed by the
ConfigurationWizard tool (see Sect. 3.4) to communicate decisions to the end user,
i.e., the Question asked to the user and a Description used to clarify the meaning of a
decision.

The variability model editor also provides a separate panel for each asset type
defined in the meta-model to define assets, their attributes, and relationships. For in-
stance, in Fig. 5 panels are provided for the asset types Component, Resource, Property,
and Document.

3.3 Support for defining dependencies

Decision attributes such as visibility condition, validity condition, and decision ef-
fects rely on a formal language. Our language shows high syntactic resemblance to
Java and supports standard Boolean and arithmetic operators to build expressions.
It provides several actions to query the value of decisions and build more complex
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expressions. These actions can be used to specify logical dependencies among deci-
sions. The language provides basic actions for querying and manipulating the values
of decisions: setValue(d, p) assigns the value p to decision d. isTaken(d) is used to
query whether a decision has already been taken by the user or whether its value is
still undefined. reset(d) is used to retract a taken decision. Retracting a decision also
resets all its implications.

Our current implementation is based on JBoss Drools,2 an open-source, object-
oriented production rule engine. JBoss has become a popular business logic frame-
work, used by Java developers to create complex rule-based applications. JBoss
Drools is a forward chaining rule engine with the knowledge encoded in IF-THEN

rules. In DOPLER the rules are the decision effects modeled as decision attributes
and the facts are the decisions taken by the user. The system examines all the rule
conditions and determines a subset of the rules whose conditions are satisfied based
on the working memory. The Drools pattern matching is based on the Rete (Forgy and
Shepard 1987) algorithm, which evaluates a declarative predicate against a changing
set of rules in real time. When a rule is fired, any actions specified in its THEN clause
are carried out. These actions can modify the working memory, the rule-base itself,
or do just about anything else the system programmer decides to include. This loop
of firing rules and performing actions continues until one of two conditions is met:
there are no more rules whose conditions are satisfied or a rule is fired whose action
specifies the program should terminate. Figure 5 depicts the editor for defining the
dependencies among decisions. For this purpose, we have defined a simple language
on top of JBoss Drools allowing a user to define the basic functions explained above.
All expressions in DoplerVML are translated into the corresponding representation
in Drools.

3.4 Enacting variability models

It is important to enact and test decision models during the modeling process. This
is achieved by the ConfigurationWizard tool which presents the decisions defined in
a variability model (see Fig. 6). The order of taking decisions is partly specified by
the visibility conditions. Based on the answers given by the user, the set of other
available or relevant questions is dynamically calculated and presented to the user.
The tool has been developed with a focus on usability for end users (Rabiser 2008;
Rabiser et al. 2007a, 2007b) to support product derivation. It triggers domain-specific
generators to create products based on the concrete values of the decisions. The Con-
figurationWizard hides the complexity of variability models by presenting only the
effects of the rules which are executed in the background.

4 Case study design and planning

Conducting empirical research in PLE is difficult (Sinnema and Deelstra 2007) as
companies are typically reluctant to provide access to data about their product lines.

2http://www.jboss.com/products/rules/.

http://www.jboss.com/products/rules/
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Fig. 6 The DOPLER ConfigurationWizard lets users interactively take decisions to derive and configure
products based on DoplerVML models (Grünbacher et al. 2009)

Controlled experiments are often infeasible in PLE due to the long time span and the
lack of data points caused by highly uncontrollable conditions and circumstances.
For instance, product line models need to be observed over a long time period to
unveil their real benefits. This is infeasible in many practical settings including the
collaborations with our industry partners.

The overall goal of the evaluation was to demonstrate the flexibility of the tool-
supported DOPLER approach in different domains and for different product line
technologies. Case studies are suitable to evaluate approaches that cannot be eval-
uated merely through analytic research methods. In particular, in our evaluation we
wanted to involve modelers from different domains and with different background
and experience. We wanted to understand how well our approach can be applied in
different development environments. We thus report on a multiple case study (Yin
2003) about the replicated application of DOPLER in diverse fields. Each of the four
cases is treated as a single case study and each case’s conclusions are then used as
information contributing to the whole study. We describe the case studies based on
existing schemes of conducting and reporting case studies (Runeson and Höst 2009;
Robson 2002).

The objective of the multiple case study has been to evaluate the tool-supported
DOPLER approach to variability modeling with respect to flexibility. We investigated
different variability implementation mechanisms in diverse domains and demon-
strated the flexibility of our modeling language and tools. Following Runeson and
Höst (2009) we classify our research as partly exploratory and partly descriptive, as
we focus on finding out what is happening and then portray the situation of apply-
ing our approach and tools to change the current state of practice. Our conclusions
are based on qualitative data and modelers’ feedback collected in different domains.
More specifically, we investigated two research questions:
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Table 1 Summary of main characteristics of the four selected cases

Case 1 Case 2 Case 3 Case 4

System Continuous
casting steel plant
automation system

Industrial
automation
systems

Maintenance and
setup system for
steel plant
automation

Customer
relationship
management
software

Size 1.6 MLOC 200 Function
Blocks

200 kLOC 890 kLOC

Product line
implementa-
tion

Spring
Framework, Java

IEC 61499
Function Blocks,
Java/C++

Eclipse Plug-ins,
Java

.NET Libraries,
C#

Purpose of
modeling

Automated
derivation of
customer-specific
products

Automated
runtime
reconfiguration

Automated
creation of
customer-specific
systems

Automated role-
and task-based
selection of
features at runtime

Duration of
case study

4 years 2.5 years 1.5 years 1.5 years

RQ1 How is variability represented in the different domains? Berger et al. (2010)
have emphasized the need for reports about real-world experiences and chal-
lenges in representing and dealing with variability. Similarly, we wanted to get
insights on variability implementation practices used in different domains to
assess the flexibility of our approach. We chose different domains to cover a
broad range of technologies and variability implementation practices.

RQ2 Is DOPLER flexible enough to support variability modeling in the different do-
mains? Based on the identified specifics of implementing variability in different
domains our aim was to involve domain experts in modeling the variability of
the selected case study systems to understand if the approach is flexible enough
from the perspective of modelers in different domains. The flexibility not only
refers to the modeling language but also to the extensibility of the DOPLER
tools (e.g., whether the interfaces provided are regarded as sufficient to meet
the specific needs in different domains). We thus also explore the tool exten-
sions required in the four environments and investigate how the DoplerVML
modeling engine can be used as a backend in other tools using its API.

Although our research initially focused on a system of our industry partner
Siemens VAI we managed to attract the attention of other companies and researchers.
This allowed us to test and evaluate our tool-supported approach in different do-
mains and contexts. The selected cases cover different types of product lines (e.g.,
automation software, software tools), domains (e.g., business software vs. industrial
automation) and implementation techniques (e.g., design time vs. runtime binding).
A summary of the main characteristics of the cases is presented in Table 1.

