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Abstract This paper introduces a technique for incremental and compositional
model checking that allows efficient reuse of model-checking results associated with
the features in a product line. As the use of product lines has increased, so has the
need to verify the models used to construct the products in the product line. How-
ever, this effort is currently hampered by the difficulty of composing model-checking
results for the features in a way that allows reuse for subsequent products. The con-
tributions of this paper are to remove restrictions on how the features can be sequen-
tially composed, to describe how to generate obligations such that all sequentially
composed systems can be verified, and to show how to compositionally model check
the product in the product line by reusing the variation-point obligations. The pa-
per develops the technique and its implementation in the context of a medical-device
product line.
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1 Introduction

Software product lines are widely used due to their advantageous reuse of shared
elements, but this reuse across different products poses challenges for model check-
ing of product lines. Especially for high-integrity product lines such as pacemakers,
medical imaging systems, and avionics control systems, we would like to use model
checking to verify that key properties hold in each new product. However, model-
based verification of software product lines is currently hampered by the complexity
of composing model checking results of the various features in a way that allows
reuse when model checking new products.

In a software product line, the products all share a common set of mandatory
features but are differentiated one from the other by their variable (optional and alter-
native) features (Weiss and Lai 1999). Each feature carries an increment of function-
ality for the system (Batory et al. 2006). Typically, a set of variations are selected and
composed on top of the common base features to create each distinct, new product
(Jacobson et al. 1997; Webber and Gomaa 2004). The locations in the features where
other features can be added to construct the various products are called variation
points.

Model checking (Queille and Sifakis 1982; Clarke et al. 1986) takes a model
of a given system’s design, and checks if it satisfies certain properties of the sys-
tem, interpreted in terms of logic formulas. It is a powerful technique for enhanc-
ing the quality of software systems, e.g., by identifying flaws that would not have
been caught otherwise (Havelund et al. 2001; Kaivola 2005). Especially for software
product lines, since parts of the systems are reused in multiple products, it is im-
portant to detect flaws in those reused parts. And, since the common reused parts
can present varied behaviors in different products due to different compositions with
other parts, model checking can help detect subtle errors in the various composi-
tions. Compositional model checking (Abadi and Lamport 1995; Berezin et al. 1998;
Clarke et al. 1989) infers verification results of the whole system from checking each
component in isolation. It can reduce the complexity of model checking product lines
by amortizing the effort spent on checking the common parts.

Statement of problem Formal reasoning about each product in isolation fails to ex-
ploit the fact that all the products in a product line share common features. Similarly,
many products in a product line typically share some of the variable features. Re-
peated verification of the same sets of features wastes resources and discourages in-
dustrial adoption of model checking for product lines. Compositional model checking
saves model checking effort by allowing reuse of model checking results of common
set of features.

Existing approaches to compositional model checking of features impose restric-
tions on how the features can be composed (e.g., the sequence in which features are
added, the type of connection points at their interfaces, or the number of connections
allowed). Blundell et al. (2004) show how compositional model checking can be per-
formed when interface states (here, the variation points) are terminal states with no
outgoing transitions, and the circular dependency between the features is free of loops
in the underlying composed state-space. Wang (2005) extends this to allow cycles
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that do not require re-exploration of non-interface states in the composed state space.
Thang (2005) presents necessary conditions for preserving a desired property when
extending a base, including when loops exist between the base and the extensions, but
does not discuss verification results when the conditions are violated. Section 8 de-
scribes related work in more detail, and shows, with a worked-out example, how the
technique introduced here relaxes restrictions on applying compositional verification
in a sequential fashion.

In this section, we summarize the related works on applying compositional verifi-
cation of products in product line and provide an overview of distinguishing aspects
of our technique. We also present in Sect. 8.1 a detailed comparison between our
technique and closely related works (Fisler and Krishnamurthi 2001, 2002; Li et al.
2002a, 2002b, 2005; Blundell et al. 2004) and discuss how our work advances the
state-of-art verification techniques in a product line setting.

The pacemaker product line whose verification motivated the work described here
has features whose interfaces cannot be accurately model checked with existing com-
positional techniques. This is a more general problem in that product lines can have
variation features that connect to each other and to the common features in many
different ways. There may be multiple interfaces states connecting two features, with
transitions to and from states in the same feature or in other features. There may be a
cycle in the composed state space with transitions that connect a common feature to
a variation feature, and later connect the variation feature back to the common fea-
ture. The order in which features are added may vary or be unpredictable. It is also
important that any solution accommodate product line evolution so that the features
composing a product line will not have to all be known before model checking can
begin.

Our solution This paper presents an incremental and compositional model checking
technique that allows reuse of model checking results associated with the features in
a product line.

Our compositional model checking technique generates obligations at the features’
variation points such that the composition satisfies the desired property if and only
if the features that are added at these variation points themselves satisfy the corre-
sponding obligations. This is realized by re-exploring the state space of a feature
only when such re-exploration is unavoidable (i.e., is necessary for the complete-
ness of the verification process). Moreover, we use the variation point obligations to
guide the verification of those features subsequently composed at the variation points
as new products in the product line are built. The algorithms that generate the oblig-
ations incorporate optimization strategies to reduce the unnecessary model checking
load.

The technique presented here is sound and complete. It removes limitations im-
posed by existing approaches. We show how it can be used to model check the pace-
maker product line (Sect. 2) in a compositional fashion, which was not previously
possible. For example, in the pacemaker, the same feature may be entered more than
once in a behavioral trace (i.e., a sequence of states). Such behavior could not previ-
ously be handled.
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Contributions Our approach is more general than existing work in two important
ways. First, this approach allows a generic form of sequential composition of fea-
tures. It supports not just pipelined composition, but also cyclic dependency in the
composed state space, better mirroring the way that real-world product lines are built.
Second, the variation points allow new features to be added while keeping the sys-
tem open. We build the product by adding one feature at a time, in conformance with
typical product-line development practice. When a product is realized, i.e., when no
more features will be added, the satisfaction of the obligation at each variation point
is computed, and the final verification result at the start state of the whole product is
then derived. This way, the set of features no longer needs to be known ahead of time.

Product-line engineering is typically partitioned into two phases: Domain Engi-
neering and Application Engineering (Weiss and Lai 1999). A product line is ini-
tially defined by its common and variable features in the Domain Engineering phase.
The primary benefits of product-line engineering come in the Application Engineer-
ing phase when the reusable assets defined in the Domain Engineering phase are
exploited to create product-line members. The technique described in this paper in-
corporates model checking into both phases of product-line development.

Domain engineering phase The feature behavioral models constructed for the
product-line features, the properties specified for the product line, as well as the vari-
ation point obligations generated for each of the common features regarding those
shared properties, are among the reusable assets created in this phase. If model check-
ing finds any error in the models, the design, the requirements, or the properties that
capture the requirements, updates are made to fix those errors, and those updates
re-verified before advancing to the next phase.

Application engineering phase By reusing the product-line assets previously cre-
ated, different feature compositions are specified in this phase for different prod-
ucts. Thus, the obligations generated in the domain-engineering phase are reused in
the application-engineering phase to model check new products. The verification re-
sults, as well as the checked features, are among the product-specific assets created in
this phase. As described in Sect. 7.2, these assets are maintained and updated during
product-line evolution.

Incorporating model checking into both phases helps reduce the number of verifi-
cation runs needed to ensure that a new product satisfies a property which holds for
all (or a subset of) products in the product line. It also allows the model checking
effort to be conducted in an incremental fashion. In the future, we plan to integrate
the work described here with a prototype tool we have developed (Liu et al. 2008).
This will allow for management of the models, properties and verification results, as
well as traceability of the assets generated in the product-line setting. This, in turn, is
a prerequisite for needed demonstrations of the scalability of this approach on larger
product lines.

This approach provides four important advantages for model checking product
lines:

1. The flexibility described above means that many more real-world systems can be
model-checked. This moves model checking closer to product-line development
practice.
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2. The implementation stores the variation point obligations obtained for each feature
during earlier model checking runs, thus enabling reuse of previous model check-
ing results when a new product is composed. Re-verification is only performed
when needed, saving time over non-compositional model checking.

3. As a product line evolves, new variation points are typically introduced. The tech-
nique described in this paper accommodates such changes by identifying obliga-
tions at these new variation points from previous obligation computations done at
those points of change.

4. The technique is incremental with model checking being done one feature at a
time. This allows the difficulty of checking a large state model to be reduced by
decomposing it into smaller, manageable feature models.

We have implemented the technique, and demonstrate and evaluate it in the context
of a medical-device product line.

The rest of the paper is organized as follows. Section 2 provides background and a
motivating example. Section 3 presents preliminary information. Section 4 illustrates
each step of the compositional model checking. Section 5 presents the correctness
proof of the algorithms used in this technique. Section 6 provides some useful im-
plementation details, demonstrates our technique on a simplified pacemaker product
line and discusses test results. Section 7 discusses the effectiveness and applicability
of this work for product line reuse. Section 8 describes related work, and compares
our work with several recent efforts on formal verification of sequentially composed
features. Finally, Sect. 9 offers concluding remarks.

2 Background and illustrative example

Feature-based modeling has been widely explored both for the development of soft-
ware systems, e.g., Zave (1993); Batory et al. (2006) and for product lines, e.g., Kang
et al. (2002). A major benefit is that features “help localize the effects of adding or
making changes to units of functionality” (Ossher and Tarr 2000). Feature model-
ing has been especially useful for product-line development because “a feature-based
model provides a basis for developing, parameterizing, and configuring reusable as-
sets” (Kang et al. 2002).

The concept of a feature is here differentiated from the concept of a component.
While both can model a functional unit or a service, a feature often denotes “an end-
user visible characteristic of a system” (Kang et al. 1990), while a component does
not have to be end-user visible, but is a modular unit with well-defined interfaces and
can be deployed separately (Szyperski 1998). Thus, a feature is closely tied to the re-
quirements and reflects more of the user’s point of view, while a component is closely
tied to the implementation, e.g., in the form of objects or collections of objects, and
reflects more of the developer’s point of view. Though we use both notions in the
running example, we prefer feature models for checking the product line properties
as it is more natural to align the verification with the product-line requirements. The
product line requirements in our example are specified as CTL properties (Huth and
Ryan 2004).
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The work reported here was motivated by the difficulty of reusing model-checking
results during the development and evolution of safety-critical product lines. Our
effort is directed at enabling reuse of previous model-checking results so that system
properties can be efficiently verified when a new product is built in the product line.
The paper uses an example of a simplified pacemaker product line to illustrate our
approach. A pacemaker (Ellenbogen and Wood 2005) is an embedded medical device
designed to monitor and regulate the heart beat when it is not beating at a normal rate.
It is safety-critical because some failures can damage the patient’s health or even lead
to loss of life (Ellenbogen and Wood 2005; Littlewood and Strigini 1993). Figure 1
shows four products in the pacemaker product line (Liu et al. 2007a, 2007b):

BasePacemaker has the basic functionality shared by all pacemakers: generating a
pulse if no heart beat is detected during the sensing interval by the Base Sensor.
This mode of execution is called the Inhibited Mode because the existence of a
heartbeat inhibits pulse generation.

