
Autom Softw Eng (2007) 14: 215–259
DOI 10.1007/s10515-007-0007-3

Differencing logical UML models

Zhenchang Xing · Eleni Stroulia

Published online: 26 May 2007
© Springer Science+Business Media, LLC 2007

Abstract UMLDiff is a heuristic algorithm for automatically detecting the changes
that the logical design of an object-oriented software system has gone through, as
the subject system evolved from one version to the next. UMLDiff requires as input
two models of the logical design of the system, corresponding to two of its versions.
It produces as output a set of change facts, reporting the differences between the
two logical-design versions in terms of (a) additions, removals, moves, renamings of
model elements, i.e., subsystems, packages, classes, interfaces, attributes and oper-
ations, (b) changes to their attributes, and (c) changes to the relations among these
model elements. In this paper, we detail the underlying metamodel, the UMLDiff al-
gorithm and its heuristics for establishing lexical and structural similarity. We report
on our experimental evaluation of the correctness and robustness of UMLDiff through
a real-world case study.

Keywords Design differencing · Structural evolution · Design understanding ·
Design mentoring

1 Introduction

Recent research on mining software repositories has shown that interesting insights
into the lifecycle of a project and the design rationale underlying its evolution his-
tory can be obtained by comparatively analyzing different aspects of the series of
the software versions stored in a repository. To software engineers, it is especially
important to be able to understand the design changes that their software system has

Z. Xing (�) · E. Stroulia
Computing Science Department, University of Alberta, Edmonton, AB T6G 2H1, Canada
e-mail: xing@cs.ualberta.ca

E. Stroulia
e-mail: stroulia@cs.ualberta.ca

216 Autom Softw Eng (2007) 14: 215–259

suffered through its evolution. Such changes include extensions with new classes and
behaviors, modifications of design entities to meet new requirements or fix bugs, and
refactorings, i.e., behavior-preserving restructurings involving redistribution of fea-
tures among classes, restructuring of data structures or class interfaces, and changes
to the interactions between classes. Knowing what changes have happened in the past
is critical for understanding how the various functional requirements of the system
are met and what qualities have been considered important during its development.
An accurate picture of the system’s design-evolution history can substantially sup-
port its further development in a manner consistent with the qualities embodied in its
current design.

The research problem then becomes to accurately and efficiently recognize the
changes in the system’s design structure and behavior as it evolves from one ver-
sion to the next. There has been some work (Eick et al. 1992, 2001; Fischer et
al. 2003) modeling the changes of a system in terms of code-line deltas, reporting
lines of code that have been added, deleted, or changed, as reported by GNU diff.
These approaches are simple to implement, since it is easy to extract the deltas from
a versioning system, such as Concurrent Version System (CVS). However, lexical
differences do not provide much intuition regarding the design changes that the re-
ported source-code modifications were meant to implement. For example, a small
change to a single line of code may correspond to the renaming of a class to con-
form to a naming convention, or to the reorganization of the inheritance hierarchy
to better model the underlying application domain. Source-code metrics (Demeyer
et al. 2000; Lanza 2001) can recognize whether or not method extraction or inlin-
ing has occurred in general, but they do not pinpoint what specifically has been
changed. Clone-detection methods can pinpoint (Rysselberghe and Demeyer 2003;
Tu and Godfrey 2002) specific refactoring instances, but only for a limited set of
refactoring types. Consistently maintained change documentation (Eick et al. 2001;
Fischer et al. 2003) is a reliable source of information as to what has been changed
and why; however, more frequently than not, documentation is vague and incom-
plete. Visualization of data, such as code-line deltas and source-code metrics, may
communicate some intuition regarding element moves and renamings; however, vi-
sualization approaches (Eick et al. 1992; Lanza 2001; Rysselberghe and Demeyer
2003) are inherently limited, because they assume a substantial interpretation effort
on behalf of their users and become “unreadable” for large systems.

Clearly, there is a need for automated methods for assisting software engineers to
reason, at the design level, about what changes have occurred in long-lived evolv-
ing software systems and why. In this paper, we describe UMLDiff, an algorithm for
differencing UML logical-design models. This algorithm takes as input two logical-
design models corresponding to two versions of an object-oriented software system.
It traverses the two models in parallel, moving from one type of design entities to
its children types; as it does so, it identifies corresponding entities, i.e., model enti-
ties that correspond to the same conceptual design entity, based on their lexical and
structural similarity. UMLDiff produces as output a set of change facts reporting the
various design changes it has discovered when comparing the two models, i.e., addi-
tions, removals, moves, and renamings of subsystems, packages, classes, interfaces,
attributes and operations, and changes to the attributes and relations of these model
elements.

Autom Softw Eng (2007) 14: 215–259 217

UMLDiff is at the core of our design-evolution analysis work (Schofield et al.
2006; Xing and Stroulia 2004a, 2004b, 2005a, 2005c, 2006a, 2006b, 2006c), which
has been implemented in the JDEvAn (Java Design Evolution and Analysis) tool
(http://www.cs.ualberta.ca/~xing/jdevan.html). In addition to UMLDiff, JDEvAn also
includes: a fact extractor that crawls the software versions to extract the models re-
quired as input by UMLDiff, a database back-end to store the extracted models and
the UMLDiff change facts, several special-purpose analyses to infer more complex
phenomena based on the UMLDiff change facts, and visualization modules for intu-
itively communicating, exploring and analyzing the discovered information.

The rest of the paper is structured as follows. Section 2 relates this work to pre-
vious research. Section 3 describes the metamodel assumed by UMLDiff as the un-
derlying representation of its input logical-design models and the process by which
these models are extracted from Java software. Section 4 discusses in detail the algo-
rithm and its similarity heuristics. Section 5 reports on our experimental evaluation of
UMLDiff. Finally, concluding remarks and some open questions for future research
are outlined.

2 Related work

Lexical differencing tools, like GNU diff, are frequently used by developers, in con-
cert with modification requests and bug reports, to reconstruct the changes between
subsequent versions of a software module (Eick et al. 1992, 2001; Fischer et al. 2003;
Lehman and Belady 1985). Figure 1 shows the Eclipse text-comparison results be-
tween two versions of a program.1 In the after version, the duplicated method value(),
which used to be implemented by classes PlainStatement and HTMLStatement, was
pulled up into their new superclass, Statement. Unfortunately, the changes reported
by the text-comparison tool are unintuitive: the first line was changed; five lines of
code were added; a block of code was replaced by a single line. Since lexical dif-
ferencing tools view software programs as text documents, they report changes at
the lexical level, ignoring the high-level logical-design changes to which they corre-
spond.

The Abstract Syntax Tree (AST) is one view of the structure of a software pro-
gram. Figure 2 depicts a partial AST of the class PlainStatement in the before
version. Yang (1991) developed a dynamic-programming tree-matching algorithm,
for computing the similarity between ASTs. However, ASTs of realistic programs
are big, which makes general tree-differencing algorithms impractical. Furthermore,
they are often redundant. For example, Fig. 3 shows the VarDeclarationFragment
subtree, corresponding to a variant of the second local variable declaration—String
results = (this.headerString(aCustomer)). Although there is no actual semantic differ-
ence between the two variants, a tree-differencing algorithm, comparing it against the
original VarDeclarationFragment subtree (the bottom-right corner of Fig. 2), would

1Excerpted from the version 27 and 28 of the extended refactoring example at http://www.cs.unc.edu/
~stotts/COMP204/refactor. We adapt its version 23, 27 and 28 as the running example to illustrate UMLDiff
algorithm in Sect. 4.

218 Autom Softw Eng (2007) 14: 215–259

F
ig

.1
E

cl
ip

se
te

xt
co

m
pa

re

Autom Softw Eng (2007) 14: 215–259 219

Fig. 2 The partial AST of class PlainStatement

Fig. 3 The partial AST of
changed local variable
declaration

220 Autom Softw Eng (2007) 14: 215–259

report the addition of node ParenthesizedExpression (which results in the MethodIn-
vocation subtree being pushed one-level deeper) and the addition of node ThisExpres-
sion. AST is a low-level representation, designed for code compilation, optimization
and transformation; interpreting AST changes into the higher-level logical changes
requires substantial effort. For example, the value changes of four tree nodes of type
SimpleName (gray highlight in Fig. 2) represent completely different logical changes:
(1) the change of PlainStatement’s superclass; (2) the renaming of the value() method;
(3) the change of the parameter type of aCustomer; (4) the change in the outgoing
usage of the method value().

There exist other differencing techniques that make use of other types of program
representations. Semantic Diff (Jackson and Ladd 1994) operates on a representation
of the local dependency graph and works at the intra-procedural level only, as op-
posed to the system as a whole. Horwitz developed a technique (Horwitz 1990) for
detecting statement-level semantic and textual modifications, based on augmented
control-flow graphs; this method is applicable to a simplified C-like programming
language and is not suitable for complex object-oriented software systems.

Large-scale object-oriented software systems are better understood in terms of
structural and behavioral models, such as UML class and sequence models. The
UML modeling tools often store UML models in XMI (XML Metadata Inter-
change) format for data-interchange purposes. XML-differencing algorithms, applied
to such easily available XMI representations, report changes of XML elements and
attributes, ignoring the domain-specific semantics of the concepts represented by
these elements. Figure 4 shows the partial XML comparison results (by Delta XML
http://www.deltaxml.com) between the XMI representations (exported by ArgoUML
http://argouml.tigris.org/) of two versions of the UML class model of the program
listed in Fig. 1. The tool reports that two UML:Operation nodes (annotation [1]) were
modified—their name attributes were changed—and that the UML:Operation with
name attribute “eachRentalString” (annotation [2]) was removed, instead of recog-
nizing that the value() method was moved to the new superclass Statement. Further-
more, a single logical change in the UML model may cause several XMI changes.
For example, a generalization—the superclass of PlainStatement changed from Ob-
ject to Statement—results in three changed XMI nodes (annotation [3]). Finally, sim-
ilar XML element changes may represent completely different logical changes. For
example, the attribute changes of the two UML:Class elements (annotation [4]) repre-
sent generalization and usage-dependency change respectively. Similar to AST com-
parison, an interpretation step is required to aggregate and abstract the change reports
of XML comparison tools in terms of higher-level logical changes.

Several UML modeling tools come with their own UML-differencing methods
(Ohst et al. 2003; http://www-128.ibm.com/developerworks/rational/library/05/712_
comp/). They detect differences between subsequent versions of UML models, as
long as these models are constructed and manipulated exclusively through the tool
that assigns persistent identifiers to all model elements. This capability is clearly ir-
relevant when the whole development team does not use the same tool for all their
development activities, which is usually the case. Furthermore, the persistent identi-
fiers imply only one-to-one mapping between model elements, even when many-to-
one mappings are preferable. For example, reporting that both PlainStatement.value()

Autom Softw Eng (2007) 14: 215–259 221

Fig. 4 XML-differencing XMI representation of UML models

and HTMLStatement.value() have been moved to Statement better reflects the inten-
tion of the change, which is to pull up commonalities from several subclasses into the
superclass, than reporting that one has been moved and the other has been removed.

There has also been some work on comparative analysis of different snapshots
of a software system for drawing inferences regarding its evolution. Demeyer et al.
(2000) defined four heuristics based on the comparison of source-code metrics of two
subsequent system snapshots, to identify refactoring activities of three general cate-
gories. Rysselberghe and Demeyer (2003) investigated the use of clone detection to
identify moves and renamings. However, the source-code metrics do not report the
details of what has or has not been changed. For example, the PlainStatement.value()
and Statement.value() methods have the same NOM (Number of Messages sent in
method body, see Lorenz and Kidd 1994) metrics, but PlainStatement.value() calls

222 Autom Softw Eng (2007) 14: 215–259

directly the header/footer/eachRentalString() methods of PlainStatement while State-
ment.value() calls the abstract methods of Statement that are implemented by the
corresponding PlainStatement methods. Ryder’s group has also worked on compara-
tive analysis of structural changes (Ryder and Tip 2001). They define a set of atomic
changes derived from the comparison of the abstract syntax trees of corresponding
classes in two versions of a project. Apiwattanapong et al. (2004) use the enhanced
control-flow graph to model methods of object-oriented programs and identify simi-
larities and differences between two methods based-on graph isomorphism. The ma-
jor objective of their work is to analyze the impact of changes on test cases, while our
work is aimed at recovering higher-level design evolution knowledge.