Case 1—Steel Plant Automation Software. This case study was carried out in coop-
eration with Siemens VAI Metals Technologies, the world leader in engineering and
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plant-building for the iron, steel, and aluminum industries. The company has devel-
oped and maintains the CC-L2 (Continuous Casting Level 2) product line of steel
plant continuous casting automation software. About 40 software engineers are in-
volved in developing and maintaining this system. The size of the software is about
1.6 million lines of code (mainly Java). Our case study focuses on the variability of
the CC-L2 software (Dhungana et al. 2010a) which is responsible for process super-
vision, optimization, material tracking, etc. Understanding variability is relevant as
the steel plant automation software is frequently configured to match the needs of
different customers.
Case 2—IEC 61499 Industrial Automation Systems. This case study was carried
out in cooperation with FH Oberösterreich Research. We investigated the useful-
ness of our tools and techniques for modeling product lines in the domain of indus-
trial automation systems (IAS) (Froschauer et al. 2008). Such systems are usually
based on a distributed architecture consisting of multiple physically and/or logically
distributed components. More and more IAS are based on the emerging standard
IEC 61499 which provides a component-based framework for automation systems
and standardizes the use of function blocks in distributed industrial process mea-
surement and control systems. Our case study investigated the variability in function
block based systems conforming to the standard IEC 61499. Variability is relevant
when such industrial automation systems are reconfigured at runtime. We thus deal
with runtime variability of installed function blocks that can be exploited to auto-
mate runtime reconfiguration.
Case 3—Eclipse-based Maintenance and Setup Tool (MSS). This case study was car-
ried out in cooperation with Siemens VAI Metals Technologies (Grünbacher et al.
2009). The MSS supports developers and operation staff of Siemens VAI customers
to fine-tune deployment parameters of the CC-L2 process automation system on
site. Some parts of MSS are also embedded in IDEs used by Siemens VAI devel-
opers. For instance, MSS provides graphical editors to maintain configuration files.
MSS comprises 100 Eclipse plug-ins organized into 20 Eclipse features that can be
combined flexibly and customized through diverse parameters. The size of the code
base is about 200 kLOC. MSS is adapted to 20+ customer environments per year.
While the CC-L2 software in case 1 is the actual system automating the industrial
process, the MSS is configured and deployed as a separate but related product to
customers operating industrial plants.
Case 4—.NET-based Business Software. This case study was carried out in cooper-
ation with BMD Systemhaus GmbH, a medium-sized company offering enterprise
software products to 18.400 customers and 45.000 active users mainly in Austria,
Germany, and Hungary. BMD Software is a comprehensive suite of enterprise ap-
plications for customer relationship management, accounting, payroll, enterprise re-
source planning, as well as production planning and control. BMD’s target market
is diversified, ranging from small tax counselors to medium-sized auditing firms or
large corporations. Customized products are an essential part of BMD’s marketing
strategy to address the needs of those markets. Our case study investigates the vari-
ability of distinct user-visible features of the business applications represented by
plug-ins (Rabiser et al. 2009). Variability is relevant in such systems as the busi-
ness processes like accounting, customer relationship management, or production
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Table 2 Data collection methods and their use in the case studies

Case Unstruc-
tured
inter-
views

Work-
shops

Tutorials
and joint
modeling
sessions

Observa-
tions and
think
aloud
protocols

Archival
data

Question-
naires

Case 1: Steel Plant
Automation
Software

× × × × × ×

Case 2: IEC 61499
Industrial
Automation
Systems

× × × × ×

Case 3:
Eclipse-based
Maintenance and
Setup Tool (MSS)

× × × × ×

Case 4: .NET-based
Business Software

× × × ×

planning require user interfaces specific to the company’s needs and roles of the
users.

4.1 Data collection methods and sources

The data collected in the case studies is primarily qualitative in nature. We used sev-
eral data sources to limit the effects of interpreting a single data source only. For
example, we collected data with the engineers and modelers in informal interviews
and using questionnaires. We also analyzed code and documents to confirm their
statements. Table 2 shows an overview of the data collection methods used in the
four studies. We could not use the same data collection methods uniformly for all
case studies due to the different roles of modelers involved and the availability of
data sources.

Unstructured Interviews. We interacted with developers in unstructured interviews
to understand the variability of the systems and the implementation techniques used.
In particular we addressed the following questions: How do you perceive the vari-
ability of the system? How is variability reflected in the software system? How is
variability implemented? Which approaches and tools are currently used to manage
variability in the system?
Workshops. We conducted several workshops to understand the variability in differ-
ent domains and involved experts from the respective areas. We followed a collabo-
rative process to structure the workshops and to elicit variability from the involved
stakeholders (Rabiser et al. 2008).
Tutorials and joint modeling sessions. It was essential to train and assist the engi-
neers who used our tools for variability modeling. We assisted them in using the
tools in joint modeling sessions and provided tutorials on decision-oriented vari-
ability modeling.
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Observations and think aloud protocols. We observed selected engineers customiz-
ing a product for a customer to understand how the engineers currently deal with
variability in their system. While they were using their tools, we asked them to
speak out what they intended to do. In particular, we asked them to describe loudly
the configuration steps necessary to realize a specific customer requirement from the
specification. Typically, engineers made multiple manual changes in different arti-
facts and at different levels of granularity which helped us to understand the vari-
ability mechanisms of the systems. We documented the engineers’ intentions and
the actions they performed to later analyze the tools’ capabilities and limitations.
Archival data. Analyzing existing data was one of the major sources of information
in our case studies. We analyzed the software architecture, requirements documents,
technical specifications, and data collected during workshops (flip charts, notes, au-
dio recordings, and meeting minutes). As understanding variability was often only
possible at a very detailed technical level (e.g., finding different implementations of
the same interface) the help of domain experts was sometimes necessary. Further-
more, we analyzed the meta-models and models which were created in the different
studies to analyze the level of granularity chosen by the modelers for variability
modeling. This was an important source of information to refine and improve our
approach.
Questionnaires. We used questionnaires post-hoc to get qualitative feedback about
DOPLER from the modelers of the different case studies. More specifically, the
questionnaires contained the following questions: How do you assess the overall
suitability of DOPLER for modeling the variability of your system? What made it
easy to model the variability of your system using DOPLER? What made it difficult
to model the variability of your system using DOPLER? What are specific aspects
you were unable to model using DOPLER?

4.2 Case study phases

Each case study was carried out in four stages:

I Variability Analysis. We began with an analysis of the domain together with the
experts from the different domains. More specifically, we wanted to understand
how variability is managed in the different domains. This included a short de-
scription of the variability implementation practices used by engineers.

II Refinement of meta-model. Before using DoplerVML for modeling variability the
modelers created a domain-specific meta-model (cf. Sect. 3) defining the asset
types and their attributes and dependencies based on the knowledge gathered in
phase I.

III Tool customization. Together with the domain experts the researchers developed
tool extensions to deal with the specifics of the different domains, e.g., to auto-
mate the analysis of legacy code or to implement consistency checking in models
and from models to code. This was done in close collaboration, sometimes even
using pair programming techniques.

