
Autom Softw Eng (2008) 15: 35–74
DOI 10.1007/s10515-007-0023-3

Differencing and merging of architectural views

Marwan Abi-Antoun · Jonathan Aldrich ·
Nagi Nahas · Bradley Schmerl · David Garlan

Received: 20 November 2007 / Accepted: 5 December 2007 / Published online: 22 December 2007
© Springer Science+Business Media, LLC 2007

Abstract Differencing and merging architectural views is an important activity in
software engineering. However, existing approaches are still based on restrictive as-
sumptions, such as requiring view elements to have unique identifiers or exactly
matching types, which is often not the case in many application domains.

We propose an approach based on structural information. We generalize a pub-
lished polynomial-time tree-to-tree correction algorithm that detects inserts, renames
and deletes, into a novel algorithm that additionally detects restricted moves. Our
algorithm also supports forcing and preventing matches between view elements.

We incorporate the algorithm into tools to compare and merge Component-and-
Connector (C&C) architectural views. We provide an empirical evaluation of the al-
gorithm. We illustrate the tools using extended examples, and use them to detect and
reconcile interesting differences between real architectural views.

Keywords Tree-to-tree correction · View synchronization · Graph matching

1 Introduction

The software architecture of a system defines its high-level organization as a col-
lection of runtime components, connectors, their properties and constraints on their
interaction. Such an architecture is commonly referred to as a Component-and-
Connector (C&C) view. As architecture-based techniques become more widely

This article is an expanded version of the following paper: Abi-Antoun, M., Aldrich, J., Nahas, N.,
Schmerl, B., and Garlan, D: 2006, ‘Differencing and Merging of Architectural Views’. In:
Proceedings of the 21st IEEE International Conference on Automated Software Engineering,
pp. 47–58.

M. Abi-Antoun (�) · J. Aldrich · N. Nahas · B. Schmerl · D. Garlan
Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: marwan.abi-antoun@cs.cmu.edu

36 Autom Softw Eng (2008) 15: 35–74

adopted, software architects face the problem of reconciling different versions of ar-
chitectural models including differencing and sometimes merging architectural views
— i.e., using the difference information from two versions to produce a new version
that includes changes from both earlier versions.

For instance, during analysis, a software architect may want to reconcile two
C&C views representing two variants in a product line architecture (Chen et al.
2003). Once the system is implemented, an architect may want to compare a con-
ceptual as-designed C&C view with an as-built C&C view retrieved from the imple-
mentation using various architectural recovery techniques (Eixelsberger et al. 1998;
Murphy et al. 2001; Medvidovic and Jakobac 2006; Schmerl et al. 2006). The archi-
tect might be interested in implementation-level violations of the architectural styles
or other intent (Abi-Antoun et al. 2005), or in a change impact analysis (Krikhaar et
al. 1999). A runtime analysis could use the difference information to perform archi-
tectural repair (Dashofy et al. 2002). Finally, during evolution, the difference infor-
mation can focus regression testing efforts (Muccini et al. 2005).

Several techniques and tools have been proposed for differencing and merging
architectural or design views. Most techniques do not detect differences based on
structural information. Many assume that elements have unique identifiers (Ala-
nen and Porres 2003; Ohst et al. 2003; Mehra et al. 2005). Others match two el-
ements if both their labels and their types match (Chen et al. 2003), which is of-
ten infeasible when dealing with views at different levels of abstraction. Many
techniques detect only a small number of differences. For instance, ArchDiff only
detects insertions and deletions (van der Westhuizen and van der Hoek 2002;
Chen et al. 2003), possibly leading to the loss of information when elements are
renamed or moved across the hierarchy. Tracking changes, using element-level
versioning, helps infer high-level operations, such as merges, splits or clones, in
addition to the low-level operations, such as inserts and deletes (Jimenez 2005;
Roshandel et al. 2004). But such an approach requires building new tools or changing
existing tools, and cannot handle legacy architectural models.

In this paper, we propose an approach that overcomes some of these limitations.
Our contributions are:

– Differencing and merging architectural views based on structural information.
Tree-to-tree correction algorithms identify matches, and classify the changes be-
tween the two views. Optional type information prevents matches between incom-
patible view elements, thus speeding execution and improving match quality;

– A novel polynomial-time tree-to-tree correction algorithm. The algorithm adapts a
recently published optimal tree-to-tree correction algorithm for unordered labeled
trees that detects renames, inserts and deletes (Torsello et al. 2005), and generalizes
it to additionally detect restricted moves. Our algorithm also supports forcing and
preventing matches between elements in the views under comparison;

– An empirical evaluation of the novel algorithm, and a comparison with the previ-
ously published algorithm;

– A set of tools for the semi-automated synchronization of C&C views using these
algorithms. One tool can synchronize an as-designed C&C view with an as-built
C&C view retrieved from an implementation. Another tool can more generally
synchronize two C&C views, regardless of how they were obtained;

Autom Softw Eng (2008) 15: 35–74 37

– An evaluation of the tools in extended examples to find and reconcile interesting
differences in real architectural views.

The paper is organized as follows: Section 2 describes the challenges in differenc-
ing and merging architectural views, the underlying assumptions, and the limitations
of our approach. Section 3 describes our novel tree-to-tree correction algorithm. Sec-
tion 4 presents an empirical evaluation of the algorithm. In Section 5, we use the
algorithm to synchronize architectural C&C views. Section 6 illustrates the approach
using extended examples on real architectural views. Finally, we discuss related work
in Section 7 and conclude.

2 Architectural view differencing

Software architects rely on multiple architectural views, where a view represents a
set of system elements and the relationships between them. Views can be of different
viewtypes, where each viewtype defines the element types and the relationship types
used to describe a software system from a particular perspective (Clements et al.
2003). Since a view is generally described as a graph, view differencing and merging
is a problem in graph matching.

Graph matching measures the similarity between two graphs using the notion of
graph edit distance, i.e., it produces a set of edit operations that model inconsisten-
cies by transforming one graph into another (Conte et al. 2004). Typical graph edit
operations include the deletion, insertion and substitution of nodes and edges. Each
edit operation is assigned a cost. The costs are application-dependent, and model the
likelihood of the corresponding inconsistencies. Typically, the more likely a certain
inconsistency is, the lower is its cost. Then the edit distance of two graphs g1 and g2
is found by searching for the sequence of edit operations with the minimum cost that
transform g1 into g2. A similar problem formulation can be used for trees. However,
tree edit distance differs from graph edit distance, in that operations are carried out
only on nodes and never directly on edges.

Graph matching is NP-complete in the general case (Conte et al. 2004). Unique
node labels enable processing graphs efficiently (Dickinson et al. 2004), which ex-
plains why many approaches make this assumption, e.g., (Alanen and Porres 2003;
Ohst et al. 2003; Mehra et al. 2005). Optimal graph matching algorithms, i.e., those
that can find a global minimum of the matching cost if it exists, can handle at most
a few dozen nodes (Messmer 1996; Conte et al. 2004). Non-optimal heuristic-based
algorithms are more scalable, but often place other restrictive assumptions. For in-
stance, the Similarity Flooding Algorithm (SFA) “works for directed labeled graphs
only. It degrades when labeling is uniform or undirected, or when nodes are less dis-
tinguishable. [It] does not perform well [. . .] on undirected graphs having no edge
labels” (Melnik et al. 2002).

Several efficient algorithms have been proposed for trees, a strict hierarchical
structure, so our approach focuses on hierarchical architectural views. While not all
architectural views are hierarchical, many use hierarchy to attain both high-level un-
derstanding and detail. In a C&C view, the tree-like hierarchy corresponds to the
system decomposition, but cross-links between the system elements form a general

38 Autom Softw Eng (2008) 15: 35–74

graph. Other architectural views, such as module views, have similar characteris-
tics (Clements et al. 2003). Many approaches are hierarchical (Apiwattanapong et al.
2004; Raghavan et al. 2004; Xing and Stroulia 2005). So our choice is hardly new.
However, we relax the constraints of existing approaches as follows:

No unique identifiers. For maximum generality, we do not require elements to
have unique identifiers, as in other approaches, e.g., (Chen et al. 2003; Mehra et
al. 2005). As mentioned earlier, this assumption alone enables the use of exact and
scalable algorithms that can handle thousands of nodes (Dickinson et al. 2004). Un-
fortunately, architectural view elements often do not have unique identifiers.

No ordering. In the general case, an architectural view has no inherent ordering
amongst its elements. This suggests that an unordered tree-to-tree correction algo-
rithm might perform better than one for ordered trees. Many efficient algorithms
are available for ordered labeled trees, e.g., (Shasha and Zhang 1997). In com-
parison, tree-to-tree correction for unordered trees is MAX SNP-hard (Zhang and
Jiang 1994). Some algorithms for unordered trees achieve polynomial-time com-
plexity, either through heuristic methods, e.g., (Chawathe and Garcia-Molina 1997;
Wang et al. 2003; Raghavan et al. 2004), or under additional assumptions, e.g.,
(Torsello et al. 2005).

Renames. A synchronization approach must of course handle elements that are
inserted and deleted, as supported by ArchDiff (Chen et al. 2003). But effective syn-
chronization must also go beyond insertions and deletions, and support renames.

Name differences between two C&C views can arise for a variety of reasons.
For instance, the architect may update a name in one view, and forget to update
another view. Names are often modified during software development and mainte-
nance. A name may turn out to be inappropriate or misleading due to either careless
initial choice, or name conflicts from separately developed modules (Ammann and
Cameron 1994). Furthermore, developers tend to avoid using names that may be in
use by an implementation framework or library, a minor detail for the architect. Fi-
nally, architectural view elements may not have persistent names or their names may
be generated automatically by tools.

