
Autom Softw Eng (2008) 15: 75–107
DOI 10.1007/s10515-007-0020-6

Continuous and automated evolution
of architecture-to-implementation traceability links

Leonardo G. P. Murta · André van der Hoek ·
Cláudia M. L. Werner

Received: 13 November 2007 / Accepted: 16 November 2007 / Published online: 27 November 2007
© Springer Science+Business Media, LLC 2007

Abstract A traditional obstacle in the use of multiple representations is the need to
maintain traceability among the representations in the face of evolution. The intro-
duction of software architecture, and architecture-based development, has brought
this need to architectural descriptions and corresponding source code. Specifically,
the task is to relate versions of architectural elements to versions of source code con-
figuration items, and to update those relations as new versions of the architecture
and source code are produced. We present ArchTrace, a new approach that we devel-
oped to address this problem. ArchTrace distinguishes itself by continuously updating
traceability relations from architectural elements to code elements through a policy-
based extensible infrastructure that allows a group of developers to choose a set of
traceability management policies that best match their situational needs and/or work-
ing styles. We introduce the high-level approach of ArchTrace, discuss its extensible
infrastructure, and present our current set of ten pluggable traceability management
policies. We conclude with a retrospective analysis of data collected from a twenty
month period of development and maintenance of Odyssey, a component-based soft-

This paper is an extended version of the paper “ArchTrace: Policy-Based Support for Managing
Evolving Architecture-to-Implementation Traceability Links”, which was published in the
proceedings of the Twenty-first ACM/IEEE International Conference on Automated Software
Engineering, 2006.

L. G. P. Murta (�) · C. M. L. Werner
COPPE—System Engineering and Computer Science, Federal University of Rio de Janeiro,
P.O. Box 68511, Rio de Janeiro, RJ 21945-970, Brazil
e-mail: murta@cos.ufrj.br

C. M. L. Werner
e-mail: werner@cos.ufrj.br

A. van der Hoek
Department of Informatics, University of California at Irvine, 221 ICS2 Building, Irvine,
CA 92697-3440, USA
e-mail: andre@ics.uci.edu

76 Autom Softw Eng (2008) 15: 75–107

ware development environment comprised of over 50,000 lines of code. This analy-
sis shows that our approach is promising: with respect to the ideal set of traceability
links, the policies applied resulted in a precision of 95% and recall of 89%.

Keywords Traceability · Software architecture · Configuration management ·
Software evolution

1 Introduction

With the introduction of software architecture as a critical artifact in the software
life cycle, a new problem has emerged: traceability between an architectural descrip-
tion and its corresponding source code must be maintained as they each evolve over
time. Software architectures are currently used as a basis for run-time evolution (Or-
eizy et al. 1998; Van der Hoek 2004), product selection in software product lines
(Bosch 2000; Chen et al. 2003), new testing approaches (Richardson and Wolf 1996;
Muccini and Van der Hoek 2003), impact analyses (Zhao et al. 2002), and numerous
other activities that will not operate properly without a detailed and accurate mapping
from an architectural description to relevant corresponding source code configuration
items.

The fact that both the architecture and the source code can – and do – evolve
independently represents a significantly complicating factor. It may be feasible for
a developer to specify a proper mapping once, but it is not reasonable to expect the
developer to continuously maintain and evolve that mapping manually, especially not
when the software system under development is of significant scale and undergoes
numerous changes.

Several different approaches already address the problem of maintaining traceabil-
ity between an architectural description and corresponding source code configuration
items. These approaches can be classified into two categories: equality by definition
and after the fact reconstruction. Equality by definition refers to methods in which an
architectural description and its source code configuration items are perfectly trace-
able because one is embedded inside the other. For instance, ArchJava (Aldrich et al.
2002) and XDoclet (Walls and Richards 2003) embed the definition of architectural
elements in the source code. While this kind of solution is effective in maintaining
100% accuracy, it is not as realistic, as it is often the case that the architecture of a sys-
tem is maintained in an architecture description that is separate from the source code,
with different people using different tools and different notations maintaining the two.

Data mining (Shirabad et al. 2001; Ying et al. 2004; Zimmermann et al. 2004),
information retrieval (Antoniol et al. 2002; Huffman Hayes et al. 2003; Marcus and
Maletic 2003; Settimi et al. 2004), and syntactic analysis (Briand et al. 2003) tech-
niques fall into the category of after the fact reconstruction. This category encom-
passes techniques which (re)discover traceability links. These techniques tend to be
generic in nature, and do not take into account the special relationship between ar-
chitecture and source code, nor do they leverage the structured way in which both
tend to co-evolve. Because of their reliance on mathematical properties, and low tol-
erance for exceptions, their performance is suboptimal when applied to the problem
of architecture-to-implementation traceability.

Autom Softw Eng (2008) 15: 75–107 77

Fig. 1 ArchTrace context

In this paper, we present an alternative approach that falls in between equality
by definition and after the fact reconstruction. This approach can be typified as in-
stant update, and relies on two critical observations: (1) rather than reconstructing
traceability links after some significant amount of time has passed, we continuously
update the links in response to each and every change committed by a user, and (2)
the specific update to be made is determined by an actively specified set of traceabil-
ity management policies. The result is an approach that can be tailored to different
user practices, takes advantage of the knowledge encoded in the policies regarding
architectural and source code evolution, and accommodates the incorporation of new
policies.

We have implemented this approach in an extensible infrastructure, ArchTrace,
which we explicitly designed to support policy-based traceability management be-
tween evolving architectural descriptions and evolving source code configuration
items. ArchTrace operates through triggers that it inserts into external systems, most
notably in the environment used to evolve architecture – typically an architectural de-
sign environment – and in the environment used to evolve source code configuration
items – typically a Configuration Management (CM) system. These triggers moni-
tor changes made by users to the architecture description or configuration items, and
fire when those changes are committed. Upon firing, ArchTrace runs any applicable
policies to update traceability links, as depicted in Figure 1. As an example, when a
developer checks in a modification to a source file, ArchTrace runs a policy that adds
a traceability link from the corresponding architectural element to the new version of
the source file and another policy that removes the traceability link to the old version.

An important aspect of ArchTrace is that it is pluggable with respect to the set
of traceability management policies that it uses. At this moment in time, we have
implemented ten such policies, but other policies can easily be coded and used. For
instance, current policies focus on tracing components, connectors, and interfaces,
but we can extend the set of available policies to additionally trace other, perhaps
more fine-grained elements.

We note that, while our goal is to investigate a new technique for automatically
maintaining traceability of evolving architecture-to-implementation links, we do not
directly compete with data mining, information retrieval, and syntactic analysis tech-
niques. Rather, we see our work as an exploration of a complementary technique –

78 Autom Softw Eng (2008) 15: 75–107

one that eventually may very well make use of these other techniques in providing
its functionality. This is illustrated by our evaluations of ArchTrace. We performed
a retrospective analysis of ArchTrace as applied to 20 months of data regarding the
development of Odyssey (Werner et al. 2003), a component-based software develop-
ment environment consisting of over 50,000 lines of code covering about 20 compo-
nents. Initial results were promising, but they improved some when we incorporated
an extra policy based on straightforward data mining to help in establishing an initial
set of traceability links.

The rest of this paper is organized as follows. Section 2 presents a motivating ex-
ample to ground the ensuing discussion. Section 3 introduces the high level approach
underlying ArchTrace, which is followed by a discussion of its implementation in
Section 4. Section 5 evaluates the approach. Section 6 discusses related work and we
conclude the paper in Section 7 with an outlook at our future work.

2 Motivating example

In this section, we provide an example that we will use throughout the paper to de-
scribe the features of ArchTrace. The example concerns a word processing applica-
tion, the architecture of which is shown on the left hand side of Figure 2. This ar-
chitecture has three components (Print, Toolbar, and Display), one connector (Bus),
and two interfaces (Input and Output). All architectural elements exist in a single
version and the source code that implements these architectural elements is orga-
nized into three directories: Model, View, and Controller. These directories contain,

Fig. 2 Starting situation for our example scenario

Autom Softw Eng (2008) 15: 75–107 79

Fig. 3 Situation after Print version 2.0 is created

respectively: Printer.java and Action.java; EditingWindow.java; and CommandDis-
patcher.java, BusFacade.java, Input.java, and Output.java, as shown on the right
hand side of Figure 2.