ModeTransitivePacemaker has an additional feature called ModeTransitive Exten-
sion that enables it to switch between InhibitedMode and TriggeredMode during

Fig. 1 Pacemaker product line overview
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execution. In the TriggeredMode, a pulse follows every heartbeat to regulate the
heartbeat.

RateResponsivePacemaker adds an Extra Sensor that can detect a patient’s activity
level (i.e., respiration rate while resting vs. while exercising). This product has an
additional feature, the RateResponsive Extension, that adjusts the duration of the
sensing interval (either to normal or to the upperRateLimit) according to the pa-
tient’s current activity level.

ModeTransitive-RateResponsivePacemaker combines the features of the two pace-
makers (ModeTransitivePacemaker and the RateResponsivePacemaker) to provide
both inhibited and triggered heartbeat regulation and adaptation to the patient’s ac-
tivity level.

Certain properties must be shown to be true for every product in the product line in
order to assure patient safety. An example of such a property is: In the InhibitedMode,
the pacemaker shall always generate a pulse when no heartbeat is detected during
the normal sensing interval.

Since verification of this property involves BasePacemaker functionality common
to all the products, we would like to avoid checking the same feature again and again
as each new product is built if that rechecking can be guaranteed to be unnecessary.
We next describe our approach to achieving this through appropriate reuse of the
results from previous model-checking runs. By generating and managing obligations
at the features’ variation points, the model-checking effort is aligned with the inherent
variation points that a product-line development approach provides.

3 Preliminaries

In this section, we describe the preliminaries of this technique, including the formal
modeling of the functional behavior of features, and the formal specification of the
functional requirements.

3.1 Feature behavioral modeling

We follow standard approaches in modeling the functional behavior of product-line
features using finite state machines where states represent the configurations of the
functional behavior, and transitions from one state to another represent the evolution
of the behavior between configurations. This is similar to the Labeled Transition Sys-
tem (Huth and Ryan 2004), except that we added a set of variation points. Formally,
the model is defined as follows:

Definition 1 (Feature behavioral model) A feature behavioral model FM = (S, S0,
V , T , L) where S is the set of states, S0 ⊆ S is the set of initial states, V ⊆ S is the
set of variation points, T ⊆ S × S is the transition relation, and L : S → 2P is the
labeling function which associates each state s ∈ S with the set of propositions in P

that are true in that state. We will denote (s, s′) ∈ T by s → s′.

In the above, s ∈ V acts as the variation point (Pohl et al. 2005) where one FM
can be plugged into another, i.e., when two FMs are sequentially composed, new
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transitions are added from some variation points of one to states in the other. For
each composition between FM1 and FM2, we use T

FM1,FM2
c ⊆ V 1 × S2 where V 1 is

the set of variation points of FM1 and S2 is the set of states in FM2. The relation
T
FM1,FM2
c denotes how the states in FM2 are connected to the variation points of FM1.

Also in the above model, the set of propositions P includes both data propositions
and control propositions. The former reflect values on shared data, while the latter
model control signals. Both need to be explicitly labelled in a state if their values are
known in that state.

We define sequential composition as follows:

Definition 2 (Sequential composition) Given FM1 = (S1, S1
0 , V 1, T 1, L1),

FM2 = (S2, S2
0 , V 2, T 2, L2), T

FM1,FM2
c , and T

FM2,FM1
c , the sequential composition

Compseq(FM1,FM2) = (S1 ∪ S2, S1
0 , V 12, T 12, L12),

1. V 12 = V 1 ∪ V 2,
2. T 12 = T 1 ∪ T 2 ∪ T

FM1,FM2
c ∪ T

FM2,FM1
c , and

3. L12(s) =
{

L1(s) if s ∈ S1

L2(s) otherwise

Observe that the above definition allows FM1 to be connected to FM2 and vice
versa, resulting in possible loops between the behaviors of the two features. An ex-
ample cycle in the composed state space from the pacemaker product line (Fig. 1) will
be shown in Fig. 7, and a simplified version of such a loop is shown in Fig. 3. Since
existing techniques for compositional model checking do not adequately handle this
type of cycle in the composed state space, we seek a more generic way to perform
compositional model checking such that verification can be performed in situations
like this.

In Definition 2, FM1 is the start feature for whose start states (S1
0 ) we want a

given property to be satisfied. The set of variation points V 12 of Compseq(FM1,FM2)

includes the states in V i (i ∈ {1,2}) that may have been used in the composition.
They are also the states that can be used as variation points for future additions of
other features.

A closed FM is one which does not have any variation points (V = ∅). In other
words, a closed FM cannot be augmented with new features. An open FM is one whose
set of variation points is non-empty. Open FM is important for a feature to be reused
in the product-line setting, as it can be composed with different features in different
products.

3.2 Temporal logic CTL

Properties are described using computation tree logic (CTL) (Huth and Ryan 2004).
We present a brief overview of the syntax and semantics of CTL formulas. The syntax
of CTL can be defined as follows:

φ→tt | ff | P | ¬φ | φ ∨ φ | EX(φ) | E(φ U φ) | EG(φ)

The semantics of the CTL formulas are given in terms of the states of finite state
systems (FM) that satisfy the formulas. The propositional constant tt is satisfied in
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all states while ff is not satisfied by any state. (The notion of tt and ff are specific
forms for true and false, respectively.) The proposition p (¬p) is satisfied by state
s such that p ∈ L(s) (p 	∈ L(s)). ¬ϕ is satisfied by states where ϕ is not satisfied.
ϕ1 ∨ ϕ2 is satisfied by states that satisfy ϕ1 or ϕ2. EX(ϕ) is satisfied by a state which
has at least one transition to a state that satisfies ϕ. E(ϕ1 U ϕ2) is satisfied by a state
which has a path where ϕ1 holds in every state in that path until a state satisfying ϕ2
is reached. EG(ϕ) is satisfied by a state which has a path where every state in the path
satisfies ϕ.

The above syntax forms the adequate set of CTL formula syntax. Some other
widely used syntactic constructs such as EF(ϕ),AX(ϕ),AF(ϕ),A(ϕ1 U ϕ2),AG(ϕ) can
be obtained from the adequate set; for example: AX(ϕ) ≡ ¬EX(¬ϕ) and EF(ϕ) ≡
E(tt U ϕ).

A state belonging to the semantics of ϕ implies that the state satisfies ϕ, denoted
by s |= ϕ. We say that a closed FM = (S,S0,∅, T ,L) satisfies a CTL formula ϕ,
denoted by FM |= ϕ, if and only if ∀s ∈ S0 : s |= ϕ. For a detailed discussion of CTL
model checking of closed systems see Huth and Ryan (2004).

4 Detailed approach

In this section we first provide an overview of our compositional model checking
technique, followed by a detailed description of each of its steps. As noted in Sect. 3,
a closed FM can be verified immediately to check whether or not it satisfies a desired
CTL property. However, for an open FM such as ours, satisfiability of CTL properties
may depend on the behavior of the features being connected to its variation points.

Given an FM and a desired property, our solution relies on generating a set of CTL
formulas as obligations for each of its variation points. A composition satisfies the
desired property if and only if the added features at each variation point satisfy the
corresponding obligations. We refer to these obligations as variation point obliga-
tions. As our definition of the feature composition allows loops between the features,
such circular dependency is handled by recording in a global database, answer set
(denoted by aSet), whether or not variation point obligations are satisfied by a com-
position.

Thus, checking whether a sequential composition Compseq(FM1,FM2, . . . ,FMm)

satisfies a CTL formula ϕ amounts to checking whether all the start states of FM1
satisfy ϕ and can be compositionally resolved as follows:

Step 1 Generate the variation point obligations for satisfying ϕ in all the variation
points of FMi (initially i = 1). Record the variation point obligations in aSet.

Step 2 Use T
FMi ,FMk
c to identify all the features FMks connected to the variation

points of FMi : if state tk in FMk is connected to variation point si of FMi , where
the variation point obligation is ϕi , iterate from Step 1 (with i = k) to compute the
variation point obligations for each FMk , such that tk satisfies ϕi . If tk satisfies its
obligation ϕi , then update the aSet entry for si in FMi .

Step 3 If the aSet cannot be further updated from computing variation point obliga-
tions, break from the iteration. Analyze aSet to identify loops between features and
update aSet accordingly.
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Once a product is realized (or “closed”), all its variation point obligations will be
replaced with tt or ff in the aSet. However, we still keep a copy of those obligations
in those variation points for future additions of features, as described in Sect. 6.

If the final aSet records that the start states of FM1 satisfy ϕ, then the composition
Compseq(FM1,FM2, . . . ,FMm) satisfies ϕ.

In the rest of this section, we describe the generation of variation point obligations,
how to update the answer set to identify cycles in the composed state space (i.e., inter-
feature loops), and our algorithm for compositional model checking.

4.1 Variation point obligations

Variation point obligations are sets of formulas associated with the variation points
that must be satisfied by the features connected to them. Our approach needs to com-
pute dependency of the form (ϕ, s) ← ψ (seen in Sect. 4.2), meaning that for a for-
mula ϕ to be satisfied in state s, obligation ψ needs to hold.

The obligations are annotated with the boolean operators ∧ and ∨ to handle cases
where multiple features are connected to the same variation point. They are formally
defined as follows:

Definition 3 (Variation point obligation) Given an FM = (S,S0,V ,T ,L), an oblig-
ation at a variation point is a formula of the form: Ψ → (φ, s,op) | ¬Ψ | Ψ ∨ Ψ |
Ψ ∧ Ψ where φ is a CTL formula, s ∈ V ∪ {ε},op ∈ {∨,∧,⊥}.

The variation point obligation (ϕ, s,∨) states that one of the features added at the
variation point (state s) must satisfy ϕ; (ϕ, s,∧) means that any new feature added at
state s must satisfy ϕ. A variation point obligation of the form (ϕ1, s1,∨)∨(ϕ2, s2,∨)

(resp. (ϕ1, s1,∨) ∧ (ϕ2, s2,∨)) states that (ϕ1, s1,∨) or (resp. and) (ϕ2, s2,∨) must
be satisfied. Finally, ¬(ϕ, s,∨) ≡ (¬ϕ, s,∧) is satisfied at the variation point if ϕ is
not satisfied in any of the new features added at s.

We use (ϕ, ε,⊥) to indicate that ϕ is not an obligation at any variation point. We
also use the following simplification rules: (tt, ε,⊥) ∨ ψ ≡ (tt, ε,⊥); (tt, ε,⊥) ∧
ψ ≡ ψ ; ¬(tt, ε,⊥) ≡ (ff, ε,⊥); (ff, ε,⊥) ∧ ψ ≡ (ff, ε,⊥); (ff, ε,⊥) ∨ ψ ≡ ψ ;
¬(ff, ε,⊥) ≡ (tt, ε,⊥); ¬(ψ1 ∨ ψ2) ≡ ¬ψ1 ∧ ¬ψ2; ¬(ψ1 ∧ ψ2) ≡ ¬ψ1 ∨ ¬ψ2.
We use ψ,ψ1,ψ2, . . . to denote variation point obligation formulas while using
ϕ,ϕ1, ϕ2, . . . to represent CTL formulas.