IV Variability modeling. The domain experts developed variability models in indi-
vidual sessions and joint modeling workshops guided by the researchers. The
resulting models were then tested in product derivation and/or used to automate
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runtime reconfiguration. While the variability analysis step focused on finding
where and how variations occur in concrete artifacts the variability modeling step
explored the representation of the variations in the product line models.

4.3 Data analysis and reporting

We analyzed the data collected from different sources together with the engineers
from the different case studies. Such an approach helps us to reduce biased conclu-
sions. We also analyzed the appreciations, suggestions for improvement, and other
comments from the engineers because the chain of evidence to derive conclusions
about the answers to our research questions is hidden in such statements. Because of
the primarily qualitative nature of the data collected we do not present any statistical
analyses. However, we provide details about the size and complexity of the developed
models.

For variability analysis we give examples of the data collected and the process
of analyzing the data. For the refinement of the meta-model we describe the domain-
specific results of the variability analysis process. Regarding tool customization we
present examples of tool extensions developed to deal with the specifics of the differ-
ent domains. For variability modeling we describe characteristics of the models and
their use (e.g., for generating configurations) and report size metrics like numbers of
decisions and assets modeled.

5 Case study results

We report results from the four case studies following the stages I–IV described
above.

5.1 Case 1: Steel Plant Automation Software (CC-L2)

CC-L2 is an industrial automation system for process supervision, optimization, and
material tracking of the continuous casting process in steel plants. The modelers in-
volved in the case study were lead software architects from the CC-L2 platform team.

5.1.1 Variability analysis

In CC-L2 variability is managed at different levels of abstraction. Fine grained config-
uration is handled using configuration parameters. For instance, this approach is used
for changing colors, UI appearance, or for defining parameters like speed, amount,
and formats. Similarly, different computational models and optimization components
can be parameterized. The next level of variability deals with components which can
either be included or excluded when composing a customer-specific system. Another
level of variability is introduced by combining related components into groups that
run on Java virtual machines. A customer-specific CC-L2 software system is built
using the selected components (running in logical groups of processes) and (newly
developed) customer-specific extensions. Within this context our case study focused
on modeling component-level variability, associated configuration parameters and
process-level variability.
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5.1.2 Refinement of the meta-model

We identified different types of core assets in various workshops with engineers and
sales experts of Siemens VAI and refined the DOPLER core meta-model according to
their needs: Components represent Spring XML files which represent software com-
ponents realized by a set of Java Beans. It turned out to be sufficient to only model
the components and their dependencies but to exclude the Java beans as they were not
needed in the model for automating component-level composition. Properties repre-
sent configuration parameters for components and can range from simple properties
to lists, maps, and hash tables. Properties are treated as pairs defined in the two ad-
ditional attributes key and value. The value attribute is an expression. This means that
arbitrary decisions can be used (and combined) for setting the value of properties. Re-

sources represent legacy hard- or software elements of the CC-L2 system. Resources
are also used to model process level variability by modeling the lists of components
belonging to a particular process.

The meta-model defines several dependencies: the functional dependency requires

allows to express if a software component relies on one or more other components
to function properly. Information about the deployment structure of the system is
modeled using the relationship contributesTo. A simple example is a component con-
tributing to a sub-system (i.e., modeled as a Resource asset) it belongs to. Both rela-
tionships define which related assets to include in a derived product.

5.1.3 Tool customization

We built several extensions to DOPLER during this case study which used DO-
PLER’s API to initialize, manipulate, or check variability models. For example, we
created a Spring Importer for mining the variability in existing component descrip-
tions files (Dhungana et al. 2010a). The importer parses Spring XML files describing
components and their dependencies and creates initial asset models. A second tool ex-
tension checks the consistency of variability models with the underlying Spring files
(Vierhauser et al. 2010). The tool uses existing models and artifacts to find inconsis-
tencies: whenever models are changed, existing architectural elements are used as a
reference for comparison. Whenever architectural elements are changed, the existing
models serve as a lookup table for establishing consistency. For example, whenever
a new variant is introduced by changing the variability model, the tool ensures that
there exists an artifact with the same name and structure (together with dependencies
to other artifacts). Similarly, when a new component is added to the architecture, the
tool automatically looks for its existence in the variability models.

5.1.4 Variability modeling

The lead architect created models for several subsystems of the CC-L2 software.
The developed models vary in size and complexity. Overall, 462 components, 121
configuration properties, and 95 decisions were defined. These models are currently
utilized and extended in a pilot study at Siemens VAI. Using the Spring Importer ex-
tension allowed to automatically create initial asset models and revealing some of the
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technical variability of the CC-L2 system automatically in a bottom-up manner. For
instance, the tool recognizes variants of Spring components based on the analysis of
implemented interfaces. Based on these initial models the modelers manually added
additional information required for deploying the assets.

The decision model required for instantiating CC-L2 products was populated from
several sources: some decisions were automatically generated by the Spring Importer.
More decisions were found following a top-down approach through brainstorming
sessions in moderated workshops and by analyzing specifications and contracts of
earlier projects (Rabiser et al. 2008). We experienced that such workshops result in
rather high-level decisions which needed to be refined later (e.g., will the VAI-Q
Quality Control system be part of the final system?). Further decisions were then
modeled by individual developers and engineers at Siemens VAI. The identification
of decisions by individual stakeholders was done at the level of subsystem (e.g., a
decision related to the secondary cooling system Dynacs “Is adjusting the nozzle
spray width controlled by the cooling model?”).

Figure 7 depicts an excerpt of a variability model for the CC-L2 system at Siemens
VAI. It consists of four decisions of three types (boolean, number, and user-defined
enumeration). Two types of dependencies among the decisions are depicted: the de-
cision TT3D is visible to the user only if the question about UI is answered with yes
(TRUE); one of the options from the decision FeedingMode is deactivated whenever
the caster has more than 3 strands (decision NumStrands). The figure also depicts 6
assets of three different types (Component, Property and Resource). The assets have
dependencies among each other, e.g., the component Caster requires two other as-
sets, is required by two assets and contributes to another asset. The assets are linked
to the decisions through the expressions in their inclusion conditions, which refer to
different decisions, e.g., the component CastHMI is included, if the decision UI is set
to TRUE.

5.2 Case 2: Variability of IEC 61499 Industrial Automation Systems

This case study investigates the variability of industrial automation systems (IAS)
based on function block networks. Understanding variability is highly relevant in
this domain as such systems need to be frequently reconfigured at runtime. An IAS
domain expert developed variability models for an energy management system and a
bottle sorting plant.