Figure 2 also shows that the Print component and Input interface are im-
mutable, as they were already committed and can no longer be changed (unless, of
course, new versions are created). Further, the Print component is implemented by
Printer.java and Action.java; the Toolbar component by Action.java and Command-
Dispatcher.java; the Display component by EditingWindow.java; the Bus connector
by Action.java and BusFacade.java; the Input interface by Input.java; and the Output
interface by Output.java. Note that the source files that implement the Print compo-
nent and Input interface are immutable already.

The first step of our scenario consists of an architectural change, namely to create
version 2.0 of the Print component. As a result, the new version inherits the trace-
ability links of the previous version, which is expected since at this point nothing else
has happened. Dashed lines represent these new traceability links in Figure 3.

The second step consists of a series of changes to the code: (1) checking out Ac-
tion.java, (2) modifying the checked out copy, (3) moving it to the Controller di-
rectory, and (4) in the process of checking in the new version, changing its name
to Command.java. The set of traceability links now needs to be updated to reflect
these changes. Specifically, architectural elements that used to link to version 1 of
Action.java should now link to Command.java, which is version 2 since it repre-
sents an evolutionary step from Action.java. However, we should take into account
the immutable state of the first version of the Print component. As an immutable

80 Autom Softw Eng (2008) 15: 75–107

Fig. 4 Situation after Action.java is checked out, modified, moved, renamed to Command.java, and
checked in

version, its traceability links should not be updated to allow history to remain in-
tact. Figure 4 shows the resulting set of traceability links. Three links, from the Print
component (version 2.0), Toolbar component (version 1.0), and Bus connector (ver-
sion 1.0), were redirected from Action.java to Command.java, and one traceability
link, from version 1 of the Print component, was kept to point to Action.java due to
immutability restrictions.

The final step consists of two interrelated changes to the architecture and source
code: (1) a new version of the Input interface is created as the result of a check
out, modification, and check in, and (2) the Input.java file is checked out, modified,
and checked in. Again, the set of traceability links must be updated to reflect these
changes, with the result shown in Figure 5. It is important to note that these updates
must be independent of the order in which the two changes are committed (i.e., re-
gardless of whether the architectural change is checked in first or whether the source
code change is checked in first, the set of traceability links that eventually results
must be exactly the same).

It is worth noting that, for illustration purposes, the example intentionally presents
a simple scenario. However, it provides concrete situations in which evolution of
traceability links is difficult, even with automated tools: source-code elements being
moved and renamed, traceability links being updated selectively due to immutability,
and interrelated modifications requiring consistent results regardless of the order of
commits.

Autom Softw Eng (2008) 15: 75–107 81

Fig. 5 Situation after Input and Input.java are updated jointly

3 Approach

The goal of ArchTrace is to support the evolution of traceability links; we are explic-
itly not concerned with establishing the links in the first place. While our framework
does support the incorporation of data mining and other policies for the purposes
of creating an initial set of links (we illustrate one such example in Section 4), we
have concentrated on the evolution of traceability links since this is a difficult, unad-
dressed, yet important property in the face of architecture-based development (Med-
vidovic and Rosenblum 1997). Generally speaking, the problem that we address in
this paper can be stated as follows: given an initial set of established traceability links,
and given that both an architecture and its implementation can evolve independently,
how can traceability links be updated with the addition of new links, removal of ex-
isting links, and changes in existing links to ensure that each architectural element
is at all times accurately linked to its corresponding source code configuration items,
and vice versa? In essence, we want to find an automated way of evolving traceability
links as an architecture and/or implementation change.

In support of this goal, we have designed our approach to consist of the follow-
ing features: (1) a policy-based infrastructure, allowing the matching of policies to
work practices; (2) policies that specifically take advantage of their knowledge of ar-
chitectural and source code artifacts to make educated guesses on what to do upon
architectural or source code change events; (3) policies that, when appropriate, re-
quest human input – but do so far less often than just maintaining all links manually;

82 Autom Softw Eng (2008) 15: 75–107

Fig. 6 Traceability links evolution via policy triggering

(4) policies that act as either rules, deciding upon actions to take, or constraints, lim-
iting the kinds of actions that can be taken; and (5) a result that maintains a N-M
bidirectional mapping, allowing both architectures and source code to evolve inde-
pendently while maintaining full navigation from architecture to source code, and
vice versa.

The philosophy behind our approach is that it is worth to evolve traceability
links continuously, during the evolution of architectures and their implementation.
Whereas existing approaches are forced to, in essence, rediscover all of the links af-
ter an architectural element or source code configuration item has changed, we stay
in lockstep with the modifications and update the set of links as soon as a new (archi-
tectural or source code) element is checked into the respective repository, as shown
in Figure 6.

In response to new “check in” events, multiple policies may be triggered. Policies
are intentionally simple, each capturing one small aspect of traceability link evolu-
tion that matches potential actions that a user may take. For instance, a policy that
deals with checking in a new architectural element, a policy that deals with remov-
ing a source code configuration item, a policy that suggests establishing traceability
links to the most recent version of a source code configuration item, etc. Policies,
thus, have a separate responsibility. But, because execution of one policy can result
in the triggering of one or more other policies, the result is a set of closely collaborat-
ing policies that together are responsible for appropriately updating traceability links.
Usually, then, multiple policies are involved when a developer checks in an architec-
ture or a set of source code configuration items. Such updates can be implemented
using three individual policies: a policy to verify whether an element is immutable,
a policy to create new traceability links to the latest versions of the source code ele-
ments, and a policy to remove old traceability links.

Policies can be enabled and disabled individually. This is to support different work
practices and different CM systems. Some developers establish certain practices on
how to evolve their artifacts, and different CM systems establish different proce-
dures (Conradi and Westfechtel 1998). Rather than attempting to build a single all-
encompassing solution, we adopt a pluggable infrastructure that supports the addition
of new policies through the programmatic interface of ArchTrace.

Our approach distinguishes four classes of policies: architectural element evolu-
tion policies, implementation evolution policies, pre-trace policies, and post-trace

Autom Softw Eng (2008) 15: 75–107 83

policies. Architectural element evolution policies fire when an architect makes mod-
ifications to an architecture, and implementation evolution policies fire when the
source code evolves.

Pre-trace policies operate just before a new link is added or an old one is removed,
acting as constraints. Their primary task is to detect the introduction of inconsisten-
cies between the traceability link that is added or removed and the set of already
existing traceability links. Should such inconsistencies arise, pre-trace policies can
veto additions or removals, prohibiting actions from completing. An example of such
a pre-trace policy is a policy that prohibits updating a traceability link from a version
that resides in the main line of development (trunk) to a newly branched version; this
kind of update would lead to inconsistent mixing of trunk and branch versions of
source code in the same architecture.

Post-trace policies are executed after the creation or removal of traceability links
has actually been completed. This allows the definition of policies that update addi-
tional traceability links when traceability links are added or removed. For example,
when an architectural element needs to be updated with a newer version of a source
code configuration item, an implementation element evolution policy adds the link,
but a post-trace policy is responsible for removing the old link. This, in turn, may
trigger other policies, in effect creating a rolling set of policies of different types that
are executed. For instance, execution of a post-trace policy may lead to the addition
of even more traceability links. If this occurs, all pre-trace policies will be triggered
again to verify if the suggested traceability links are appropriate. Note that post-
trace policies can only execute if all pre-trace policies have approved the suggested
changes by other policies, and will only execute after a change has been made. Un-
like pre-trace policies, post-trace policies cannot “rollback” the addition or removal
of traceability links. Another example of a post-trace policy is a policy that removes
an existing traceability link from a source code configuration item when a new trace-
ability link is established to the directory that contains the source code: this existing
traceability link would be redundant.

We observe that it is possible for pre-trace policies to not just act as constraints,
but also to enact rules that establish or remove traceability links. Post-trace policies,
on the other hand, cannot act as constraints, as the execution of a set of policies is
stateless – a policy executed after some set of other policies is not aware of the links
that were added or removed by these other policies and, therefore, cannot roll back
to a previous state.