Generation of variation point obligation follows in similar fashion to local CTL
model checking (Huth and Ryan 2004) where, given a state and a CTL formula to be
satisfied at that state, the algorithm proceeds by recursively exploring the reachable
state space and by unfolding the CTL formula. We use the following equivalences
of CTL formulas for formula unfolding: E(ϕ1 U ϕ2) ≡ ϕ2 ∨ (ϕ1 ∧ EX(E(ϕ1 U ϕ2));
EG(ϕ) ≡ ϕ ∧ EX(EG(ϕ)).

4.2 Step 1: Computing variation point obligations

Given an FM and a CTL formula ϕ, we define for every state s in FM the functions
t_Obl and Obl, which generate the obligations at the variation points of FM required
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for s to satisfy ϕ. The functions take five parameters: ϕ, the CTL formula that is
required to be satisfied at the current state; s, the current state of the FM; H , the history
set recording the state-formula pairs that have been visited in the recursive execution
of the functions (to handle loops in the FM); aSetin and aSetout (the answer sets
before and after the invocation of the function).

The answer set contains elements of the form (ϕ, s) ← ψ where ϕ is a CTL for-
mula and ψ is a variation point obligation. We say that satisfiability of ϕ at s depends
on the satisfiability of ψ . Specifically,

1. (ϕ, s) ← (ϕ′, s′,op′) denotes that for s to satisfy ϕ, all (at least one of the) features
connected via the variation point s′ must satisfy ϕ′ when op′ is equal to ∧ (resp.
∨).

2. (ϕ, s) ← (pc, ε,⊥) denotes that s satisfies (does not satisfy) ϕ when pc is a propo-
sitional constant equal to tt (resp. ff).

3. (ϕ, s) ← ψ1 ∧ ψ2 denotes that s satisfies ϕ if both ψ1 and ψ2 are satisfied. Simi-
larly, (ϕ, s) ← ψ1 ∨ ψ2 denotes that s satisfies ϕ if one of ψ1 and ψ2 is satisfied.

The aSet is necessary to handle loops across multiple features (see Step 3 in
Sect. 4.4). It also allows us to reuse the previous results to remove redundant compu-
tations.

The recursive definition of the functions t_Obl and Obl is presented in Fig. 2.
Each function updates the last argument, aSetout, during the execution of the func-
tion; each function also returns an obligation as the result, so that the algorithm can be
computed recursively and eventually get to the final form, (tt, ε,⊥), or (ff, ε,⊥).

Rule A at the top of Fig. 2 corresponds to t_Obl (top-level call) which states that
a variation point obligation corresponding to state s and formula ϕ is equal to the
result present in aSetin if t_Obl has been invoked on the same state-formula pair
before. If the current invocation of t_Obl is the first-time call with the corresponding
state-formula pair, then Obl is invoked, and its result ψ ′′ is used to update the answer
set. Note that the call to Obl may update the aSetin to aSettemp. If the latter already
contains an entry of the form (ϕ, s) ← ψ ′, then the mapping for (ϕ, s) is updated to
ψ ′′ op ψ ′(= ψ) where op is decided on the basis of the formula being universal (e.g.
AG, AU) or existential (e.g. EG, EU).1

The choice of op can be explained as follows. ψ and ψ ′ are the variation point
obligations that need to be satisfied for ϕ to hold at s. If ϕ is an universal (resp. exis-
tential) formula, the obligation at the variation point will also require all (resp. at least
one) features connected to that variation point to satisfy that obligation. Accordingly,
the result is obtained via conjunction or disjunction operation(s).

Rules 1–8 correspond to the Obl function. Observe that Obl invokes t_Obl to
appropriately use the aSet. The first three rules in Fig. 2 state that for propositional
constants and propositions, there is no obligation at the variation points; satisfiability
of these types of CTL formulas can be decided at the current state s. As these function
rules do not update the answer set, aSetin and aSetout remain unchanged. In Rule 5,
the answer set updates are chained from one t_Obl call to the other.

1We are considering the adequate set containing the existential path temporal formulas EG and EU; op
will be disjunction in this case.
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A. t_Obl(ϕ, s,H,aSetin,aSetout) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ if (ϕ, s) ← ψ ∈ aSetin;
where aSetout := aSetin

ψ otherwise
where
ψ ′′ := Obl(ϕ, s,H,aSetin,aSettemp)

aSetout :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aSettemp[(ϕ, s) ← ψ ′/
(ϕ, s) ← ψ ′′ op ψ ′]

if (ϕ, s) ← ψ ′ ∈ aSettemp

where op :=

⎧⎪⎪⎨
⎪⎪⎩

∧ if ϕ is
a universal
∨
otherwise

ψ = ψ ′′ op ψ ′

aSettemp ∪ {(ϕ, s) ← ψ ′′}
otherwise
where ψ = ψ ′′

1. Obl(tt, s,H,aSet,aSet) := (tt, ε,⊥)

2. Obl(ff, s,H,aSet,aSet) := (ff, ε,⊥)

3. Obl(p, s,H,aSet,aSet) :=
{

(tt, ε,⊥) if p ∈ L(s)

(ff, ε,⊥) otherwise

4. Obl(¬ϕ, s,H,aSetin,aSetout) := ¬t_Obl(ϕ, s,H,aSetin,aSetout)

5. Obl(ϕ1 ∨ ϕ2, s,H,aSetin,aSetout) := t_Obl(ϕ1, s,H,aSetin,aSettemp)

∨t_Obl(ϕ2, s,H,aSettemp,aSetout)

6. Obl(E(ϕ1 U ϕ2), s,H,aSetin,aSetout) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ff, ε,⊥) if (E(ϕ1 U ϕ2), s) ∈ H ;
where
aSetout := aSetin

t_Obl(ϕ2 ∨ (ϕ1 ∧EX(E(ϕ1 U ϕ2))), s,

H ∪ {(E(ϕ1 U ϕ2), s)},aSetin,aSetout)

otherwise

7. Obl(EG(ϕ), s,H,aSetin,aSetout) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(tt, ε,⊥) if (EG(ϕ), s) ∈ H ;
where
aSetout := aSetin

t_Obl(ϕ ∧EX(EG(ϕ))), s,

H ∪ {(EG(ϕ), s)},aSetin,aSetout)

otherwise

8. Obl(EX(ϕ), s,H,aSetin,aSetout) :=
∨

s→s′
t_Obl(ϕ, s′,H,aSetin,aSetout)

∨
{

(ϕ, s,∨) if s ∈ V

(ff, ε,⊥) otherwise

Fig. 2 Variation point obligations

Rules 6 and 7 use the history set H to decide the satisfiability of EU and EG proper-
ties in the presence of a loop (in the same feature model). If the state-formula pair is
present in the history set, this shows circular dependency in a path. Thus, for the least
fixed point formula EU, the result is (ff, ε,⊥). For the greatest fixed point formula
EG, the result is (tt, ε,⊥). On the other hand, if the state-formula pair is not present
in the history set, the formula is expanded to its equivalent form, t_Obl is invoked,
and the history set is updated.
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Finally, Rule 8 deals with EX(ϕ) formulas. The obligation is computed by expand-
ing or moving to all possible next states of the current state s. There are two disjuncts
in the result. The first disjunct shows that for each s → s′, t_Obl is computed using
s′ and ϕ, and the results are OR-ed. This is because EX(ϕ) is satisfied at s if there
exists one next state that satisfies ϕ. The second disjunct states that if s is a variation
point, then one of its future next states (there could be one or several), which is a state
of a new feature connected to it, will have the obligation to satisfy ϕ.

Example Figure 3 shows three features with the behavior of each represented by a
state with a self-loop. Inter-feature transitions are shown as broken lines. All states
in the example are variation points, and the proposition p does not label any state.
Given the CTL property ϕ=E(tt U p) to verify over the three-feature composition
Compseq(F1, F2, F3), we first compute the variation point obligation for F1, shown
in Fig. 4. The downward arrows in Fig. 4 show the invocation of the t_Obl and Obl

functions, while the upward arrows show the updates to aSet. The variation point

Fig. 3 Feature composition
example

t_Obl( E(tt U p) , s0,∅,∅,A1)

↓ ↑ A1 = A2[( E(tt U p) , s0) ← (ff, ε,⊥)/

( E(tt U p) , s0) ← ( E(tt U p) , s0,∨)]
Obl( E(tt U p) , s0,∅,∅,A2)

↓ ↑
t_Obl(p ∨ EX( E(tt U p) ), s0, ( E(tt U p) , s0),∅,A2)

↓ ↑ A2 = A3 ∪ {(p ∨ EX( E(tt U p) ), s0) ← ( E(tt U p) , s0,∨)}
Obl(p ∨ EX( E(tt U p) ), s0, ( E(tt U p) , s0),∅,A3)

∨↙ ↘
t_Obl(p, s0, ( E(tt U p) , s0),∅,A4) t_Obl( EX( E(tt U p) ), s0, ( E(tt U p) , s0),A4,A3)

↓ ↑ A4 = {(p, s0) ← (ff, ε,⊥)} ↓ ↑ A3 = A6 ∪ {( EX( E(tt U p) ), s0)

← ( E(tt U p) , s0,∨)}
Obl(p, s0, ( E(tt U p) , s0),∅,A5) Obl( EX( E(tt U p) ), s0, ( E(tt U p) , s0),A4,A6)

↓ ↑ A5 = ∅ ↙ ∨ ↘
(ff, ε,⊥) t_Obl( E(tt U p) , s0, ( E(tt U p) , s0),A4,A6) ( E(tt U p) , s0,∨)

↓ ↑ A6 = A7 ∪ {( E(tt U p) , s0) ← (ff, ε,⊥)}
Obl( E(tt U p) , s0, ( E(tt U p) , s0),A4,A7)

↓ ↑ A7 = A4
(ff, ε,⊥)

Fig. 4 Example of computing variation point obligations
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Table 1 Content of each aSet in Fig. 4

Answer set Evaluation

A1 {(p, s0) ← (ff, ε,⊥), (E(tt U p), s0) ← (E(tt U p), s0,∨),

(EX(E(tt U p)), s0) ← (E(tt U p), s0,∨),

(p ∨ EX(E(tt U p)), s0) ← (E(tt U p), s0,∨)}

A2 {(p, s0) ← (ff, ε,⊥), (E(tt U p), s0) ← (ff, ε,⊥),

(EX(E(tt U p)), s0) ← (E(tt U p), s0,∨),

(p ∨EX(E(tt U p)), s0) ← (E(tt U p), s0,∨)}

A3 {(p, s0) ← (ff, ε,⊥), (E(tt U p), s0) ← (ff, ε,⊥),

(EX(E(tt U p)), s0) ← (E(tt U p), s0,∨)}
A4 {(p, s0) ← (ff, ε,⊥)}
A5 {}
A6 {(p, s0) ← (ff, ε,⊥), (E(tt U p), s0) ← (ff, ε,⊥)}
A7 {(p, s0) ← (ff, ε,⊥)}

obligations for F2 and F3 are computed in a similar fashion. The content of each
aSet is presented in Table 1.