This suggests that an algorithm should be able to match renamed elements. Iden-
tifying an element as being deleted and then inserted when, in fact, it was renamed,
would result in losing crucial style and property information about the element, even
if this produces structurally equivalent views. These architectural properties, such as
throughput, latency, etc., are crucial for many architectural analyses, e.g., (Spitznagel
and Garlan 1998). In the following discussion, a matched node is a node with either
an exactly matching label or a renamed label.

Hierarchical moves. Architects often use hierarchy to manage complexity. In
general, two architects may differ in their use of hierarchy: a component expressed
at the top level in one view could be nested within another component in some other
view. This suggests that an algorithm should detect sequences of internal node dele-
tions in the middle of the tree, which result in nodes moving up a number of levels
in the hierarchy. An algorithm should also detect sequences of internal node inser-
tions in the middle of the tree, which result in nodes moving down the hierarchy, by
becoming children of the inserted nodes, as shown in Figure 1.

Manual overrides. Structural similarities may lead a fully automated algorithm to
incorrectly match top-level elements between two trees and produce an unusable out-

Autom Softw Eng (2008) 15: 35–74 39

Fig. 1 Tree edit operations

40 Autom Softw Eng (2008) 15: 35–74

put. Because of the dependencies in the mapping, one cannot easily adjust incorrect
matches after the fact. Instead, we added a feature not typically found in tree-to-tree
correction algorithms. The feature allows the user to force or prevent matches be-
tween selected view elements. The algorithm then takes these constraints into account
to improve the overall match. The user can specify any set of constraints, as long as
they preserve the ancestry relation between the forcibly matched nodes. In particular,
if a is an ancestor of b, a is forcibly matched to c, and b is forcibly matched to d ,
then c must be an ancestor of d .

Optional type information. Architectural views may be untyped or have different
or incompatible type systems. This is often the case when comparing views at differ-
ent levels of abstraction, such as an as-designed conceptual-level view with an as-built
implementation-level view. Therefore, an algorithm should not rely on matching type
information, and should be able to recover a correct mapping from structure alone
if necessary, or from structure and type information if type information is available.
An algorithm could however take advantage of type information, when available, to
prune the search space by not attempting to match elements of incompatible types.

If the view elements are represented as typed nodes, at the very least, an algorithm
should not match nodes of incompatible types, e.g., it should not match a connector
x to a component y. If architectural style information is available, additional archi-
tectural types may be available and could be used for similar purposes. For instance,
an algorithm can avoid matching a component of type Filter, from a Pipe-and-
Filter architectural style, to a component of type Repository, from a Shared-Data
architectural style (Shaw and Garlan 1996).

Disconnected/stateless operation. For maximum generality, we assume a dis-
connected and stateless operation. A few approaches require monitoring or record-
ing the structural changes while the user is modifying a given view (Jimenez 2005;
Roshandel et al. 2004).

Comparable views. The two views under comparison have to be somewhat struc-
turally similar. When comparing two completely different views, an algorithm could
trivially delete all elements of one view, and then insert them in the other view. In
addition, the two views must be of the same viewtype, and must be comparable with-
out any view transformation. Checking the consistency of different but related views,
such as a UML class diagram and a UML sequence diagram, is a problem in view
integration (Egyed 2006), and is outside the scope of this paper.

No merging/splitting. Our approach does not currently detect the merging or
splitting of view elements. Merging and splitting are common practice, but are diffi-
cult to formalize, since they affect connections in a context-dependent way (Erdog-
mus 1998). We leave merges and splits to future work.

3 Tree-to-tree correction

In this section, we describe a novel algorithm for unordered labeled trees, MDIR
(Moves-Deletes-Inserts-Renames), which generalizes a recent optimal tree-to-tree
correction algorithm (Torsello et al. 2005), which we will refer to as THP. We also
implemented THP for experimental comparison with MDIR (Section 4).

Autom Softw Eng (2008) 15: 35–74 41

3.1 Problem definition

We first give an unambiguous definition of the problem, adapted from Sasha and
Zhang (1997). We denote the ith node of a labeled tree T in the postorder node
ordering of T by T [i]. |T | denotes the number of nodes of T . We define a triple
(M, T1, T2) to be a mapping from T1 to T2, where M is any set of pairs of integers
(i, j) satisfying the following:

1. 1 <= i <= |T1|,1 <= j <= |T2|;
2. For any pair of (i1, j1) and (i2, j2) in M with:

– i1 = i2 if and only if j1 = j2 (one-to-one)
– T1[i1] is an ancestor of T1[i2] if and only if T2[j1] is an ancestor of T2[j2]

(ancestor order preserved).

We will use M instead of (M, T1, T2) if there is no confusion. To delete a node
N in tree T , we remove node N and make its children become the children of the
parent of N . To insert a node N in tree T as a child of node M , we make N one of
the children of M , and we make a subset of the children of M become children of N

(See Figure 1). Renaming a node only updates its label and preserves any properties
associated with it. In comparison, THP does not allow any insertions or deletions in
the middle of the tree. It works under the assumption that if two nodes match, so do
their parents, i.e., only subtrees can be inserted or deleted.

Suppose we obtain a mapping M between trees T1 and T2. From this mapping, we
can deduce an edit script, i.e., a sequence of edit operations, to turn T1 into T2. First,
we flag all unmatched nodes in the first tree as deleted, and all unmatched nodes in the
second tree as inserted. We order the operations so that all deletion operations precede
all insertion operations, delete the nodes in order of decreasing depth (deepest node
first), and insert them in increasing depth order. To define the cost of an edit script,
for each node in the source tree, we choose a cost of deletion — not necessarily the
same for all nodes. For each node in the destination tree, we choose a cost of insertion
— again, not necessarily the same for all nodes. Finally, for each pair of nodes (n,m)

where n is some node in T1 and m in T2, we choose a cost of changing the label of
n into the label of m. For example, string-to-string correction changes “banana” into
“ananas” with a cost of two (Wagner and Fischer 1974). The cost of the edit script is
then equal to the sum of the costs of insertion, deletion, and renaming operations it
contains. Therefore, any given mapping has a unique cost. So, to find an optimal edit
sequence, it is sufficient to find an optimal mapping.

3.2 Explanation of the algorithm

The algorithm’s pseudo-code is shown in Figures 2 and 3. Let C(i, j) be the cost of
the optimal mapping from the subtree rooted at i to the subtree rooted at j . A set of
nodes S(i) is a successor set of node i if it is a subset of the set of descendents of i,
none of the elements of S(i) is an ancestor of another, and each node of the subtree
rooted at i is either a descendent or an ancestor of an element of S(i).

Given two sets S(i), where i belongs to T1 and S(j) and j belongs to T2, it is
possible to define the optimal mapping of S(i) to S(j) as a one to one function from

42 Autom Softw Eng (2008) 15: 35–74

BestSolution: list of node pairs that represents the best
discovered matching between successor sets of two nodes,
where a successor set of node i is denoted by S(i)

CurrentSolution: dynamic list of node pairs that represents
a matching being built between successor sets of two nodes
CostMatrix: CostMatrix[i][j] is the cost of the optimal
mapping from S(i) to S(j)

BestCost: cost of the BestSolution matching
BestGlobalMatch: array of node pairs corresponding to least cost
mapping from T 1 to T 2
BestSuccessor: 2D array of lists of node pairs
(m,n) ∈ BestSuccessor[i][j] means (m,n) is a match between
one element of S(i) and one element of S(j)

in an optimal mapping from S(i) to S(j)

MatchMerit(i, j): measure of the similarity (i.e., quality of matching, not cost)
between nodes i and j , deduced from CostMatrix[i][j]
as (1 − CostMatrix[i][j]/(sum of subtree weights))
L(i, j): cost of string-to-string correction to change LABEL(i) to LABEL(j)

MDIR(T1, T2)

Postorder T1 and T2 nodes
for i ← 1 to T1.size

do for j ← 1 to T2.size

do BestSuccessor[i][j] = SEARCH(i, j)
CostMatrix[i][j] = COST(BestSuccessor[i][j]) +L(i,j)

GETBESTMATCHING(T1.size, T2.size)

SEARCH(i, j)

� i, j : indices in trees T1 and T2 respectively
Let L be the list of pairs (p, q) where
p is a descendent of i and q is a descendent of j

Sort L according to MatchMerit (p, q)

Set BestSolution = empty list
Set CurrentSolution = empty list
Set BestCost = infinity
BACKTRACK(0 /* index */, L, 0 /* CurrentCost */)
return BestSolution

Fig. 2 Pseudo-code of the algorithm

a subset of S(i) into S(j) with least cost. The cost of mapping element k of S(i) to
element l of S(j) is equal to cost of the optimal mapping of the subtree rooted at k

to the subtree rooted at l. The cost of leaving an element k of S(i) without image
is equal to the cost of deleting the whole subtree rooted at k. The cost of having an
unmatched element l in S(j) is equal to the cost of inserting the entire subtree rooted
at l. This suggests that if we know all the costs C(d1, d2), where d1 is a descendent

Autom Softw Eng (2008) 15: 35–74 43

BACKTRACK(index,L)

� Search for a good mapping between subtrees
� index: position reached in list L
� L: list of pairs of nodes (m,n) sorted by merit
� CurrentCost : sum of the cost of the elements in CurrentSolution

if (no element of L can be added to CurrentSolution)� Base case
then if (CurrentCost + cost of deleted subtrees < BestCost)

then
BestSolution = CurrentSolution
BestCost = CurrentCost
return

foreach element l = (m,n) in L starting at index
do

if (CurrentSolution already contains m, n
or any of their ascendants or descendents)

then continue
if (adding l to current mapping violates bound B)

then continue
Add cost of match to CurrentCost to obtain NewCost
Get a lower bound E of remaining cost using MatchMerit
if (E + NewCost >= BestCost)

then continue
Add l to CurrentSolution
BACKTRACK(index + 1, L, NewCost)
Remove l from CurrentSolution

GETBESTMATCHING(i, j)

� Deduce the optimal mapping
� i, j : pair of nodes belonging to best possible
� mapping between the two trees
foreach element e = (m,n) in BestSuccessor[i][j]

do Add e to BestGlobalMatch
GETBESTMATCHING(m, n)

Fig. 3 Pseudo-code of the algorithm (continued)

of i and d2 is a descendent of j , it is possible to compute C(i, j) by considering
all possible pairs of sets (S(i), S(j)), and for each such pair, getting the minimum
weight bipartite matching defined by the entries of the cost matrix C corresponding
to the elements of S(i) and S(j).