All the above differencing techniques rely on various program representations
that are designed for purposes other than understanding higher-level logical changes
of software system. However, there has also been some research on analyzing the
changes of software at the design level. Egyed (2001) has investigated a suite of
rule- and constraint-based and transformational comparative methods for checking
the consistency of the evolving UML diagrams of a software system. Spanoudakis
and Kim (2001) developed a probabilistic message-matching algorithm that detects
the overlaps between messages that are likely to signify the invocation of operations
and check whether the overlapping messages are inconsistent. However, they can-
not surface the specific types of changes as reported by UMLDiff and these projects
have not explored the product of their analyses in service of software evolution un-
derstanding and future decision making. Godfrey et al., in their BEAGLE system
(Godfrey and Zou 2005; Tu and Godfrey 2002), use origin analysis to determine the
“origin” of “new” files and to detect the merging and splitting of source-code entities.
Origin analysis works at the file-structure level, corresponding to the physical model
of the software rather than its logical model: it detects old functions as the “origin” of
new ones based on a combination of clone detection and call-relation matching and
requires an interactive step for detecting file merging and splitting.

In our own earlier work (Xing and Stroulia 2005b), we discussed an earlier version
of UMLDiff that relied on name-similarity assessment using a particular metric, and
structure-similarity assessment based on the immediate relations among model ele-
ments to recognize changes in the logical-design model of object-oriented software.
In this paper, we discuss an enhanced version of the algorithm.

The new UMLDiff algorithm, which we discuss in this paper, uses any of three
alternative lexical-similarity metrics, inspects comments (e.g., Javadoc) as an addi-
tional source of information for assessing elements’ lexical-similarity in addition to
name-similarity, examines transitive usage dependencies to assess structural similar-
ity between two operations, performs multiple rounds of the renaming/move recogni-
tion steps and propagates the knowledge of the identified operation renamings along
the inheritance hierarchy. These capabilities have improved the accuracy of the algo-
rithm, whose run-time performance is still efficient and acceptable from a pragmatic
point of view.

3 The metamodel

UMLDiff compares logical-design models of object-oriented software systems. The
underlying metamodel is defined according to the semantics of the UML metamodel

Autom Softw Eng (2007) 14: 215–259 223

(OMG 2003). We summarize the UML profile in terms of metaclasses and metarela-
tions, of concern to UMLDiff, in Appendix 1.

Figure 5 diagrammatically depicts the UML model of the version 28 of our run-
ning example (see Sect. 4.1), in terms of instances of model-element metaclasses,
relation metaclasses, and meta-compositions and meta-associations. The instances
of model elements are denoted with the “name:metaclass” syntax: for example,
“Statement:Class” represents an instance of the class metaclass, whose name at-
tribute is Statement. The model elements may have other attributes, such as visibil-
ity, isLeaf, isRoot, isAbstract, deprecated, etc. For example, the visibility attribute
of operation Customer.getAllCharge() is public. The isAbstract attribute of opera-
tion Statement.printFooter(Customer) is true. The model elements are linked to each
other by instances of relation metaclasses, meta-compositions and meta-associations.
For example, the model Version28 contains a default package (an instance of El-
ementOwnership meta-composition), which contains a class Customer (the other
instance of [namespace–ownedElement] meta-composition), which declares four
operations (four instances of [owner–feature] meta-composition). The operation
HTMLStatement.printFooter(Customer) is associated with the class String as its re-
turn type (an instance of [typedParameter–type] meta-association). The operation
Customer.htmlStatement() instantiates (an instance of Usage«instantiate») the object
HTMLStatement. The class PlainStatement is a subclass of the class Statement (an
instance of Generalization). The operation HTMLStatement.printEachRental(Rental)
implements (an instance of Abstraction«realize») the abstract operation Statement.
printEachRental(Rental).

UMLDiff requires as input representations of the system’s logical design in terms
of UML models, as shown in Fig. 5. These representations may be obtained through
reverse-engineering the system source code. UMLDiff has so far been applied to com-
paring reverse-engineered UML logical-design models, given the source code of soft-
ware systems implemented in Java. However, by adopting the semantics of the UML
model as the metamodel underlying its input representations, it can readily be used
to compare reverse-engineered models of software systems developed in (a mix of)
other object-oriented programming languages, or to compare subsequent upfront de-
sign models to study their evolution, or to compare the upfront design model with the
implemented model reverse-engineered from source code to validate code-to-design
conformance.

3.1 UML model reverse engineering in JDEvAn

The UMLDiff algorithm has been implemented in the JDEvAn tool (http://www.cs.
ualberta.ca/~xing/jdevan.html), which also implements a Java fact extractor based on
the Eclipse Java DOM/AST model (http://www.eclipse.org). JDEvAn’s Java fact ex-
tractor reverse engineers UML models in the form expected by UMLDiff, from source
code. The mapping of the Java language constructs to UML metaclasses and metare-
lations is described in Appendix 2. Our current focus on Java is pragmatic; UMLDiff
is not restricted to any specific object-oriented programming language, since its meta-
model is essentially defined according to the UML semantics. Its design and imple-
mentation are extendible to software systems developed in other object-oriented pro-
gramming languages, assuming appropriate fact extractors that are able to map pro-

224 Autom Softw Eng (2007) 14: 215–259

F
ig

.5
A

n
ex

am
pl

e
of

U
M

L
m

od
el

th
at

U
M

L
D

iff
co

m
pa

re
s

Autom Softw Eng (2007) 14: 215–259 225

gramming language constructs into the UML model elements and relations expected
by UMLDiff.

Java software subsystem is not really a Java construct; it is a conceptual ele-
ment. The top-level subsystem corresponds to the model of the analyzed system as
a whole. Each Operation is associated with a Method element, which contains the
body of the corresponding Java method, constructor, or class initializer. A Method
element is not contained in the declaring class of its specification operation. The
return type of a Java method is treated as a special Parameter, whose name and
kind attributes are return. A field’s initializer is modeled as the initValue attribute
associated with its corresponding Attribute. Although Java requires exceptions to be
subclasses of java.lang.Throwable, other programming languages, such as C++, al-
low exceptions to extend arbitrary classes. Therefore, to avoid restricting UMLDiff
to the Java particulars, the fact extractor does not explicitly model exceptions; in-
stead, at the end of fact extraction process, it marks as exceptions the classes that
appear in Usage«send», [context–raisedSignal], and [reception–signal] relations. The
fact extractor does not model Receptions either, since in most modern object-oriented
programming languages, operations are normally receptions that handle the signals,
such as exceptions. Instead, at the end of the fact extraction process, it marks the
operations that appear in [reception–signal] relations as receptions. Finally, the fact
extractor ignores three Java specific modifiers, volatile, native, and strictfp, and as-
sumes that the classes and interfaces that belong in Java libraries are contained in the
top-level subsystem.

Each extracted model element is described in terms of its name, the type of its cor-
responding UML metaclass (as described in Tables 10 and 14), its corresponding vis-
ibility and attribute(s) (as described in Table 16), and its attached UMLDiff -specific
tagged values (as described in Tables 13 and 17). The relations between model ele-
ments are described in tuples of the form (relation, e1, e2), where e1 and e2 are model
elements and relation is a type of UML metarelation as described in Tables 11, 12 and
15 that applies between e1 and e2. The number of times that a field is read/written,
a method is called, a class is created, and a class/interface is used is recorded as the
count tag, attached to the corresponding usage dependency.

The name of array types is in the form of “BasetypeQualifiedname.Dimension”.
The name of packages, classes, interfaces and fields is their declared identifier. The
name of methods and constructors is in the form of “identifier(paramtype_list)”.
JDEvAn’s fact extractor also assigns names to anonymous classes, “new super-
type_identifier$number”; class initializers, “{class_identifier.$number}”; and field
initializers, “{field_identifier = . . .}”. The “number” is the ordinal number of the
anonymous class or the class initializer within the enclosing Java class. Finally, a
fully qualified prefix is added in front of the names of model elements that belong in
Java libraries.

Anonymous classes are a special type of nested classes, with no explicitly declared
identifiers. They are specified along with class creation expression within blocks and
are then generated by the compiler when parsing expression as the nested classes of
the class that declares the corresponding block. Thus, an anonymous class is modeled
as a class with name “new supertype_identifier$number” whose visibility = private,
isAbstract = false, and isLeaf = true, which is contained by the corresponding en-
closing class. It is also associated with the corresponding method element of its

226 Autom Softw Eng (2007) 14: 215–259

declaring operation. The Usage«instantiate» dependency between the anonymous class
and its declaring operation is not modeled. Instead, it is mapped to the direct su-
per type of the anonymous class. The fact extractor does not model Java local
classes/interfaces, which are declared within methods, constructors, or class initializ-
ers, because “local types” is a Java specific feature, rarely used in practice.

The extracted UML logical-design models are stored in a PostgreSQL rela-
tional database, extended with Simon’s transitive closure algorithm (Simon 1986)
for computing transitive containment and inheritance relations, field read/write,
method call, and class/interface usage relations. The relational database enables the
UMLDiff implementation to work on large-scale software projects, such as Eclipse
(http://www.eclipse.org). It also provides the flexibility to infer derivable information
about model elements and their relations.

4 Comparing logical models of object-oriented software with UMLDiff

4.1 The running example

We will demonstrate how UMLDiff works with a small running example, adapted
from the versions 23, 27 and 28 of the extended refactoring example at
http://www.cs.unc.edu/~stotts/COMP204/refactor, which is available to download
at http://www.cs.ualberta.ca/~xing/asej2007/runningexample.zip. When the system
evolves from version 23 to 27, the nested class PlainStatement is extracted from
the class Customer. The main responsibility of this class is to print out the cus-
tomer’s movie rental information in plain text format, which is originally performed
by the operation Customer.statement() in version 23. In version 27, the operation
Customer.statement() instantiates a PlainStatement object, to which it delegates this
task. Similar changes are also made to Customer.htmlStatement()23

2 and the newly
introduced top-level class HTMLStatement27 contained in default27 package. Fur-
thermore, the Customer.statement()23 is renamed to plainStatement()27 in order to
be consistent with htmlStatement() and to more clearly convey the intention of the
method.

The main change between versions 27 and 28 is to pull up the operation value()
from PlainStatement and HTMLStatement to their superclass, Statement. However,
to demonstrate several UMLDiff key features, we intentionally complicated versions
27 and 28 by including the following changes:

• We renamed the operations getTotalChange()/getTotalFrequentRenterPoints() of
the class Customer to getAllCharge()/getAllFrequentRenterPoints() respectively
and changed their visibilities from package to public.

• We renamed the operations headerString()/eachRentalString()/footerString()
of the classes Statement/PlainStatement/HTMLStatement to printHeader()/
printEachRental()/printFooter() respectively.

• In version 27, the class PlainStatement is a nested class of the class Customer,
while, in version 28, it is moved out from the class Customer and becomes a top-
level class contained in the default package.

2Denotes the model element contained in a particular version.

Autom Softw Eng (2007) 14: 215–259 227

• In version 27, the operation PlainStatement.footerString() uses String.value
(double)/value(int) to convert the double and int values to String, while, in version
28, it changes to use Double.toString() and Integer.toString().

• In version 28, the operation Customer.plainStatement() is deprecated.

4.2 UMLDiff overview

UMLDiff is an UML-semantics-aware differencing algorithm. As per the adopted
metamodel, the software system is modeled as a directed graph G(V,E), where V ,
the vertex set, contains model elements and E, the edge set, contains relations among
them. Given two versions, “before” and “after”, of a UML logical-design model and
their corresponding graphs Gbefore(Vbefore,Ebefore) and Gafter(Vafter,Eafter), UMLDiff
essentially maps the two model graphs by computing the intersection and margin
sets between (Vbefore,Vafter) and (Ebefore,Eafter), in terms of (Vbefore − Vafter) for the
removed model elements, (Vbefore ∩Vafter) for the mapped elements, (Vafter −Vbefore)

for the added model elements, (Ebefore − Eafter) for the removed relations, (Ebefore ∩
Eafter) for the mapped relations, and (Eafter − Ebefore) for the added relations.