4.3 Step 2: Updating aSet

This step takes as input aSetout which is provided by t_Obl obtained in the previous
step (Fig. 2). After the computation of variation point obligation terminates for one
FM, the input aSet is updated with new results (tt, ε,⊥) and (ff, ε,⊥) in order to
incorporate information regarding whether the state s satisfies a formula:

update(aSet) := aSet[(ϕ, s) ← ψ/(ϕ, s) ← ψ[ψi/ψ
′
i ]]

where ψi := (ϕi, si ,opi ) and si → ti ∈ T
FMm,FMn
c and

(ϕi, ti) ← (pc, ε,⊥) ∈ aSet ∧ pc ∈ {tt,ff} and

ψ ′
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψi if (pc = tt) ∧ (opi = ∧)

ψi if (pc = ff) ∧ (opi = ∨)

(tt, ε,⊥) if (pc = tt) ∧ (opi = ∨)

(ff, ε,⊥) otherwise

The function states that the entry (ϕ, s) ← ψ in aSet is updated to (ϕ, s) ←
ψ[ψi/ψ

′
i ] (ψi , a subformula of ψ , is replaced by ψ ′

i ). ψi is a variation point oblig-
ation of the form (ϕi, si ,opi ) that was computed for a FMm. If the state ti of FMn

is connected to the variation point si and there exists an entry (ϕi, ti) ← (pc, ε,⊥)

(pc ∈ {tt,ff}) in the aSet, then we can use (pc, ε,⊥) to update ψi in ψ . For exam-
ple, if opi = ∧, indicating that all next states of si should satisfy ϕi , then in the case
pc = tt, ψi remains unaltered since the satisfiability of ϕi in one next state does not
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prove that ϕi is satisfied in all next states; on the other hand, if pc = ff, then it can
be concluded that the variation point obligation has not been satisfied at si .

Example Continuing our example, after variation point obligations for F1, F2 and F3
are computed, aSet= {(ϕ, s0) ← (ϕ, s0,∨), (p∨EX(ϕ), s0) ← (ϕ, s0,∨), (p, s0) ←
(ff, ε,⊥), (EX(ϕ), s0) ← (ϕ, s0,∨), (ϕ, s1) ← (ϕ, s1,∨), (p ∨ EX(ϕ), s1) ←
(ϕ, s1,∨), (p, s1) ← (ff, ε,⊥), (EX(ϕ), s1) ← (ϕ, s1,∨), (ϕ, s2) ← (ff, ε,⊥),
(p ∨ EX(ϕ), s2) ← (ff, ε,⊥), (p, s2) ← (ff, ε,⊥), (EX(ϕ), s2) ← (ff, ε,⊥)}. In
the above aSet, (ϕ, s0) ← (ϕ, s0,∨) and there exists s0 → s2 in T F1,F3: (ϕ, s2) ←
(ff, ε,⊥). When performing update to the answer set, the second branch of the
function is applied. This does not change the existing obligations in the aSet.
On the other hand, if both (ϕ, s0) ← (ϕ, s0,∨) and (ϕ, s2) ← (tt, ε,⊥) had ex-
isted in the above answer set, then (ϕ, s0) ← (ϕ, s0,∨) would be replaced by
(ϕ, s0) ← (tt, ε,⊥) after performing the update function.

4.4 Step 3: Resolving inter-feature loops from aSet

To summarize, once the variation point obligations have been computed for all FMs
(Steps 1 and 2) and for every (ϕ, s) ← ψ in aSet, each subformula (ϕi, si ,opi ) of ψ

has a corresponding (ϕi, si) ← ψ ′ in aSet, we can conclude that no further updates
to aSet can be computed.

We can now search for any chain of variation point obligations from aSet to re-
solve the circular dependency between features (i.e., obtain the final verification result
in terms of tt or ff). An example of such a chain is the circular dependency between
F1 and F2 in Fig. 3: (ϕ, s0) ← (ϕ, s0,∨) and (ϕ, s1) ← (ϕ, s1,∨), where s0 → s1 and
s1 → s0. The circular dependency is resolved by applying the updateF (aSet) func-
tion on each element in aSet, where updateF (aSet) is defined as follows:

updateF (aSet) = aSet[(ϕ, s) ← ψ/(ϕ, s) ← (pc, ε,⊥)]
where pc = INTERP((ϕ, s),∅)

Algorithm 1 computes INTERP, taking as input parameters (ϕ, s) and the set Dep
which records the elements on which the mapping result of (ϕ, s) depends. In Line 2,
if (ϕ, s) ← (pc, ε,⊥), then the result does not depend on other elements, and the pro-
cedure immediately returns pc. In this case the answer has been resolved. Otherwise,
if the result depends on an element in the set Dep (Line 3), a circular dependency is
identified, and the return result is computed based on whether or not ϕ is a greatest
or a least fixed point formula (Line 4). This is similar to the way we detected intra-
feature loops during variation point obligation computation using the history set (see
Fig. 2). If neither of the above, in Lines 6–15, the algorithm computes the depen-
dency of results across features. Line 6 depicts the generic form of ψ in an answer
set element, (ϕ, s) ← ψ (according to Fig. 2), where ψ is composed of multiple sub-
obligations connected by ∨ or ∧ operators among them. Then in Line 7, for each
sub-obligation ψi of ψ , where ψi = (ϕi, si ,op2i−1), ti (the state connected to si ) is
identified and collected in the set Nexti . In the following lines (Line 10–12), INTERP

is recursively invoked on each element of Nexti . The intermediate result resi , with
its default value set according to opi being ∧ or ∨ (Line 9), is aggregated with the
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result computed for previous element(s) of Nexti (Line 11). The final result to return,
res, is computed by connecting all the intermediate resi using the same op2i−2 that
connects all subformula ψi in ψ (Line 13).

Algorithm 1 Analysis for inter-feature loops
1: procedure INTERP((ϕ, s), Dep)
2: if (ϕ, s) ← (pc, ε,⊥) return pc
3: if (ϕ, s) ∈ Dep then
4: if ϕ is gfp return tt else return ff
5: end if
6: (ϕ, s) ← (ϕ1, s1,op1)op2 · · ·op2k−2(ϕk, sk,op2k−1) ∈ aSet

7: Nexti :=
⋃

si→ti
{(ϕi , ti ) | si → ti ∈ T

FMm,FMn
c }

8: for 1 ≤ i ≤ k do
9: if opi = ∧ resi = tt else resi = ff

10: for (ϕi , ti ) ∈ Nexti do
11: resi = resi opi INTERP((ϕi , ti ),Dep∪ {(ϕ, s)})
12: end for
13: if i = 1 res = resi else res = resi−1 op2i−2 resi

14: end for
15: return res
16: end procedure

Note that the above algorithm handles the situation where a variation point si has
no state in another feature to connect to it. In such a situation, Nexti is empty, and
resi has its default value set as tt or ff according to opi . Thus, any form of variation
point obligation can be updated using INTERP and eventually be resolved to the final
form of (pc, ε,⊥).

Example We perform updateF (aSet) on each element in the previously-computed
aSet (the sequence does not matter). For example, if the following element is
picked first: (ϕ, s1) ← (ϕ, s1,∨), we compute INTERP((ϕ, s1),∅) = INTERP((ϕ, s0),

{(ϕ, s1)}) = INTERP((ϕ, s1), {(ϕ, s1), (ϕ, s0)}) = ff. We then replace (ϕ, s1) ←
(ϕ, s1,∨) with (ϕ, s1) ← (ff, ε,⊥) in the aSet. Other elements of aSet are up-
dated in a similar fashion until no change can be done to aSet. This means that all
circular dependencies between these features have been resolved.

4.5 Summary: Compositional algorithm

Algorithm 2 presents the compositional algorithm introduced at the beginning of this
section using the functions described above. This algorithm model checks the cur-
rent product (a composition of features), reusing results from any previous model
checking of those features for other products in the product line.

To summarize, given a composition Compseq(FM1,FM2, . . . ,FMm) and a for-
mula ϕ, the algorithm first obtains the variation point obligations for FM1 such
that all its start states can satisfy ϕ (Line 3–7). From Lines 8 to 15, the variation
point obligations of the other features connected to the variation points of FM1 are
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Algorithm 2 Compositional model checking
1: procedure COMPOSE(Compseq(FM1,FM2, . . . ,FMm),ϕ)
2: aSetcurrent := ∅
3: for each s0 ∈ S1

0 do
4: t_Obl(ϕ, s0,∅,aSetcurrent,aSet)

5: aSetcurrent := aSet
6: if (ϕ, s0) ← (ff, ε,⊥) ∈ aSetcurrent return aSetcurrent
7: end for
8: repeat
9: tmp := aSetcurrent

10: for each (ϕ′, s′) ← (ϕ1, s1,op1)op2 · · ·op2k−2(ϕk, sk,op2k−1) ∈ aSet

∧ ϕi 	∈ {tt,ff} ∧ si → ti ∈ T
FMm,FMn
c do

11: t_Obl(ϕi , ti ,∅,aSetcurrent,aSet)

12: aSetcurrent := aSet
13: aSetcurrent := update(aSetcurrent)
14: end for
15: until (aSetcurrent = tmp)
16: return updateF (aSetcurrent)

17: end procedure

computed. The process of computing the variation point obligation is iterated un-
til no more updates on the aSet can be made (Line 15). At this point, the function
updateF (aSet) is invoked to identify loops between features and infer results from
variation point obligations represented in greatest and least fixed point formulas in
the aSet. We say that Compseq(FM1,FM2, . . . ,FMm) |= ϕ when for all start states s0
of FM1, ((ϕ, s0) ← (tt, ε,⊥)) ∈ updateF (aSet).

We have now performed every step of Algorithm 2 for the example in Fig. 3. Since
(ϕ, s0) ← (ff, ε,⊥) ∈ updateF (aSet), the verification result is that
Compseq(F1,F2,F3) 	|= ϕ.

5 Correctness proof

In this section, we present the correctness proof of the COMPOSE algorithm described
in Sect. 4 and Algorithm 2.

Theorem 1 (Sound and complete) Compseq(FM1,FM2, . . . ,FMm)|=ϕ ⇔ ∀ s0∈ S1
0 :

(ϕ, s0) ← (tt, ε,⊥) ∈ COMPOSE(Compseq(FM1,FM2, . . . ,FMm), ϕ).

Proof The function COMPOSE(Compseq(FM1,FM2, . . . ,FMm), ϕ) returns aSet of
variation point obligations (ψ ) computed by iterative applications of t_Obl and up-

date followed by INTERP. While t_Obl and update are used to compute the vari-
ation point obligations of different features and to compose them, INTERP computes
the result of composition once all the features have been explored appropriately, i.e.,
no new variation point obligations can be obtained.