Finally, let L(i, j) be the cost of changing the label of node i in the source tree
to the label of node j in the destination tree. The minimum cost obtained added to
L(i, j) will be equal to C(i, j). L(i, j) uses string-to-string correction to evaluate
the intrinsic degree of similarity between the labels of two nodes, using a standard
algorithm to find the longest common subsequence (Wagner and Fischer 1974).

44 Autom Softw Eng (2008) 15: 35–74

We choose the best pair (S(i), S(j)) using a branch-and-bound backtracking al-
gorithm. Let DESC(i) denote the set of descendents of i. We try to choose a subset
Q of DESC(i) × DESC(j) with minimal cost. This is done by trying to add to Q

one element of DESC(i) × DESC(j), such that the new element in Q is consistent
with the previous elements, i.e., no same node can be matched to two different nodes,
nor can a node appear in an element of Q, if either a descendent or an ancestor al-
ready appears in some element of Q. The algorithm backtracks when it determines
that there are no more valid pairs to add, or the cost of the current branch will be too
large to match the best solution discovered to date. As the problem is NP-complete,
the approach outlined above can quickly become intractable without additional con-
straints.

We chose to enforce an upper bound B on the sum of distances between elements
of S(i) and the closest child of i (respectively, S(j) and j), with B typically a small
integer. The reasoning behind this constraint is that nodes are not usually moved too
far from their original positions in a hierarchy. It is also relatively rare for several
non-leaf siblings to be deleted at the same time. The bound B has the additional
benefit that only relatively small neighborhoods of each node have to be considered
for the computation of the optimal cost of a single subtree pair. This also enables
performing many operations efficiently using bit manipulation. For example, during
the backtracking search, checking whether a node is still available is a single bitwise
AND operation, instead of a loop over an array.

MDIR can be considered a generalization of THP, because THP only handles the
case where B = 0, i.e., only the children of a node can be in a successor set of that
node. This produces a fully polynomial time algorithm that is typically much faster
than our generalized algorithm. Handling non-zero values of B allows MDIR to de-
tect hierarchical moves. MDIR is guaranteed to find the optimal matching within the
constraints of the bound B , provided it is allowed to run long enough.

In principle, one could use the same implementation for both THP and MDIR, and
adjust MDIR’s parameters to simulate THP, e.g., by modifying the SEARCH proce-
dure in Figure 2 accordingly. However, we currently have two separate implementa-
tions for MDIR and THP, with some shared procedures.

It is necessary to limit the running time on trees with more than a few hundred
nodes, and when the average degree of a non-leaf node is greater than four. We en-
force a bound R on the number of recursive calls of the backtracking search corre-
sponding to a given subtree pair. Although bound R removes the guarantee of opti-
mality by limiting the number of recursive calls, MDIR still obtains good results em-
pirically. Since MDIR uses the branch-and-bound technique, a good match allows for
tight bounds and therefore early cutting of branches. The search terminates normally
for matrix entries that correspond to good matches, and is interrupted only when the
match is not good. This allows MDIR to return an optimal match, even if the back-
tracking is interrupted during the computation of cost matrix entries corresponding
to matches that are not part of the optimal solution.

3.3 Illustrative example

In this section, we illustrate the MDIR algorithm on a small example. MDIR exhaus-
tively computes from bottom to top the cost of mapping each node in T1 to every

Autom Softw Eng (2008) 15: 35–74 45

Fig. 4 COST(D,d) = cost of editing label of D to d , i.e., the measure of similarity between the labels, in
this case 0

Fig. 5 COST(B ,d) = COST(deleting B’s children) + COST(editing B’s label). Assuming the cost of a
deletion is 5 times a unit cost, COST(B , d) = COST(deleting D) + COST(deleting E) + COST(editing
B’s label) = 5 + 5 + 2

other node in T2. The computed costs are stored in a cost matrix. Following the dy-
namic programming paradigm, MDIR uses the comparison on the high depth nodes
to compare the low depth nodes. The example also illustrates the usefulness of the
successor set approach, since bipartite matching cannot match subtree nodes, because
of the need to preserve the hierarchical constraints.

MDIR starts by computing the cost of matching D to d (Figure 4). Similarly,
MDIR computes the costs of matching (D, e), (D,f), (D,g), . . . , (E,d), (E, e),
(E,g). In Figure 5, MDIR computes the cost of matching B to d . Then, MDIR com-
putes the cost of matching B to b (Figure 6). This requires knowing the cost of the
optimal successor set mapping for B and b. At this point, MDIR has computed the
costs of matching every descendent of B to any node in the second tree, because of
the post-ordering of the trees.

The optimal successor set mapping corresponding to the pair (B,b) is com-
puted as follows (Figure 7). First, take all the node pairs, where the first item
is a descendent of B , and the second item is a descendent of b, i.e., the set
{(D,d),4(D, e), (E,d), (E, e)}. The optimal mapping will clearly be a subset of this
set. To obtain that optimal mapping, we examine all mappings — except the ones that

46 Autom Softw Eng (2008) 15: 35–74

Fig. 6 COST(B ,b) = COST(successor set mapping of (B,b)) + COST(editing the label of B to
b). COST(D,d) and COST(E,e) have been previously computed, thus COST(B,b) = COST(D,d) +
COST(E,e) + 0

Fig. 7 Computing the cost of matching B to b requires the successor set mapping of the pair (B,b). The
successor set mapping of (B,b) is the set {(D,d), (E, e)}

have been pruned because the bounds on their cost showed they could not be optimal.
The other constraint is: if (x, y) is a pair in a mapping,neither x, nor y, nor any of
their ascendents or descendents, can appear in any other pair in the same mapping.
Thus, the optimal successor set mapping for (B,b) is {(D,d), (E, e)}. Finally, in
Figure 8, MDIR computes the cost of matching B to a.

At the end of this phase, MDIR has determined the “best” successor set mapping,
and stored it for the next phase, when MDIR will retrieve the best matches. MDIR
could avoid keeping the optimal successor set mapping for each node pair in the first
phase, to reduce the space complexity to O(N2). But it is simpler conceptually to
store this information, and this is how we currently implemented MDIR.

In the second phase, MDIR uses a recursive procedure to compute the match list,
i.e., to determine what node corresponds to what other node. MDIR uses the follow-
ing recursive formulation. The list of matches for subtree pair rooted at (x, y) consists
of (x, y), in addition to the list of matches of each pair in the successor set mapping
of (x, y).

In Figure 9, MDIR starts with (A,a). The successor set mapping of (A,a) is
{(B,b), (F,f), (G,g)}. So, MDIR first adds (A,a) to the match list, and then adds
the pairs (B,b), (F,f), and (G,g) to the work list. Then, MDIR pops (B,b) from
the work list, adds it to the match list, and adds to the work list the successor set

Autom Softw Eng (2008) 15: 35–74 47

Fig. 8 COST(B ,a) = COST(successor set mapping of (B , a)) + COST(editing the label of B to a) +
COST(deleting b, f and g)

Fig. 9 Computing the match list

(B,b), namely, (D,d) and (E, e). Next, MDIR pops (F,f) from the work list, adds
it to the match list, and proceeds similarly.

3.4 Forcing and preventing matches

Manual overrides are not a standard operation in most tree-to-tree correction algo-
rithms. MDIR has the ability to force and prevent matches between a node in tree T1
and another node in tree T2.

Preventing a match between two nodes i and j is easy — just assign a very large
cost to the corresponding entry in the cost matrix C[i][j]. But forcing a match be-
tween two nodes is more difficult. At first glance, it would seem enough to first pre-
vent the match of either of these two nodes with any node other than the required one,
and second, make the cost of deletion and insertion of these nodes very high. This
would be the case if the algorithm did not have the additional constraint concern-
ing the distance to the subtree root. Because of this constraint, it is often necessary

48 Autom Softw Eng (2008) 15: 35–74

to delete entire subtrees at a time, when no match can be found for any node close
enough to the subtree root.

So, we have to avoid deleting one of the nodes involved in the forced match,
during one of those subtree deletions. A possible solution would be to prevent the
deletion of all the ancestors of the forcibly matched node. This is indeed the best
solution, if we used THP. But in our case, this solution could produce a sub-optimal
edit script, because it is possible that a few ancestors were deleted, while the forcibly
matched node was not deleted. This requires distinguishing between individual delete
operations and mass delete operations.