UMLDiff first attempts to map the model element sets Vbefore and Vafter. It re-
lies on the composition relations to traverse in a breadth-first fashion3 the vertices
(model elements) of the directed graph of the UML model. The composition relations
(instances of three meta-compositions—see Table 12) induce a strict containment-
spanning tree on the directed graph. The UML semantics guarantees that all model
elements can be visited by traversing the containment hierarchy starting from the top-
level subsystem corresponding to the system version, and that the children of their
containing parent are unique in terms of their names. The meta-composition defines
four logical levels over types of model elements: subsystem (including the top-level
subsystem) > package > (class, interface) > (attribute, operation). The model ele-
ments of type subsystem, package, class and interface may contain the nested same-
type elements. Table 1 summarizes the containment hierarchy of the UML model
elements. Table 5 shows the partial containment hierarchy of versions 23 and 27 of
the model of our running example.

UMLDiff traverses the containment-spanning trees of the two compared models,
descending from one logical level to the next, in both trees at the same time. It starts
at the top-level subsystems that correspond to the two system versions and progresses
down to subsystems, packages, classes and interfaces, and finally, attributes and op-
erations. UMLDiff recognizes that a model element e1 in the “before” version and
an element e2 of the same type in the “after” version are the “same”, i.e., they corre-
spond to the same conceptual model element, when (a) they have the same or similar
name and comment (lexical-similarity heuristic), and (b) they have similar relations
to other model elements, that have the same name and type or have already been
established to be mapped (structure-similarity heuristic).

Name similarity is a “safe” indicator that e1 and e2 are the same entity: in our
experience with several case studies (Schofield et al. 2006, Xing and Stroulia 2004a,
2005b, 2006b), very rarely is a model element removed and a new element with the

3In the rest of this paper, all references to “traversals” are implied to be “breadth-first traversals”.

228 Autom Softw Eng (2007) 14: 215–259

Table 1 The containment hierarchy of UML model elements

Type of model element Type of the children

Top-level Subsystem Subsystem and Package

ProgrammingLanguageDataType

Class and Interface whose isFromModel = false

Subsystem Subsystem and Package

Package Package, Class and Interface

Class Class and Interface

Attribute, Operation, Operation«create», and Operation«initialize»

Interface Class and Interface

Operation

Attribute N/A

Operation Parameter

same name but different element type and different behavior is added to the system.
UMLDiff recognizes same-name model elements of the same type first and uses them
as initial “landmarks” to subsequently recognize renamed and moved elements. When
a model element is renamed or moved, as is frequently the case with refactorings, its
relations to other elements, such as the children elements it contains, the attributes it
reads/writes, the operations it calls or is called by, etc., tend to remain much the same.
Therefore, by comparing the relations of two same-type model elements renamings
and moves can be inferred: if they share “enough” relations to known-to-be-same or
same-name elements of the same type they are the “same”, even though their names
and/or their parent (containing) model elements are different. Whenever two model
elements are identified as renamings or moves, this knowledge is added to the current
landmarks’ set and is used later on to further match not-yet-mapped elements. This
process continues until it reaches the logical-leaf level of the spanning trees and all
possible corresponding pairs of model elements have been identified.

Given two renaming or move candidates, UMLDiff computes their structural sim-
ilarity as the cardinality of the intersection of their corresponding related-element
sets: given the sets of elements that are related to the two compared candidates with
a given type of relation, UMLDiff identifies the common subset of same-type same-
name elements and elements that have already been established as mapped. There-
fore, if all or most the model elements related to two candidates were also renamed
and/or moved and cannot be established as “same”, the UMLDiff structure-similarity
heuristic would fail. If, on the other hand, a set of related elements were renamed or
moved but enough model elements related to the affected set remained unchanged, it
would be possible to recognize this systematic change.

UMLDiff applies two techniques, i.e., multiple-rounds-of-renaming-and-move-
identification and propagating-operation-renamings-along-inheritance-hierarchy, to
propagate the knowledge of established renamings and moves along their usage and
inheritance relations (see Sects. 4.4.4 and 4.4.5). Finally, global renamings, such as

Autom Softw Eng (2007) 14: 215–259 229

renamings to meet a new naming convention, for example, may be recovered, by en-
abling the user to specify a string transformation—introducing a prefix or appending
a suffix, or replacing a certain substring—that should be applied to the names of the
model elements of one of the compared versions, before the differencing process.

Once UMLDiff has completed mapping the sets of model elements, Vbefore and
Vafter, it proceeds to map the relation sets, Ebefore and Eafter, by comparing the re-
lations of all pairs of model elements (vbefore, vafter), where vafter = null if vbefore
is removed and vbefore = null if vafter is added. The relations from (to) a removed
model element are all removed and the relations from (to) an added model element
are all added. For a pair of mapped elements (vbefore, vafter), they may have matched,
newly added, and/or removed relations. Note that a removed (added) relation between
two model elements does not indicate any of the elements it relates being removed
(added).

Next, UMLDiff detects the redistribution of behavior among operations, in terms
of usage dependency changes, and finally computes the changes to the attributes of
all pairs of mapped model elements.

The UMLDiff differencing process is configured through a set of parameters.

1. The LexicalSimilarityMetric specifies which one of three lexical-similarity metrics
(Char-LCS, Char-Pair, and Word-LCS) will be used by UMLDiff.

2. The RenameThreshold and MoveThreshold specify the minimum similarity val-
ues between two model elements in the two compared versions in order for them
to be considered as the same conceptual element renamed or moved. UMLDiff
allows multiple rounds (MaxRenameRound and MaxMoveRound) of renaming
and/or move identification in order to recover as many renamed and moved en-
tities as possible.

3. The similarity of the comments of the model elements (ConsiderCommentSimi-
larity) may also be taken into account when comparing two elements, if the com-
pared elements have an initial overall similarity value above the MinThreshold;
this prevents model elements with very low name- and structure-similarity from
qualifying as renamings or moves just because of their similar comments.

4. The similarity of transitive usage dependencies (ConsiderTransclosureUsageSim-
ilarity) between two compared operations may also be used to assess their struc-
tural similarity.

5. At the end of the UMLDiff differencing process, it can be instructed whether or
not to compute the usage dependency changes for all model elements and analyze
the redistribution of operation behavior.

The remainder of this section elaborates on the key features of UMLDiff algo-
rithm.

4.3 Similarity metrics

UMLDiff relies on two heuristics—lexical and structure similarity—for recognizing
the conceptually same model elements in the two compared versions of the system
model, in spite of the fact that they may have been renamed and/or moved. In the
following discussion, the term “matched elements” refers to same-name model ele-
ments of the same type, while “mapped elements” refers to matched, renamed, and
moved elements.

230 Autom Softw Eng (2007) 14: 215–259

4.3.1 Lexical similarity

The term “lexical similarity” refers to the similarity between the names and the com-
ments associated with two compared model elements. UMLDiff integrates three met-
rics of string similarity: (a) the longest common character subsequence (Char-LCS);
(b) the longest common token subsequence (Word-LCS); and (c) the common adja-
cent character pairs (Char-Pair). All these metrics are computationally inexpensive
to calculate, given the usual length of the names and comments of model elements.
They are also case insensitive, since it is common to misspell words with the wrong
case or to modify them with just case changes. They are all applicable to name sim-
ilarity, while only Char-LCS and Word-LCS may be applied to compute comment
similarity.

The name similarity of operations is calculated as the product of their identifier
similarity and their parameter-list similarity, which is computed as one type of struc-
ture similarity for operations. The name similarity of packages is computed based
on their dot-removed names. The comment similarity between two model elements
is only consulted when both elements have associated comments, the UMLDiff pa-
rameter ConsiderCommentSimilarity is true, and the initial overall similarity metric
between these elements is greater than the UMLDiff parameter MinThreshold.

The longest common character subsequence (Char-LCS) algorithm (Wagner and
Fischer 1974) is frequently used to compare strings. Word-LCS applies the same LCS
algorithm, using words instead of characters as the basic constituents of the com-
pared strings. The names of model elements are split into a sequence of words, using
dots, dashes, underscores and case switching as delimiters. Comments are split into
words using space as delimiters. The actual metric used for assessing LCS-similarity
is shown in the following equation:

Char/Word-LCS(s1, s2) = 2 · length(LCS(s1, s2))/(length(s1) + length(s2)),

where LCS() and length() is based on the type of token considered, i.e., characters or
words.

LCS reflects the lexical similarity between two strings, but it is not very robust to
changes of word order, which is common when renaming a design entity. To address
this problem, we have defined the third lexical-similarity metric in terms of how
many common adjacent character pairs are contained in the two compared strings.
The pairs(x) function returns the pairs of adjacent characters in a string x. By con-
sidering adjacent characters, the character ordering information is, to some extent,
taken into account. The Char-Pair similarity metric, which is a value between 0 and
1, is computed according to the following equation:

Char-Pair(s1, s2) = 2 · |pairs(s1) ∩ pairs(s2)|/(|pairs(s1)| + |pairs(s2)|).

4.3.2 Structure similarity

Table 2 lists the relations that UMLDiff examines to compute the structure similar-
ity between two model elements of the same type. The top-level subsystems, corre-
sponding to the two compared versions of a UML logical model, are always assumed

Autom Softw Eng (2007) 14: 215–259 231

Table 2 The UML relations for computing structure similarity

Model element type Type of relations

Top-level Subsystem Always match

Subsystem [namespace – ownedElement]

Incoming and outgoing usage

Package [namespace – ownedElement]

Incoming and outgoing usage

Class and Interface [namespace – ownedElement] and [owner – feature]

Incoming and outgoing usage

Attribute Usage«read»

Usage«write» and inherent Attribute.initValue

Operation [BehaviorFeature – parameter] and [typedParameter – type]

Outgoing usage: Usage«read», Usage«write», Usage«call», and Usage«instantiate»

Incoming usage: Usage«call»

to match. The structure similarity of subsystems, packages, classes and interfaces is
determined by the elements they contain, the elements they use, and the elements that
use them. The structure similarity of attributes is determined by the operations that
read and write them and their initialization expressions. The structure similarity of
operations is determined by the parameters they declare, their outgoing usage depen-
dencies (including the attributes they read and write, the operations they call, and the
classes/interfaces they create), and their incoming usage dependencies (including the
attributes (through their initValue) and the operations that call them).

The structure similarity of two compared elements is a measure of the overlap be-
tween the sets of elements to which the compared elements are related, according to
a given relation type. The intersection of the two related-element sets contains the
pairs of model elements that are related to the compared elements and have already
been established to be mapped or have the same name and element type. This inter-
section set effectively incorporates knowledge of any “known landmarks” to which
both compared model elements are related. Given two model elements of the same
type, e1 and e2, let Setbefore and Setafter be their related-element sets, the structure
similarity between e1 and e2 according to a given group of relations is a normalized
value (between 0 and 1) as computed in the following equation:

StructureSimilarity = matchcount/(matchcount + addcount + removecount),
where the matchcount, addcount, and removecount are the cardinalities of [Setbefore ∩
Setafter], [Setafter − Setbefore], [Setbefore − Setafter] respectively.

For a usage dependency, its count tag, which indicates the number of times that it
appears between the client and supplier elements, is used to compute its matchcount,
addcount, and removecount.

The similarity of the parameters of two compared operations is based on the names
and types of their parameters. The computation of parameter-list similarity is insen-
sitive to the order of parameters. For non-return parameters, if none of the two oper-
ations is overloading, the matchcount for a pair of same-name parameters is 1. If any

232 Autom Softw Eng (2007) 14: 215–259

Table 3 The related model-element sets of Customer.statement()23 and Customer.plainStatement()27

Type of relations Customer.statement() Customer.plainStatement()

Parameter Return : String Return : String

Outgoing usage Read Customer._rentals null

Write null null

Call Customer.getName() PlainStatement.value()

Customer.getTotalCharge()

Customer.getTotalFrequent. . .Points()

Rental.getMove()

Rental.getCharge()

Movie.getTitle()

String.valueOf(double) [2]

String.valueOf(int)

Vector.elements()

Enumeration.hasMoreElements()

Enumeration.nextElement()

Instantiate null PlainStatement

Incoming usage Call Vids.main(String[]) Vids.main(String[])

of the two compared operations is overloading, the types of the two same-name pa-
rameters is further examined, in order to distinguish the overloading methods from
each other, which often declare the same name parameters but with different parame-
ter types. In the case of overloading, if the same-name parameters have the mapped
types, their matchcount is 1; otherwise, their matchcount is set at 0.5. For the return
parameters, if their types map, the matchcount is 1. Otherwise, it is set at 0. If the
type of the return parameter of both operations is void, the matchcount for the return
parameter is set at 0.