Therefore, the proof of correctness of COMPOSE algorithm can be realized by prov-
ing the correctness of t_Obl, update and INTERP functions.
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1.
s |=o

H
tt [(tt, ε,⊥)]

• 2.
s |=o

H
ff [(ff, ε,⊥)]

•

3.
s |=o

H
p [(tt, ε,⊥)]

• p ∈ L(s) 4.
s |=o

H
p [(ff, ε,⊥)]

• p 	∈ L(s)

5.
s |=o

H
¬ϕ [¬ψ]

s |=o
H

ϕ [ψ] 6.
s |=o

H
ϕ1 ∨ ϕ2 [ψ1 ∨ ψ2]

s |=o
H

ϕ1 [ψ1] s |=o
H

ϕ2 [ψ2]

7.
s |=o

H
E(ϕ1 U ϕ2) [(ff, ε,⊥)]

• {(E(ϕ1 U ϕ2), s) ∈ H }

8.
s |=o

H
E(ϕ1 U ϕ2) [ψ]

s |=o
H∪{(E(ϕ1 U ϕ2),s)} ϕ2 ∨ (ϕ1 ∧ EX(E(ϕ1 U ϕ2))) [ψ] {(E(ϕ1 U ϕ2), s) 	∈ H }

9.
s |=o

H
EG(ϕ) [(tt, ε,⊥)]

• {(EG(ϕ), s) ∈ H }

10.
s |=o

H
EG(ϕ) [ψ]

s |=o
H∪{(EG(ϕ),s)} ϕ ∧ EX(EG(ϕ))) [ψ] {(EG(ϕ), s) 	∈ H }

11.
s |=o

H
EX(ϕ) [∨ψi ]

si |=o
H

ϕ [ψi ]
{s → si , s 	∈ V } 12.

s |=o
H
EX(ϕ) [∨ψi ∨ (ϕ, s,∨)]

si |=o
H

ϕ [ψi ]
{s → si , s ∈ V }

Fig. 5 Tableau rules for |=o
H

Correctness of t_Obl We introduce the notion of open-system verification to for-
malize variation point obligations. Recall that, a state s in FM satisfies CTL formula ϕ,
denoted by s |= ϕ, if and only if s belongs to the semantics of ϕ. In the case of a FM
with variation points where new features can be composed, we may not be able to
infer whether s |= ϕ. Instead, we introduce a new predicate |=o

H ⊆ S × Φ × H × Ψ

where S is the set of states, Φ is the set of CTL formulas, H is the set of history sets
and Ψ is the set of variation point obligation formulas. We write s |=o

H ϕ [ψ] to state
that s satisfies ϕ in the context of a history H if and only if the interface obligation ψ

is satisfiable. Following tableau-based local model checking technique (Cleaveland
1990), we present in Fig. 5 the tableau rules for |=o

H predicate which captures the
semantics of |=o

H . In each rule of the form a
a1 a2 ··· an

denotes a1 ∧ a2 ∧ · · · ∧ an ⇒ a.

Lemma 1 s |=o
∅ ϕ [ψ] ⇔ (ψ ⇔ s |= ϕ).

Proof The above lemma holds trivially for the tableau Rules 1–4. Rule 5 follows
directly from the semantics of boolean connective ⇔: ¬ψ ⇔ s |= ¬ϕ is equivalent
to ψ ⇔ s |= ϕ. Rule 6 corresponds to the disjunctive formula ϕ1 ∨ ϕ2 where the
variation point obligation of the disjunction is equal to the disjunction of the variation
point obligations of the corresponding disjuncts ϕ1 and ϕ2.
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Rules 7 and 8 handle the EU formula. The rules take into consideration the fixed
point nature of the formula. E(ϕ1 U ϕ2) is a least fixed point formula, the semantics
of which is computed by least fixed point of the function: f = ϕ2 ∨ (ϕ1 ∧ EXf ).

Note that proof of satisfiability of a least fixed point formula at a state cannot be
obtained from a path with a loop (infinite path); least fixed point formulas always
have a finite path proof. The history H keeps track of whether there is a loop in the
proof of whether s satisfies E(ϕ1 U ϕ2). If such a loop is detected, s does not satisfy
E(ϕ1 U ϕ2) in this loop and the interface obligation is (ff, ε,⊥). On the other hand, if
a loop is not detected, the formula E(ϕ1 U ϕ2) is expanded to its equivalent form and
the history set is updated to include a new entry (s,E(ϕ1 U ϕ2)) to capture the fact
that we have tried to identify the satisfiability conditions of E(ϕ1 U ϕ2) at the state s.

Rules 9 and 10 deal with greatest fixed point formula EG(ϕ). The semantics of
EG(ϕ) is computed from the greatest fixed point of the function: f = ϕ ∧ EXf .

Proof of satisfiability of the greatest fixed point formula at a state will contain
loops (infinite paths). In this case, Rule 9 states that s satisfies EG(ϕ) if the history set
contains an entry (EG(ϕ), s), and the corresponding interface obligation is (tt, ε,⊥).
The entry in H proves that there exists a path from s to itself where in each state in
the path the formula ϕ is satisfied. This in turn proves that there exists an infinite path
from s where every state satisfies EG(ϕ). Rule 10 corresponds to the case where H

does not include (EG(ϕ), s), and as such the tableau rule expands the formula EG(ϕ)

to its equivalent form and updates the history set.
Finally, Rules 11 and 12 correspond to the case where the formula to be satisfied

is of the form EX(ϕ). If s is not a variation point (Rule 11), then the formula EX(ϕ)

can be satisfied if and only if ϕ is satisfied in any one of its next states. Therefore,
the variation point obligation is computed from the disjunction of the variation point
obligations corresponding to the satisfiability condition of ϕ at each next state. On
the other hand, if s is a variation point (Rule 12), then the variation point obligation
for s also includes the disjunction of (ϕ, s,∨). In short, if a feature, composed at the
variation point s, satisfies ϕ then s satisfies EX(ϕ).

The tableau rules consider all the syntactic constructs of CTL (constructs with
universal path quantifiers can be obtained via negation and existential path formulas),
and we have proved that all the rules are sound. The tableau constructed using these
rules is always finite where the number of nodes in the tableau is bound by the number
of states in the FM and number of subformulas in ϕ. This concludes the proof of the
lemma. �

Lemma 2 s |=o
H ϕ [ψ] ⇔ (ϕ, s) ← ψ ∈ aSetout where ψ := t_Obl(ϕ, s,H,

∅,aSetout)

Proof We show that the function t_Obl (Fig. 2) correctly implements the tableau
rules in Fig. 5. Observe that, t_Obl invokes Obl in a mutually recursive fashion.
Each rule for the definition of Obl directly encodes the tableau rules in Fig. 5. For
example Rule 3 in Fig. 2 corresponds to Rules 3 and 4 in Fig. 5.

Note that the tableau rules allow repeated computation of s |=o
H ϕ [ψ] as they do

not keep track of whether this computation has been completed in some other part of
the tableau. Their implementation t_Obl, however, avoids such repeated computa-
tions, with the same parameters s, ϕ and H , using the fourth argument aSetin (case 1
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in definition A for t_Obl in Fig. 5). The second case in definition A is little bit more
involved. This is due to the fact that aSet is updated when among the recursive calls
to t_Obl via Obl for the same s and ϕ, at least one of them is returned ahead of
others. Therefore, the aSet needs to be updated after all such calls have returned.
The updates result in disjunction or conjunction of each return depending on whether
the formula under consideration is an existential or universal path property. In our
setting, we only consider existential path properties which will be the result from the
disjunction of all return valuations. This situation occurs when ϕ := EX(ϕ′) and there
is a loop on s. �

Proposition 1 (ϕ, s) ← (tt, ε,⊥) ∈ aSet ⇔ s |= ϕ where (tt, ε,⊥) :=
t_Obl(ϕ, s,∅,∅,aSet).

Proof The proposition follows from Lemmas 1 and 2. �

Correctness of update

Lemma 3 (ϕ, s) ← ψ ∈ update(aSet) ⇔ s |=o
∅ ϕ [ψ].

Proof Following the definition of update in Sect. 4.3, there are two cases. In the
first case, update does not alter the variation point obligation

(
(ϕ, s) ← ψ ∈ update(aSet)

∧∀(ϕ′, s′,op) ∈ sub(ψ) :	 ∃(ϕ′, t ′) ← (pc, ε,⊥) ∈ aSet

)

⇔ ψ := t_Obl(ϕ, s,∅,∅,aSet)

⇔ s |=o
∅ ϕ [ψ] from Lemma 1

In the second case, where the variation point obligation is altered, WLOG we will
consider FM1 and FM2 where s, s′ are states in FM1 and t ′ is a state in FM2 such that
s′ → t ′ ∈ T

FM1,FM2
c . Then,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(ϕ, s) ← ψ[ψ ′/ψ ′′] ∈ update(aSet) ∧
ψ ′ = (ϕ′, s′,op) ∧ (ϕ′, t ′) ← (pc, ε,⊥) ∈ aSet

ψ ′′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ ′ if (pc = tt) ∧ (opi = ∧)

ψ ′ if (pc = ff) ∧ (opi = ∨)

(tt, ε,⊥) if (pc = tt) ∧ (opi = ∨)

(ff, ε,⊥) otherwise

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⇔
(

ψ = t_Obl(ϕ, s,∅,∅,aSet1) ∧ (pc, ε,⊥)

= t_Obl(ϕ′, t ′,∅,aSet1,aSet)

)

⇔ ψ[ψ ′/ψ ′′] = t_Obl(ϕ, s,∅,∅,aSet1)

where s is a state in Compseq(FM1,FM2)

⇔ s |=o
∅ ϕ [ψ[ψ ′/ψ ′′]] from Lemma 1 �
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Correctness of INTERP (in Algorithm 1)

Lemma 4 The maximum recursion depth of the function INTERP((ϕ, s),∅) is bound
by |aSet|.

Proof Assume that INTERP((ϕ, s),∅) terminates at k recursion depth where k >

|aSet| where |aSet| is the number of elements of the form (ϕi, si) ← ψi . This im-
plies that there are k calls to INTERP with k different pairs (ϕ, s) which implies there
are k elements in |aSet|. This leads to a contradiction proving that our assumption is
incorrect. �

Lemma 5 Given an aSet such that ∀(ϕ, s) ← ψ ∈ aSet∧∀(ϕ′, s′,op′) ∈ sub(ψ) ⇒
∀s′ → t ′ ∈ T

FMm,FMn
c : (ϕ′, t ′) ← ψ ′ ∈ aSet, then the following holds:

(ϕ, s) ← ψ ∈ aSet∧ s |= ϕ ⇔ INTERP((ϕ, s),∅)

Proof We first prove that INTERP handles inter-feature loops correctly. In case of
loops, INTERP can be recursively invoked with the same pair (ϕ, s). Recall that sat-
isfiability of greatest fixed point formulas (e.g., EG) require loops while satisfiability
of least fixed point formulas (e.g. EU) by a state cannot be inferred from a loop. As
such, INTERP returns tt if the inter-feature loop represents a path corresponding to
satisfiability of greatest fixed point; otherwise, it returns ff.