We therefore allow the deletion of ancestors of the forcibly matched node, on
the condition that this deletion operation is not part of a subtree deletion operation.
Whenever an ancestor is deleted, at least one of its descendents, which is itself an
ancestor of the forcibly matched node, must be part of the successor set. The base
case of the recursive BACKTRACK procedure enforces this constraint. When com-
puting the best cost for the (i, j) entry of the cost matrix, if i is an ancestor of a
forcibly matched node, BACKTRACK does not record in BestSolution any mapping
that deletes the branch leading to the forcibly matched node. Instead, BACKTRACK

records a mapping that deletes a few intermediate nodes on the path from i to the
forcibly matched node. This feature is not shown in the pseudo-code to keep the
latter manageable.

3.5 Runtime and memory complexity

An upper bound on the running time of the MDIR algorithm is as follows: let X be
the set of nodes of both trees, x be an element of X, p be the maximum allowable
size of a connected subgraph of the tree that can be deleted or inserted in the middle
of the tree, f (x,p) be the number of nodes that lie within a distance of (p + 1)

from x, and F(p) = max{f (x,p) : x ∈ X}. Then MDIR’s worst case running time is
O((2 ∗ F(p))!N2).

The average case is considerably faster than the worst case, in our implementa-
tion, due to the following strategies. We prune the search tree by using both the tree
structure and any semantic information, such as optional type information. We also
limit the running time by returning a possibly suboptimal solution.

In practice, the observed runtime is O(KN2), where K is a large constant. In com-
parison, THP has a worst case running time of O(d3N2), where d is the maximum
degree of a tree and d << N (Torsello et al. 2005). Regarding memory requirements,
both THP and MDIR could be implemented in O(N2) space, at the expense of ad-
ditional complexity. Our current THP implementation requires O(dN2), and MDIR
requires O(bN2), where b is a large constant factor.

4 Empirical evaluation

An empirical evaluation of the accuracy of the MDIR algorithm is necessary because
bounds B and R remove the guarantee of optimality. We generated the test data as
follows: 1) generate a random tree with random labels taken from a pool of 10 pos-
sible names, so as they are non-unique; 2) copy the tree; 3) delete a random number

Autom Softw Eng (2008) 15: 35–74 49

Table 1 Evaluation of MDIR (R = 100K)

Case # Ideal Ops THP MDIR

Nodes Ops Secs Ops Secs

Renames 640 569 770 2 569 64

1280 857 1509 7 963 442

Deletes 640 492 701 2 492 50

1280 1113 1397 5 1114 169

Internal Deletes 640 441 1076 3 1093 215

1280 652 2407 9 735 471

Node Degree 640 288 712 2 288 65

1280 576 1194 10 576 248

of nodes in the copy, including both internal and leaf nodes; 4) rename a number of
nodes in the copy; 5) and finally, compare the two trees using THP and MDIR. The
deletion operations in the middle of the tree correspond to the restricted moves that
MDIR detects. We ran MDIR once with bound R = 100K , and another time with
bound R = 5K . We left bound B unchanged from its default value in all runs.

The length of an optimal edit script must necessarily be equal to the sum of the
number of deletion and the number of renaming operations. Table 1 shows for differ-
ent tree node sizes, the length of the optimal edit script, the length of the actual edit
script, and the running time (in seconds), for both THP and MDIR. All numbers were
measured on an Intel Pentium 4 CPU 3 GHz with 1.5 GB of RAM.

On average, THP produced edit scripts that are sub-optimal by about 120%,
whereas MDIR produced edit scripts that are sub-optimal by about 7%. In the worst
case, THP produced a suboptimal edit script by about 400%, whereas MDIR’s worst
case performance resulted in an edit script sub-optimal by around 150%. The accu-
racy deteriorated significantly for both MDIR and THP, when using nodes of large
degree, or when the trees were very different. MDIR’s worst case was on a source
tree of 640 nodes separated from its target by an optimal edit script of 440 opera-
tions, containing both deletions and renames. In that case, the returned edit script
was 2.5 times longer than the optimal edit script. MDIR produced good results with
most trees, even when the optimal edit script involved 2/3 of the number of nodes.
With up to 85% of the nodes renamed and no deletions, MDIR produced edit scripts
within less than 1% of the optimal script on trees of 640 nodes. So MDIR can recover
the mapping from tree structure alone.

The improved match quality comes at a heavy runtime cost. MDIR was about
60 times slower than THP on average, with bound R = 100K . As predicted, setting
bound R to 5K produced slightly sub-optimal edit scripts, but noticeably reduced the
running time. On a tree of 1,280 nodes with an optimal edit script of 396 edits, THP
produced an edit script of size 1,775 in 7 seconds. MDIR with R = 100K produced
an edit script of size 459 in 6 minutes, whereas MDIR with R = 5K produced an edit
script of size 479 in 4 minutes. Empirical data with those two different values of R is
shown in Figures 10, 11, 12 and 13. Varying the bound R did not have much effect

50 Autom Softw Eng (2008) 15: 35–74

Fig. 10 A comparison of THP and MDIR (R = 100K , and R = 5K) showing the sub-optimality of the
edit script vs. the percentage of renames

on MDIR’s precision. Note that all the tree pairs used in those figures have internally
deleted nodes, even if this is not the varying parameter.

Figure 10 shows the sub-optimality of the edit script when varying the percentage
of renames, for both THP and MDIR. The worst edit script for MDIR was suboptimal
by around 100%, whereas THP was off by over 400%. This figure may mislead the
reader into thinking that the accuracy of THP increases with the percentage of re-
names. Of course, it does not. THP detects renames but not internal deletes, so when
the percentage of renames in the optimal edit script increases — compared to the
other operations, THP’s precision seems to improve.

Figure 11 shows the sub-optimality of the edit script when varying the percentage
of deletes, for both THP and MDIR. THP generated one edit script that was subopti-
mal by over 50%, whereas MDIR generated fully optimal edit scripts.

Figure 12 shows the sub-optimality of the edit script when varying the percentage
of inserts, for both THP and MDIR. THP generated edit scripts that were suboptimal
by around 110% on average, whereas MDIR generated edit scripts that were off by
20% on average.

Figure 13 shows the sub-optimality of the edit script when varying the node de-
gree, for both THP and MDIR. THP generated edit scripts that were suboptimal by
over 110% on average, whereas MDIR generated edit scripts that were off by 16%
on average.

Autom Softw Eng (2008) 15: 35–74 51

Fig. 11 A comparison of THP and MDIR (R = 100K , and R = 5K) showing the sub-optimality of the
edit script vs. the percentage of deletes

Fig. 12 A comparison of THP and MDIR (R = 100K , and R = 5K) showing the sub-optimality of the
edit script vs. the percentage of internal deletes

52 Autom Softw Eng (2008) 15: 35–74

Fig. 13 A comparison of THP and MDIR (R = 100K , and R = 5K) showing the sub-optimality of the
edit script vs. the node degree

Table 2 Random trees generated for the performance evaluation of MDIR

Case Deletes Inserts Internal deletes Internal inserts Renames

MDIR_1 20% 20% 10% 10% 40%

MDIR_2 10% 10% 10% 10% 60%

MDIR_3 10% 10% 30% 30% 20%

MDIR_4 5% 5% 15% 5% 15%

The previous data showed mainly the improvement in the precision of the match-
ing. We also wanted some indication on the algorithm’s performance and scalability.
Ideally, one would generate graphs with edits that follow the probability distribution
of typical graph edits. Since we did not have such a distribution, we generated ran-
dom trees instead, as before, but with various combinations of deletions, insertions,
internal deletes, internal inserts, and renames. Table 2 lists some of the different trees
we generated.

Although the performance numbers were sensitive to the percentages of the dif-
ferent kinds of edits, the trends were very similar. Figure 14 shows a plot of the
performance of the MDIR algorithm, with R = 5K , when varying the tree sizes.
For comparison, the times for THP are shown in the corresponding THP series. Our
empirical results clearly confirm our earlier theoretical complexity analysis, i.e., the

Autom Softw Eng (2008) 15: 35–74 53

Fig. 14 The performance of MDIR (R = 5K) vs. the tree size

growth is quadratic. Although Figure 14 shows that MDIR performs much slower
than THP, it does not give any indication on the accuracy of MDIR compared to THP,
which we previously demonstrated.

We have avoided prematurely optimizing our current implementation to allow for
easier debugging, but we think that we can improve the running time in several ways.
Heuristics, such as simulated annealing or genetic algorithms, could significantly im-
prove the SEARCH procedure by obtaining a better initial solution, and thus a better
starting cost. This optimization could yield a significant performance gain, and allow
the implementation to handle larger values of B , as well as trees of larger degree
than is currently possible. Another optimization would be to reduce the number of
nodes in the trees under comparison, e.g., by adding some nodes as attributes on their
parents.

In summary, MDIR has a dramatically improved accuracy over THP and an ac-
ceptable non-interactive performance for many usage scenarios. Unlike exact graph
matching algorithms, it can scale to thousands of nodes and can handle realistic ar-
chitectural views, as the extended examples in Section 6 will demonstrate.

5 Architectural view synchronization

In this section, we use tree-to-tree correction algorithms to synchronize hierarchical
graphs corresponding to C&C views.

5.1 General approach

We represent the structural information in a C&C view as a cross-linked tree struc-
ture that mirrors the hierarchical decomposition of a system. The tree also includes

54 Autom Softw Eng (2008) 15: 35–74

Fig. 15 Figure 15(a) indicates a
match; Figure 15(b) indicates a
rename; Figure 15(c) indicates
an insertion; and Figure 15(d)
indicates a deletion

some redundant information to improve the accuracy of the structural comparison.
For instance, the subtree of a node corresponding to a port includes additional nodes
for all the port’s involvements, i.e., all the components and their ports reachable from
that port. Each node is decorated with properties, such as type information. The type
information, if provided, populates a matrix of incompatible nodes that may not be
matched. That matrix also includes optional user-specified constraints to force or pre-
vent matches.