The similarity of the initValue of two compared attributes is computed in the
same way as the outgoing usage similarity between two operations. The initValue-
similarity value is added to the overall matchcount of the Usage«write» similarity be-
tween two attributes.

Take the operations Customer.statement()23 and Customer.plainStatement()27 as
an example. Let us assume that UMLDiff has identified the matched model elements
and is in the process of identifying renamings. It collects [Customer.statement()23,
Customer.plainStatement()27] as a pair of renaming candidates (see Sect. 4.4.2).
Table 3 shows the two related-element sets of Customer.statement()23 and
Customer.plainStatement()27. Note that all the incoming and outgoing usages of these
two operations, except for Customer.statement()23 calling String.valueOf(double)23

twice, happen to be one. We omit the count tag attached to such usage dependen-
cies. If a usage dependency appears more than once, it is indicated at the end of
the usage dependency, such as String.valueOf(double) [2]. In the case of comparing
Customer.statement()23 and Customer.plainStatement()27, the similarity of their pa-
rameters is one, their incoming usage similarity is also one, and their outgoing usage
similarity is zero.

Autom Softw Eng (2007) 14: 215–259 233

Table 4 The transitive outgoing usage of Customer.statement()23 and Customer.plainStatement()27

Type of relations Customer.statement() Customer.plainStatement()

Outgoing usage Read Customer._rentals Customer._rentals

Customer._name Customer._name

Movie._title Movie._title

Movie._daysRented Movie._daysRented

Price._price Price._price

Rental._movie Rental._movie

Write null null

Call . . . (omit 17 matched operations) PlainStatement.value()

PlainStatement.headerString()

PlainStatement.eachRentalString()

PlainStatement.footString()

Customer.getRentals()

. . . (omit 17 matched operations)

Instantiate null PlainStatement

When computing incoming and outgoing usage similarity between two operations,
if the two compared operations are related to some other model elements but the inter-
section of the two related-element sets is empty, as in the case of the outgoing usage
of Customer.statement()23 and Customer.plainStatement()27, UMLDiff proceeds to
compute the transitive usage similarity between the two compared operations, if its
ConsiderTransclosureUsageSimilarity parameter is set to true. The transitive usage
similarity takes into account the model elements related through the transitive-closure
of the given relation, in addition to the directly related elements.

Table 4 shows the transitive outgoing usage of Customer.statement()23 and
Customer.plainStatement()27. The transitive usage similarity is still computed as per
the above structure-similarity equation, but without considering the count tag. The
matchcount, addcount, and removecount for the transitive outgoing usage similarity
between Customer.statement()23 and Customer.plainStatement()27 are 23, 6, and 0
respectively. Thus, the transitive outgoing usage similarity is 23/(23+6+0) = 0.79.

Determining the similarity when both related model element sets are empty is
challenging, when, for example, two operations are not called by any other opera-
tions. In such cases, setting the structure similarity to be by default 0 or 1 is not
desirable: without any explicit evidence of similarity, assuming that the structure is
completely the same or completely different may skew the subsequent result. There-
fore, in such cases, UMLDiff uses the name similarity with an increasing exponent.
The effect is dampened as more empty sets are encountered. For example, when com-
puting the structure similarity of two operations in the order of their parameter-list,
outgoing usage and incoming usage similarities, if the two compared operations de-
clare no parameters, have return type void, and have no outgoing and incoming us-
age dependencies, UMLDiff returns name-similarity1 for comparing parameter-list
similarity, name-similarity2 for outgoing usage similarity, and name-similarity3 for
incoming usage similarity.

234 Autom Softw Eng (2007) 14: 215–259

4.3.3 Overall similarity assessment

Given two model elements e1 and e2 of the same type, their overall similarity metric,
used for determining potentially renamed and moved model elements, is computed
according to the following equation:

SimilarityMetric = (lexical-similarity + �N structure-similarity)/(lexical-
similarity + N), where lexical-similarity = name-similarity + comment-similarity,
and N is the number of different types of structure similarities computed for a given
type of model elements, as defined in Table 2.

The value of �N structure-similarity is adjusted in the following cases. When com-
paring two operations, if anyone of them is overloaded, �N structure-similarity is
multiplied by the parameter-list similarity of the compared operations in order to
distinguish the overloading operations from each other, which often have similar
usage dependencies but with different parameters. When determining the potential
moves of attributes and operations, if the declaring classes/interfaces of the com-
pared attributes/operations are not related through inheritance, containment, or usage
relations, the value of �N structure-similarity is multiplied by the overall similarity
metrics of the classes in which the compared attributes/operations are declared and
then divided by the product of the numbers of all the not-yet-mapped model elements
with the same name (same identifier for operation) and type as the two compared el-
ements. This is designed to improve the low precision when identifying attribute and
operation moves.

UMLDiff uses two user-defined thresholds (RenameThreshold and MoveThresh-
old): two model elements are considered as the “same” element renamed or moved
when their overall similarity metric is above the corresponding threshold. If, for a
given element in the “before” version, there are several potential mappings above
the user-specified threshold in the “after” version, the one with the highest similarity
score is chosen. The higher the threshold is, the stricter the similarity requirement is.
The smaller the threshold is, the riskier the renamings and moves are.

4.4 Mapping model elements

Given two versions, “before” and “after”, of a UML logical model and their corre-
sponding directed graphs Gbefore(Vbefore,Ebefore) and Gafter(Vafter,Eafter), UMLDiff
starts with the original vertex sets Vbefore and Vafter that contain all the model elements
and the initially empty mapped element set. After it finishes mapping the model el-
ements, the mapped element set contains all the identified matched, renamed, and
moved model elements, and the Vbefore contains all the elements that have been re-
moved and the Vafter contains all the elements that have been added when the system
model evolves.

Table 5 presents the partial model-element sets of versions 23 and 27 of our
running example, V23 and V27, organized according to their containment hierarchy.
“null” entries indicate that there is no model element of a given type contained in
a particular model element. In the remainder of this subsection, we present how
UMLDiff identifies same-name (i.e., matched), renamed, moved model elements us-
ing the running example presented in Sect. 4.1.

Autom Softw Eng (2007) 14: 215–259 235

Table 5 The partial model-element sets V23 and V27

Version23: Top-level subsystem Version27: Top-level subsystem

Elements Their children Elements Their children

Version23 Subsystem null Version27 Subsystem null

Package default Package default

PLDatatype String[] PLDatatype String[]

Default Package null Default Package null

Class Vids Class Vids

Rental Rental

Movie Movie

Customer Customer

HTMLStatement

Interface null Interface null

Vids Class null Vids Class null

Interface null Interface null

Operation main(String[]) Operation main(String[])

Operation«c» null Operation«c» null

Attribute null Attribute null

Customer Class null Customer Class PlainStatement

Interface null Interface null

Operation getName() Operation getName()

getTotalChange() getTotalChange()

getTotal. . .Points() getTotal. . .Points()

htmlStatement() htmlStatement()

statement() plainStatement()

getRentals()

Operation«c» Customer(String) Operation«c» Customer(String)

Attribute _name Attribute _name

_rentals _rentals

4.4.1 “Matched” elements

UMLDiff assumes that enough model elements remain “matched” between two com-
pared versions of the system, which serve as the “initial landmarks” set for recogniz-
ing renamed and moved elements. The term “matched” refers to two corresponding
model elements, of the same UML type, contained in a pair of mapped elements,
which have the same names, although their children, attributes, and relations with
other elements may be different.

The very first step of UMLDiff is to identify as many matched model elements
as possible. It starts at the top-level subsystems of the two compared versions of the
system model, which are always assumed to match. The pair of the matched top-level
subsystems is added into the mapped element set as the first pair of mapped elements.
UMLDiff then progresses along the containment hierarchy of the models, moving

236 Autom Softw Eng (2007) 14: 215–259

from one logical level to the next in both trees at the same time, from subsystems, to
packages, classes and interfaces, and finally attributes and operations. Given a pair
of mapped model elements of the current logical level in the mapped element set,
UMLDiff identifies all their children of the same type with same names, adds them
to the mapped element set as new pairs of matched elements, and removes them
from the set Vbefore and Vafter respectively. The pairs of matched children may be
at the current logical level or one level below. The process continues until there are
no more unprocessed pairs of matched elements of the current logical level in the
mapped element set and UMLDiff then progresses down to the next logical level.

Consider, for example, our running example. The matched model elements are
of regular font and left justified in Table 5. In this example, given the matched top-
level subsystems, UMLDiff adds their contained same-name default packages into the
mapped element set. Next, it maps the four same-name classes contained in the de-
fault package. Given the matched class Customer, it maps the same-name attributes,
constructor, and operations it declares. Note that there is no mapped nested model ele-
ment in this simple running example. UMLDiff proceeds directly from the subsystem,
to the package level, to the class/interface level, and finally to the attribute/operation
level.

UMLDiff may not recover all the pairs of the matched model elements in this
round: same-name, same-type model elements contained in renamed and moved par-
ent elements are also considered as matched, but, at this stage, the renamed and
moved model elements have not yet been recovered. As the pairs of renamed or
moved elements are added to the mapped element set, UMLDiff attempts again to
identify the same-name, i.e. matched, children they contain recursively, starting at
the given pair of renamed/moved model elements. The only difference is that, instead
of traversing the whole containment hierarchy from the top-level subsystem, it tra-
verses the subtree of the containment hierarchy rooted at the given pair of renamed
or moved model elements.

4.4.2 Renamed4 elements

After UMLDiff has completed its recognition of matched model elements, it proceeds
to recover the renamed model elements. UMLDiff only considers potential renamings
within the context of two mapped elements, such as the renaming of an operation
within a mapped class. Identifying renamings between two arbitrary elements of the
same type, such as the renaming of an operation that was moved from one class to
another and then had its identifier renamed, is computationally expensive, since it re-
quires the comparison of all the pairs of not-yet-mapped model elements of the same
type. Again, UMLDiff starts at the matched top-level subsystems of the two com-
pared versions of the system model and it traverses all the mapped model elements
along the containment-spanning trees of the compared model graphs to identify pairs
of renamed elements, moving from one logical level to the next when it has com-
pleted traversing all the model elements of the current logical level in both spanning
trees.

4The renamings of operations include the changes to their identifiers and/or parameter lists. Furthermore,
UMLDiff does not consider parameter renamings.

Autom Softw Eng (2007) 14: 215–259 237

Note that UMLDiff may not recover all the pairs of the renamed model elements
in its first round of recognizing the renamed elements due to two reasons. It may miss
the pairs of renamed elements because their related elements have undergone renam-
ings and/or moves as well. Some of these misses may be recovered in the following
rounds of renaming identification (see Sect. 4.4.4). Furthermore, renamed model ele-
ments may be contained within moved elements or other not-yet-identified renamed
elements. Once the pairs of such elements have been added to the mapped element
set, UMLDiff attempts again to identify the pairs of renamed model elements they
contain recursively starting at the given pair of moved or newly-identified renamed
model elements.

Given a pair of mapped model elements of the current logical level in the mapped
element set, UMLDiff first collects all their not-yet-mapped children of the same
type and formulates sets of candidate renaming pairs. Suppose there are N not-yet-
mapped elements of a particular type contained in the “before” version of the mapped
elements and M in the “after” version: UMLDiff generates N sets of renaming can-
didate pairs, each of which contains M pairs. It then identifies the renamed model
elements based on their lexical and structure similarities, adds the newly identified
pairs of renamed elements to the mapped element set, and removes them from the
Vbefore and Vafter sets. Adding a pair of renamed elements to the mapped element set
triggers UMLDiff to recursively recognize the matched descendants they contain. The
pairs of newly identified renamed and matched children may be at the current logical
level or one level below. The process continues until there are no more unprocessed
pairs of mapped elements of the current logical level in the mapped element set and
UMLDiff then progresses down to the next logical level.