5.2.1 Variability analysis

The most significant difference between IAS and common software products is their
distributed and hardware-related nature. IAS consist of numerous complex sensor
units cooperating with actuators to perform measurement and control tasks. Develop-
ing IAS based on IEC 61499 means defining function block networks that define the
different dependencies among function blocks. Creating applications means introduc-
ing new function block types and appropriately wiring their function block instances.
An automation application consists of one or multiple function block networks with
interconnected function block instances. At runtime different function blocks can be
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Fig. 7 A partial variability model of the CC-L2 system at Siemens VAI

instantiated and wired as required. This is where variability models help—they can
be used to automate the manual, error-prone approach of instantiating and (re-)wiring
the function blocks.

Hardware variability is reflected in the set of available hardware components. De-
pending on the devices available (e.g., conveyor, robot-grippers, sensors, etc.) and
their specific attributes (e.g., width of conveyor, maximum span of robot grippers,
types and numbers of sensors, etc.) an IAS can produce a wide range of products. The
products that need to be manufactured determine the hardware devices used to build
the manufacturing system. In this environment decisions represent the characteris-
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tics of the products. There can also exist complex dependencies among the hardware
components, for example, the speed of the conveyor must match the capabilities of
the robot. The variability of the hardware has a strong impact on software variability,
which is reflected by the set of software controllers used to drive the hardware com-
ponents. The software is determined by the available hardware, however, to drive the
same set of selected hardware components, one can deploy different variants of the
controller software. The case study concentrated on modeling the software variability
of IAS.

5.2.2 Refinement of the meta-model

The modeler created an IAS-specific meta-model which has been used to define fea-
tures and devices needed in specific application domains in automation and control
including transporting and sorting systems. The requirement to reconfigure IAS at
runtime means that our models need to differentiate between design-time model ele-
ments and runtime instances. This allows an engineer to generate an executable ap-
plication by taking decisions that automatically lead to the selection of applications
at runtime (Froschauer et al. 2008, 2009).

DoplerVML does not support multiple instances of the same asset. In this case
study we thus needed support for creating asset instances by updating the meta-model
accordingly. Design-time elements capture basic knowledge about the target applica-
tion domain and specific constraints and can be compared to elements in domain-
specific meta-models (Dhungana et al. 2007a). The design-time elements reflect the
domain component instances of previously defined domain component types (e.g.,
MovePart as a domain-level representation of components for moving parts in IAS.
Runtime elements reflect the desired deployment platform and available runtime com-
ponent types, which define the execution environment for runtime components (e.g.,
FBMoveSlow, FBMoveFast as a runtime instance of MovePart). Using these decisions the
engineer can answer questions, such as “How fast would you like to move parts?”,
and the required components are included into the deployed application at runtime.

5.2.3 Tool customization

In this case study DOPLER acts as a variability modeling component in a larger
tool suite called ControlKing. ControlKing is based on the open source IEC 61499
framework 4DIAC3 and integrates DOPLER’s variability modeling capabilities with
4DIAC’s capabilities for IEC 61499.

ControlKing manages the domain variability model specifying the execution in-
frastructure for IAS and the types of assets to be executed on the platform. It also
manages the runtime variability model defining function block instances of running
IEC 61499 applications. Variability models created with ControlKing are manipu-
lated at runtime and updated using DOPLER’s model API. The model execution

3http://www.fordiac.org.

http://www.fordiac.org
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Fig. 8 ControlKing: a tool for managing the life-cycle of IAS components, showing the variability mod-
eling editor components contributed by DOPLER (part of the design view depicted in the right half of the
figure)

engine of DOPLER is an integral part of ControlKing and enables end-users to re-
configure IAS applications by taking decisions as they emerge at runtime. Figure 8
depicts the design-time and runtime variability model editors in ControlKing. The
design time variability model editor is contributed by DOPLER which demonstrates
its flexibility for being used as an off-the-shelf variability modeling component.

5.2.4 Variability modeling

The domain expert developed variability models for two applications, an energy
management system and a bottle sorting plant. Both systems are implemented us-
ing IEC 61499 function blocks.

The main goal of the energy management application is to manage and control
the distribution of electrical energy from producers to consumers following specific
rules, such as priorities of consumers or environmental constraints for producers.
The energy management application on the system layer was modeled by defining
domain-level components, runtime components (firmware and user components) and
decisions. The resulting domain variability model contains 9 design component types
(e.g., Energy Producer, Energy Consumer), 14 design components (e.g., Battery,
Wind Turbine), 3 runtime component types (e.g., ResourceInstance), and 23 com-
ponents (e.g., Honda4kw, Banner90Ah). The application example demonstrates the
feasibility of generating applications using the information from the runtime variabil-
ity model. This is a big step forward as so far the wiring of components was possible
only manually at the level of function blocks.
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The second example is a bottle sorting plant, a simple application from the do-
main of discrete transportation systems. The system consists of a button-based user
interface, two conveyor belts, a bottle selector, an infrared gate, a pick & place unit,
a color sensor and a switchblade. Although the bottle sorting plant consists of only
eight components, several variations exist regarding the placement of each compo-
nent and their order of execution, such as the position of the color sensor, which
may be mounted either at the pick-up position or at the drop-down position of the
pick&place unit. A component variant may also arise from the use of different types
of color sensors. The resulting domain variability model contains 8 design compo-
nent types (e.g., Ultra Sonic Sensor), 19 design components (e.g., BottleDetector,
Conveyor), 3 runtime component types (e.g., Function Block instance), and 22 com-
ponents (e.g., BottleSensor 1, MoveBottle2).

ControlKing was used to import the existing applications and to add decisions on
top of the function block networks. This was mostly done manually but could be
supported with tools that suggest new decisions whenever two or more implemen-
tations of certain interfaces are detected. Variability models were used to keep track
of running applications. This was done by refreshing the model after each change in
the application at runtime. Whenever the engineer planned to make new changes, she
no longer had to adjust the function block network manually—this was done auto-
matically by ControlKing. The approach turned out to be flexible enough to model
manufacturing processes and/or complex machines with cooperating devices as also
pointed out in the post-hoc questionnaire.

Figure 9 depicts an excerpt of a variability model of a bottle sorting automation
system based on IEC 61499 function blocks. It consists of three decisions (Move,

Speed, Direction). The decisions Speed and Direction become visible to the user after
the decision Move is answered with TRUE. The model excerpt also displays 5 assets of
type FunctionBlockType and FunctionBlockInstance. The relationship is instance of
between the two asset types is of type inclusion. This means that whenever a function
block instance is part of the final product the corresponding function block type will
also automatically be included.

5.3 Case 3: Eclipse-based Maintenance and Setup Tool (MSS)

The Eclipse-based MSS tool of Siemens VAI Metals Technologies supports develop-
ers and operation staff of Siemens VAI customers to fine-tune deployment parame-
ters of the CC-L2 process automation system on site (Grünbacher et al. 2009). A lead
software architect developed a variability model of the MSS.