A graph representing a C&C view can generally have cycles in it. Representing
an architectural graph as a tree causes each shared node in the graph to appear in
several subtrees. We consider one of these nodes the defining occurrence, and add a
cross-link from each repeated node back to its defining occurrence. These redundant
nodes, while they significantly increase the tree sizes, greatly improve the tree-to-
tree correction accuracy. However, they may be inconsistently matched with respect
to their defining occurrences, either in what they refer to, or in the associated edit
operations.

We work around these inconsistent matches using two passes. During the first
pass, we synchronize the strictly hierarchical information corresponding to the sys-
tem decomposition, i.e., components, ports and representations. During the second
pass, we synchronize the edges in the architectural graph. The post-processing step
is simple at that point, since it has the mapping between the nodes in the two graphs.

Synchronization is a five-step process: 1) setup the synchronization; 2) optionally
view and match types; 3) view and match instances; 4) optionally view and modify
the edit script; 5) confirm and optionally apply the edit script. The final step is op-
tional because the architect may decline the edit operations for various reasons, or
may be interested only in a change impact analysis (Krikhaar et al. 1999). Because
Steps 1 and 5 are straightforward, we will only discuss Steps 2-4.

In Step 2, manually matching the type structures between the two views produces
semantic information that speeds up the comparison. This optional information can
also reduce the amount of data entry for assigning types to the elements that the edit
script will create.

In Step 3, matching instances proceeds as follows: a) build tree-structured data
from the two C&C views to be compared; b) use tree-to-tree correction to identify
matches and structural differences; and c) obtain an edit script to merge the two views.

The tool shows the structural differences by overlaying icons on the affected ele-
ments in each tree (See Figure 15). If an element is renamed, the tool automatically
selects and highlights the matching element in the other tree. For inserted or deleted
elements, the tool automatically selects the insertion point, by navigating up the tree
until it reaches a matched ancestor. The tool shows in bold a node if it detects dif-
ferences in its subtree. The tool shows in italics ports that are inherited from the
component type.

Various features can restrict the size of the trees and help reduce the comparison
time:

Autom Softw Eng (2008) 15: 35–74 55

– Start at Component: the user can select any component to be the tree root, and
can reduce the tree sizes by selecting subtrees;

– Restrict Tree Depth: the user can exclude from comparison any nodes beyond a
certain tree depth;

– Elide Elements: the user can exclude selected nodes and their entire subtrees from
comparison. Elision is temporary and does not generate any edit actions.

The tool gives the user manual control using the following features:

– Forced matches: the user can manually force a match between two elements that
may not match structurally;

– Manual overrides: the user can override any edit action suggested by the struc-
tural comparison.

Step 4 produces from the edit script a common supertree, that previews the merged
view after the edit actions are applied. In this step, the user can assign types to ele-
ments to be created, change the types of existing elements, or override types that were
automatically inferred based on the type matching in Step 2. The tool also checks the
edit script for errors, such as illegal element names. The user can also rename any
architectural element that the edit script will create. Finally, the user can cancel any
unwanted edit actions.

5.2 Specialized tools

This approach supports building architectural view differencing and merging tools
for a wide range of Architecture Description Languages (ADLs). To evaluate our
approach, we represented the C&C views in the Acme general purpose ADL (Garlan
et al. 2000).

We also developed a tool to extract as-built C&C views from ArchJava (Aldrich
et al. 2002). Similar tools can extract as-built views from an implementation-
constraining ADL with code generation capabilities, or an implementation-
independent ADL with an implementation framework, such as C2 (Medvidovic and
Taylor 2000).

We intended our synchronization tools to be lightweight enough that they can fit
into a single dialog in an integrated development environment, such as Eclipse (Ob-
ject Technology International 2003), and not require a specialized environment for
architectural recovery (Telea et al. 2002). Both AcmeStudio a domain-neutral archi-
tecture modeling environment for Acme (Schmerl and Garlan 2004), and ArchJava’s
development environment, are Eclipse plugins, which reduced the tool integration
effort.

One synchronization tool can make an as-designed architectural view, expressed
in Acme, incrementally consistent with an as-built architectural view, extracted from
an ArchJava implementation. We still need to change the ArchJava infrastructure to
support making incremental changes to an existing ArchJava implementation based
on changes to the as-designed view.

Another synchronization tool, based on the same approach, more generally takes
any two C&C views represented in Acme. One view could correspond to a docu-
mented architecture. The second view could correspond to a C&C view recovered
using any architectural recovery technique, e.g., (Schmerl et al. 2006). The second

56 Autom Softw Eng (2008) 15: 35–74

view could also be another C&C view, either retrieved from a configuration manage-
ment system, or corresponding to a variant in a product line.

Synchronizing an as-designed C&C view with an as-built C&C view must often
address expressiveness gaps between architectural information at different levels of
abstraction. Although we use Acme and ArchJava to illustrate some of these differ-
ences that must be bridged, synchronizing any pair of as-designed and as-built C&C
views may encounter similar challenges.

Structural differences. There will always be name differences of the same struc-
tural information between Acme and ArchJava. For instance, an ArchJava port can
be named in, a reserved keyword in Acme. Even if code generation automatically
produces a skeleton implementation from the architectural model, connector names
and role names are lost, since ArchJava does not even name those elements. Finally,
in Acme, port names are critical for typechecking. But in ArchJava, port names are
unimportant and obey the standard programming language notions of binding and
scope.

Hierarchy. Acme treats hierarchy as design-time composition, where a compo-
nent at one level in the hierarchy is just a transparent view of a more detailed de-
composition specified by the representation of that component. Multiple represen-
tations for a given component or connector could correspond to alternative ways of
decomposing an element. On the other hand, ArchJava views hierarchy in terms of
integration of existing components, along with glue code, into a higher level compo-
nent. Due to the glue, a higher-level component is semantically more than the sum
of its parts. These differing views of hierarchy create additional challenges for ar-
chitectural synchronization. For example, if multiple representations are present at
the design level, there must be a way to specify which of these representations was
actually implemented.

Matching instances. Obtaining the tree-structured data from Acme simply con-
verts the Acme architectural graph into the cross-linked tree structure discussed ear-
lier. Acme does not have first-class constructs for required and provided methods. In
keeping with Acme’s model for extensible properties, the tool adds properties on a
port to represent its provided and required methods, as well as other salient properties,
e.g., the port’s visibility.

To obtain the tree-structured data from an ArchJava implementation, the tool tra-
verses the compilation units, ignores classes that are not component types, and fields
that are not of component type. Different modeling choices are possible in this case.
First, ArchJava does not name connectors or connector roles. The tool generates syn-
thetic names from the components and ports that a connector connects to. Second,
the ArchJava top-level component can have ports, whereas the top-level component
in Acme, i.e., the Acme system, cannot. One option is to create a top-level component
in Acme to correspond to ArchJava’s top-level component. Another is to create a syn-
thetic component to hold these ports. Third, ArchJava ports can be private, whereas
all Acme ports are public. One option is to represent ArchJava private ports as Acme
ports on an internal component instance; another is to simply ignore private ports.

Matching types. Assigning architectural styles and types to an Acme view en-
forces the architectural intent using constraints (Monroe 2001). For instance, a con-
straint on a component type may specify that all instances of that type must have

Autom Softw Eng (2008) 15: 35–74 57

exactly two ports. Similarly, setting architectural styles on the overall system — and
on each sub-system representation if applicable, enforces any constraints associated
with the style. In Acme, the Pipe-and-Filter style prohibits cycles, a constraint that
a general purpose implementation language, such as ArchJava, does not directly en-
force.

In many design languages, types are arbitrary logical predicates. An element is an
instance of any type whose properties and rules it satisfies. And one type is a subtype
of another, if the predicate of the first type implies the predicate of the second type.
Such a type system is highly desirable at design time, because it allows designers to
combine type specifications in flexible ways. Acme embodies this approach, but is
hardly unique; for instance, PVS (Rushby et al. 1998) takes a similar approach. As
an example of using a predicate-based type system, consider an architecture that is
a hybrid of the Pipe-and-Filter and Shared-Data architectural styles. In this example,
a Filter component type has at least one input and one output port, while a
Client component in the Shared-Data style has at least one port to communicate
with the repository. A component in this architecture might inherit both the Filter
and the Client specifications, yielding a component that has at least three ports
— two for communicating with other filters and one for communicating with the
Repository.

However, implementation-level type systems, such as the ones provided by
C2SADL (Medvidovic et al. 1996) or ArchJava, cannot express the example above.
A specification that a component has a port implies a requirement that the environ-
ment will match that port up with some other component. Therefore, conventional
type systems require a component type to list all of the ports it might possibly have
— or at least all those ports that are expected to be connected at runtime. There is
no way to express that a Filter component has “at least two ports” — instead,
one must say that the Filter has “at most” or “exactly” two ports. Therefore, in
the implementation, one cannot combine the Filter type with a Repository
component type — which defines a third port that is prohibited by the filter specifi-
cation.

So a design-level predicate-based type system is fundamentally incompatible with
a type system for a programming language. As a result, the matching algorithm may
not rely on exactly matching typing information as in UMLDiff (Xing and Stroulia
2005). In our approach, the user specifies arbitrary matches between the type hierar-
chies from Acme and ArchJava, flattened and shown side-by-side.