Policies may request assistance from users; they are not meant to operate automat-
ically and be “hidden” at all times. Rather, when it is pertinent that a user chooses
one of two courses of action, or when additional human input is needed, a policy can
leverage the interface of ArchTrace to obtain the information it needs. While, in our
experience, it is relatively rare that interaction with users is necessary, it is critical to
support this functionality. Should a “wrong” decision be made by a policy at some
critical juncture, the set of traceability links can become significantly out of sync
over time with those that actually should exist. Rather than guessing an alternative,
it is better to request user assistance. Note that the reason that it is relatively rare
for policies to need human input is because the users are involved in the selection
of the policies that are activated in the first place: they already have selected a set of

84 Autom Softw Eng (2008) 15: 75–107

policies that describes how they operate and wish to be supported. An example of an
interactive policy is a policy that detects the existence of a newer version of a source
code file when a traceability link is being established to an older version. This may
indicate that a user is working with older code on the main trunk, which generally is
an undesirable situation, but at times may be necessary.

It is important to note that we designed our approach to be compatible with collab-
orative development. Because the CM system is responsible for resolving conflicts,
perhaps with the help of the user performing some merges, traceability links simply
evolve based on what is eventually checked in and do not interfere or cause problems
when multiple users are involved in modifying the architecture and source code base.

Another important aspect of our approach is that it is designed to be independent of
specific tools that are used. Architects can have their own tool to evolve architectures,
such as ArchStudio (Dashofy et al. 2002), and implementers can have their own tools
to do their work, such as the Eclipse IDE (Eclipse Foundation 2007) and Subversion
(Collins-Sussman et al. 2004). All our approach needs to operate are notifications
about check in events, and access to the respective repositories to obtain, if needed,
additional information with which policies can make their decision.

Clearly, underneath any approach like ours has to be an infrastructure for actually
capturing and storing the links that trace architectural elements to their source code
configuration items. This infrastructure must support fine-grained links in order to
allow the mapping of individual architectural elements to (sets of) individual source
code configuration items, and vice versa. Additionally, it must support versioning in
order to distinguish different versions of architectural elements and different versions
of source code configuration items, as each have their own sets of associated trace-
ability links. This kind of infrastructure is readily available in the form of hypermedia
and hypertext versioning systems (Whitehead 2000), and we describe in the next sec-
tion how we built a straightforward incarnation of such an infrastructure ourselves.

Finally, we note that our approach does not necessarily prescribe any particular
policies that it must or must not include; users are free to use whichever policies
they desire. Nonetheless, certain policies are commonplace and including them as
a standard part of the implementation of our approach – as described in Section 4
– clearly provides advantages in terms of reuse and examples of how policies are
constructed and combined.

4 Implementation

ArchTrace is implemented in the Java language and is available at http://www.cos.
ufrj.br/˜murta/ArchTrace. The current implementation assumes the use of xADL 2.0
(Dashofy et al. 2001) to describe software architectures and Subversion to store
source code configuration items.

4.1 Overall architecture

Figure 7 presents the ArchTrace architecture. It consists of six components, four of
which standard (shown as solid grey boxes) and the other two custom (shown as

Autom Softw Eng (2008) 15: 75–107 85

Fig. 7 ArchTrace architecture

patterned boxes). The custom components depend on the particular architecture evo-
lution environment and CM system used. As stated, we rely on xADL 2.0 and Subver-
sion, but because the Architecture Connector and Repository Connector components
are designed with abstract interfaces, the rest of ArchTrace is independent of the de-
tails of those two components.

Connector components insert tool-specific listeners. Upon receiving events (illus-
trated using dashed lines), they pass those on to the generic Event Listening compo-
nent, which is responsible for interpreting the data contained in the events and invok-
ing the appropriate part of the Policy Triggering component to begin the updating of
traceability links.

The Policy Triggering component coordinates which specific policies are executed
at what time in order to manage the set of traceability links and evolve them by
adding and removing links. As discussed in Section 3, this kind of coordination is
necessary because a policy may recursively trigger the execution of other policies,
resulting in them together performing relatively complex tasks. For instance, in the
case of the one of the examples in Section 2, renaming and moving of a source file,
a policy that updates the architectural element with the new link will trigger another
policy that removes the older traceability link. Moreover, the policy that removes the
older traceability link may trigger a third policy that prohibits this removal when the
architectural element is marked as immutable.

Actions that result in changes to the set of traceability links are actually enacted by
the Traceability component. Since traceability links are typically stored either in the
architecture description, such as xADL 2.0 or UniCon (Shaw et al. 1995), or in the
CM system (by checking in a description of an architecture with the source code), this
component is responsible for actually supporting the creation, removal, and querying
of traceability links. It interacts with both the Architecture Connector and Repository
Connector components to build upon their generic interfaces and operate indepen-
dently.

Finally, the Policy Manager component is responsible for managing which poli-
cies are active at what time. During bootstrap of ArchTrace, this component loads
all policies, instantiates them, and allows the user to activate and deactivate specific
policies, as shown in Figure 8. Here is where the pluggability of ArchTrace comes
into play: when new policies are created, these new policies, once loaded by this

86 Autom Softw Eng (2008) 15: 75–107

Fig. 8 ArchTrace policy activation and deactivation

component, will integrate as any of the ten policies that we already built: they can be
enabled, disabled, executed, and triggered by other policies.

It should be noted that, while ArchTrace typically operates in the background, it is
possible for architects or developers to query ArchTrace at any time in the software
development lifecycle to visualize the traceability links among architectural elements
and their implementation. Shown in Figure 9, ArchTrace allows exploration of the set
of links: one can see all the links for a given architectural element or choose a file
for which one wants to know to which architectural elements it belongs. An exam-
ple of impact analysis activity using ArchTrace user interface consists on selecting a
source code (right hand side of Figure 9) and visualizing all architectural elements
that are related to this source code. Moreover, it is possible to select some of these
architectural elements (left hand side of Figure 9) and see all source code configu-
ration items that implement them. An additional possibility is to use other tools of
ArchStudio, such as Ménage (Garg et al. 2003), to perceive the relationships among
components, connectors, and interfaces and use this knowledge to guide new queries
in the ArchTrace user interface.

Autom Softw Eng (2008) 15: 75–107 87

Fig. 9 ArchTrace screenshot

Fig. 10 ArchTrace schema

4.2 Traceability links schema

As mentioned before, ArchTrace uses xADL 2.0 to describe software architectures.
Specifically, our work relies on the xADL 2.0 Implementation Schema, which defines
an abstract element that is a placeholder for data that relates to the implementation
of architectural elements. We have extended this abstract schema with a concrete

88 Autom Softw Eng (2008) 15: 75–107

schema that adds traceability to source code stored in configuration management
repositories, as shown in Figure 10. Specifically, we support the tagging of archi-
tectural elements with a series of configuration items.

Our schema consists of an element named ConfigurationManagementImplemen-
tation, which is composed of a set of ConfigurationItem elements. Each Configura-
tionItem is represented by the tuple (name, version, repository) where name is the
name of the configuration item, version is the selected version of the configuration
item, and repository is the configuration management repository address where the
configuration item version is stored. For example, the traceability links of component
Print version 2.0, as presented in the example of Figure 4, can be described via our
schema using the information shown in these two tuples:

(“Model/Printer.java”, 1.0, svn://server/src)
(“Controller/Command.java”, 2.0, svn://server/src)

4.3 Architecture and repository connection

As mentioned before, ArchTrace abstracts its interaction with specific architecture
development environments and configuration management systems through a generic
layer. This generic layer has to be specialized for each concrete kind of architecture
development environment or CM system. This specialization occurs via the creation
of a new architecture or CM repository connector. However, ArchTrace imposes some
restrictions to which these connectors should adhere.

In the case of a new kind of architecture development environment, its architecture
connector must implement the ArchConnector interface, which details three main
functionalities: (1) translation between the general model of architecture used by
ArchTrace, which consists of components, connectors, and interfaces, and the spe-
cific architectural model of the environment, which may similarly consist of compo-
nents, connectors, and interfaces, but also can be as varied as packages and depen-
dencies, workflow and services, CORBA components and IDL interfaces, and so on;
(2) management (add, remove, and query) of traceability links for a given architec-
tural element; and (3) emission of change events from the architecture development
environment to trigger the policies of ArchTrace.