For example, when comparing the version 23 and 27 of our running example,
the matched top-level subsystems contain only a pair of matched default packages.
The matched default packages contain four matched classes and one not-yet-mapped
class, HTMLStatement27. Thus, at this point, there are no potential renaming candi-
date pairs. However, when UMLDiff reaches the matched class Customer, it collects
the following not-yet-mapped children: operation Customer.statement()23, and op-
erations Customer.plainStatement()27 and Customer.getRentals()27 and nested class
PlainStatement27. Since there are no not-yet-mapped nested classes contained in the
class Customer23, there is no need yet for identifying renamings of the Customer’s
nested classes. However, UMLDiff formulates one set of operation-renaming can-
didate pairs (italic font and right justified in Tables 5 and 7), which contains two
pairs of renaming candidates: [statement()23, plainStatement()27] and [statement()23,
getRentals()27].

The overall similarity of each of these pairs is computed according to the equa-
tions shown in Sect. 4.3.3, based on their lexical and structure similarities. When
comparing Customer.statement()23 and Customer.plainStatement()27, UMLDiff com-
putes three types of structure similarity between them, i.e. parameter list, outgoing
usage, and incoming usage, which are 1, 0.793, 1 respectively. Their identifier sim-
ilarity using Word-LCS5 is 0.5. Thus, their overall similarity metric is 0.941. The
overall similarity metric between [statement()23, getRentals()27] is similarly com-
puted to be 0.139. Thus, plainStatement()27 is much more similar to statement()23

5Word-LCS is used for all the lexical-similarity computation in this paper.

238 Autom Softw Eng (2007) 14: 215–259

Table 6 The sets of renaming candidate pairs

HTMLStatement

[header?()a − ?Header()] [footer?() − ?Header()] [each?() − ?Header()] [value() − ?Header()]

[header?() − ?Footer()] [footer?() − ?Footer()] [each?() − ?Footer()] [value() − ?Footer()]

[header?() − ?Each. . .()] [footer?() − ?Each. . .()] [each?() − ?Each. . .()] [value() − ?Each. . .()]

Customer

[getTotalCharge() − getAllCharge()] [getTotalFrequentRenterPoints() − getAllCharge()]

[getTotalCharge() − getAllFrequentRenterPoints()] [getTotalFrequentRen. . .() − getAllFrequentRen. . .()]

aReplace the suffix “String” and the prefix “print” with “?” for the operations of HTMLStatement to fit
them in table.

than getRentals()27. Assuming that the RenameThreshold is less than 0.941, the pair
[statement()23, plainStatement()27] is recognized as an instance of operation renam-
ing.

Let us now look at the versions 27 and 28 of our running example. They involve
much more complex changes, including many renamings and moves. Let us first ex-
amine renamings. Similar to the comparison of versions 23 and 27, UMLDiff first
identifies all the matched model elements starting from the top-level subsystems.
Then it proceeds to collect potential renaming candidates and to formulate the sets
of candidate renaming pairs, such as those shown in Table 6 for the matched class
HTMLStatement and Customer.

Note that HTMLStatement.value()27 is collected as a renaming candidate at this
stage of UMLDiff process. It is compared against three HTMLStatement.printXXX()28
operations but it is not found similar to anyone of them; therefore, it is finally col-
lected as one of the potential move candidates (bold font and left justified in Table 7).
Furthermore, the abstract operations, such as those of the class Statement, are not
collected as renaming or move candidates: since they have no outgoing usage, the
identification of their renamings or moves tends to be error-prone. UMLDiff ignores
them in its renaming and move identification process. However, the renamings of
the abstract operations may be recovered by propagating the knowledge of the iden-
tified renamings of their implementation operations along the inheritance hierarchy
as discussed in Sect. 4.4.5. Finally, at this stage, the not-yet-mapped operations of
the PlainStatement class are not collected as renaming candidates, since the move of
the class PlainStatement has not yet been identified. However, they will be processed
when the move of PlainStatement is identified and added to the mapped element set.

UMLDiff computes the overall similarity metrics of all the pairs of renaming can-
didates contained in a given pair of mapped model elements and selects the pair with
the highest similarity metric (above the RenameThreshold) to be added to the mapped
element set as a renaming. It then removes from the candidate sets all other pairs that
contain the elements of the selected pair. This process continues until there is no pair
left.

For example, if the UMLDiff RenameThreshold parameter is 0.3, then all 12
pairs of operation-renaming candidates of the matched HTMLStatement class have
sufficiently high similarity metric to be qualified for further examination. The pair

Autom Softw Eng (2007) 14: 215–259 239

Table 7 The initial not-yet-mapped model elements after the match/renaming recognition steps

Version27: Top-level subsystem Version28: Top-level subsystem

Elements Their children Elements Their children

Version27 Subsystem null Version28 Subsystem null

Package null Package null

PLDatatype null PLDatatype null

default Package null default Package null

Class null Class PlainStatement

Interface null Interface null

Customer Class PlainStatement Customer Class null

Interface null Interface null

Operation null Operation null

Operation«c» null Operation«c» null

Attribute null Attribute null

PlainStatement Class null PlainStatement Class null

Interface null Interface null

Operation headerString() Operation printHeader()

eachRentalString() printEachRental()

footerString() printFooter()

value()

Operation«c» null Operation«c» null

Attribute null Attribute null

HTMLStatement Class null HTMLStatement Class null

Interface null Interface null

Operation value() Operation null

Operation«c» null Operation«c» null

Attribute null Attribute null

Statement Class null

Interface null

Operation value()

Operation«c» null

Attribute null

[eachRentalString()23, printEachRental()27] ranks highest and is selected as a pair of
renamed elements; then all other pairs that contain either eachRentalString()23 or
printEachRental()27 are removed from the list. UMLDiff then selects the pair with the
highest similarity-metric value in the current list until the pair list is empty.

4.4.3 Moved elements

Finally, UMLDiff proceeds to examine those model elements that have not yet been
identified as matches or renamings and to consider whether they may have been

240 Autom Softw Eng (2007) 14: 215–259

moved from one part of the system to another. It first starts at the top-level subsystem
of Vbefore and traverses all the not-yet-mapped model elements along the containment
hierarchy of the model, moving from one logical level to the next, when there are no
more unprocessed elements of the current logical level. Thus, UMLDiff first identi-
fies all the potential subsystem moves, and then progresses down to package moves,
class and interface moves, and finally attribute and operation moves.

When it encounters a not-yet-mapped model element ebefore, UMLDiff collects all
the not-yet-mapped same-type and same-name (same-identifier for operation) model
elements in Vafter and forms a set of move candidate pairs, if such elements exist.
It then computes the overall similarity metrics for all these candidate pairs, selects
the pair with the highest similarity metric (above the MoveThreshold), and adds it
to the mapped element set as a pair of moved model elements. Adding a pair of
moved elements to the mapped element set triggers UMLDiff to recursively recognize
their matched and renamed descendants. This process continues until all the not-
yet-mapped model elements of the current logical level have been processed; then
UMLDiff proceeds to identify the potential moves at one logical level below.

Note that for operations, UMLDiff uses their identifiers instead of their full signa-
tures to collect move candidates, which enables the identification of changes involv-
ing operation moves with simultaneous parameter-list modifications. Furthermore,
the set of not-yet-mapped elements may change as the process goes on, because the
descendants of the newly identified moved elements might be identified as matches
and renamings when the pairs of moved elements are added to the mapped element
set, as discussed for the moved PlainStatement class below. Finally, the identified
moved elements are only removed from Vbefore and Vafter after the whole move recog-
nition step is complete. After all the not-yet-mapped elements in Vbefore have been
processed, UMLDiff starts at the top-level subsystem of Vafter and performs the same
tasks as above. This step, together with not-immediately-remove-moved-elements-
from-element-sets, enables UMLDiff to identify many-to-one and one-to-many map-
ping between moved elements.

Table 7 lists all the remaining not-yet-mapped model elements that are still in V27
and V28 of our running example, after UMLDiff has completed the match and renam-
ing recognition steps. Note that the three abstract operations of the Statement class
are not listed in Table 7, since UMLDiff does not consider the moves of the abstract
operations, which tends to be error-prone due to the lack of outgoing usage depen-
dencies from them. The top-level subsystem, Version27, and its default27 package
do not contain any not-yet-mapped subsystems or packages. Thus, UMLDiff pro-
ceeds to the class/interface logical level. When traversing the classes and interfaces,
it encounters a not-yet-mapped class Customer.PlainStatement27 (bold font and left
justified in Table 7 for move candidates). UMLDiff then searches the remaining not-
yet-mapped classes contained in V28 and retrieves all the classes with the same name.
It finds the not-yet-mapped class PlainStatement28 in the default28 package. Given the
moving candidates [Customer.PlainStatement27, default.PlainStatement28], UMLDiff
computes their similarity metric to be 0.6. If the MoveThreshold is lower than 0.6, the
pair of [Customer.PlainStatement27, default.PlainStatement28] is added to the mapped
element set as a moved class.

Adding the moved class [Customer.PlainStatement27, default.PlainStatement28] to
the mapped element set triggers UMLDiff to recognize the matched and renamed de-
scendants they contain. The class PlainStatement has no matched children, but it has

Autom Softw Eng (2007) 14: 215–259 241

four and three not-yet-mapped operations in version 27 and 28 respectively. UMLDiff
collects them as renaming candidates and identifies three operation renamings (italic
font and right justified in Table 7) that are added to the mapped element set.

After processing the class PlainStatement, there aren’t any not-yet-mapped classes
or interfaces and UMLDiff proceeds to the attribute/operation level. It encounters the
not-yet-mapped operation HTMLStatement.value()27 and retrieves from Version28 the
not-yet-mapped operation Statement.value()28. UMLDiff computes the overall sim-
ilarity of the candidate move pair [HTMLStatement.value()27, Statement.value()28]
to be 0.71. The [HTMLStatement.value()27, Statement.value()28] pair is added to
the mapped element set as a moved operation, assuming that the MoveThresh-
old is lower than 0.71. After that, UMLDiff encounters the not-yet-mapped op-
eration PlainStatement.value()27. Similarly to HTMLStatement.value()27, the pair
[PlainStatement.value()27, Statement.value()28] is also identified as an operation
move. Note that the operations headerString(), footerString(), and eachRentalString()
of PlainStatement are not encountered as not-yet-mapped elements: they are identi-
fied as operation renamings when the move of PlainStatement class is recognized,
which results in them being removed from the initial remaining not-yet-mapped
model element sets. After processing all the not-yet-mapped elements in V27, UMLD-
iff starts over at the top-level subsystem of V28, which contributes no more moves in
this running example.

When examining attribute/operation move candidates, if their declaring classes
(interfaces) are related through inheritance, containment, or usage relations, their
non-adjusted structure similarities are used in the computation of their overall simi-
larity. Otherwise, UMLDiff computes the overall similarity metric of their declaring
classes (parent-similarity) and calculates the product (amount-potential-moves) of the
numbers of the not-yet-mapped, same-type, same-name model elements as the two
compared elements in the two compared versions. In this case, the structure similar-
ity of the two compared attributes/operations is adjusted as �N structure-similarity ·
parent-similarity/amount-potential-moves. Intuitively, if the source and target classes
of the moved attribute/operation have no special relation, UMLDiff takes into account
the contexts from and to which the attributes/operations move: they must be similar
enough in order for the moves of attributes/operations to make sense. Furthermore,
the more the potential moves of the same kind are, the less likely it is that any of them
will be recognized as a valid move.

Take the [HTMLStatement.value()27, Statement.value()28] as an example: since
Statement is the superclass of HTMLStatement, the original structure similarity 1.83
is used to compute the overall similarity metric, which is 0.71. Let us assume that
there is no special relation between HTMLStatement and Statement. The overall sim-
ilarity metric (parent-similarity) of [HTMLStatement27, Statement28] is 0.7 and there
are two potential moves of the value() operation. Thus, the structure similarity of
[HTMLStatement.value(), Statement.value()] that is used to compute the overall sim-
ilarity metric becomes 1.83 · 0.7/2 = 1.3, which brings the overall similarity metric
down to 0.58.