Consider synchronizing the Acme model of a simple system following the Pipe-
and-Filter style with its ArchJava implementation. In Figure 16, the user matches
the types as follows. The user selects the Capitalize, CharBuffer, Lower,
Merge, Split, Upper component types in ArchJava and matches them with Fil-
ter Acme type. All the component instances of these ArchJava types will be as-
signed the FilterAcme type during synchronization. Using a limited form of wild-
cards, the user assigns the Acme type Pipe to the ArchJava connector type ANY. So
any Acme connector created for an implicit ArchJava connector instance will have
that type.

Since ArchJava ports are not typed, the user can individually assign to an Arch-
Java port a set of Acme port types. To reduce the manual work, the user use another

58 Autom Softw Eng (2008) 15: 35–74

Fig. 16 Matching types between the as designed Acme model of a simple system following the
Pipe-and-Filter style with its as-built ArchJava implementation

form of wildcards. He can assign an Acme type, e.g., outputT, to any ArchJava
port that only provides methods. Similarly, he can assign the inputT Acme type
to any ArchJava port that only requires methods. In addition, AcmeStudio defines
connection patterns for most architectural styles. Based on these patterns, the tool
can infer the Acme role types, once the user assigns types to components, ports and
connectors. For instance, the tool infers the role type sourceT, based on the source
component type Filter, source port type inputT, and connector type Pipe.

In this case, the synchronization produces the edit script in Figure 17. Since the
user mapped the types, the edit script elements already have types. Each view ele-
ment that already has a type is displayed using the same type- and style- dependent
visualization that it would have in AcmeStudio. If the user does not specify architec-
tural types and styles, the elements that the edit script will create will be untyped. Of
course, the user can set the types on the newly inserted view elements at a later point
in AcmeStudio. Although assigning types during synchronization seems to duplicate
functionality, it may affect the edit script and the view merging as explained below.

For instance, when a component instance is assigned the Filter component
type, it inherits any ports declared on that type, e.g., ports input and output, of
types inputT and outputT. So the tool need not create additional ports of these

Autom Softw Eng (2008) 15: 35–74 59

Fig. 17 Validating the edit script can involve renaming some ports to match the names declared in the
Acme type

types on the component instance. Based on the user’s selection in Figure 16, the
tool matches the ArchJava port portOut — since it only provides methods, with
the Acme type outputT. The tool suggests renaming the port portOut of type
outputT, to match the output port on the Filter type.

The user can accept the corrective actions suggested by the tool using the Auto-
Correct button in Figure 17. In that case, the tool automatically renames portOut
port to output, and updates all the cross-references in the edit script. The user can
also change the assigned or inferred types before pushing the changes to the Acme
model.

6 Extended examples

In this section, we evaluate the tools for C&C view synchronization in several ex-
tended examples on real architectural views.

60 Autom Softw Eng (2008) 15: 35–74

6.1 Extended example: Aphyds

In this example, we synchronize an as-designed C&C view with an as-built C&C
view retrieved from an implementation. This example mainly highlights the ability
of the underlying MDIR algorithm to detect inserts, deletes and renames.

The subject system is Aphyds, a pedagogical circuit layout application. To eval-
uate ArchJava’s expressiveness to specify the architecture in code, Aphyds was re-
engineered into an ArchJava implementation starting with 8,000 source lines of Java
code — not counting the libraries used (Aldrich et al. 2002). We chose Aphyds since
it had a documented as-designed architecture, and the ArchJava implementation en-
ables extracting the as-built C&C view using a tool.

Figure 18 shows an informal drawing by the developer of the original Java pro-
gram of the as-designed Aphyds architecture. In the following discussion, the archi-
tect performing the synchronization is a third party, with no prior experience with
the original Java program, or with re-engineering the Java program into the ArchJava
implementation.

As-designed architecture. The architect created an Acme model based on the
informal architecture in Figure 19(a). He represented the circuitModel as a sin-
gle component, and added all the computational components to a representation of
circuitModel in Figure 19(b). In the original diagram (Figure 18), the thin ar-
rows represent control flow, and the thick arrows represent data flow, but the architect
did not make that distinction and showed all communication as Acme connectors.

Matching types. The architect chose an Acme Model-View-Controller style,
MVCFam. Since the architect was interested in the control flow, he assigned the
provideT Acme port type defined in MVCFam to any ArchJava port that only pro-
vides methods. Similarly, he assigned the useT Acme port type to any ArchJava port
that only requires methods, and the provreqT Acme port type to any ArchJava port
that both provides and requires methods. He also assigned the generic TierNodeT
Acme type to all components and the CallReturnT Acme type to all the implicit
ArchJava connectors (See Figure 20).

Matching instances. The architect used the synchronization tool to compare the
two views. As he was the least sure about how he represented the circuitModel
component in Acme, he decided to focus on that component first.

The tool detected a few renames, e.g., ArchJava uses model instead of cir-
cuitModel, and inside that representation, ArchJava uses globalRouter in-
stead of route (See Figure 21). The architect was particularly intrigued that the
Acme representation for circuitModel had more connectors than the Arch-
Java implementation. In Figure 21, the tool only matched the starConnec-
tor which connects components circuit, partitioner, floorPlanner,
place, route and channel in Figure 19. The architect investigated this further
and confirmed that the Acme connectors corresponding to the thick data flow arrows
in the informal diagram in Figure 18 are not in the implementation. There was no data
flow in the implementation. Aphyds was written for academic study, not for indus-
trial application, it is missing some of the data flows that would be present in a real
application, i.e., the data flow is simulated rather than real, and thus it does not appear
in the extracted architectural diagram. So, the architect accepted the edit actions to
delete these extra connectors from the Acme model.

Autom Softw Eng (2008) 15: 35–74 61

Fig. 18 Informal Aphyds as-designed architecture as drawn by the original developer

Merging instances. The architect next turned his attention to the additional top
level component, shown as privateAphyds in Figure 21. Based on the synchro-
nization options he selected, he determined that the tool created privateAphyds
to represent a private window port in ArchJava and the corresponding glue. Af-
ter looking at the control flow, the architect assigned that subsystem the Publish-
Subscribe Acme style. He also renamed component privateAphyds to win-
dow, renamed the added connector to windowBus, and assigned windowBus the
EventBusT connector type from the style. The architect also decided to use the
same component names as the ArchJava implementation to avoid future confusion,
so he accepted the renames in the edit script.

Discussion. Figure 22 shows the resulting C&C view after it has been manu-
ally laid out in AcmeStudio. Unlike the original architect’s view, Figure 22 shows

62 Autom Softw Eng (2008) 15: 35–74

(a) Top-level Acme model

(b) Acme representation of the circuitModel component

Fig. 19 As-designed Aphyds architecture represented in Acme

bi-directional communication taking place between components placeRoute-
Viewer and model. The architect investigated that unexpected communication,
and traced it to a callback. Aphyds is a multi-threaded application with long run-
ning operations moved onto worker threads. So the architect made note of the fact
that developers should not carelessly add callbacks from a worker thread onto the
user interface thread. Finally, the architect decided to use the up-to-date C&C view
with types and styles for evolving the system.

Performance evaluation. On an Intel Pentium 4 CPU 3 GHz with 1.5 GB of
RAM, comparing an Acme tree of around 650 nodes with an ArchJava tree of around
1,150 nodes (Figure 21) with MDIR took under 2 minutes. In comparison, THP took
around 30 seconds, but produced less accurate results. In particular, THP did not
treat component privateAphyds as an insertion, and mismatched all the top-level
components. For Aphyds, the edit script consisted of over 300 renames, over 600
inserts and over 100 deletes.

6.2 Extended example: Duke’s Bank

In this example, we synchronize two C&C views, where one the as-built view is
recovered by instrumenting the running system. This example mainly highlights the
ability of the underlying MDIR algorithm to detect moves in addition to renames.

Autom Softw Eng (2008) 15: 35–74 63

Fig. 20 Matching types between Acme (left) and ArchJava (right)

The subject system is Duke’s Bank, a simple Enterprise JavaBeans (EJB) banking
application. The architect wanted to compare the documented architecture with the
as-built architecture, recovered using an architectural recovery technique other than
ArchJava. Duke’s Bank is also representative of industrial code that uses middleware,
and furthermore, has a documented as-designed architecture.

As-designed architecture. The architect converted an informal diagram (See Fig-
ure 23) into an Acme model (See Figure 24).

As-built architecture. The as-built architecture was recovered by a dynamic ar-
chitecture extraction tool, DiscoTect (Schmerl et al. 2006). DiscoTect currently gen-
erates one component instance for each session and entity bean instance created at

64 Autom Softw Eng (2008) 15: 35–74

Fig. 21 Comparison of Acme C&C view (left) and ArchJava C&C view (right): starConnector
matches a connector in ArchJava with an automatically generated name (highlighted nodes); privateA-
phyds exists in ArchJava but not in Acme

runtime. So the architect post-processed it, and unified such multiple instances into
one instance. The goal was to make the recovered C&C view in Figure 25 compara-
ble to a typical C&C view, where each component instance represents any number of
runtime components.

Matching types. In this case, the as-built view and the as-designed view use the
same architectural style and types, so the architect skipped the optional step of match-
ing types.

Matching instances. The differencing tool correctly detected the moves corre-
sponding to replacing the container component in one view with its representa-
tion in the other view (See Figure 26). Because a tool generated the names in the
recovered view, e.g., AccountBean_e55d75, there was a large number of re-
names in this case. The synchronization tool matched all the elements between the
two views, despite the large number of renames.