In the case of a new kind of CM system, the CM repository connector must imple-
ment the CMConnector interface, which details two main functionalities: (1) trans-
lation between the general model of a CM repository adopted by ArchTrace, which
consists of configurations and configuration items, and the specific CM model of the
CM system (e.g., file-oriented or object-oriented) and (2) emission of change events
from the CM system to trigger the policies of ArchTrace.

ArchTrace policies, thus, do not need to directly manipulate the architectural ele-
ments or their code base as stored in the CM repository. Instead, they can rely on the
ArchTrace API, which is composed of the classes Architecture and ArchitecturalEle-
ment for interacting with architectures and the classes Repository, Configuration, and
ConfigurationItem for interacting with CM repositories.

4.4 Policies API

Each ArchTrace policy is implemented as a Java class that follows a specific interface
provided by ArchTrace. Every policy must provide a short description and the ratio-

Autom Softw Eng (2008) 15: 75–107 89

F
ig

.1
1

Po
lic

ie
s

A
PI

90 Autom Softw Eng (2008) 15: 75–107

nale behind the policy. Moreover, a method called “execute” should be implemented.
The arguments of this method vary depending on the type of policy. The pre-trace
and post-trace policies receive the traceability link that is being added or removed, as
well as the action that informs the policy as to whether the traceability link is being
added or removed. An architectural element evolution policy receives a pointer to an
architectural element and an indication as to what happened to that element (i.e., was
it added, removed or changed?). Finally, an implementation evolution policy receives
a pointer to a configuration item and, once again, an indication as to the specific ac-
tion that took place (i.e., was it added, removed or changed?). Using this information,
as well as the querying capabilities of the Traceability component listed in Figure 7,
policies should have sufficient information to make their decisions. If that is not the
case, they can use the user interface of ArchTrace to request additional information
from the user. Figure 11 summarizes the API provided by ArchTrace for policies
construction.

4.5 Built-in policies

We have implemented an initial set of ten policies. Table 1 presents a list of the
policies together with their motivation and related policies (“REL” column). We de-
veloped the policies based on informally observing ourselves and other developers in
action. In addition, during the design of ArchTrace, we simulated a set of hypothetical
scenarios in which different changes were made to an architecture and its implemen-
tation, and observed the effects these changes should have had on the traceability
links among the elements. These scenarios included the creation of new versions of
architectural elements, the creation of new versions of source code, the renaming and
moving of source code, the structuring of source code in a composite way, and the
initial establishment of traceability links using existing techniques. From these col-
lective experiences, we devised the ten policies presented here, as these provide basic
support for some of the most common scenarios.

As a first observation, we noted that, when a new version of a source file is avail-
able, it is necessary to use this version for architectural elements that are under devel-
opment. This led us to create three different atomic policies: addition of new trace-
ability links when new versions of source files are available (policy 10), removal of
old traceability links when new traceability links are created (policy 6), and denial
of traceability links creation and removal to immutable architectural elements (pol-
icy 2). Together, these policies ensure traceability links are updated to newer versions,
but that the links of immutable architectural elements are kept untouched.

Another common pattern that we observed was that, when a new version of an ar-
chitectural element is created, it should inherit all traceability links from its ancestor.
This led us to policy 9, which copies all traceability links from the previous version
of an architectural element when a new version is created.

In addition, depending on the combination of the policies described above, a given
architectural element may have traceability links assigned to more than one version of
the same source code. This situation should be avoided depending on the underlying
programming language (i.e., compiling and running a system with two files in which
the same Java class is defined is prohibited by the language); this led us to create

Autom Softw Eng (2008) 15: 75–107 91

Table 1 ArchTrace built-in policies

ID Type Description Reasoning Rel

1 Pre-trace
(interactive
constraint)

Suggests the creation of
traceability links to the
most recent configuration
item version if a traceabil-
ity link is created to an
older version.

Sometimes, especially when the con-
figuration item versions have different
names or paths, traceability links are
mistakenly established to older ver-
sions of the configuration item be-
cause the user does not know that there
are newer versions available.

2 Pre-trace
(automatic
constraint)

Denies creation or removal
of traceability links on im-
mutable architectural ele-
ments.

Usually, it is not desirable to evolve
traceability links of architectural ele-
ments that are marked as “immutable”
because they are considered stable.

10

3 Pre-trace
(automatic
constraint)

Denies creation of trace-
ability links to more than
one version of the same
configuration item.

Some programming languages do not
support more than one version of the
same configuration item to be included
in the same runtime environment.

6,10

4 Pre-trace
(automatic
constraint)

Denies creation of trace-
ability link to sub configu-
ration items if the compos-
ite configuration item is al-
ready traced.

If a composite configuration item (i.e.,
directory) is linked from a given ar-
chitectural element, it is redundant to
have traceability links to its parts (i.e.,
subdirectories and files).

7

5 Pre-trace
(automatic
constraint)

Denies removal of trace-
ability links to source code
in the trunk when a com-
mit is performed in a
branch.

Commits in branches should not in-
terfere with the main line of develop-
ment.

6 Post-trace
(automatic
rule)

Removes traceability links
from old configuration
item versions when a
traceability link is created
to a newer version.

Some programming languages do not
support more than one version of the
same configuration item in the same
runtime environment.

3,10

7 Post-trace
(automatic
rule)

Removes traceability links
from sub configuration
items if a traceability link
is created to the composite
configuration item.

If a composite configuration item (i.e.,
directory) is linked from a given ar-
chitectural element, it is redundant to
have traceability links to its parts (i.e.,
subdirectories and files).

4

8 Post-trace
(interactive
rule)

Suggests related traceabil-
ity links when a traceabil-
ity link is created.

Usually, architectural elements that
have traceability links to a given con-
figuration item also have traceabil-
ity links to other configuration items.
Data-mining techniques can be used to
detect these related traceability links,
avoiding incomplete traces.

9 Architectural
Element
Evolution
(automatic
rule)

Copies all existing trace-
ability links to the new ver-
sion of the architectural el-
ement when it is available.

Typically, new architectural element
versions start out with the same trace-
ability links as those of the previous
version the version from which they
were originated.

10 Implementation
Evolution
(automatic
rule)

Updates traceability links
when a new version of a
configuration item is avail-
able.

This represents natural evolution of
the implementation of architectural el-
ements.

2,3,6

92 Autom Softw Eng (2008) 15: 75–107

Fig. 12 ArchTrace suggestion based on history analysis

policy 3. Additionally, when a source code configuration item undergoes a name or
path change, users that are not aware of the new name or path change may erroneously
establish traceability links to older versions of the source code. In the example of
Figure 4, Action.java was renamed to Command.java. In this scenario, the user is
warned by policy 1 if they try to establish a traceability link to Action.java, but can
use the interface of ArchTrace, shown in Figure 12, to nonetheless establish the link.

Because most CM systems allow hierarchical organization of source files, a po-
tential redundancy emerges when both the container and the contained are linked. To
avoid this situation, both proactively and passively, we implemented policies 4 and 7.
The policies simply link to the container, indicating that it and all of its contents
belong to a particular architectural element.

An additional issue that we addressed is branching. While architectural branches
are handled correctly just with policy 9, at the source code level some side effects take
place when Policy 10 is used: inadvertent removal of traceability links to the main
line of development (trunk) because generally policy 6 will also be in use. Therefore,
we included in our standard set of policies a pre-trace policy (policy 5) that denies
removal of traceability links to source code for which a new traceability link is added
to a branch. It is worth to note that policy 5 is automatic at this moment, always
denying the removal of a trunk traceability link in response to commits on branches.