This technique is designed to improve the precision of moves of the origi-
nal UMLDiff (Xing and Stroulia 2005b), which tend to have low precision of at-
tribute/operation moves. For example, in an interactive system, many classes im-
plement the ActionListener interface and its actionPerformed() operation; in general,

242 Autom Softw Eng (2007) 14: 215–259

these implementations handle different user actions and are used in different contexts.
However, when some actionPerformed() method disappears (usually because its class
is removed or has stopped implementing the ActionListener interface) and new ones
appear between two compared versions of a model, the original UMLDiff algorithm
tends to report those as pairs of moves, which usually does not make sense. The
current UMLDiff algorithm integrates the above technique to filter out such moves.

4.4.4 Propagating knowledge of identified renamings and moves along usage
dependency

UMLDiff computes the structure similarity of two compared model elements in terms
of the intersection of their two related-element sets. It is sensitive to the order that
a set of renamed and/or moved model elements are examined, which may result in
some renamings and moves being missed during a particular round of renaming/move
identification. On the other hand, the more renamings and moves UMLDiff recovers,
the larger the current “landmarks” set (i.e., the mapped element set) becomes, and
the more likely it becomes that UMLDiff may recover further related renamings and
moves.

Let us look at versions 27 and 28 of our running example. The operations
Customer.getTotalCharge()27 and Customer.getTotalFrequentRenterPoints()27 and
their caller operations HTMLStatement.footerString()27 and PlainStatement.footer-
String()27 are renamed to Customer.getAllCharge()28, Customer.getAllFrequent-
RenterPoints()28, HTMLStatement.printFooter()28 and PlainStatement.printFooter()28

respectively.
First, the renaming candidate pair [PlainStatement.footerString()27, PlainState-

ment.printFooter()28] is examined after the PlainStatement class has been recognized
as moved. Furthermore, the renaming candidates [Customer.getTotalCharge()27,
Customer.getAllCharge()28] may be compared before [HTMLStatement.footer-
String()27, HTMLStatement.printFooter()28]; even if the order is reverse, the renaming
of [HTMLStatement.footerString()27, HTMLStatement.printFooter()28] may not be re-
covered if the RenameThreshold is greater than 0.5 (see below). Therefore, at the time
of determining the mapping between [getTotalCharge()27, getAllCharge()28], their
incoming usage relations may be substantially different and their incoming usage
similarity may be 0. However, the operations [getTotalCharge()27, getAllCharge()28]
declare the same parameters and they use the same sets of other model elements; their
parameter-list similarity and outgoing usage similarity are 1, which brings their over-
all similarity to 0.714, which is sufficiently high. Thus, even without the knowledge of
the renaming [HTMLStatement.footerString()27, HTMLStatement.printFooter()28] and
[PlainStatement.footerString()27, PlainStatement.printFooter()28], getTotalCharge()27

and getAllCharge()28 may still be recovered as a renamed pair, at a fairly high Re-
nameThreshold. The case of the renaming candidates [getTotalFrequentRenterPoints()27,
getAllFrequentRenterPoints()28] is similar.

On the other hand, the outgoing usage similarity of [HTMLStatement.footer-
String()27, HTMLStatement.printFooter()28] is 0.33, when the renaming pairs [getTotal-
Charge()27, getAllCharge()28] and [getTotalFrequentRenterPoints()27, getAllFrequent-
RenterPoints()28] have not yet been recovered, but it increases to 1 if these pairs have

Autom Softw Eng (2007) 14: 215–259 243

already been established as renamings before UMLDiff considers the renaming can-
didate pair [HTMLStatement.footerString()27, HTMLStatement.printFooter()28]. The
corresponding overall similarity metric of the pair [HTMLStatement.footerString()27,
HTMLStatement.printFooter()28] increases from 0.5 to 0.7, which may push the pair
above the RenameThreshold.

It is computationally expensive to keep track of all related not-yet-mapped model
elements. Furthermore, as shown in the example, it is not necessary to update the
similarity metric of two not-yet-mapped model elements as each of its related re-
namings and/or moves is recovered. For example, we only need to re-compute the
similarity metric of the renaming candidate pair [HTMLStatement.footerString()27,
HTMLStatement.printFooter()28] once after both the renamings of [getTotalCharge()27,
getAllCharge()28] and [getTotalFrequentRenterPoints()27, getAllFrequentRenter-
Points()28] are identified. Therefore, at the end of each round of renaming and move
identification, UMLDiff collects the pairs of not-yet-mapped renaming and move can-
didates that are related, through usage dependencies, to the newly identified renamed
and moved model elements in the last round and updates their similarity metrics to
see if they may be qualified this time.

UMLDiff may be configured to perform up to MaxRenameRound and MaxMove
Round of renaming and move recognition or to continue until there is no more af-
fected potential renaming and move candidates that are related to the new instances
of renamings and moves identified in the last round. Allowing multiple rounds of re-
naming and move identification relieves the impact of the order of the model elements
being processed by UMLDiff on its final mapping results.

4.4.5 Propagating identified operation renamings along inheritance hierarchy

When the move of PlainStatement class is identified, UMLDiff attempts to recover its
operation renamings (see Sect. 4.4.3). When the pair [PlainStatement.footerString()27,
PlainStatement.printFooter()28] is examined, the related operation renamings [get-
TotalCharge()27, getAllCharge()28] and [getTotalFrequentRenterPoints()27, getAll-
FrequentRenterPoints()28] have already been identified. However, the overall simi-
larity of the pair [PlainStatement.footerString()27, PlainStatement.printFooter()28] is
0.475, still not sufficiently high, in comparison with the similarity (0.7) of the op-
eration pair [HTMLStatement.footerString()27, HTMLStatement.printFooter()28], since
we intentionally introduced more changes to the PlainStatement.printFooter()28 (see
Sect. 4.1). It is therefore possible that the renaming of [PlainStatement.footer-
String()27, PlainStatement.printFooter()28] is not recognized when the renaming of
[HTMLStatement.footerString()27, HTMLStatement.printFooter()28] is, if, for example,
the RenameThreshold is 0.5.

However, UMLDiff knows that both HTMLStatement and PlainStatement extend
the Statement class and their corresponding footerString() and printFooter() opera-
tions implement the abstract Statement.footerString() and Statement.printFooter() op-
erations in the two compared versions. Implementing (or overriding) operations must
have the same signature (i.e., the same identifier and parameter list) as the operations
they implement (override). Therefore, if any one of them is renamed, all the rest must
be renamed as well. Based on this definition, UMLDiff propagates the knowledge of
the identified operation renamings along (both up and down) their implementation

244 Autom Softw Eng (2007) 14: 215–259

(overriding) hierarchy, which may result in recognizing the renamings of abstract
operations (which are not explicitly compared) and the renamings of other imple-
mentation (overriding) operations, as yet missed.

For example, based on the identified renaming [HTMLStatement.footerString()27,
HTMLStatement.printFooter()28], UMLDiff first searches up to the top-most mapped
ancestor class or interface (Statement in this case) and collects the pair of not-
yet-mapped operations (the abstract operations [Statement.footerString()27, State-
ment.printFooter()28]) that are implemented (or overridden) by the identified pair
of renamed operations and asserts them as a pair of renamed operations. And
then based on the recovered operation renaming of the top-most ancestor class
([Statement.footerString()27, Statement.printFooter()28]), UMLDiff searches down
all the pairs of the not-yet-mapped operations ([PlainStatement.footerString()27,
PlainStatement.printFooter()28]) that implement (override) them and asserts all of
them as pairs of renamed operations.

4.5 Mapping relations

In Sect. 4.4, we discussed the UMLDiff process for mapping the elements of two
UML logical models corresponding to two versions of an evolving software system.
This process produces three sets that contain (a) the model elements for which map-
pings have been identified in the two compared versions (i.e., matched, renamed,
and moved), (b) the removed elements, and (c) the newly introduced elements re-
spectively. UMLDiff then proceeds to map the relations between the model elements,
i.e., to map the edge set (Ebefore,Eafter) of the model graphs. This process step also
produces three relation sets that contain (a) the mapped relations between the two
model elements, (b) the removed relations, and (b) the newly introduced relations
respectively.

The UML relations are defined by their types as described in Tables 11 and 12
and the UML model elements they relate. Given two model elements (vbefore, vafter),
where vafter = null if vbefore is removed and vbefore = null if vafter is added, UMLDiff
collects all their relations in the two compared models. Two same-type relations of
the model elements vbefore and vafter in the two compared versions are matched, if the
model elements they relate are contained in the mapped model element set, i.e., they
map to each other. After UMLDiff finishes comparing the relations of all the pairs
of the model elements, all unmatched relations that are still contained in Ebefore are
assumed to have been removed and all unmatched relations in Eafter are assumed to
have been added when system evolves from the “before” version and the “after”.

Note that the removed model elements contained in (Vbefore −Vafter) and the newly
added model elements contained in (Vafter − Vbefore) have no counterpart in the com-
pared models. The relations from (to) a removed model element are all removed and
the relations from (to) an added model element are all newly added. For a pair of
mapped elements (vbefore, vafter), they may have matched, newly added, and/or re-
moved relations. A removed (added) relation between the two model elements does
not indicate that any of the elements it relates has been removed (added). For usage
dependencies, UMLDiff also compares their count tag and reports the changes to the
number of times they appear between the model elements.

Autom Softw Eng (2007) 14: 215–259 245

Ta
bl

e
8

M
ap

pi
ng

re
la

tio
ns

of
th

e
re

na
m

ed
[C

us
to

m
er

.s
ta

te
m

en
t(

) 2
3

,C
us

to
m

er
.p

la
in

St
at

em
en

t(
) 2

7
]

V
er

si
on

23
V

er
si

on
27

/V
er

si
on

28

Ty
pe

of
re

la
tio

n
In

st
an

ce
s

of
re

la
tio

n
Ty

pe
of

re
la

tio
n

In
st

an
ce

s
of

re
la

tio
n

[o
w

ne
r–

fe
at

ur
e]

[C
us

to
m

er
,s

ta
te

m
en

t(
)]

[o
w

ne
r–

fe
at

ur
e]

[C
us

to
m

er
,p

la
in

St
at

em
en

t(
)]

U
sa

ge
«r

ea
d»

[s
ta

te
m

en
t(

),
_r

en
ta

l]
U

sa
ge

«r
ea

d»
nu

ll

In
co

m
in

g
U

sa
ge

«c
al

l»
[V

id
s.

m
ai

n(
),

st
at

em
en

t(
)]

In
co

m
in

g
U

sa
ge

«c
al

l»
[V

id
s.

m
ai

n(
),

pl
ai

nS
ta

te
m

en
t(

)]

O
ut

go
in

g
U

sa
ge

«c
al

l»
[s

ta
te

m
en

t(
),

ge
tN

am
e(

)]
O

ut
go

in
g

U
sa

ge
«c

al
l»

�
�
�
�
�
�
�
�
�
�
�
�
�

[p
la

in
St

at
em

en
t(

),
�
�
�
�
�
�
�
�
�
�
�
�
�

Pl
ai

nS
tm

t.v
al

ue
()

]

[s
ta

te
m

en
t(

),
ge

tT
ot

al
C

ha
rg

e(
)]

[s
ta

te
m

en
t(

),
ge

tT
ot

al
Fr

eq
ue

nt
..