5.3.1 Variability analysis

The MSS is based on the Eclipse platform and variability is achieved through a plug-
in architecture. An Eclipse plug-in represents a unit of functionality which can be
developed and deployed separately. Plug-ins can declare named extension points and
an arbitrary number of extensions to extension points declared in other plug-ins. An
extension point can provide an API that is implemented by the plug-ins contribut-
ing to the extension point. During startup the Eclipse Platform Runtime discovers



Autom Softw Eng (2011) 18: 77–114 99

Fig. 9 A partial variability model of a bottle sorting automation system based on IEC 61499 function
blocks

the available plug-ins and builds an in-memory plug-in registry. This allows adding,
replacing, or deleting plug-ins even at runtime.

Understanding the variability of the MSS is critical, as the system needs to be cus-
tomized and deployed 20+ times per year. The MSS comprises 100 Eclipse plug-ins
(which can contain hundreds of Java classes) organized into 20 Eclipse features that
can be combined flexibly and customized through diverse parameters. The customiza-
tion needs to take into account different usage scenarios such as debugging, analyses,
tests, and simulations. Furthermore, the MSS is frequently customized to different
roles: certain MSS editions are used by domain experts such as metallurgists while
other editions are mainly targeted at software engineers. Manual product derivation
of the MSS at Siemens VAI can be error-prone and time-consuming. Only few devel-
opers can perform this task manually which makes short development cycles difficult.
For instance, during plant startup at a customer’s site, the MSS installations must be
updated regularly and their integrity must be ensured during re-configuration. This is
especially hard under time pressure or when remote communication with headquar-
ters is impossible.
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5.3.2 Meta-model refinement

The core meta-model was adapted so that Eclipse plug-in architectures could be mod-
eled. The following concrete asset types were defined: An Eclipse Feature is used
to model predefined packages of plug-ins for deployment via relations to the asset
type Plug-in. License, copyright, version, and location are key attributes of Eclipse
Features. A Plug-in represents Eclipse plug-ins—the building blocks of the software
tools. Attributes are the plug-in id, version, and location. Plug-ins can require each
other and can provide and implement Extension Points. An Extension Point repre-
sents the extensibility provided or implemented by plug-ins. A Setting represents a
simple key-value pair. The value attribute takes the value of a decision as taken by
the user. The file containing a setting can also be specified. A Setting can contribute
to a plug-in meaning that the parameter is used to change the behavior of the plug-in,
e.g., the layout of editors. A Deployment Parameter allows defining further parame-
ters needed for the deployment of a plug-in, i.e., the size of the plug-in archive file
and a list of native libraries that may be required for deployment.

5.3.3 Tool customization

No special tool extensions were required for modeling the variability of the MSS.
We however developed a new application generator which can build an Eclipse up-
date site based on the required constituent plug-ins of the MSS selected by taking
decisions in product derivation (Grünbacher et al. 2009).

5.3.4 Variability modeling

In a first iteration the domain expert modeled the assets representing the MSS’s ar-
chitecture and captured 20 Eclipse features and 100 plug-ins together with their de-
pendencies. In a second iteration he built a decision model expressing the variability
for later deriving different variants of the MSS. Three top-level decisions allow a
user to choose a certain edition (developer or metallurgist edition), to decide whether
the quality management system VAIQ should be included, and to decide whether the
MSS should also be used to supervise or to customize a CC-L2 system. Further deci-
sions allow customizing additional tools such as the Speedexpert and DYNACS 3D by
supporting domain experts to adapt Siemens VAI’s mathematical plant models. In the
third iteration the modeler defined inclusion conditions to link the Eclipse Features
and Plug-ins with the decisions. Depending on the selected edition different features
and plug-ins are selected that constitute the developer or metallurgist edition of the
MSS. The quickest way to deploy the tool suite is to just select the edition. Only one
decision needs to be answered in this case (“MSS Edition?”). Further decisions select
additional features/plug-ins.

Figure 10 depicts an excerpt of a variability model of the maintenance and setup
system at Siemens VAI. Edition is a top level decision. The other two decisions Speed-

Expert and VAIQ become visible to the user after selecting an edition.
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Fig. 10 A partial variability model of the MSS system at Siemens VAI

5.4 Case 4: Variability of .NET Plug-in-based Business Software at BMD

This case study was carried out in cooperation with BMD Systemhaus GmbH for
their enterprise application for customer relationship management, accounting, pay-
roll, enterprise resource planning, as well as production planning and control. At
the supplier level, BMD has structured the software into seven solutions which can
be individually licensed and composed into five main products covering major mar-
kets. For example, BMD-Consult is optimized for chartered accountants while BMD-
Commerce is targeted at corporations. BMD’s software has a total size of 4 million
LOC. In our case study we focus on the BMDCRM subsystem which has a total
size of about 890 KLOC (Rabiser et al. 2009). A researcher (other than the authors)
collaborating with BMD was in charge of creating the variability model.

5.4.1 Variability analysis

BMD’s Enterprise Resource Planning product supports product customization at dif-
ferent levels through different technically not fully related mechanisms. All binaries
are shipped for each product regardless of the licensed features. An individual license
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key is used to activate licensed features. Unlicensed features are blocked, i.e., corre-
sponding widgets in the user interface are disabled or hidden. At the customer level,
configuration is accomplished in a similar fashion through permissions. A customer
can build individual feature subsets for different departments by revoking permissions
for unneeded features. Features for which a user lacks privileges can thus be hidden.
At the end-user level, the permission mechanism can also be applied to individual
user accounts. A user account can be granted permissions to individual feature sets.
However, since in practice this is typically done also by administrators, end-users
have only limited ways to personalize their application.

As a preparatory step the monolithic legacy software had to be decomposed into
a small core system and a set of pluggable extensions. Each extension was defined
to contain a single user-visible feature which can be integrated with the core system
using plug-in techniques. We identified artifacts such as source code and resources
related to a feature to decompose features to the granularity of plug-ins. We then re-
engineered the individual components to allow their use within the plug-in platform
and developed a core application such that plug-ins can be integrated. The decompo-
sition resulted in a plug-in solution comprising 20 specific plug-ins and 28 compo-
nents for the core system.

5.4.2 Refinement of the meta-model

The modeler identified assets at three levels of granularity and defined the following
asset types in the refined meta-model: Plug-ins represent single user-visible features
that can be integrated individually into the application. Packages combine tightly
related features that are commonly used together. Solutions combine packages into
a solution. The following dependencies among the asset types were also modeled.
A solution contains a package (for instance, the solution BMDCRM contains the
packages Label Printing, Standard Letter, Organizer, and Docs). A package contains
a plug-in (for example, the package Docs contains the plug-ins Archive, Scanning,
Retrieval, and Import). A plug-in can require another plug-in (e.g., the plug-in Scan-
ning providing document scanning features functionally requires the plug-in Archive
providing document archiving features; this means that Archive can be used without
Scanning but Scanning requires Archive).

5.4.3 Tool customization

We integrated DOPLER with Plux.NET, a platform which allows adaptation of .NET
systems at runtime. In particular, we developed a Java to .NET connector to provide
automated reconfiguration facilities at runtime (Wolfinger et al. 2008).