For (ϕ, s) ← (pc, ε,⊥) ∈ aSet, the lemma is proved as follows:

(ϕ, s) ← (pc, ε,⊥) ∈ aSet∧ s |= ϕ

⇔ s |=o
∅ ϕ [(pc, ε,⊥)] ∧ s |= ϕ

⇔ From Lemmas 2 and 3
pc = tt

⇔ INTERP((ϕ, s),∅) INTERP returns
pc (see Line 2 in Algorithm 1)

For (ϕ, s) ← ψ ∈ aSet where ψ = (ϕ1, s1,op1)op2 · · ·op2k−2(ϕk, sk,op2k−1) ∈
aSet the proof proceeds as follow:

((ϕ, s) ← (ϕ1, s1,op1)op2 · · ·op2k−2(ϕk, sk,op2k−1) ∈ aSet∧ s |= ϕ

⇔ ((ϕ1, s1,op1)op2 · · ·op2k−2(ϕk, sk,op2k−1) ⇔ s |= ϕ) ∧ s |= ϕ

From Lemma 1
⇔ INTERP((ϕ, s),∅) using Lines 7–14 in Algorithm 1 �

Finally, Theorem 1 can be proved as follows. Lines 2–7 in Algorithm 2 com-
pute the variation point obligation of FM1 in the sequence. Lines 8–15 compute the
variation point obligation for all FMi (1 ≤ i ≤ m). At each iteration the aSetcurrent
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obtained at the end satisfies the following:

(ϕ, s) ← ψ ∈ aSetcurrent ⇔ s |=o
∅ ϕ [ψ] ⇔ (ψ ⇔ s |= ϕ)

The above follows from Lemmas 1, 2 and 3.
The terminating condition of the iteration aSetcurrent = tmp is satisfied only when

no new additions and updates are possible in the answer set. That is, ∀(ϕ, s) ← ψ ∈
aSetcurrent ∧ ∀(ϕ′, s′,op′) ∈ sub(ψ) ⇒ ∀s′ → t ′ : (ϕ′, t ′) ← ψ ′ ∈ aSetcurrent . Fi-
nally, at Line 16 the algorithm COMPOSE returns the result correctly inferring whether
or not Compseq(FM1,FM2, . . . ,FMm) |= ϕ. This follows from Lemmas 4 and 5. �

This concludes the proof that the COMPOSE algorithm is sound and complete.

6 Implementation and application to an example

We have implemented the compositional model checking algorithm in a research
prototype model checker (Liu 2010) to help show the feasibility of our approach. We
further provided evaluation of the approach on a pacemaker product line that was not
able to be checked using other sequential model checking techniques. In this section,
we describe the implementation details, discuss the bounds on space complexity, and
provide experimental results.

6.1 Implementation details

Our prototype model checker is implemented using Python 2.6. It faithfully repre-
sents the algorithms described in Sect. 4. Some details beyond Sect. 4 are: (1) for-
mulas, obligations, and features are represented as classes with their own attributes
and functions; (2) the functions t_Obl and Obl use only one aSet in the argument,
as aSet gets updated inside each function; (3) if the first disjunct in a disjunctive
formula is evaluated to tt in Obl function, the other disjunct in the same formula is
not analyzed; and (4) in the Interp function, a given formula is analyzed against all
equivalent forms of greatest fixed point formulas (gfp) to decide if tt or ff result
should be returned.

6.2 Bound on space usage and reduction in time complexity

We now discuss the bound on space usage of the above implementation. Suppose
that there are N features present in the final product. The max number of states in
any feature is |S|, where S denotes the set of states; the maximum out-degree of any
state in any feature is d (the branching factor); and the given formula to be verified
on the final product has |Φ| subformulas.

The space complexity is guided by the storage requirement for maintaining the
history and answer sets. The history set is maintained for each feature in isolation.
Once a feature has been analyzed, its history is removed. So the space complexity
due to the history set is O(|S| × |Φ|).
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The answer set is maintained throughout the entire computation across features. It
records set of tuples of the form: ((ϕ, s), (ϕ1, s1,op1)op2 · · ·op2k−2(ϕk, sk,op2k−1)).
The number of such tuples in the answer set for one feature is bounded by the number
of different first elements in the above tuple: O(|S| × |Φ|).

The second element of the tuple contains formulas of the form (ϕi, si ,op2i−1)

(1 ≤ i ≤ k) where the type of op2i−1 can be either a conjunction or a disjunction.
Therefore, the number of formulas of the form (ϕi, si ,op2i−1) is of the order O(|S|×
|Φ| × 2). These formulas are combined using the operators op2i−2 (2 ≤ i ≤ k), and
the number of such operators (conjunction and disjunction) can be at most d − 1
(i.e., k = d), where d is the maximum out-degree of any state in any feature. The
number of different second elements of the tuple is equal to the number of different
formulas that can be formed by combining |S| × |Φ| × 2 sub-formulas of the form
(ϕi, si ,op2i−1) in d − 1 different ways: O((|S| × |Φ| × 2)d).

Proceeding further, the size of the answer set is of the order O((|S| × |Φ|)d+1 ×
2d), and the overall size for N features is O((|S| × |Φ|)d+1 × 2d × N).

The space bound computed above is just for one product. Suppose that there are
K products in the product line. Model checking the entire product line using compo-
sitional model checking takes O((|S| × |Φ|)d+1 × 2d × N × K). The more features
shared in the product line, the smaller the overall space usage is, as the space usage
for each new product is essentially O((|S| × |Φ|)d+1 × 2d × M), where M is the
number of new features introduced in that product.

For non-compositional model checking, the space bound for checking a product
line is O(|S| × |Φ| × N) × K). The penalty in space usage for compositional model
checking is caused by storing the extra information needed for reusing model check-
ing results. However, the storage of this information lowers the computational effort
for property verification in the product line. In Sect. 6.3, we will empirically show in
the pacemaker example the advantages of such reuse of model checking results.

The above analysis suggests that the smaller the branching factor (d) and the larger
the subset of features that is reused, the higher the space usage efficiency is for com-
positional model checking.

On the other hand, the time complexity of the model checking is linear to the
number of states in the system and the number of sub-formulas in the formula to
check.

Suppose there are K products in the product line, each composed of one or several
of the N features, the max number of states in any features is |S|, and the number
of subformulas of the formula to check is |Φ|. For simplicity, suppose that the i-th
product is composed of i number of features.

Thus, the time complexity due to the number of states for the non-compositional
model checking is: O(|S| + 2|S| + · · · + K|S|) = O(|S| × K2). This is linear in the
sum of states of all products. For compositional model checking, we save the effort of
re-exploring the states of a previously checked feature. Therefore, the time complex-
ity due to states can be reduced to O(|S|+(2|S|−|S|)+(3|S|−2|S|)+· · ·+(K|S|−
(K − 1)|S|)) = O(|S| ×K). This is linear in the number of states in the largest prod-
uct in the product line.

Adding the formula into the consideration, the time complexity for checking the
product line using non-compositional model checking is O(|S| × K2 × |Φ|); for
compositional model checking it is: O(|S| × K × |Φ|).
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6.3 Reduction in state exploration

We evaluated our technique by conducting experiments on the pacemaker product
line discussed in Sect. 2. As described below, the results showed a reduction in state
exploration.

Figures 6 and 7 depict how the Mode Transitive Extension (FM1) and Rate Re-
sponsive Extension (FM2) are sequentially composed with the BasePacemaker’s con-
troller (FM0). The states in the extensions are shown in grey. The variation points are
the states which have outgoing transitions leading to another model in the composi-
tion. The propositions satisfied at each state are shown in the corresponding tables
below each figure.

State True Propositions
State0 timerOff=1
State1 sensorOn=1; inhibitedMode=1;

State2
sensed=1;
sensorOn=1; inhibitedMode=1;

State3
timerSenseTimeUp=1;
pulseGen=1; inhibitedMode=1;

State4 inhibitedMode=1;

State5
timerRefractoryTimeUp=1;
sensorOn=1; inhibitedMode=1;

State True Propositions

State6
timerSenseTimeUp=1;
sensorOn=1; triggeredMode=1;

State7 sensorOn=1; triggeredMode=1;

State8
sensed=1;
sensorOn=1; triggeredMode=1;

State9
timerRefractoryTimeUp=1;
sensorOn=1; triggeredMode=1;

State10 triggeredMode=1;
State11 pulseGen=1; triggeredMode=1;

Fig. 6 Base controller and mode-transitive extension
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State True Propositions

State6
sensorOn=1;
inhibitedMode=1; upperRateLimit=1;

State7
sensorOn=1; sensed=1;
inhibitedMode=1; upperRateLimit=1;

State8
timerShortSenseTimeUp=1; pulseGen=1;
inhibitedMode=1; upperRateLimit=1;

Fig. 7 Base controller and rate-responsive controller extension

In the controller for the fourth product (not shown), the ModeTransitive and
RateResponsive features, FM1 and FM2 are sequentially composed with FM0, as
shown in Figs. 6 and 7. FM1 and FM2 do not connect directly one to the other since a
pacemaker controller can be in either the Triggered Mode or Inhibited Mode, but not
in both at the same time.

The following CTL formula describes the required property for the product line
that was introduced in Sect. 2:

AG((sensed=0∧ timerSenseTimeUp=1∧ inhibitedMode=1)

⇒ EF(pulseGen=1∧ inhibitedMode=1))

This formula was used in the following evaluation.
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To evaluate the space and time performance of our approach, we compared
our compositional model checking (CMC) technique with non-compositional model
checking (NMC) for the four products in the product line. Table 2 records the exper-
imental results. In the table, MT denotes ModeTransitive and RR denotes RateRe-
sponsive. The variables (t_Obl) and (Obl) record the number of times the t_Obl

and Obl functions are performed, respectively. The count of their invocations helps
evaluate the reduction in the number of times the same state space is explored. Note
that the Obl function is the actual state-exploration function in our model checker, as
t_Obl invokes Obl only if a (formula, state) pair is not already in the aSet (other-
wise t_Obl will return the obligation found in aSet directly).

The results of NMC are obtained from using our approach to model check each
of the four products in its entirety, without breaking it into separate features. In other
words, each sub-formula of the given property is checked at the composed product,
generating (tt, ε,⊥) or (ff, ε,⊥) results at the initial state of that composed prod-
uct, denoting the property being satisfied or not. In addition, aSet is not used for
NMC to store any intermediate results.

The results of CMC are obtained from calculating the test data for the incre-
mentally added features and connections in each product. For example, verifying
the BasePacemaker involves checking FM0 with states 1, 4, and 5 as its variation
points (i.e., the union set of the variation points needed by the MT and RR ex-
tensions), plus applying the updateF (aSet) to get the final result. Verifying the
RateResponsivePacemaker involved checking FM2 with states 6, 7, and 8 as its varia-
tion points, plus checking the connections from FM2 to FM0, and applying the update
and updateF (aSet) functions. Test results were similarly collected for the other two
products.

Both NMC and CMC results we obtained running on the same machine with the
same configuration (1.60 GHz Intel (R) Pentium (R) M Processor, 1.00 GB of RAM).