.(
)]

[s
ta

te
m

en
t(

),
ge

tM
ov

e(
)]

[s
ta

te
m

en
t(

),
R

en
ta

l.g
et

C
ha

rg
e(

)]

[s
ta

te
m

en
t(

),
ge

tT
itl

e(
)]

[s
ta

te
m

en
t(

),
va

lu
eO

f(
do

ub
le

)]
[2

]

[s
ta

te
m

en
t(

),
va

lu
eO

f(
in

t)
]

[s
ta

te
m

en
t(

),
V

ec
to

r.e
le

m
en

ts
()

]

[s
ta

te
m

en
t(

),
ha

sM
or

eE
le

m
en

ts
()

]

[s
ta

te
m

en
t(

),
ne

xt
E

le
m

en
t(

)]

U
sa

ge
«i

ns
ta

nt
ia

te
»

nu
ll

U
sa

ge
«i

ns
ta

nt
ia

te
»

�
�
�
�
�
�
�
�
�
�
�
�
�

[p
la

in
St

at
em

en
t(

),
�
�
�
�
�
�
�
�
�
�
�

Pl
ai

nS
ta

te
m

en
t]

U
sa

ge
«w

ri
te

»
nu

ll
U

sa
ge

«w
ri

te
»

nu
ll

U
sa

ge
«s

en
d»

nu
ll

U
sa

ge
«s

en
d»

nu
ll

Pa
ra

m
et

er
[s

ta
te

m
en

t(
),

re
tu

rn
:S

tr
in

g]
Pa

ra
m

et
er

[p
la

in
St

at
em

en
t(

),
re

tu
rn

:S
tr

in
g]

ra
id

ed
Si

gn
al

nu
ll

ra
id

ed
Si

gn
al

nu
ll

R
ec

ep
tio

n
nu

ll
R

ec
ep

tio
n

nu
ll

246 Autom Softw Eng (2007) 14: 215–259

Table 8 lists all the relations of the renamed operation [Customer.statement()23,
Customer.plainStatement()27], grouped according to their types. Consider the inco-
ming-call relation as an example: the statement()23 and plainStatement()27 opera-
tions are called by the operations Vids.main(String[])23 and Vids.main(String[])27 re-
spectively, which are matched. Thus, the renamed operation [Customer.statement()23,
Customer.plainStatement()27] has a matched (regular font and right justified in
Table 8) incoming-call relation. Similarly, they have a matched composition relation
(both are declared in the matched class Customer) and a matched [BehaviorFeature–
parameter] relation (both declare a return parameter of type String). All the removed
relations are highlighted with strikethrough lines, while all the newly introduced rela-
tions are underlined with dash lines. The renamed operation [Customer.statement()27,
Customer.plainStatement()28] no longer uses the attribute Customer._rental (a re-
moved Usage«read» relation), but the attributes Customer._rental exist in both versions
23 and 27, i.e., they are matched. Furthermore, two (indicated by [2] at the end of the
usage dependency) operation calls to String.valueOf(double) are removed (a removed
outgoing Usage«call» relation with tag count = 2) when Customer.statement()23
evolves to Customer.plainStatement()27.

4.6 Recognizing behavior redistribution

Developers, sometimes, redistribute the behavior in the system in order to reorga-
nize the inheritance hierarchy, restructure the usage dependencies between objects,
or refactor a long method. After UMLDiff finishes mapping the model elements and
their relations, it attempts to detect the redistribution of the behavior among opera-
tions, by analyzing the removals and additions of Usage«read»/«write»/«call»/«instantiate»

dependencies of the mapped operations and the related removed or added operations
along their transitive usage and generalization/abstraction relations.

Behavior redistribution is reported in terms of Extract operation and Inline oper-
ation changes. Note that our concepts of Extract operation and Inline operation are
broader than the Extract Method and Inline Method introduced in Fowler’s refactor-
ing catalog (Fowler 1999), which are limited to refactoring only class internals.

We discuss in detail how UMLDiff detects operation extraction (operation inlin-
ing is detected in the same manner). Given two mapped operations [obefore, oafter]
with some removed outgoing Usage«read»/«write»/«call»/«instantiate» relations originating
from obefore, UMLDiff identifies the candidate targets (otarget) of the behavior re-
distribution, as all the newly added operations that have a transitive relation with
oafter through the relations of Usage«call» (incoming and outgoing), Generalization
(overriding or overridden), Abstraction«realize» (implemented by), or a combination
of them. We consider a removed outgoing usage relation [obefore, ebefore] from obefore
as equal (not equivalent to relation match) to a newly added relation [otarget, eafter]
from one candidate target operation, if they are of the same type and the elements
[ebefore, eafter] have been mapped. If the set of the outgoing usage relations from a
candidate target operation otarget is a subset of the removed outgoing usage relations
from obefore, or their intersection set is greater than the user-specific threshold, then
UMLDiff asserts that otarget is extracted from obefore.

Let us now compare the versions 23 and 28 of our running example. UMLDiff
identifies the renamed operation [Customer.statement()23, Customer.plain-

Autom Softw Eng (2007) 14: 215–259 247

Statement()28] and reports the relation differences as shown in Table 8. Since the
operation Customer.plainStatement() has not changed between versions 27 and
28, Table 8 reflects the relation changes between its versions 23 and 27 as well
as its versions 23 and 28. Given the renamed operation [Customer.statement()23,
Customer.plainStatement()28], Customer.statement()23 is obefore in this example and
Customer.plainStatement()28 is oafter, and they have some removed outgoing us-
age relations (shown with strikethrough lines in Table 8). UMLDiff then collects
all the newly added operations (the candidate targets) that have transitive usage
and/or generalization/abstraction relations with Customer.plainStatement()28. The
operation Customer.plainStatement()28 calls Statement.value()28, which in turn calls
Customer.getRentals()28 and the three abstract operations Statement.printHeader()28/
printFooter()28/printEachRental()28, which are implemented by PlainStatement.
printHeader()28/printFooter()28/printEachRental()28 respectively. All these operations
are newly introduced in version 28. Thus, the candidate targets of the behavior
redistribution include Customer.getRentals()28 and PlainStatement.printHeader()28/
printFooter()28/printEachRental()28. Note that UMLDiff ignores the abstract opera-
tions, since they have no outgoing usage.

Table 9 lists the removed outgoing usages of the operation Customer.statement()23
and the candidate target operations and their newly added outgoing usages, when the
model evolves from version 23 to 28. The outgoing usage relations of the target
operations Customer.getRentals()28 and PlainStatement.printHeader()28/printEach-
Rental()28 are the subset of the removed outgoing usage relations of the Customer.
statement()23. UMLDiff asserts that these three target operations have been extracted
from the Customer.statement()23. On the other hand, the intersection of the new out-
going usages of the target operations PlainStatement.value()28/printFooter()28 and the
removed outgoing usages of the Customer.statement()23 is not empty. Depending
on the user-specific threshold, the target operations PlainStatement.value()28/print-
Footer()28 may or may not be asserted as being extracted from the Customer.
statement()23. Clearly, as the system evolved from version 23 to 28, the behavior
of the operation Customer.statement()23 has been redistributed and encapsulated in a
separate strategy object in version 28, which is defined by the abstract class Statement
and its two implementation classes PlainStatement and HTMLStatement.

4.7 Comparing attributes of mapped model elements

Finally, UMLDiff compares the inherent attributes and the tagged values of the
mapped UML model elements. For the visibility attribute, UMLDiff reports the
changes as either of the following: (a) up: the access modifier has become less
restrictive in the “after” version; (b) down: the access modifier has become more
restrictive in the “after” version; and (c) match: visibility has not changed. The
access modifiers can be private, package, protected, or public, in decreasingly re-
strictive order. For all other attributes and tagged values, UMLDiff simply reports
whether they are of the same value or not. For example, UMLDiff reports that the
visibility of the two renamed operations [getTotalCharge()27, getAllCharge()28] and
[getTotalFrequentRenterPoints()27, getAllFrequentRenterPoints()28] has been changed
up from package to public. Furthermore, the deprecation status of the matched oper-
ation [Customer.plainStatement()27, Customer.plainStatement()28] has been changed
from false to true.

248 Autom Softw Eng (2007) 14: 215–259

Table 9 Redistribute semantic behavior among operations

Version23 Version28

Type of Instances of relation Type of Instances of relation

relation relation

Customer.statement() Customer.getRentals()

Usage«read» [statement(), _rental] Usage«read» [getRentals(), _rental]

Usage«call»

PlainStatement.printHeader()

[statement(), getName()] Usage«call» [printHeader(), getName()]

PlainStatement.printFooter()

[statement(), getTotalCharge()] Usage«call» [printFooter(), getAllCharge()]

[statement(), getTotalFrequent. . .()] [printFooter(), getAllFrequent. . .()]

[printFooter(), Double.toString()]

[printFooter(), Integer.toString()]

Usage«instantiate» [printFooter(), Double]

[printFooter(), Integer]

PlainStatement.printEachRental()

[statement(), getMove()] Usage«call» [printEach. . .(), getMoive()]

[statement(), Rental.getCharge()] [printEach. . .(), Rental.getCharge()]

[statement(), getTitle()] [printEach. . .(), getTitle()]

[statement(), Str.valueOf(double)] [printEach. . .(), Str.valueOf(double)]

PlainStatement.value()

[statement(), Vector.elements()] Usage«call» [value(), Vector.elements()]

[statement(), hasMoreElements()] [value(), hasMoreElements()]

[statement(), nextElement()] [value(), nextElement()]

[value(), printHeader()]

[value(), printFooter()]

[value(), printEachRental()]

[statement(), Str.valueOf(double)]

[statement(), Str.valueOf(int)]

5 Evaluation

To date, we have conducted several case studies, analyzing the evolution of Java soft-
ware systems using UMLDiff to compare their subsequent versions. Using various
types of statistical analyses of the UMLDiff change reports, we showed that one could
form intuitions regarding the evolution phases and styles of classes and the overall
systems (Xing and Stroulia 2004a, 2005c). We showed how Apriori associative min-
ing, of information derived from UMLDiff change reports, can detect co-evolution
of sets of classes (Xing and Stroulia 2006a). Using a suite of complex queries, we
demonstrated that various types of refactorings could be recognized with higher pre-
cision than what is covered in the system documentation (Schofield et al. 2006; Xing

Autom Softw Eng (2007) 14: 215–259 249

and Stroulia, 2006b, 2006c). Furthermore, we discussed how, based on analysis of
recurring design-evolution patterns, one could offer advice to developers maintaining
the system (Xing and Stroulia 2004b, 2005a). The quality and usefulness of all these
analyses depend on the quality of the original change reports produced by UMLDiff.

In our own earlier work (Xing and Stroulia 2005b), we used JFreeChart
(http://www.jfree.org/jfreechart/) as the subject system, to qualitatively evaluate the
factors that may impact the quality of UMLDiff results, such as the user-defined re-
naming and move thresholds, the regularity of the usage of the versioning system,
and the time lapse between subsequent versions. We showed that UMLDiff has high
precision and recall as long as the versioning system is regularly used and is fairly
robust to the user’s choice of parameters. More specifically, we pointed out three
typical situations in which UMLDiff may get confused:

• UMLDiff is based on lexical-similarity and structure-similarity heuristics. If two
“irrelevant” model elements have very similar names and relations to other ele-
ments, they may be erroneously identified as renamings or moves.

• UMLDiff assumes that enough entities remain the “same” between two compared
versions. If all or most of the model elements related to two renamed or moved
elements were also renamed and/or moved, the structure-similarity heuristic may
fail and thus UMLDiff may miss the renamings or moves.

• When two renamed or moved model elements have very few relations with other
elements, it is difficult for UMLDiff to determine whether or not they represent a
single conceptual element in the two compared system versions.

In this paper, we still use the JFreeChart system as the subject to evaluate the
expanded UMLDiff algorithm.

5.1 The run-time performance of UMLDiff

First, we examined the run-time performance of UMLDiff algorithm. The run-
time complexity of UMLDiff is determined by the renaming and move recognition
process, which require the pair-wise comparison of the not-yet-mapped model ele-
ments in two compared versions of the system model. Through the use of appropriate
in-memory data structures and efficient database indexing, the run-time complexity
of the renaming and move recognition process is O(α·N ·M), where N and M are
the number of not-yet-mapped model elements of the same type in two compared
versions respectively, and in the real world software systems, the α is usually very
small. Furthermore, the actual time cost of UMLDiff is affected by the size of the
system and the number of its versions, i.e., the size of JDEvAn database.

Table 18 (see Appendix 3) summarizes the run-time performance of UMLDiff
when comparing the subsequent releases of the JFreeChart system, with Rename
Threshold = 0.3 and MoveThreshold = 0.3. The column “Versions” indicates that
the information summarized in a particular row is collected when the system evolved
from the version of one row above to this version. The columns “N” and “M” list
the number of not-yet-mapped model elements in the two compared versions. The
column “#Comparison” lists the number of comparisons that UMLDiff performed
for identifying the attribute/operation renamings and moves. The term α is computed
as (#Comparison)/(N ·M). As shown in Table 18, the α is very small. Table 18 also

250 Autom Softw Eng (2007) 14: 215–259

presents the recalls of attribute/operation renamings and moves, which indicates that
the UMLDiff structure-similarity heuristics is quite effective at recovering the reamed
and moved model elements by comparing only a very small subset of not-yet-mapped
candidates.