5.4.4 Variability modeling

A researcher modeled possible adaptations as customization decisions at different
levels. In the model decisions at higher levels constitute abstractions of decisions at
lower levels. The relations between assets and decisions are described as inclusion
conditions that determine the set of required solutions, packages, and plug-ins to be
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Fig. 11 A partial variability model of the CRM tool at BMD

deployed. Overall, for BMDCRM, the variability model developed in the feasibility
study contains 7 decisions, 20 plug-ins, 4 packages, and 1 solution (cf. Sect. 5.4.2).

Figure 11 depicts an excerpt of a variability model of the CRM tool at BMD.
It consists of three decisions (Communication, Voip, Organizer). The decisions Voip and
Organizer are visible to the user if the value phone is selected for the decision Com-

munication. The assets of type Plug-in are associated with the decisions, whereas the
assets of type WinLibrary are included in the final product because of the requires
relationships.

6 Discussion of results

The DOPLER meta-tool was used for modeling the variability of several product
lines. In each of the four cases, domain experts analyzed the domain assets and de-
veloped a domain-specific meta-model based on our core meta-model (cf. Fig. 1).
This process took between several weeks and several months, as it required a number
of workshops and the analysis of existing documents. The modelers also developed
domain-specific tool extensions (importers, consistency checkers, generators, etc.) to
support the automated composition of components, initialization and maintenance of
the models, or re-configuration of components at runtime.

Our approach and tools benefited significantly from being continuously evaluated
by engineers modeling the systems. Users intensively experimented with the tools
after they recognized their potential benefits. Their feedback helped us improving the
tools and validating the modeling concepts. User acceptance was highly influenced
by our ability to enact the models. It was regarded important by the users involved in
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Table 3 Summary of results for research question 1

Case 1 Case 2 Case 3 Case 4

Modeling
granularity

Components based
on Spring, Java
properties

Components
based on Function
blocks

Components
based on Eclipse
Plugins

Components
based on .NET
Assemblies

Plattform,
middleware

Spring, Java 4DIAC,
IEC 61499

Java, Equinox .NET

Variability
mechanism

Selection and
parameterization
of components

Rewiring and
runtime
reconfiguration of
function blocks

Selection and
parameterization
of plugins

Selection and
on-the-fly
activation of .NET
libraries

modeling to immediately understand the purpose of the models for the configuration
of the systems.

RQ1: How is variability represented in the different domains? Related to the first
research question, we collected data during the variability analysis phase. The results
summarized in Table 3 reflect the peculiarities in each domain such as technologies
and variability mechanisms.

Variability is represented at different levels of granularity (e.g., replacing an entire
component vs. changing the value of a single initialization parameter). A key chal-
lenge is to find the appropriate granularity of the assets during the analysis phase.
This was however not always straightforward. Our tools allow choosing an arbitrary
level of granularity. As a result some users sometimes tended to define a very de-
tailed meta-model in the beginning before realizing that a fine-grained model was not
necessary to achieve the purpose of generating configurations (and would have also
increased the maintenance effort). Finding a trade-off between modeling details and
the maintenance effort (Dhungana et al. 2010a) was only possible by discussing the
modeling options with engineers and iteratively experimenting with smaller parts of
the case study systems.

While in our case studies the granularity was typically rather high there were also
cases of mixing different granularities in one model (e.g., components and properties
in case 1). DoplerVML is flexible regarding the necessary granularity although the
experiences learned in the case studies indicate that modeling the assets at a higher
level of granularity is a success factor. Our approach also makes use of templates
when fine-grained assets need to be added or removed from a base artifact as the result
of the decisions. This is made possible by adding generators using the extensible
architecture of the tool suite.

RQ2: Is DOPLER flexible enough to model the variability in the different do-
mains? Related to the second question, we collected data during the meta-model
adaptation, tool customization and modeling phases (cf. Table 4). In each case, we
were able to adapt the tool as required by extensions and meta-modeling capabilities.
The modelers successfully used the customized tool for variability modeling. The
models were used for configuring products both at design time and run-time.

The case studies show that the flexibility of the tools and of the modeling lan-
guage are success-critical to deal with specifics of different domains and develop-
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Table 4 Summary of results for research question 2

Case 1 Case 2 Case 3 Case 4

Meta-model
refinements

3 asset types,
2 dependency
types

2 asset types,
3 dependency
types

5 asset types,
3 dependency
types

1 asset type,
2 dependency
types

Tool extensions Spring Importer,
Consistency
checker,
Configuration
generator and
simulator plug-in

ControlKing,
(DOPLER is used
as an engine)

Eclipse update site
generator

Java to .NET
connector

Model
complexity

6 models, average
size: 16 decisions
and 97 assets

17 models, average
size: 10 decisions
and 65 assets

2 models, average
size: 15 decisions
and 40 assets

1 model, size:
16 decisions and
32 assets

ment contexts. We found that the flexibility of the tools was sufficient to adapt it
to the domains in three of the cases. However, we also experienced difficulties: Our
modeling approach was initially designed to model variability of static configurations
of assets and we did not consider modeling runtime instances of assets and runtime
constraints. In the IAS case study, we thus had to complement our approach with the
ability to integrate a platform meta-model and a runtime asset model into a runtime
variability model. This required a major effort including the development of a new
tool front-end for end-users.

The numbers reported cannot directly be compared between case studies due to the
different granularity of assets. Generally, 100 decisions is quite a large number due
to the possibility to reuse and combine decisions and their values throughout models
(e.g., in inclusion conditions of assets). The number of assets depends on what system
is modeled. For example, in case of CC-L2, a component asset represents a Spring
component description which describes a Java Bean. In case of BMDCRM, a plug-in
asset can represent a number of classes collected in a .NET assembly.

As the four cases show users were able to extract variability manifested in many
different kinds of artifacts (e.g., documents, software components, test cases, config-
uration parameters) and different mechanisms supported by different programming
languages, architectural styles, design patterns, etc. The multiple case study provides
evidence that DoplerVML is flexible enough to deal with the diverse implementation
practices we encountered.

The utility of an extensible technique however not only lies in the extensibility
but also in its reusable functionality. Our approach supports both properties of an
extensible technique. The tool is extensible because new plug-ins can be easily added,
e.g., domain-specific product generators, model builders and importers. The tool is
however also reusable because the DoplerVML modeling engine can be used as a
backend in other tools using its API. For example, it was used in case 2 as the backend
engine of the IAS variability modeling tool ControlKing.
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6.1 User feedback

Using questionnaires we collected qualitative feedback from modelers post-hoc about
the DOPLER approach.