Table 2 shows that our compositional model checking approach did provide sav-
ings in the product line. For example, the second row shows that in NMC the cost for
checking the product line (measured in (Obl)) was 250 + 415 + 543 + 708 = 1916.
However, as seen in the second row of the bottom half of the table, the cost in CMC

Table 2 Test data for pacemaker product line

# of invocations Base MT RR MT-RR

pacemaker pacemaker pacemaker pacemaker

Non-compositional model checking (NMC)

(t_Obl) 250 415 543 708

(Obl) 250 415 543 708

# of state visits 21 36 46 61

Compositional model checking (CMC)

(t_Obl) 126 391 290 277

(Obl) 113 60 112 0

# of state visits 7 4 7 0

Size of aSet 111 171 282 282
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was only 113 + 60 + 112 + 0 = 285. The savings in invocation were due to the fact
that the common features had to be checked repeatedly in NMC but not in our CMC
approach, and that CMC stores prior checking results of each state in aSet. NMC
saves the space usage of aSet, but incurs more overhead with the invocations. Note
that if no prior checking for any of the features had been done (i.e., if there had been
no reuse), then the cost for checking the RateResponsivePacemaker (measured in
(Obl)) would have been 113 + 60 = 173. As with the product-line approach itself,
CMC shows more savings when more features are reused.

7 Discussion

In this section, we discuss the usefulness and applicability of this technique in dif-
ferent systems, in different types of changes, and in different phases of product-line
development.

7.1 Handling parallel composition of features

Our work falls into the category of compositional verification (Abadi and Lamport
1995). We use sequential composition (Definition 2) rather than parallel composition,
as in, e.g., Giannakopoulou et al. (2002); Basu and Ramakrishnan (2006), because
it would add unnecessary complexity to the state space by obscuring the interfaces
among features that we want to maintain in a product-line setting for effective reuse.
For example, parallel composition of interacting processes produces a global prod-
uct whose number of states is exponential to the number of component processes
(Berezin et al. 1998). Moreover, one interface states of a feature appears in multiple
states of the global product as a result of the composition.

Although our work targets sequential composition of features (Sect. 3.1), the tech-
nique described in this paper can also handle many instances of parallel composition
of features. Specifically, it manages the situation in which a Feature A, composed in
parallel with a Feature B, provides only control signals to Features B, and the CTL
property to be verified does not involve the internal behavior of A. In such a case, the
control signals from A can be modeled as abstract events in B. In other words, these
abstract events represent the effect of feature A on Feature B.

Recall that in sequential composition, the set of transitions of the composite model
is the union of the transitions from the composed features (local transitions). This
means that a transition in the composite model (a global transition) is just one of
the local transitions. However, in parallel composition, a global transition is a com-
bination of several local transitions that may occur at the same time Huth and Ryan
(2004).

For an example of parallel composition, consider the interaction of the Extra Sen-
sor feature (the functionality of the extra sensor component) and the RateRespon-
siveExtension feature in the RateResponsivePacemaker. These two features are com-
posed in parallel because both feature models can make a transition at the same
time. Since the CTL property to be verified here does not depend on the internal
behavior of the Extra Sensor, we model the Extra Sensor’s effect on the extension to
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the base controller’s functionality by introducing an abstract event in the extension
(“upperRateLimit=1” in Fig. 7(b)’s table).

Another example of parallel composition that our technique can handle is
the Timer feature (whose behavior is parallel to that of the controller’s, not
shown in Fig. 1). We again model the effect of the Timer by introducing ab-
stract events (“timerSenseTimeUp = 1”, “timerRefractoryTimeUp = 1” and
“timerShortSenseTimeUp = 1” in Fig. 7(b)’s table) in the controller’s model. This
allows us to manage the rest of the feature compositions in a pure sequential fashion.

Abstracting such events is currently done manually. In the future, work on generat-
ing assumptions from the environment, e.g., Giannakopoulou et al. (2002), Gheorghiu
et al. (2007), could possibly be incorporated to handle such an abstraction process in
an automatic fashion.

7.2 Suitability for product-line evolution

During product-line evolution, structural changes to a composed feature model may
occur, e.g., adding a new feature, replacing or changing an existing feature, or delet-
ing a feature. The model checking technique described in this paper supports evolu-
tion by minimizing the amount of re-checking that is required in these cases.

Adding a new feature through a pre-specified variation point si means that one
or several states are introduced–si → ti ∈ T

FMm,FMn
c (Line 10 of Algorithm 2). Thus,

t_Obl(ϕi ,ti ,∅,aSetcurrent,aSet) is invoked for each such ti , together with each of the
formula ϕi that appears in the obligation of si (Line 11 of Algorithm 2). This change
does not require re-checking other features because we can have the t_Obl function
update the answer set obtained from the previous check of the feature composition.
The subsequent update and updateF function will be performed on the updated
answer set.

On the other hand, adding a new feature through an ad-hoc variation point (i.e.,
one not specified in the checked model prior to the addition) is more complicated as
there will not have been any obligations previously generated for such an ad-hoc vari-
ation point. An example of this in the pacemaker example is when variation points s1
and s5 are specified for the base controller feature to check the composition with the
RateResponsiveExtension. Later when it is composed with the ModeTransitiveExten-
sion, an extra variation point s4 needs to be added, but no variation point obligation
has yet been generated for s4 in the prior checking of the base controller feature.

To take advantage of previous model checking, for such an ad-hoc variation
point s4, we identify all elements in the answer set from the previous check that have
the form (ϕ, s4) �→ ψ . For each such element, rechecking ϕ at s4 using the func-
tion t_Obl (with s4 a variation point) will generate the variation point obligations
needed to check the added new feature. The rest of the process for model checking an
added feature is the same as the above situation. Rechecking ϕ is very light-weight
as all the states such as s3 and s8, s3 → s4 in base controller feature, and s8 → s4
in RateResponsiveExtension feature have been checked already. Applying t_Obl on
those states can readily reuse the existing elements like (ϕ′, s3) ← ψ ′ in the answer
set.

The process for handling other changes in the composed feature model (e.g., re-
placing or changing an existing feature, or deleting a feature) is similar to the above
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description. However, since the affected features in this case may already be con-
nected to other features, updates to variation point obligations of the affected changed
features may, if needed, result in rechecking all features directly and indirectly con-
nected to them (Line 10–15 of Algorithm 2). (Indirect connections refer to the sit-
uation in which some features do not have inter-feature transitions to the changed
feature but are connected to those features that have such transitions.) The important
point is that features that are not affected will not be rechecked.

When structural changes to a feature occur (e.g., new transitions and states are
added, or existing transitions and states are modified or deleted), we can divide the
original feature into several “mini features”, representing the isolated changed parts,
and the original model without those changed parts. Rechecking the original model
can thus be carried out in a way similar to sequentially composing the changed parts
with previously checked parts, and the variation points affected by such a structural
change will be rechecked. This allows us to reuse as much of the still-valid answer
set elements from the previous checking as possible, and to check if some of the
original obligations are preserved after the change. (By “preserved” we mean that
the corresponding answer set elements involving those obligations do not need to be
updated).

In summary, variation point obligations provide the modularity needed to model
check product lines. The fact that any state in a model can become a variation point,
and the storing of previous obligation-generation results in the answer set, help reduce
the rechecking load in case of changes. Because product lines routinely experience
significant change over their lifetimes, the continued usefulness of previous model
checking results contributes to the practicality of this technique.

8 Related work

Several recent works have investigated representations of variability within a product
line in behavioral models. Gruler et al. (2008) describe PL-CCS as a way to capture
the dynamics of variabilities in a product line in terms of process algebra and present
a model checking algorithm for verifying properties in each of the individual prod-
ucts. Fantechi and Gnesi (2007) identify whether a product belongs to a product line.
Fischbein et al. (2006) propose a technique to determine whether a variability under-
mines a product-line property. Lauenroth and Pohl (2007) describe how variability
complicates the consistency checking of a product in the product line. Kishi et al.
(2005) verify many of the test scenarios in an industrial product line, using a reusable
verification model and the SPIN model checker. In these approaches, the product line
offers a well-defined base with relatively small variations (e.g., transitions in a finite
state machine) that may be verified through techniques like behavioral conformance
(Fischbein et al. 2006). In contrast, the approach described here offers compositional
verification of the product line and treats the common and variable functionality as
equal units to be composed.

Larsen et al. (2007) have modeled product line assets as modal I/O automata to
detect whether there can exist any composition of the two automata that is error free,
under the assumption (dropped in our work) that no new features will be added to the
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product line. More recently, Classen et al. (2010) have introduced Feature Transition
Systems, where the state space of a product line is represented as a single such system
and all possible products are verified against a property at once.

In this section, we summarize the related works on applying compositional verifi-
cation of products in product line and provide an overview of distinguishing aspects
of our technique. We also present in Sect. 8.1 a detailed comparison between our
technique and the most closely related work (Fisler and Krishnamurthi 2001, 2002;
Li et al. 2002a, 2002b, 2005; Blundell et al. 2004) and discuss how our work enables
additional verification in the product line setting.

Blundell et al. (2004), like us, propose an approach in which interface obligations
are generated as temporal properties. Their technique differs from ours in requiring
the interface states (here, the variation points) to be terminal states with no outgoing
transitions. By relaxing this constraint we can handle cycles in the composed state
space (e.g., inter-feature loops as shown in Fig. 6). This provides the flexibility we
needed to accurately model the pacemaker product line.

Moreover, their definition of feature model includes a set of data propositions.
Different from control propositions, which are determined by labeling functions, data
propositions are assigned explicitly by the feature model designer, and are persistent
across features until changed. This provides a way to model shared data among fea-
tures, especially for open systems in which some data values may not be available
when analyzing certain features. In our approach, we do not require data proposi-
tions in the feature model. In the case where the value for some propositions are not
available when analyzing a single feature, we are still able to check properties con-
taining those propositions, because obligations containing those data propositions for
the next feature are generated at the variation states. A detailed comparison follows
in Sect. 8.1.

Wang (2005) extends the work of Blundell et al. (2004) and allows cycles in the
composed state space (i.e., inter-feature loops). It is assumed there that interface states
suffice for feature composition, so non-interface states are never re-explored dur-
ing verification. Inter-feature loops where non-interface states need to be re-verified
through different entering paths (e.g., the initial state of the base feature in the pace-
maker model) are thus not addressed, unlike in our technique. For example, in the
pacemaker, we wanted to check if the desired property was satisfied when the Mod-
eTransition Extension re-connects with the BaseController feature through the initial
state of the BaseController feature in a new product.

Thang (2005) presents necessary conditions which, when satisfied by a base fea-
ture and one or more extension features, ensure that property verification results hold
both before and after the base is extended. Although this work allows loops between
the base and the extensions, it does not provide insights into the cases where the
necessary conditions are violated.