Finally, we observe our discussion of Section 1 on data mining. We see data min-
ing (Shirabad et al. 2001; Ying et al. 2004; Zimmermann et al. 2004) and other ex-
isting techniques for traceability detection (Antoniol et al. 2002; Briand et al. 2003;
Huffman Hayes et al. 2003; Marcus and Maletic 2003; Settimi et al. 2004) as com-
plementary to our approach. In order to demonstrate this, we implemented policy
8 to show the feasibility of integrating data mining into our technique. This policy
uses association rules (Agrawal and Srikant 1994) to suggest new traceability links

Autom Softw Eng (2008) 15: 75–107 93

Fig. 13 ArchTrace suggestion based on data mining

Fig. 14 Policy 2 algorithm

based on similarity to previously created sets of traceability links. Particularly, when
a new architectural element is created that must be linked to existing source code
configuration items, the developer has to create these traceability links one by one if
the artifacts are scattered over different directories. If, however, the set of manually
created links is similar to an existing set of links to some degree (i.e., above some
threshold), then the policy will automatically suggest to include the rest of the trace-
ability links of the existing set. Its user interface is shown in Figure 13. This policy is
particularly useful when a new architectural element is created and initial traceability
links need to be established.

4.5.1 Policy implementations

In this section, we detail some of our policies. The main purpose is twofold: (1) to
illustrate how small in footprint policy implementations can be, and (2) to show how
policies interact with the ArchTrace API to gather the necessary information for ac-
complishing their tasks.

Figure 14 presents the implementation of the execute method of policy 2. Each
policy has 3 methods, as shown in Figure 11, but the other two of them are boilerplate

94 Autom Softw Eng (2008) 15: 75–107

Fig. 15 Policy 9 algorithm

Fig. 16 Policy 5 algorithm

(getDescription and getRationale). As this is a pre-trace policy, its main purpose is
to prevent a certain situation from occurring, in this case the creation or removal1

of traceability links on immutable architectural elements. Accordingly, the policy
throws an exception if this is an immutable architectural element that is inputted via
its parameters. This exception is handled by the Policy Triggering component, shown
in Figure 7. The goal of this exception is to notify the Policy Triggering component to
rollback the traceability creation or removal event. This is the way pre-trace policies
indicate to ArchTrace that a proposed traceability link should not be established.

Figure 15 presents the implementation of the execute method of policy 9, which is
responsible for copying all traceability links from a base version of an architectural
element to its new version. This policy, thus, only deals with actions of the type
ADD_ACTION, and then loops over all base versions of the architectural element
(there may be more than one base version if the architectural element is the result of
a merge operation), retrieves all traceability links of each such base version, creates
corresponding traceability links for the new version, and reports its activities to the
user. It is worth noticing that this policy does not throw an exception because is not a
pre-trace policy (it cannot act as a constraint).

Finally, Figure 16 presents the algorithm of policy 5. This algorithm automatically
denies the removal of traceability links from source code configuration items in the
main line of development if a commit is performed to a branch. Again, this is a pre-
trace policy, so it checks for the particular situation to occur and throws an exception
if it does.

1Currently, ArchTrace supports no other actions beyond adding or removing traceability links, so the check
is technically superfluous, but for future extensibility reasons and clarity we incorporated it in the code of
the policy.

Autom Softw Eng (2008) 15: 75–107 95

Overall, we note that the implementation of policies can be quite straightforward.
None of our policies exceeds 150 total lines of code, and the essence of each policy is
typically implemented in at most a few dozen lines of code. This is an artifact of the
policy-based nature of ArchTrace, as well as the generic interfaces that abstract from
the specifics of the architecture development environments and CM systems that are
used.

4.6 Policy triggering example

We now revisit the example of Section 2 to describe ArchTrace’s handling of the
transformation from the initial scenario, shown in Figure 2, to the final scenario after
the changes, in Figure 4.

After the first action is performed by the developer, namely the creation of a new
version of the Print component, ArchTrace receives an architectural evolution event.
This event triggers policy 9, which is responsible for copying all traceability links
from the first version of the Print component to the second version of the same com-
ponent. After the execution of policy 9, both versions of the Print component have
equivalent sets of traceability links. However, the first version is immutable, meaning
that its traceability links will never change. On the other hand, the second version
may have its traceability links evolved in the future. Figure 3 shows the scenario after
the execution of policy 9.

The developer performs a second action, which consists of first changing the code
of Action.java, then moving it to the Controller directory, and finally changing its
name to Command.java. When this overall change is committed, an event is sent to
ArchTrace, which triggers policy 10, creating a new traceability link from the Toolbar
component (version 1.0) to Command.java (version 2.0). However, the execution of
policy 10 triggers policy 6, which is responsible for removing the old traceability link
from the Toolbar component (version 1.0) to Action.java (version 1.0).

Policy 10 is triggered three additional times for the same event. The second trigger-
ing of policy 10 tries to create a traceability link from the Print component (version
1.0) to Command.java (version 2.0). However, policy 2 denies the creation of this
traceability link because the Print component (version 1) is marked as immutable.
The third triggering of policy 10 creates a traceability link from the Print compo-
nent (version 2.0) to Command.java (version 2.0). This is allowed by the pre-trace
policy 2, which is triggered, but does not undertake action since version 2.0 of the
Print component is not immutable. Because the action is allowed, the creation of
this traceability link triggers post-trace policy 6, which removes the old traceability
link from the Print component (version 2.0) to Action.java (version 1.0). Finally, the
fourth triggering of policy 10 creates a new traceability link from the Bus connector
(version 1.0) to Command.java (version 2.0). However, the execution of policy 10
triggers policy 6 again, which is responsible for removing the old traceability link
from the Bus connector (version 1.0) to Action.java (version 1.0). This behavior is
allowed by the pre-trace policy 2, because version 1.0 of the Bus connector is not
immutable.

The third action concerns the interrelated evolution of the Input interface and
Input.java source code. We stipulated in Section 2 that ArchTrace must behave in

96 Autom Softw Eng (2008) 15: 75–107

the same way independent from the order of commit. Suppose that the architecture is
committed first. In this case, ArchTrace receives an architectural element evolution
event. This event triggers policy 9, which is responsible for copying all traceability
links from Input interface version 1.0 to the new, second version of the interface. This
results in a traceability link from Input interface version 2.0 to Input.java version 1.0.
Then, the source code commit triggers policy 10, creating a new traceability link from
Input interface version 2.0 to Input.java version 2.0. However, the execution of policy
10 triggers policy 6, which is responsible for removing the old traceability link from
the Input interface version 2.0 to Input.java version 1.0. Policy 10 is additionally
triggered to evolve traceability links of Input interface version 1.0, but this action is
prohibited by policy 2 due to the immutability of version 1.0.

Now suppose that the source code is committed first. ArchTrace receives an im-
plementation evolution event. This event triggers policy 10 first, which is responsible
for evolving the existing traceability links of Input interface 1.0 to the new version of
the source code. However, this action is prohibited by policy 2 due to immutability of
Input interface version 1.0. Thus, at this stage no new links are created. When the ar-
chitectural change is committed, it triggers policy 9, which is responsible for copying
all traceability links from Input interface version 1.0 to the new, second version of the
same interface. Still, this does not result in the creation of links, because the trigger-
ing of policy 9 triggers policy 1, which recognizes that a newer version of Input.java
is available (version 2.0). It, thus, suggests the establishment of the traceability link
to Input.java version 2.0. As one can see, through a difference sequence of policies,
the same results are applied as when the architectural change was committed first.

5 Evaluation

To evaluate the effectiveness of ArchTrace and its current set of policies, we exe-
cuted a retrospective study of an existing system. This kind of study, in which we
replayed past data from a real development project to simulate an actual development
effort involving “live” developers, allowed us to analyze how our tool would perform
without having to actually put the research tool into prolonged use. In fact, we could
simulate in two weeks a two-year effort. The system under study, named Odyssey,
is a software development environment being developed at the Federal University of
Rio de Janeiro since 1997.

To perform the study, we gathered the Odyssey versioning data produced during
the period of July 9, 2003 until March 1, 2005. We used and reorganized the data
to replicate the original check-ins that took place, and then replayed those check-ins
anew into a CM repository instrumented with ArchTrace. The result was that, during
playback, we received all the events that would have taken place had ArchTrace been
used in the first place, allowing us to reproduce the original scenario of development
and maintenance, covering both major architectural changes and a host of source code
changes. This strategy made it possible to look back in time and understand whether
our policies would have operated properly in establishing and evolving the right set
of traceability links.

The next sections detail our planning of the retrospective study, our preparation
of the environment for the study, the mechanism we used to gather statistics, the

Autom Softw Eng (2008) 15: 75–107 97

execution of the study, and the qualitative and quantitative analysis of the results that
we obtained.