How do you assess the overall suitability of the DOPLER approach for modeling
the variability of your system? We received positive feedback on this issue. Regarding
the first question case 2 modeler reported that the meta-modeling features “. . . enabled
easy modeling of different types of IAS” while at the same time arguing that the
“modeler should have IAS process know-how to create good meta-models”. Case 4
modeler was in charge of implementing a user interface with role-specific views.
Depending on the role, the application is composed from a different set of plug-ins.
The modeler reported that “. . . the variability model that relates decisions (roles) and
assets (plug-ins) with inclusion conditions was a perfect match for our plug-in based
architecture and role-specific interface.”

What made it easy to model the variability of your system using DOPLER? The
feedback of case 2 modeler was that “. . . industry’s needs have been taken into ac-
count” when developing the approach. A positive experience of case 2 modeler was
that “. . . the key advantage of DOPLER is to have a small set of easily understandable
modeling elements” for creating different meta-models. Two modelers emphasize the
importance of understanding the base of reusable assets. Case 3 modeler explained
that with “. . . a good manufacturing process definition the modeling may be done
straight forward.” Similarly, case 4 modeler emphasized the need to structure the
reusable elements before starting to model: “Our plug-in-based architecture where
every feature is implemented by a separate plug-in component made it easy to model
assets and decisions”.

What made it difficult to model the variability of your system using DOPLER?
Two modelers raised the issue of understanding the system before modeling. E.g.,
case 1 modeler said that “The difficulty lies in the complex system itself, understand
it and map the system to a model. Tooling is then secondary”. Similarly case 3 mod-
eler reported that “The main advantage of having a reduced set of simple modeling
elements sometimes makes it hard to get the big picture how to combine these el-
ements to a good meta-model. This problem mainly arises if the modeler has not
enough information about the IAS which shall be modeled”. Case 3 modeler also
stressed the need for an iterative modeling approach when saying that “. . . some meta-
modeling elements or relationships may turn out to be inappropriate during the later
IAS modeling, therefore the modeling process often requires more iterations”. An-
other challenge was highlighted by case 4 modeler who said that “. . . The phrasing
of the questions for decisions required serious reflection, because the questions must
translate the features offered by the plug-ins into problem space language which is
easily understandable by the user.”

Please list specific aspects you were unable to model using DOPLER (if any).
Case 1 modeler says that “DOPLER works great for component oriented software
(component included or not included), but the approach has its problems with phys-
ical items that can occur several times.” This issue was also raised in case study 2
when developing an asset instance model.
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6.2 Further lessons learned

Carefully phrase customization questions. An interesting issue when using a
decision-oriented approach to variability modeling is the definition of proper cus-
tomization questions. Engineers tend to formulate such questions based on the avail-
able technical assets (e.g., software components). It is however more advisable to
phrase the questions according to the tasks of end-users who do not need (and often
do not want) to know technical details. It is thus preferable to use abstractions in the
language of the users such that they can more easily understand the implications of
decisions they take. For example, a user should not decide whether a particular com-
ponent shall be included but should rather select capabilities needed for her tasks.

Text-based notations for decision models are sufficient. DOPLER does currently
not offer a graphical representation (as e.g., feature-oriented or orthogonal model-
ing approaches do). However, when studying how variability is represented in the
different cases we noticed that domain experts do typically use tables, spreadsheets,
and other text-based notations to describe variability. Also, as the post-hoc feedback
shows, none of the modelers raised the lack of a graphical notation as an issue. Model-
ers using the text-based editor did not express interest in graphical modeling support.
The tree- and table-based representation in the tool was regarded as sufficient.

Automate model creation where possible. An important lesson learned is that au-
tomation is critical when creating models of large product lines as e.g., shown in
case 1. The effort required upfront to develop such model generators is definitely
worthwhile to accelerate model definition and maintenance.

6.3 Limitations

Product generators still need to be developed manually. The approach to create a
high-level asset model of the solution space worked well in the four case studies.
However, while DOPLER helps in determining the assets required in a derived prod-
uct, the actual deployment is still done by manually written generators capable of
creating a working configuration. For instance, the generators use templates to add
or remove fine-grained assets from base artifacts. Although their development was
pretty straightforward in the four case studies we have studied the structure of the
generators with the goal of developing a domain-specific language that allows to
generate product generators from a high-level specification.

Runtime binding issues. From an abstract point of view the representation of vari-
ability using decisions is not relevant to variability binding time. However, when
defining models in case study 2 (Variability of IEC 61499 Applications) we discov-
ered a number of challenges that could not be foreseen in the design-time binding
cases. For instance, when dealing with runtime variability, one has to consider tech-
nological bridges between variability modeling tools and the application’s runtime
environment, the runtime instances of assets that can change the variability models
on the fly, as well as scalability issues due to the large number of asset instances. We
managed to address these problems after some changes to the API of our tools. How-
ever, to fully support dynamic adaptation more research is needed. For example, using
DoplerVML models only allows to address the anticipated and foreseen changes to a
system (which was sufficient in the case) but lacks support for unanticipated changes.



108 Autom Softw Eng (2011) 18: 77–114

6.4 Threats to validity

As any empirical research, our multiple case study exhibits a number of threats to va-
lidity. A threat to construct validity is the potential bias caused by the systems selected
for the multiple case study. However, our case study involves several large software
systems developed by multiple people and with different implementation languages.
We also chose cases from different domains that are representative for other systems
in industry. There are also threats to internal validity meaning that the results might
have been influenced by our treatment. For instance, the duration of the case studies
was quite different which might have influenced the level of detail and granularity
of variability modeling. Also, we had no influence on the selection of the subjects as
they were nominated by our industry partners. However, they were all experienced
software engineers and responsible for the systems they were modeling. There is also
the risk of maturation as the processes within the different domains possibly changed
during our case study. Also, the increasing maturity of our own approach during the
case study setup played an important role in the outcome. Regarding conclusion va-
lidity, there is a threat that the results are not based on statistical relationships but
rather on qualitative data. Clearly, a sample of four cases cannot prove the flexibility
of our approach. However, as companies are typically reluctant to provide access to
data about their product lines and because of the lack of data points in this field of re-
search we believe that our multiple case provides adequate evidence given these con-
straints. With respect to external validity (can we generalize the results?) we selected
four real-world, large systems to represent realistic application contexts. However,
the different cases all apply a component-based development approach. This means
that our approach might not work as well in other environments (e.g., monolithic sys-
tems). However, component-based architectures are typically seen as a prerequisite
for moving towards product line engineering (Clements and Northrop 2001) and we
thus believe that the selected systems are representative.

7 Related work

Our discussion of related research focuses on the areas of feature models, decision
models, architecture description languages, meta-tools, and situational method engi-
neering.

Feature modeling. Feature modeling is currently the most widely used approach
for modeling variability. In general, a feature model captures user-visible characteris-
tics and aspects of a product line, such as functional features of individual products as
well as software quality attributes of both the product line and the individual products
to provide an overview of a system’s capabilities. Literature on product line engineer-
ing also shows that it is the most intensively researched method for variability model-
ing. Starting from FODA (Feature-Oriented Domain Analysis (Kang et al. 1990)), the
feature-oriented view of product lines has already gone far beyond variability model-
ing and system documentation. Today numerous variants of feature-based variability
modeling tools and techniques (Asikainen et al. 2006; Czarnecki et al. 2005, 2006;
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Czarnecki and Pietroszek 2006) are available and several authors have proposed dif-
ferent formal interpretations of feature models (Batory 2005; Schobbens et al. 2007;
Heymans et al. 2007; Schobbens et al. 2006).