Discussion. The tool also identified on Account_Controller_Bean a port
that was attached to a DbWriter connector. Figure 24 does not show a connection
between the Account_Controller_Bean and the DB components. In fact, the

Autom Softw Eng (2008) 15: 35–74 65

Fig. 22 As-built Aphyds architecture with Acme styles and types

Fig. 23 Informal as-designed architecture for the Duke’s Bank application (Sun Microsystems 2006)

EJB specification recommends that all database access goes through entity beans. In
this case, the tool found an architectural violation in Sun’s own example!

Performance evaluation. On an Intel Pentium 4 CPU 3 GHz with 1.5 GB of
RAM, MDIR took around 30 seconds to compare the two Acme trees, one with

66 Autom Softw Eng (2008) 15: 35–74

Fig. 24 Duke’s Bank documented architecture in Acme; the components were added inside the Acme
representation of an EJB container (shown as a thick border). Session and Entity Beans are grouped

Fig. 25 Duke’s Bank recovered architecture in Acme

around 330 nodes, and one with around 390 nodes. In this case, the edit script con-
sisted of over 250 renames and over 50 inserts. As expected in this case, THP did not
correctly identify the moved view elements.

Autom Softw Eng (2008) 15: 35–74 67

Fig. 26 Comparison of the Duke’s Bank documented and recovered architectures

6.3 Extended example: HillClimber

In this example, we evaluate the tool to synchronize two C&C views again, but this
time, we allow the user to force matches. All the examples actually use the feature to
prevent matches, to avoid matching elements of incompatible types.

The subject system, HillClimber, is part of a collection of Java applications to
graphically demonstrate artificial intelligence algorithms, built on the CIspace
framework. In particular, HillClimber, demonstrates stochastic local search algo-
rithms for constraint satisfaction problems. HillClimber was re-engineered from
about 15,000 lines of Java (Abi-Antoun et al. 2007). We chose HillClimber because it
uses a framework. A product line architecture often uses a framework as its platform,
and one often needs to compare variants in a product line (Chen et al. 2003). The
implementation technology, ArchJava, also made it easy to extract the as-built C&C
view.

As-designed architecture. The applications that use the CIspace framework
follow a simple high-level design. An application window uses a canvas to display

68 Autom Softw Eng (2008) 15: 35–74

Fig. 27 Base design for a
CIspace framework
application

nodes and edges (not shown) of a graph in order to demonstrate the algorithms
provided by the engine (See Figure 27).

As-built architecture. We first ran the tool to synchronize the as-designed C&C
view in Figure 27 with a C&C view retrieved from the HillClimber implementation.
In this case, the top-level structure of the as-designed view was not sufficiently de-
tailed, i.e., the various nodes have roughly the same number of ports. In such cases,
structural comparison alone can produce inaccurate results. In this case, the MDIR
algorithm incorrectly matched the top-level element graph in one view to window
in the other view.

So the user manually forced the matches between the top-level nodes in the two
views, and re-ran the comparison. This time, the MDIR algorithm took into account
these manual overrides when matching the instances. Having correctly matched the
top-level elements, the comparison highlighted additional differences between the
two views. For instance, Figure 28 shows many missing sub-architectures. But the
user decided to merge only the changes for the top-level elements and obtained the
as-built architecture in Figure 29.

Discussion. In a product line architecture, each instantiation of a framework often
introduces additional runtime dependencies. Indeed, HillClimber added several con-
nections to the documented architecture, and these connections seem mostly justified.
For instance, the connection between engine and canvas is needed since one of
the sub-components of engine required access to functionality from the canvas.

7 Related work

Landmark-based algorithms. We group several algorithms that have been proposed
for differencing hierarchical information under the category of “landmark-based al-
gorithms”: they have been proposed in the context of program differencing, e.g., JDiff
(Apiwattanapong et al. 2004), Dex (Raghavan et al. 2004), and design differencing,
e.g., UMLDiff (Xing and Stroulia 2005). These algorithms are based on the assump-
tion that the entities they are trying to match are uniquely named and many nodes
match exactly. This enables them to recognize the unchanged nodes first and use

Autom Softw Eng (2008) 15: 35–74 69

Fig. 28 Manual overrides improve matching the instances. The user forced a match between the engine
nodes in the two trees by selecting them both and clicking on the ‘Match’ button before running the
differencing algorithm

them as “landmarks” to efficiently identify the other changes. However, these algo-
rithms are unable to match nodes based on structure alone or based on structure and
highly non-unique semantic information, such as entity types. For instance, a heuris-
tic solution with a worst-case O(N3) supporting arbitrary move, copy and glue op-
erations was tested on instances where more than 80% of the nodes matched exactly
(Chawathe and Garcia-Molina 1997). As a result, these algorithms are less suitable
for comparing architectural views, as they will perform poorly when all the nodes are
renamed, or when most of the renamed nodes are concentrated in one area of the tree
such as when entire subtrees are renamed. This may be atypical when comparing two
versions of a given program or a design model at a given level of abstraction. In our
architectural views, most names are transient or automatically generated. Both THP
and MDIR would still work even in the total absence of semantic information, i.e.,
using tree structure only. For instance, in the Aphyds and Duke’s Bank examples, our
inputs had more than half of their nodes renamed. Finally, none of these algorithms
offer the ability to manually force or prevent matches. It may be possible to easily

70 Autom Softw Eng (2008) 15: 35–74

Fig. 29 The as-built
HillClimber architecture

add the ability to prevent matches to some of them (e.g., JDiff), but adding the ability
to force matches could be substantially more complicated.

Tree alignment vs. tree edit. Tree differences can be represented using tree align-
ment instead of tree edit distance. Each alignment of trees actually corresponds to a
restricted tree edit in which all the insertions precede all the deletions. Algorithms
based on tree alignment can detect unbounded deletes and can generalize to more
than two trees, something not easily done with tree edit distance algorithms (Jiang
et al. 1994). But the memory requirements of tree alignment algorithms, for the tree
sizes and branching factors that are typical of our inputs, would be several orders
of magnitude higher than those of MDIR — O(22dN2), where d is the maximum
degree of the tree.

Graph matching approaches. A exhaustive graph matching algorithms, based on
variants of the A* algorithm (Messmer 1996), do not scale beyond a few dozen nodes
(Hlaoui and Wang 2002). In the context of architectural views, Sartipi proposed an
approach for architectural recovery using a variant of the A* graph matching algo-
rithm, but with an optimization that may cause it to miss the optimal solution in some
cases (Sartipi and Kontogiannis 2003).

More scalable, heuristic-based approaches, such as spectral methods, perform
poorly when the graphs are not nearly isomorphic. Furthermore, these algorithms
occasionally miss the optimal solution (Conte et al. 2004). Others, such as the Sim-
ilarity Flooding Algorithm (SFA), have an accuracy of around 50% (Melnik et al.
2002). The accuracy of MDIR is above 90% on a roughly similar range of graph
sizes. Furthermore, SFA relies heavily on labels, which are different when the graphs
originate from different domains, even if they express the same relationships: “while
matching of an XML schema against another XML schema delivers usable results,
matching of a relational schema against an XML schema fails” (Melnik et al. 2002).

Mandelin et al. proposed probabilistic matching based on label, region, type or
position information (Mandelin et al. 2006), but the approach requires training the

Autom Softw Eng (2008) 15: 35–74 71

evidencers. Mandelin et al. also mention that a simple greedy search algorithm does
not work in many cases.

Model transformation. Graph transformation approaches, surveyed by Mens and
van Gorp (Mens and Van Gorp 2005), tackle the same problem, but use a different set
of assumptions. First, in many graph grammars, productions do not delete vertices
and edges, which effectively prohibits insertions and deletions, one of our require-
ments. Second, graph transformation approaches do not attempt to find the optimal
transformation that would preserve properties of view elements. Finally, these ap-
proaches do not yet offer easy to use tools such as the ones illustrated in Section 6.

Conformance checking. The technique we followed in the extended examples is
similar in spirit to the Reflexion Models technique (Murphy et al. 2001). Using Re-
flexion Models to check the conformance of the as-designed and the as-built view is
limited to checking the correspondences between the edges. In particular, the com-
parison assumes that the two views have the same number of nodes and that the nodes
are identically named. Furthermore, in Reflexion Models, views are non-hierarchical,
which requires generating different views for each level of the hierarchy. Checking
the conformance of two hierarchical views using our approach can be considered a
generalization of the computation of the Reflexion Model.

Of course, there are many other less automated approaches. For instance, the FO-
CUS approach checks the conformance of an implementation with respect to an ar-
chitectural style, but manually relates the as-designed and the as-built views (Medvi-
dovic and Jakobac 2006).

Consistency management. There is significant work in the area of viewpoints,
view merging and inconsistency management, e.g. (Easterbrook and Nuseibeh 1996;
Egyed 2006). A viewpoint captures data from disparate sources into independent
but interrelated units. In view merging, there is also a notion of knowledge order or
degree, i.e., a match can be disputed. When synchronizing between an as-built and an
as-designed architecture, one may want to model incompleteness and inconsistency
as a first class notion. In our approach, we model both views using the same viewtype,
arbitrarily bridging the inevitable expressiveness gaps in the process. We also assume
that one of the two views is authoritative. Implicitly, when the user decides to commit
some edit actions but not others, they are allowing some acceptable differences to
remain. In future work, it may be interesting to model this more precisely using ideas
from inconsistency management.