5.1 Study planning

The study consists of four steps. The first step consists of the initial detection of the
proper traceability links between the Odyssey architecture and its source code on
July 9, 2003. This initial set of traceability links was manually identified by Odyssey
developers by examining the architectural definition and its realization as compo-
nents, connectors, and interfaces in the source code.

The second step is the evolution of the traceability links during 20 months of
Odyssey development and maintenance. Replaying the set of check-ins that were
originally performed in this period of development and maintenance, the initial set of
traceability links was transformed, step-by-step, as triggered by each check-in, into a
new set of traceability links. This evolved set of traceability links is named Te.

The third step consists of the detection of the traceability links that should exist
on March 1, 2005 among the Odyssey architecture and source code. This set of ideal
traceability links, named Ti , was manually created by Odyssey developers by exam-
ining the actual architecture as evolved over the period of time and identifying the
source files that implement each architectural element.

Finally, the fourth step consists of the comparison of the set of ideal traceability
links (Ti) with the set of actual traceability links produced by ArchTrace (Te). This
comparison illustrates the effectiveness of the ArchTrace policies in evolving trace-
ability links.

Below, we discuss each of these steps in more detail.

5.2 Environment preparation

Table 2 shows some Odyssey statistics. We note that the system is non-trivial, con-
sisting of over 2700 files, and that the study also represents a significant set of data
with a total number of commits during the study period of 307 and a total number of
revisions to individual artifacts (both architectural and at the implementation level)
of close to 8500.

At the beginning of the playback, we turned on all policies except 1, 3, 5 and 8.
Policy 5 is designed to work with branches, but the case study involved only devel-
opment on the main trunk. Policy 3 is not designed to operate together with policies
6 and 10, as the effect is either preventive (policy 3) or proactive (policies 6 and 10),
and we chose a proactive approach (others may choose a more cautious route, in
just using policy 3). Policy 1 and 8 are designed to operate in an interactive manner,

Table 2 Odyssey statistics

Files 2703 Repository size 40158 KB

Revisions 8463 Total commits 307

Unique tags 13 First revision date July 9, 2003

Unique branches 7 Last revision date March 1, 2005

98 Autom Softw Eng (2008) 15: 75–107

at times requesting user input. We turned off any policies involving interactivity to
avoid ourselves giving potentially “better” input than original developers would have
given; our results, thus, form a lower bound of what theoretically can be achieved.

5.3 Statistics gathering

This retrospective study aims to analyze different statistics gathered from the Arch-
Trace execution. To allow this automatic gathering, we implemented a statistics gath-
ering aspect (Kiczales et al. 1997) and weaved it into ArchTrace. The aspect is com-
posed of 19 pointcuts that collect the following 27 metrics for each of the 307 con-
figurations: the configuration number, author, and date; the number of configuration
items added, removed, and modified; the number of executions of each policy; the
number of traceability links added and removed manually; the number of traceability
links added and removed automatically; the number of traceability link additions and
removals lost; the number of indirect traceability links added and removed manually;
the number of indirect traceability links added and removed automatically; and the
number of indirect traceability link additions and removals lost.

In this context, indirect traceability links are traceability links implicitly detected
when a given traceability link is established to a composite artifact. For example, if
a traceability link is established to a directory, all files and subdirectories inside this
directory are also implicitly linked (even though no links exist since our policies han-
dle this recursive traceability). The effect of losing a traceability link to a composite
artifact, then, can have significant effects on the functioning of the policies. Hence,
we monitored both direct and indirect links in our study.

5.4 Study execution

Execution of the study comprised two major steps: (1) playback of existing check-ins
and (2) analysis of lost traceability links. The first step is performed through a tool

Fig. 17 Incremental check-in playback

Autom Softw Eng (2008) 15: 75–107 99

that we explicitly wrote to submit, check-in by check-in, the accumulated version
history of Odyssey, shown in Figure 17. The tool simply goes through each check-
in, recreates a workspace, populates it with the known changes, and commits the
workspace. The tool pauses after each step, waiting for manual confirmation that it
is okay to move to the next check-in in order to provide time for the analyses in step
two.

The second step is performed after each individual check-in has been performed
and ArchTrace has responded by evolving the traceability links. We then manually
checked if there were any lost traceability links. We kept track of two kinds of lost
traceability links: lost additions (i.e., traceability links that ideally exist, but were not
added by ArchTrace), and lost removals (i.e., traceability links that ideally do not
exist, but were not removed by ArchTrace).

It is important to reiterate that the kinds of changes that we replayed were both at
the source code level and the architectural level. Though architectural changes took
place less frequently (as one would expect in any kind of project), the architecture
of Odyssey went through three major releases: 1.0.0, 1.1.0, and 1.2.0. With each
release, we checked in the architectural elements, triggering architectural element
evolution policies. Generally, we allowed ArchTrace to update the traceability links
itself, except one time when the architecture evolved with the addition of four new
components. An initial set of traceability links was established manually at that time
for those components.

5.5 Qualitative analysis

During the 20 months of Odyssey development and maintenance, 77 versions of 21
architectural elements were created. Moreover, 3031 configuration items were added,
renamed, or moved, 154 configuration items were removed, and 1563 modifications
were applied to existing configuration items. Most configuration items were added in
July 2003, as shown in Figure 18. This reflects the beginnings of our study. After No-
vember 2003, most activities were related to modifications of existing configuration
items, with just a few configuration item additions and removals.

Fig. 18 Configuration items evolution

100 Autom Softw Eng (2008) 15: 75–107

Fig. 19 Execution of different policies

Fig. 20 Traceability links evolution

The results of which policies were active during the study are shown in Figure 19.
As expected, policies 2, 6, and 10 were used most often, as they represent responses
to the normal evolution of configuration items (e.g., links from architectural elements
are updated to reflect newer versions of the files). But several interesting events took
place that led to the involvement of other policies as well. First, during the initial
detection of the proper traceability links between the Odyssey architecture and its
source code on July, 2003, policy 8 was explicitly enabled to help with the otherwise
manual effort of identifying an initial set of traceability links. While, as stated before,
this problem is outside the scope of this paper, the use of policy 8 illustrates that
techniques such as data mining can be effectively incorporated in ArchTrace and can
add value. After this initial phase, though, we disabled policy 8.

The second interesting even took place in November 2003, as indicated by the
spike in the number of times policies were executed. At that time, a major reorga-
nization of the Odyssey source code was performed. This significantly affected the

Autom Softw Eng (2008) 15: 75–107 101

names of packages and the locations of existing classes. Policies 6 and 10 dealt with
this situation by updating traceability links to reflect the new organization of the
source code. Figure 19 shows that only policies 6 and 10 were needed to support the
reorganization, and Figure 20 shows that those two policies automatically added and
removed many traceability links while only losing a few.

Policy 9, which is responsible for copying existing traceability links to new ver-
sions of architectural elements, was triggered on May, August, and September, 2004,
meaning the three updates to the Odyssey architecture. Policy 2 was frequently trig-
gered to deny the evolution of traceability links related to immutable architectural
elements, since those are now checked in, frozen, and should no longer change.

5.6 Quantitative analysis

To conclude the study, we compared the set of traceability links evolved by Arch-
Trace (Te) with the set of ideal traceability links detected by Odyssey developers (Ti).
Te comprises 222 traceability links and has coverage of 638 artifacts. On the other
hand, Ti comprises 235 traceability links and has coverage of 691 artifacts.

Figure 21 presents the summative results of the analyses, illustrating that, at the
end of the 20 month evolution, the set of traceability links evolved by ArchTrace (Te)
has 12 out of date traceability links, affecting 113 artifacts. Moreover, 13 traceability
links were lost (|Ti − Te|), affecting 53 artifacts due to the fact that some of the lost
links pointed to compound artifacts (i.e., directories). Overall, ArchTrace correctly
identified 89% of the ideal set of traceability links and traced 76% of the source code
to corresponding architectural elements in the context of the Odyssey project.