The most important difference between feature models and DoplerVML models
is the perspective from which the models are built. DoplerVML emphasizes product
derivation by using decision models that specify the available customization options
from the perspective of a user. This perspective leads to a number of distinguishing
characteristics of our approach: (i) The strong end user perspective means that Do-
plerVML models allow defining configuration aspects that turned out to be important
when working with domain experts. For instance, DoplerVML offers constructs such
as visibility conditions, decision effects and inclusion conditions that go beyond the
extensions proposed by expressive features models and that are needed to develop
usable product derivation tools. When considering the data types used in our deci-
sion models it is tempting to compare DoplerVML with expressive feature models,
that allow more than just boolean choices, e.g., work by (Czarnecki et al. 2006).
However, our argument about the distinction between feature models and decision
models is not grounded on data types but rather the semantics of the models. (ii) Do-
plerVML aims at a clearer separation of the problem space and the solution space
compared to feature models that do not have this explicit distinction. The decision
model thus can be seen as a “configuration interface” to a complex system while the
asset model describes the technical realization of the product line at the level of gran-
ularity necessary for composing customized products. The use of domain-specific
asset meta-models also eases the development of product generators that can take ad-
vantage of different artifact types. (iii) Finally, feature models are very suitable for
getting an overview about a system’s functionality during domain engineering. Due
to their different purpose, DoplerVML models, however, do not necessarily describe
all the available features. They focus on just the decisions that are needed to generate
a customer-specific solutions. While features in a feature model can be defined as
mandatory, a modeler in DoplerVML would need to set the inclusion conditions of
mandatory assets to TRUE. There would be no decision visible to the customer in
this case.

Decision models. Decision modeling in product lines was initially introduced as
a part of the Synthesis Project by Campbell et al. (Consortium 1991; Campbell et
al. 1990) where decisions were defined as “actions which can be taken by appli-
cation engineers to resolve the variations for a work product of a system in the
domain” (Campbell et al. 1990). Many other researchers like Forster et al. (2008),
Schmid et al. (Schmid and John 2004), or Mansell et al. (Mansell and Sellier 2004)
have been proposing different variations of decision models. Typically these ap-
proaches are defined rather informally. We thus believe that DoplerVML goes be-
yond these approaches due to its features for enacting models and the degree of tool
support.

Architecture description languages. DoplerVML provides support to model the
solution space via customizable asset models. This is related to the idea of architec-
ture description languages (ADLs). ADLs are formal notations for describing soft-
ware systems and lie at the conceptual intersection between requirements, program-
ming, and modeling languages. While many general purpose modeling languages
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usually focus on modeling the internal structure of components, ADLs usually de-
scribe the interplay of components. A number of ADLs have been proposed for mod-
eling architectures, both within a particular domain and as general-purpose archi-
tecture modeling languages, e.g., Darwin (Magee et al. 1995), Aesop (Garlan et al.
1994). A systematic survey (Medvidovic and Taylor 2000) of architecture descrip-
tion languages reveals that most ADLs share a set of fundamental modeling con-
structs and concepts, including components, connectors, interfaces, and architectural
configurations. ADLs have also been extended for modeling product line reference
architectures. Examples of such approaches are Koala (van Ommering et al. 2000)
and xADL (Dashofy et al. 2001). While ADLs aim at describing systems to allow
further analyses and simulation the aim of DoplerVML is to describe systems only at
the level of detail required for deriving customized products.

Meta-tools. Numerous tools have been proposed that support customization by
generating domain-specific tools based on a specification. For example, Meta-
Edit+ (Tolvanen and Rossi 2003) is a tool for designing a modeling language, its
concepts, rules, notations, and generators. Pounamu (Zhu et al. 2007) is a meta-tool
for the specification and generation of multiple-view visual tools. The tool permits the
rapid specification of visual notational elements, the underlying information model,
visual editors, the relationships between notational and model elements, and the ele-
ments’ behavior. IMP (Charles et al. 2007) is an IDE meta-tooling platform that aims
to reduce the burden of IDE development in Eclipse. The approach supports the cus-
tomization of IDE appearance and behavior and aims at reusing code during IDE de-
velopment. Similar ideas for generating domain-specific tools were also proposed by
Grundy et al. (2006). The authors present meta-tools capable of generating domain-
specific visual language editors from high-level tool specifications. While DOPLER
is similar to these meta-models its focus is more on variability. Consequently, deci-
sions are a first-class citizen in the core DOPLER meta-model as opposed to other
meta-tools.

Situational method engineering. Our approach is also related to the Situational
Method Engineering (SME), an approach aiming for controlled flexibility, i.e.,
achieving a balance between rigid general-purpose methods and ad-hoc, flexible de-
velopment (Harmsen and Brinkkemper 1995). Method Engineering is the discipline
to study engineering techniques for constructing, assessing, evaluating and manag-
ing methods for developing Information Systems Development Methods. Situational
method engineering adds variability to the discipline of method engineering, by en-
abling methods to be adaptable to concrete domains or application scenarios. SME
is enabled by various tools and techniques, the use of meta-tools is a prominent ap-
proach in this context. Furthermore “method fragments”, or “method chunks” are a
part of SME research, as they enable building more complex, tailored methods based
on small process steps (Henderson-Sellers et al. 2007). This can be compared to our
work, as in our approach the primary elements of modeling variability are the same
in each domain. They are, however, composed differently as required in the different
application scenarios.
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8 Summary and conclusions

In this paper, we presented the DoplerVML variability modeling approach that is
based on decision models and emphasizes the product derivation perspective of prod-
uct line engineering. The approach is supported by the DOPLER meta-tool for defin-
ing and executing variability models. DoplerVML allows developers to systemati-
cally describe the variability of arbitrary domain-specific assets and their dependen-
cies. Instead of solving the variability modeling problem for one particular domain,
we developed a meta-approach, which can be configured to the specifics of different
domains as required.

Our research has been guided by an analysis of different industry partners’ soft-
ware systems. The need for a flexible variability modeling approach was confirmed
when investigating how variability management is handled in the four cases with
different programming languages, modeling notations, architectural styles, and im-
plementation practices. It became evident that variability has to be understood at
different levels (e.g., requirements, architecture, or implementation) and for diverse
domain-specific artifacts.

The multiple case study presented in this paper demonstrated the need for flexi-
bility in product line modeling tools. The use of a meta-tool helped us adapting our
modeling approach by providing domain-specific meta-models and the use of a plug-
in architecture enabled us to extend our tool suite to deal with domain-specific tools,
processes and artifacts in use.
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