8 Conclusions

In this paper, we presented a novel algorithm for differencing and merging tree-
structured data that improves an existing algorithm to detect moves, and support
forcing and preventing matches. We used the tree-to-tree correction algorithm to com-
pare and merge hierarchical architectural Component-and-Connector (C&C) views.
We then presented tools that incorporate the algorithm, and showed how our relaxed
assumptions match more closely the problem domain of differencing and merging ar-
chitectural views. Finally, we illustrated the tools in extended examples and showed
how the approach can find interesting differences in real architectural views.

72 Autom Softw Eng (2008) 15: 35–74

Acknowledgements This work was supported in part by NASA cooperative agreements NCC-2-1298
and NNA05CS30A, NSF grants CCR-0204047 and CCF-0546550, a 2004 IBM Eclipse Innovation Grant,
the Army Research Office grant number DAAD19-02-1-0389 entitled “Perpetually Available and Secure
Information Systems”, and was performed as a joint research project in Strategic Partnership between
Carnegie Mellon University and Jet Propulsion Laboratory.

References

Abi-Antoun, M., Aldrich, J., Garlan, D., Schmerl, B., Nahas, N., Tseng, T.: Improving system dependabil-
ity by enforcing architectural intent. In: Proceedings of the Workshop on Architecting Dependable
Systems, pp. 1–7 (2005)

Abi-Antoun, M., Aldrich, J., Coelho, W.: A case study in re-engineering to enforce architectural control
flow and data sharing. J. Syst. Softw. 80(2), 240–264 (2007)

Alanen, M., Porres, I.: Difference and union of models. In: Proceedings of 6th International Conference
on the Unified Modeling Language, Modeling Languages and Applications, pp. 2–17 (2003)

Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture to implementation. In:
Proceedings of the 24th International Conference on Software Engineering, pp. 187–197 (2002)

Ammann, M.M., Cameron, R.D.: Inter-module renaming and reorganizing: examples of program
manipulation-in-the-large. In: Proceedings of the International Conference on Software Maintenance,
pp. 354–361 (1994)

Apiwattanapong, T., Orso, A., Harrold, M.J.: A differencing algorithm for object-oriented programs. In:
Proceedings of the 19th IEEE International Conference on Automated Software Engineering, pp. 2–
13 (2004)

Chawathe, S.S., Garcia-Molina, H.: Meaningful change detection in structured data. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, pp. 26–37 (1997)

Chen, P.H., Critchlow, M., Garg, A., van der Westhuizen, C., van der Hoek, A.: Differencing and merging
within an evolving product line architecture. In: Proceedings of the 5th International Workshop on
Software Product-Family Engineering, pp. 269–281 (2003)

Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.: Documenting
Software Architecture: View and Beyond. Addison-Wesley, Cambridge (2003)

Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int.
J. Pattern Recognit. Artif. Intell. 18(3), 265–298 (2004)

Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-healing systems. In: Pro-
ceedings of the First Workshop on Self-Healing Systems, pp. 21–26 (2002)

Dickinson, P.J., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique node labels. Pattern Anal.
Appl. 7(3), 243–254 (2004)

Easterbrook, S., Nuseibeh B.: Using ViewPoints for inconsistency management. Softw. Eng. J. 11(1), 31–
43 (1996)

Egyed, A.: Instant consistency checking for the UML. In: Proceeding of the 28th International Conference
on Software Engineering, pp. 381–390 (2006)

Eixelsberger, W., Ogris, M., Gall, H., Bellay, B.: Software architecture recovery of a program family. In:
Proceedings of the 20th International Conference on Software Engineering, pp. 508–511 (1998)

Erdogmus, H.: Representing architectural evolution. In: Proceedings of the Conference of the Center for
Advanced Studies on Collaborative Research, pp. 159–177 (1998)

Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of component-based systems. In:
Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based Systems, pp. 47–68. Cam-
bridge University Press, Cambridge (2000)

Hlaoui, A., Wang, S.: A new algorithm for graph matching with application to content-based image re-
trieval. In: Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Sta-
tistical Pattern Recognition, pp. 291–300 (2002)

Jiang, T., Wang, L., Zhang, K.: Alignment of trees—an alternative to tree edit. In: Proceedings of the 5th
Annual Symposium on Combinatorial Pattern Matching, pp. 75–86 (1994)

Jimenez, A.M.: Change propagation in the MDA: a model merging approach. Master’s thesis, University
of Queesland (2005)

Krikhaar, R., Postma, A., Sellink, A., Stroucken, M., Verhoef, C.: A two-phase process for software ar-
chitecture improvement. In: Proceedings of the IEEE International Conference on Software Mainte-
nance, pp. 371–380 (1999)

Autom Softw Eng (2008) 15: 35–74 73

Mandelin, D., Kimelman, D., Yellin, D.: A Bayesian approach to diagram matching with application to
architectural models. In: Proceedings of the 28th International Conference on Software Engineering,
pp. 222–231 (2006)

Medvidovic, N., Jakobac, V.: Using software evolution to focus architectural recovery. Autom. Softw. Eng.
13(2), 225–256 (2006)

Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software architecture de-
scription languages. IEEE Trans. Softw. Eng. 26(1), 70–93 (2000)

Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N.: Using object-oriented typing to support architec-
tural design in the C2 style. In: Proceedings of the 4th ACM SIGSOFT Symposium on Foundations
of Software Engineering, pp. 24–32 (1996)

Mehra, A., Grundy, J., Hosking, J.: A generic approach to supporting diagram differencing and merging for
collaborative design. In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, pp. 204–213 (2005)

Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and
its application to schema matching. In: Proceedings of the 18th International Conference on Data
Engineering, pp. 117–128 (2002)

Mens, T., Van Gorp, P.: A taxonomy of model transformation. In: Proceedings of the International Work-
shop on Graph and Model Transformation (2005)

Messmer, B.: Efficient graph matching algorithms for preprocessed model graphs. PhD thesis, University
of Bern (1996)

Monroe, R.: Capturing software architecture design expertise with Armani. Technical Report CMU-CS-
98-163R, Carnegie Mellon University School of Computer Science (2001)

Muccini, H., Dias, M.S., Richardson, D.J.: Towards software architecture-based regression testing. In:
Proceedings of the Workshop on Architecting Dependable Systems, pp. 1–7 (2005)

Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: bridging the gap between design and
implementation. IEEE Trans. Softw. Eng. 27(4), 364–380 (2001)

Object Technology International, Inc.: Eclipse platform technical overview. http://www.eclipse.org/
whitepapers/eclipse-overview.pdf (2003)

Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams. In: Proceedings of the
9th European Software Engineering Conference/11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 227–236 (2003)

Raghavan, S., Rohana, R., Leon, D., Podgurski, A., Augustine, V.: Dex: a semantic-graph differencing tool
for studying changes in large code bases. In: Proceedings of the 20th IEEE International Conference
on Software Maintenance, pp. 188–197 (2004)

Roshandel, R., van der Hoek, A., Mikic-Rakic, M., Medvidovic, N.: Mae—a system model and envi-
ronment for managing architectural evolution. ACM Trans. Softw. Eng. Methodol. 13(2), 240–276
(2004)

Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: predicate subtyping in PVS. IEEE Trans.
Softw. Eng. 24(9) (1998)

Sartipi, K., Kontogiannis, K.: On modeling software architecture recovery as graph matching. In: Proceed-
ings of the 19th IEEE International Conference on Software Maintenance, pp. 224–234 (2003)

Schmerl, B., Garlan, D.: AcmeStudio: supporting style-centered architecture development. In: Proceedings
of the 26th International Conference on Software Engineering, pp. 704–705 (2004)

Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering architectures from running systems.
IEEE Trans. Softw. Eng. 32(7), 454–466 (2006)

Shasha, D., Zhang, K.: Approximate tree pattern matching. In: Apostolico, A., Galil, E.Z. (eds.) Pattern
Matching Algorithms. Oxford University Press, Oxford (1997)

Shaw, M., Garlan, D.: Software Architectures: Perspectives on an Emerging Discipline. Prentice Hall, New
York (1996)

Spitznagel, B., Garlan, D.: Architecture-based performance analysis. In: Proceedings of the Conference
on Software Engineering and Knowledge Engineering (1998)

Sun Microsystems: J2EE tutorials. Duke’s bank. http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank2.
html (2006)

Telea, A., Maccari, A., Riva, C.: An open visualization toolkit for reverse architecting. In: Proceedings of
the 10th International Workshop on Program Comprehension, pp. 3–10 (2002)

Torsello, A., Hidovic-Rowe, D., Pelillo, M.: Polynomial-time metrics for attributed trees. IEEE Trans.
Pattern Anal. Mach. Intell. 27(7), 1087–1099 (2005)

van der Westhuizen, C., van der Hoek, A.: Understanding and propagating architectural changes. In: Pro-
ceedings of the Working IFIP Conference on Software Architecture, pp. 95–109 (2002)

74 Autom Softw Eng (2008) 15: 35–74

Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)
Wang, Y., DeWitt, D.J., Cai, J.-Y.: X-Diff: an effective change detection algorithm for XML documents.

In: Proceedings of the 19th International Conference on Data Engineering, pp. 519–530 (2003)
Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differencing. In: Proceedings

of the 20th IEEE/ACM International Conference on Automated Software Engineering, pp. 54–65
(2005)

Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled trees. Inf. Process. Lett.
49(5), 249–254 (1994)

	Differencing and merging of architectural views
	Abstract
	Introduction
	Architectural view differencing
	Tree-to-tree correction
	Problem definition
	Explanation of the algorithm
	Illustrative example
	Forcing and preventing matches
	Runtime and memory complexity

	Empirical evaluation
	Architectural view synchronization
	General approach
	Specialized tools

	Extended examples
	Extended example: Aphyds
	Extended example: Duke's Bank
	Extended example: HillClimber

	Related work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