To put these figures in perspective, we borrow two metrics from the information
retrieval field (Baeza-Yates and Ribeiro-Neto 1999): precision (the fraction of re-
trieved documents which are known to be relevant) and recall (the fraction of known
relevant documents which were effectively retrieved). These two metrics apply here
in the sense that we can use precision to show the percentage of actually identified

Fig. 21 Quantitative analysis summary

102 Autom Softw Eng (2008) 15: 75–107

traceability links that are correct (|Ti ∩ Te|÷ | Te| = 95%; showing that 5% of the
traceability links that were found are inaccurate) and recall to show the percentage of
ideal traceability links that were actually identified (|Ti ∩ Te|÷ | Ti | = 89%; showing
we missed merely 11% of the traceability links that should have been found).

5.7 Threats to validity

Despite our best efforts to create an experiment free of bias, there are some aspects
of the study that may have affect the general applicability of our results. Here, we
discuss the main threads to validity.

First, we observe that the study was performed over a relatively stable system
and only included data covering activities that took place after Odyssey development
had been in progress for several years. It is unclear how the current set of policies
would perform on a new project in which rapid growth in the number of artifacts
and constant reorganization may take place, especially if the project is agile in na-
ture. Additional study of our policies in such settings, and potential development of
additional policies, is necessary to broaden our results to such projects.

Second, the study is retroactive in nature. On the one hand, this is a strength, as
it analyzes an actual sample of a development project without interference of the
researchers. On the other hand, the developers were not exposed to the benefits and
potential drawbacks of ArchTrace, and hence their behavior in evolving the artifacts
may not accurately reflect what they would have done had ArchTrace been available.
A second study with developers actively using ArchTrace is necessary to understand
whether or not our results hold, particularly as to whether developers are capable of
selecting the “right” policies.

Third, two of the researchers were involved in the development of Odyssey and
were responsible for establishing the initial and ideal sets of traceability links. We
therefore turned off all interaction of the policies with the researchers, so not to pro-
vide better input than other developers would have provided. By the same token,
wrong guidance by actual developers could have seriously hampered effective op-
eration of ArchTrace. Again, further study with interactive policies and developer
responses is needed.

Finally, a threat exists in that our policies thus far do not exercise all scenarios of
software evolution. Specifically, we do not cover branching. We believe this is not
a serious threat, as an informal examination of this problem gives us confidence we
can develop additional policies that will appropriately address branching. Thus, not
covering branching is a limitation of the policies thus far, and not of the approach.

5.8 Final remarks

The data shows that ArchTrace largely operated correctly, even during the reorgani-
zation of Odyssey. Traceability links to one directory were lost, however, during this
step. This problem occurred because of an interesting situation: a directory was erro-
neously deleted during the reorganization and had to be reintroduced some revisions
later. Not surprisingly, this is a situation with which ArchTrace currently cannot deal.
We note, however, that the traceability links of the old versions were fully available,

Autom Softw Eng (2008) 15: 75–107 103

so it would be easy for the developer to reestablish them by hand. Another option
would have been to create a new implementation evolution policy that detects when
a user tries to remedy an erroneous deletion and then automatically reinserts the pre-
viously existing links.

At other times, some traceability links were lost when new artifacts were intro-
duced completely out of context of the existing artifacts. In this situation, data mining
policies are also not useful because brand new artifacts do not have historical infor-
mation to be analyzed. A possible solution to address this problem is the construction
of a policy that employs information retrieval techniques (De Lucia et al. 2004) or
syntactical analysis (Briand et al. 2003) to detect traceability links. These techniques
do not depend on the history of an artifact, so they have the potential to enhance the
current set of policies.

It is important to note the interplay between pre-trace and post-trace policies. It
would be possible to implement the same kind of functionality using only pre-trace
or only post-trace policies, but doing so would lead to much duplication and context
checking across policies. Particularly, each of our pre-trace policies would need to
be replicated in every existing post-trace policy, or each of the post-trace policies
actions would need to be selectively included in some of the pre-trace policies, neither
of which is a desired solution. The approach of separate pre-trace and post-trace
policies, which dynamically collaborate as needed, is a more elegant solution that
integrally promotes reuse and separation of concerns.

6 Related work

Some approaches integrally combine the architecture definition with the source
code, avoiding the need for traceability links. For instance, ArchJava (Aldrich et
al. 2002) enhances the Java programming language with special keywords to inte-
grate an architecture description inside the source code. Similarly, XDoclet (Walls
and Richards 2003) uses source code annotations to define EJB components. Clearly,
these kinds of approaches have their value. However, many situations require ar-
chitectural representations separate from the source code (Ommering et al. 2000;
Kruchten 2001). In these situations, our approach represents an important contribu-
tion.

In the traceability research area, existing approaches are mainly concerned with
traceability detection. For instance, De Lucia et al. (2004) employ information re-
trieval techniques to detect traceability links from source code to use cases and test
cases. While useful in and of themselves, for our problem they are inadequate. At
best, it is necessary to rerun the entire algorithms to redetect proper traceability links.
Because this ignores any previous information, the results obtained are typically not
as strong as one would with ArchTrace. Nonetheless, we view this technique com-
plementary to ArchTrace and believe this kind of approach can be used together
with ArchTrace, helping to detect initial traceability links that will subsequently be
evolved using ArchTrace.

Work in the consistency checking research area helps to detect inconsistencies
among different software representations. Reiss (2002), Nentwich et al. (2003), and

104 Autom Softw Eng (2008) 15: 75–107

Abi-Antoun et al. (2005) map specific representations of software artifacts into a
generic representation: relational database, XML, and tree structured data, respec-
tively, and then allow the construction of syntactical constraints among these rep-
resentations, such as well-formedness rules and direct transformations. ArchTrace
differs from these approaches. First, ArchTrace is a proactive tool, which evolves
traceability links due to changes in software artifacts, not only reporting but also try-
ing to avoid possible inconsistencies. Moreover, ArchTrace uses the history dimen-
sion to detect the evolution of traceability links over time. Finally, ArchTrace deals
with architectural elements, which are coarse grained and cannot have all their trace-
ability links directly detected via syntactical constraints. Nevertheless, we once again
believe that these approaches can work together with ArchTrace, reporting syntac-
tical inconsistencies between architectural elements and source-code elements, i.e.,
helping to detect when the automated policies may have done something wrong. By
utilizing these techniques in some constraint policies, thus, we believe our approach
can be made more powerful.

The research area of hypertext can be useful as an infrastructure for our work.
This research area contributes mechanisms to manage the versioning of links among
objects, such as Chimera (Anderson et al. 1994) and Molhado (Nguyen et al. 2004).
Instead of storing the links in xADL 2.0, we could store them in a hypertext tool.
However, by themselves these tools are not sufficient to address our problem as they
lack the policy-based enactment that is at the heart of ArchTrace.

7 Conclusions

This paper has presented a new approach for managing the evolution of traceability
links between a software architecture and its implementation. Existing traceability
approaches have focused on creating one-time snapshots of traceability links. While
useful, the next problem is to evolve these snapshots. This is the focus of the work
presented here: policy-based evolution of traceability links. The idea is that, by stay-
ing in lockstep with architectural and source code changes, it is much easier to solve
small incremental problems of maintaining traceability. Through its policies, this is
exactly what ArchTrace does – and it achieves high-quality results in both precision
and recall.

While promising as a new kind of technique for managing the evolution of trace-
ability links, our work to date also highlights that additional work remains to be done.
First and foremost, we recognize that achieving 100% precision and 100% recall is
the ultimate result to be achieved by ArchTrace. This, however, may or may not be
unrealistic. On the one hand, no set of policies can anticipate every single potential
change made in every single situation by every single developer. On the other hand,
however, this is perhaps also not needed: it is merely necessary to be able to match as
closely as possible the working style and conventions of a group of developers. This
is a much smaller problem, and becomes one of having a sufficiently broad set of
policies available and providing developers strong guidance in selecting the policies
appropriate for them. Through the building of a policy portfolio and further empirical
studies, both retroactive and active (i.e., in a live development setting), we plan to

Autom Softw Eng (2008) 15: 75–107 105

build an understanding of whether ArchTrace can be made an effective and reliable
solution for traceability management in the face of evolution and indeed provide the
necessary guarantee that its resulting sets of traceability links do not contain false
positives or false negatives.