Krishnamurthi and Fisler (2007) have described compositional model checking of
systems using aspects to verify the behavioral properties. Composition is described
in terms of advice, modeled as a state machine, that alters the system’s behavior at
specified locations (join points, or function calls). Their technique requires that the
specification of where the aspect will apply (the pointcuts, or set of states) be done
prior to verification, whereas the technique we describe allows any state to potentially
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become an interface in the future. Our approach is also less constrained in that it
removes the need to know beforehand the order in which features will be added, and
it permits re-entry to any feature, not just to the initial feature. Like ours, their model
checking is incremental and aimed at reducing the amount of re-verification needed
as a system changes. However, we believe that by imposing fewer constraints on the
structure of the state machines and the type of circular dependency between the state
machines (e.g., not requiring cycles in state machines to include specific entry and
exit states), the more-general approach presented here places fewer burdens on the
product-line developer.

Since how product lines will evolve is notoriously hard to predict, we have tried to
make modeling decisions that keep all options open for the choice of which variability
features will be selected to become part of each new product and the order in which
those features will be composed.

Xie and Browne (2003) model each component (e.g., of a product line) as an
Asynchronous Interleaving Message-passing (AIM) computation model (i.e., only
one model can execute at a time), and use assume-guarantee to generate assumption
on the environment (i.e., other components in the composition) for a given compo-
nent. The interface between two components is the input and output message types
between the two. The system verification is carried out on the abstraction of the com-
posite model, which is obtained from the environmental assumptions, the verified
properties, and the messaging interfaces of the constituting components. Their work
differs from ours in that both their computation model (especially the type of in-
terface) and model checking strategy are suitable for verifying the communication
between components, while ours targets the increments of functionality of one or
more systems.

Nejati et al. (2008) describe a compositional algorithm for synthesizing pipeline
arrangements of features that are “safe”, i.e., the ordering of the features will not
bring undesirable interactions specified in the given properties. The synthesis oper-
ation is done in a pair-wise (incremental) fashion. Once the synthesis operation has
completed, they conduct the verification operation on the global composition fea-
tures, although the number of possible compositions are much smaller as the “unsafe”
ones have been pruned away by the synthesis step. Like us, their approach plans for
change to allow reuse of previous results as possible. Their work differs from ours
in that they are interested in synthesizing a safe composition rather than in verify-
ing that a proposed composition satisfies the properties. Their work requires that the
features satisfy the transparency pattern (i.e., a feature remains unobservable to other
features when not providing service). It also differs from ours in that they use parallel
rather than sequential composition. Their approach can cause circular dependencies
between features.

8.1 Comparison with related compositional verification approaches

Works by Fisler and Krishnamurthi (2001, 2002) and subsequent extensions in Li
et al. (2002a, 2002b, 2005) and in Blundell et al. (2004) are similar to our approach
of applying compositional verification in product lines. In this section, we present a
detailed discussion distinguishing our work from these existing techniques and show-
ing what we can model check for the first time. The primary differences between these
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works and ours are (a) the type of inter-feature loops being considered (loops only
between features as a whole vs. loops between feature states, where the latter also al-
lows circular dependency in the (un-) satisfiability of the properties by the features),
and (b) the methods used to reason about properties of products with inter-feature
loops.

Modular verification of collaboration based software designs (Fisler and Krishna-
murthi 2001, 2002) report an algorithm for modular verification of features that are
composed sequentially. It first performs CTL model checking on the base feature,
and labels the re-entry state (i.e., the target state of an incoming transition from a new
feature) and the exit state (i.e., the source state of an outgoing transition to a new fea-
ture). When a new feature is added, the algorithm gives placeholder states “in” and
“out” to the new feature, and copies the labeling on the base feature’s “re-entry” state
to the “out” state in the new feature. Model checking of the new feature determines if
each sub-formula of the original property always holds on the “in” state. If at the end
of the checking, the labels derived for the “in” state of the new feature match those
on the “exit” state of the base feature, then the property is preserved in the composed
feature.

Note that, if the labels of the “in” and “exit” states do not match, the algorithm
fails to infer whether or not the property under consideration is preserved after the
feature addition; in such a situation, the algorithm terminates with an “Unknown”
result. In other words, the algorithm is incomplete. For example, in Fig. 8 (from the
extended technical report for FSE’01—Fisler and Krishnamurthi 2002), a new feature
(the single state below the dotted line) is added to the base feature in both the model
in Figs. 8(a) and 8(b). In both cases, the labels on the “in” state of the new feature
do not match that on the “exit” state of the base feature. The algorithm in Fisler
and Krishnamurthi (2002) reports this violation, but cannot determine whether this
violation will make the original property EF AGp fail on the composed system. In
contrast, the technique that we describe in this paper will generate results for both
cases and successfully infer that EF AGp is satisfied at the start state of the model in
Fig. 8(a) and is not satisfied at the start state of the model in Fig. 8(b).

Modular verification of open features through three-valued model checking (Li et al.
2002a, 2002b, 2005) extends the above algorithm (Fisler and Krishnamurthi 2001)
to support model checking properties containing propositions with unknown values
(i.e., where the values of those propositions are determined by some other features).
Their algorithm adopts Bruns and Godefroid’s 3-valued model checking (Bruns and
Godefroid 1999) to label the states in a feature for a specific proposition as tt, ff,
or Unknown. Their algorithm then checks whether the atomic propositions marked
on the “in” state of the new feature match those of the “exit” state of the base feature
by different cases, i.e., whether the new interpretation of an existing data proposi-
tion introduced by the new feature strengthens, weakens, or is logically equivalent to
its previous interpretation in the base feature. If none of the above cases apply, the
original property needs to be re-verified in the base feature using the new interpre-
tation of the data proposition. Similar to Fisler and Krishnamurthi (2001), Li et al.
note that their approach is incomplete and may not be able to successfully infer the
(un)satisfiability of certain properties (Li et al. 2005, Sect. 5.3).
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Fig. 8 Example of mismatched
labels (based on Fisler and
Krishnamurthi 2002)

Parameterized interfaces for open system verification of product lines (Blundell et al.
2003, 2004) extends the above algorithm to generate temporal formulas (“con-
straints”) at the initial states of a base feature which are then parameterized over
the possible successor states of the exit states.

To check if a property holds in a composed feature (e.g., a base feature and a new
feature), this approach takes the following main steps:

Step 1 Checks every sub-formula of the property at the base feature and the new
feature separately, generating temporal constraints at the initial state of each feature.
Each temporal constraint is created by tagging applicable sub-formulas with some
exit state of this feature.

Step 2 For the last feature present at the end of the sequential composition (e.g., the
new feature here), evaluates the constraint at its initial state to tt or ff.

Step 3 Propagates backward these truth values to the feature that appears before it in
the sequence, until the base feature is reached. In this step, the sub-formulas in the
constraint which are tagged with some exit state are evaluated to tt or ff based on
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Fig. 9 Email example with loop

the truth value of the states connected to those exit states, e.g., the initial state of its
subsequent feature.

Note that such backward propagation is possible only when there are no loops
in states belonging to multiple features in the sequence (as will be explained in the
example in Fig. 9). If such a loop exists, either Step 2 or Step 3 will yield “Unknown”
as a result, rendering the approach incomplete.

Example We now discuss a simple example, adapted from Hall (2000) and previ-
ously used in Li et al. (2002a), and Blundell et al. (2004). We introduce loops across
the state space of composed features in the example in order to show that, in contrast
to existing techniques (Fisler and Krishnamurthi 2001, 2002; Li et al. 2002a, 2002b,
2005; Blundell et al. 2004), our technique can successfully compute verification re-
sults even in the presence of such loops.

As shown in the bottom box of Fig. 9, the Address Book feature looks up the
alias given by the user in the address book. If the alias is in the address book, the
Address Book feature will translate it to a valid address stored in the address book and
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eventually mail the message; otherwise, it will go back to the initial state of the Base
feature and have the user specify the options again. This looping back to the Base
feature in case of failure of the Address Book lookup is an essential fault-tolerance
requirement of the email product that allows us to demonstrate the advantages of our
technique over the existing ones.

We show below how existing approaches are not able to handle this kind of inter-
feature loop. We use a dotted line for the loop to indicate that we first describe the
existing approaches ignoring the loop and then study the effect on the approaches of
considering the loop.

Given a formula φ representing a temporal property, Blundell et al. (2004) con-
siders all possible subformulas of the formula and checks for their satisfiability. For
example, for the property φ = AG (remailed ⇒ EF mailed), the value of φsi is set to
true, false or unknown depending on whether it is satisfied, unsatisfied or undecided
at state si .

We use the same property that is checked in Blundell et al. (2004): φ = AG
(remailed ⇒ EF mailed), which states that “a message marked as remailed can even-
tually be mailed”. We first show below how Blundell et al.’s work accurately checks
the above feature composition if the transition from state s35 to s10 in the email
product is ignored (i.e., without a loop in the state space). We refer to their extended
version of the ASE’04 paper (Blundell et al. 2004) in the technical report (Blundell
et al. 2003) for their formalization.

Without an inter-feature cycle Both the φs10 and EF(mailed)s10 constraints can be
reduced to tt. Thus, existing approaches suffice to show that the original formula φ

holds at s10 of the Email product, if there is no inter-feature cycle (i.e., no transition
from state s35 to s10).

With an inter-feature cycle However, when we add the transition from s35 to s10
back to the above email product, the cyclic dependency thus introduced cannot be
handled. Specifically, the value of φs35 and EF(mailed)s35 should be replaced with
the value of checking φ and EF(mailed) at s10, which are φs10 and EF(mailed)s10

separately. φs10 and EF(mailed)s10 cannot be reduced to tt or ff value until the
value of φs20 and EF(mailed)s20 are resolved, which in turn depend on φs35 and
EF(mailed)s35 to be resolved.

Thus, existing approaches do not suffice to determine whether the original formula
φ holds at s10 of the Email product when there is an inter-feature cycle. For example,
the approach in Blundell et al. (2004) explicitly requires that the graph of connections
between features must form a DAG.

The approach described in this paper handles this cyclic dependency, since, given
the above obligations generated and stored in the Answer Set, the INTERP algorithm
detects this cyclic dependency and reduces both φs10 and EF(mailed)s10 to tt. Since
some of the variations in the real-world product lines that we propose to formally
verify, contain inter-feature cycles (involving loops over composed state-space), have
a sound and complete technique, such as that described in this paper, is needed for
the practical application of model checking techniques in product lines.
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9 Conclusion

This paper presented an incremental and compositional model checking technique for
performing sequential composition of features in a product line. The resulting com-
position was shown to be sound and complete. This technique generates obligations
at the variation points such that the feature composition satisfies the desired property
if and only if the features added at variation points satisfy the corresponding oblig-
ations. By computing and managing variation point obligations, we enable reuse of
previous verification results when a new product is composed. Re-checking occurs
only when and as needed.

Additionally, this approach removes restrictions on how features can be sequen-
tially composed, providing more flexibility in how features interact than existing tech-
niques and bringing models more in line with real-world product lines. The technique
accommodates product-line evolution by identifying obligations at these new varia-
tion points from previous obligations computed at those points. Evaluation done us-
ing a prototype implementation to model check a simplified pacemaker product line
showed reduction in the amount of re-verification needed to assure that a property
holds for each new product in the product line.
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