Another focus of our future work concerns conflicting policies. Currently, the user
is responsible for ensuring they choose a set that does not conflict. If they happen
to choose a conflicting set of policies, ArchTrace cannot guarantee its results and
may even exhibit race conditions or infinite loops. To address this issue, we plan to
research the use of meta-policies, which act as arbitrators, and build analyses that can
determine, at the moment of their activation, whether policies conflict.

An additional issue that we would like to address is branching. Policy 5 was de-
signed to avoid interference of versioning actions on branches with respect to the
main line of development. This, however, represents merely a first step. While we can
support keeping branches isolated, we still need to support the creation of branches
and the explicit merging of branches into the main line of development.

Finally, we mention that the long-term goal of our work is not just to maintain
traceability links, but to put these traceability links to good use. While an accu-
rate trace is of help to humans in understanding the system at hand, it is also a first
step towards automation of various processes at the architectural level of abstraction.
Our specific efforts will focus on architecture-based build and release mechanisms,
allowing a developer to drive the build and release process from the architectural
specification. In today’s world of component-based software development, these two
processes are particularly critical and suited for a new architectural slant.

Acknowledgements This work was sponsored in part by NSF grants CCR-0093489 and IIS-0205724,
and CAPES grant BEX0323/04-7. We wish to thank the students at UC Irvine and COPPE/UFRJ for their
contributions.

References

Abi-Antoun, M., Aldrich, J., Garlan, D., Schmerl, B., Nahas, N.: Semi-automated incremental synchro-
nization between conceptual and implementation level architectures. In: Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA), pp. 265–268, Pittsburgh, PA, USA, November 2005

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: International
Conference on Very Large Data Bases (VLDB), pp. 487–499, Santiago de Chile, Chile, September
1994

Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture to implementation. In:
International Conference on Software Engineering (ICSE), pp. 187–197, Orlando, USA, May 2002

Anderson, K.M., Taylor, R.N., Whitehead, E.J.: Chimera: hypertext for heterogeneous software environ-
ments. In: Conference on Hypertext and Hypermedia, pp. 94–107, Edinburgh, Scotland, September
1994

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links between
code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002)

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM, New York (1999)
Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach.

Addison-Wesley, Reading (2000)
Briand, L.C., Labiche, Y., O’Sullivan, L.: Impact analysis and change management of UML models. In:

International Conference on Software Maintenance (ICSM), pp. 256–265, Amsterdam, Netherlands,
September 2003

106 Autom Softw Eng (2008) 15: 75–107

Chen, P., Critchlow, M., Garg, A., Westhuizen, C., Van der Hoek, A.: Differencing and merging within an
evolving product line architecture. In: International Workshop on Product Family Engineering, pp.
269–281, Siena, Italy, November 2003

Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M., O’Reilly, J.: Version Control with Subversion (2004)
Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM Comput. Surv.

30(2), 232–282 (1998)
Dashofy, E., Van der Hoek, A., Taylor, R.N.: A highly-extensible, XML-based architecture description

language. In: Working IEEE/IFIP Conference on Software Architectures (WICSA), pp. 103–112,
Amsterdam, Netherlands, August 2001

Dashofy, E., Van der Hoek, A., Taylor, R.N.: An infrastructure for the rapid development of XML-based
architecture description languages. In: International Conference on Software Engineering (ICSE), pp.
266–276, Orlando, FL, USA, May 2002

De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an artefact management system with trace-
ability recovery features. In: International Conference on Software Maintenance (ICSM), pp. 306–
315, Chicago, IL, USA, September 2004

Eclipse Foundation: Eclipse IDE. http://www.eclipse.org (accessed 29 September 2007)
Garg, A., Critchlow, M., Chen, P., Van der Westhuizen, C., Van der Hoek, A.: An environment for man-

aging evolving product line architectures. In: International Conference on Software Maintenance
(ICSM), pp. 358–367, Amsterdam, Netherlands, September 2003

Huffman Hayes, J., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information retrieval.
In: International Conference on Requirements Engineering (RE), pp. 138–147, Monterey, USA, Sep-
tember 2003

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.: Aspect-
oriented programming. In: European Conference on Object-Oriented Programming (ECOOP), pp.
220–242, Jyväskylä, Finland, June 1997

Kruchten, P.: The Rational Unified Process: an Introduction. Addison-Wesley, Reading (2001)
Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links using latent seman-

tic indexing. In: International Conference on Software Engineering (ICSE), pp. 125–135, Portland,
OR, USA, May 2003

Medvidovic, N., Rosenblum, D.S.: Domains of concern in software architectures and architecture descrip-
tion languages. In: Conference on Domain-Specific Languages, pp. 199–212, Santa Barbara, USA,
October 1997

Muccini, H., Van der Hoek, A.: Towards testing product line architectures. In: International Workshop on
Testing and Analysis of Component Based Systems, pp. 111–121, Warsaw, Poland, April 2003

Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible consistency checking. ACM Trans.
Softw. Eng. Methodol. 12(1), 28–63 (2003)

Nguyen, T.N., Munson, E.V., Boyland, J.T.: The molhado hypertext versioning system. In: Conference on
Hypertext and Hypermedia, pp. 185–194, Santa Cruz, USA, August 2004

Ommering, R.V., Linden, F.V.D., Kramer, J., Magee, J.: The Koala component model for consumer elec-
tronics software. IEEE Comput. 33(6), 78–85 (2000)

Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In: International
Conference on Software Engineering (ICSE), pp. 177–186, Kyoto, Japan, April 1998

Reiss, S.P.: Constraining software evolution. In: International Conference on Software Maintenance
(ICSM), pp. 162–171, Montreal, Canada, October 2002

Richardson, D.J., Wolf, A.L.: Software testing at the architectural level. In: International Software Archi-
tecture Workshop (ISAW), pp. 68–71, San Francisco, USA, October 1996

Settimi, R., Cleland-Huang, J., Khadra, O.B., Mody, J., Lukasik, W., Depalma, C.: Supporting software
evolution through dynamically retrieving traces to UML artifacts. In: International Workshop on
Principles of Software Evolution (IWPSE), pp. 49–54, Kyoto, Japan, September 2004

Shaw, M., Deline, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Abstractions for software archi-
tecture and tools to support them. IEEE Trans. Softw. Eng. 21(4), 314–335 (1995)

Shirabad, J.S., Lethbridge, T., Matwin, S.: Supporting software maintenance by mining software update
records. In: International Conference on Software Maintenance (ICSM), pp. 22–31, Florence, Italy,
November 2001

Van der Hoek, A.: Design-time product line architectures for any-time variability. Sci. Comput. Program.
53(3), 285–304 (2004)

Walls, C., Richards, N.: XDoclet in Action. Manning Publications (2003)

Autom Softw Eng (2008) 15: 75–107 107

Werner, C.M.L., Mangan, M.A.S., Murta, L.G.P., Souza, R.P., Mattoso, M., Braga, R.M.M., Borges,
M.R.S.: OdysseyShare: an environment for collaborative component-based development. In: IEEE
Conference on Information Reuse and Integration (IRI), pp. 61–68, Las Vegas, USA, October 2003

Whitehead, E.J.: An analysis of the hypertext versioning domain. Ph.D. thesis, University of California,
Irvine, USA (2000)

Ying, A.T.T., Murphy, G.C., Ng, R., Chu-Carroll, M.C.: Predicting source code changes by mining change
history. IEEE Trans. Softw. Eng. 30(9), 574–586 (2004)

Zhao, J., Yang, H., Xiang, L., Xu, B.: Change impact analysis to support architectural evolution. J. Softw.
Maintenance: Res. Pract. 14(5), 317–333 (2002)

Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide software changes.
In: International Conference on Software Engineering (ICSE), pp. 563–572, Edinburgh, Scotland,
May 2004

	Continuous and automated evolution of architecture-to-implementation traceability links
	Abstract
	Introduction
	Motivating example
	Approach
	Implementation
	Overall architecture
	Traceability links schema
	Architecture and repository connection
	Policies API
	Built-in policies
	Policy implementations

	Policy triggering example

	Evaluation
	Study planning
	Environment preparation
	Statistics gathering
	Study execution
	Qualitative analysis
	Quantitative analysis
	Threats to validity
	Final remarks

	Related work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