5.2 UMLDiff robustness

Next, we examined several factors that can impact the quality (in terms of preci-
sion and recall) of the renamings and moves reported by UMLDiff. In the UMLDiff
context, given the total number of changes that have occurred between two versions
(Mactual) and the number of changes reported by UMLDiff (Mreported), precision is
the percentage of the correctly reported changes (Mactual ∩ Mreported)/Mreported and
recall is the percentage of changes reported (Mactual ∩ Mreported)/Mactual.

Table 19 summarizes the design changes (including the changes correctly iden-
tified by UMLDiff and the ones UMLDiff missed, which were manually added
through our inspection of the UMLDiff results with JDEvAn tool) in the evolution
of JFreeChart system. The contexts of the table serve as the ground truth, i.e. Mactual,
for evaluating the impact of various factors that can affect the UMLDiff quality. To
discuss the impact of each particular factor, we fix the others at the values that enable
the identification of most renaming or move instances. Furthermore, we focus on the
renamings and moves of classes/interfaces, attributes, and operations, since in our ex-
perience with several case studies, no subsystem/package renamings and moves were
ever erroneously reported or missed by UMLDiff.

We comparatively evaluated the appropriateness of different lexical-similarity
metrics for assessing the name similarity of two compared model elements. Table 20
summarizes the number of identified renaming instances, with different name-
similarity metrics and the RenameThreshold = 0.3. The impact of choosing a par-
ticular name-similarity metric was most pronounced when recognizing attribute re-
namings (precision ranging from 87.5% to 90.1% and recall ranging from 94.6% to
99.7%), in contrast to recognizing class/interface renamings and operation renamings
with identifier changes, where the choices of different name-similarity metrics were
almost indistinguishable. Overall, none of the three used metrics, Char-LCS, Word-
LCS and Char-Pair, is significantly better, although the Char-Pair metric seems to
produce results with a better balance of precision and recall.

We examined the effectiveness of the two techniques for propagating the knowl-
edge about the identified renamings and moves through usage and inheritance re-
lations. They are both useful in increasing the recall of renamings and moves; the
corresponding slight decrease in precision should not be a major concern, since the
users should be able to easily recognize and filter out the false positive instances re-
ported. For example, with the renaming and move thresholds set to 0.3, about 1.2%
of all the operation renamings and moves were recovered through second and third
rounds of renaming and move recognition; about 7.6% of all the operation renamings
were recovered through propagating the operation renamings depending on the gen-
eralization/abstraction relations. Less than 10 instances were erroneously reported
due to the application of these two techniques. Thus, we believe these two tech-

Autom Softw Eng (2007) 14: 215–259 251

Fig. 6 The impact of the user-specific renaming and move thresholds

niques are very effective at recovering renamings and moves that would otherwise be
missed.

We evaluated the impact of additional sources of information, i.e., comment and
transitive usage dependency, on UMLDiff’s accuracy. Tables 21 and 22 summarize
the impact of comment similarity and transitive usage similarity on the precision
and recall of identified renamings and moves of classes/interfaces, attributes, and
operations. Overall, the comments of model elements and their transitive usage de-
pendencies can effectively inform the process to further increase its recall, albeit at
a small precision cost. Based on the estimated number of changes, the time lapse
between two compared versions and the need for the more coverage of changes or
the more precise results with shorter comparison time, the users may turn on or off
these additional sources of information when comparing renaming and move candi-
dates.

We examined the impact of the user-specified renaming and move thresholds
on the quality of the UMLDiff results. We run UMLDiff on JFreeChart with the
renaming and move thresholds set to 0.1 through 0.9, with 0.1 increment (us-
ing the Char-LCS lexical-similarity metric, with comment-similarity, and transitive-
usage-similarity) and computed the precision and recall of renamings and moves
at each threshold. The results are summarized in Fig. 6. We found that a renam-
ing threshold slightly higher than the move threshold, with both being within the
30% to 50% range, is an effective setting for accurately recognizing both renam-
ings and moves. Furthermore, by considering the context from and to which the

252 Autom Softw Eng (2007) 14: 215–259

model elements are moved, this version of UMLDiff exhibits a more balanced com-
bination of precision and recall for moves, as compared to the original algorithm
(Xing and Stroulia 2005b), although it suffers a slight deterioration in the move re-
call.

6 Conclusions

In this paper, we described UMLDiff, an object-oriented logical-design differencing
algorithm. This algorithm advances the state of the art in software-evolution analysis
in several ways. Because it compares software versions at the design level, its results
are more directly relevant to the evolutionary-development process than either lexical
or metrics differencing. Because it is aware of the UML semantics, its results are more
intuitive than other structure-differencing algorithms, relying on low-level represen-
tations such as ASTs, program-dependency graphs or XML. Because it is automated,
it does not rely on subjective interpretation, as do visualization approaches.

In our earlier work, we had examined an earlier version of UMLDiff and we had
found it to be sensitive to irregular usage of the versioning system, but with high
precision and recall of design changes when the versioning system is used regularly.
Furthermore, it is robust to the user’s choice of parameters about how similar the two
model elements have to be, in order for the latter to be recognized as a move or a
renaming of the former.

In this paper, we describe several extensions to the original UMLDiff algorithm,
which are illustrated through a concise running example. We also experimentally
evaluate the new algorithm variant, focusing on its run-time performance, the appro-
priateness of different lexical-similarity metrics, the effectiveness of the two tech-
niques for propagating the knowledge about the identified renamings and moves
along usage dependency and inheritance hierarchy, the impact of model element’s
comments and transitive usage dependencies on UMLDiff’s accuracy, and the effec-
tive range for the user-specified renaming and move thresholds.

An accurate UMLDiff, that can precisely recall the design changes that an object-
oriented system has suffered, can provide the basis on which further analyses can be
developed for classifying the evolution of individual classes into a taxonomy of evo-
lution profiles (Xing and Stroulia 2004a), discovering co-evolution of sets of classes
(Xing and Stroulia 2006a), recognizing phases and styles in the evolution of sys-
tems and their parts (Xing and Stroulia 2005c), detecting refactorings (Schofield et
al. 2006; Xing and Stroulia, 2006b, 2006c). In turn, these analyses can provide in-
sights for supporting decision making for how to further evolve the system (Xing and
Stroulia 2004b, 2005a).

In the future, we plan to extend UMLDiff to discover changes in the dynamic
behavior, such as UML sequence diagrams, of the subsequent system versions and
to infer correlations between static structure and dynamic behavior changes for the
purpose of impact analysis.

Acknowledgement This work was supported by NSERC. The authors also wish to thank the anonymous
reviewers whose insightful comments steered the evolution of this paper to its current version.

Autom Softw Eng (2007) 14: 215–259 253

Appendix 1

Table 10 The UML model elements

Metaclass Description
stereotype

Subsystem A subsystem is a grouping of model elements that represents a behavioral unit in a
physical system

Package A package is a grouping of model elements

Class A class declares a collection of attributes, operations and methods that fully describe
the structure and behavior of a set of objects. A class acts as the namespace for various
kinds of contained elements defined within its scope, including classes and interfaces

Interface An interface is a named set of operations that characterize the behavior of an element

DataType A data type is a type whose values have no identity

Attribute An attribute is a named piece of the declared state of a classifier, which refers to a static
feature of a model element. An attribute may have an initValue specifying the value of
the attribute upon initialization

Operation An operation is a service that can be requested from an object to effect behavior, which
refers to a dynamic feature of a model element«create»

«initialize»

Method A method is the implementation of an operation. It specifies the algorithm or procedure
that effects the results of an operation

Parameter A parameter is a declaration of an argument to be passed to, or returned from an operation

Exception An exception is a signal raised by behavioral features typically in case of execution faults

Reception A reception is a behavioral feature and declares that the classifier containing the feature
reacts to the signal designated by the reception feature

Table 11 The UML relations among model elements

Metaclass Description
stereotype

Generalization A generalization is a taxonomic relation between a more general element (parent) and a
more specific element (child)

Abstraction An abstraction is a dependency relation that relates two elements or sets of elements
that represent the same concept at different levels of abstraction«realize»

Usage A usage is a dependency relation in which one element requires another element (or set
of elements) for its full implementation or operation«call»

«instantiate»
«send»
«read»
«write»

Association An association is a declaration of a semantic relation between classifiers that can be of
three different kinds: (1) ordinary association, (2) composite aggregate, and
(3) shareable aggregate. There are three meta-composition and five ordinary
meta-associations defined in the metamodel, which are described in Table 12

254 Autom Softw Eng (2007) 14: 215–259

Table 12 The compositions and associations among model elements

Metarelation Description

namespace–ownedElement A namespace is a model element that can own other model elements. The
element ownership is used for unstructured contents such as the contents
of a package or a class declared inside the scope of another class

owner–feature A classifier declares a collection of features. The features are the inherent
semantic parts of a classifier

BehaviorFeature–parameter An operation declares an ordered list of parameters. The parameters are
the inherent semantic parts of an operation

typedParameter–type Designates a classifier to which an argument value of a parameter must
conform. The type must be a class, interface, or datatype

typedFeature–type Designates a classifier as whose instances are values of the attribute. The
type must be a class, interface, or datatype

context–raisedSignal Designates exceptions that may be raised by behavioral features, such as
operations when execution faults happen

reception–signal Designates reception features that handle the signal

Method–specification Designates an operation that the method implements

Table 13 UMLDiff -specific tagged values attached to model elements

Tagged values Base metaclass Description

comment ModelElement Any documentation attached to the model element

isFromModel ModelElement If the model element is imported from a model other than the current
one, false. Otherwise, true

deprecated ModelElement If the model element is obsolete and will be removed from the model in
the future, true. Otherwise, false

overloaded ModelElement If the operation is overloaded, true Otherwise, false

count Usage The number of times a usage dependency appears between the client
and supplier elements

Appendix 2

Table 14 Mapping Java language constructs to UML model elements

Java constructs UML metaclasses

Java primitive type ProgrammingLanguageDataType

Java array type ProgrammingLanguageDataType

Java software subsystem Subsystem

Java package Package

Java class Class

Java interface Interface

Java field Attribute

Java method Operation

Java constructor Operation«create»

Autom Softw Eng (2007) 14: 215–259 255

Table 14 (Continued)

Java constructs UML metaclasses

Java class initializer Operation«initialize»

Java field initializer Attribute’s initValue

Java parameter Parameter

The return type of Java method Parameter whose name = ‘return’ and kind = return

Table 15 Mapping Java relations to UML metarelations

Java relations UML metarelations

Contain meta-composition [namespace–ownedElement]

Declare meta-composition [owner–Feature]

Method/constructor parameter meta-composition [BehaviorFeature–parameter]

extends Generalization

implements Abstraction«realize»

new XXX(. . .) Usage«instantiate»

Use field Usage«read»

Change field value Usage«write»

Method/Constructor call Usage«call»

throw statement Usage«send»

Field data type meta-association [typedFeature–type]

Parameter type meta-association [typedParameter–type]

Method return type meta-association [typedParameter–type] for the parameter
whose kind = return

throws clause meta-association [context–raisedSignal]

catch clause meta-association [reception–signal]

Table 16 Mapping Java modifiers to the attributes of UML metaclasses

Java modifiers The attributes of UML metaclasses

public, protected, private Visibility of ElementOwnership or feature

static ownerScope = classifier of feature

final isLeaf = true of GeneralizableElement or operation

synchronized Concurrency = guarded of operation

abstract isAbstract = true of GeneralizableElement or operation

transient Persistence = transitory of attribute

256 Autom Softw Eng (2007) 14: 215–259

Table 17 Mapping Java language features to UMLDiff -specific tagged values

Java language features UMLDiff-specific tagged values

Javadoc description before block tags comment

Java construct belongs in the source code isFromModel = true

Javadoc contains @deprecate tag deprecated = true

Several methods/constructors with the same identifier exist overloaded = true

Appendix 3

Table 18 The run-time performance of UMLDiff

Versions Attribute and operation renamings Attribute and operation moves

N M #Comparison α Recall N M #Comparison α Recall

0.6.0 154 357 1119 0.05 0.98 203 378 64 0.002 0.95

0.7.0 6 33 36 0.36 1.0 4 188 2 0.004 1.0

0.7.1 72 169 298 0.06 1.0 48 190 16 0.003 1.0

0.7.2 56 101 130 0.06 1.0 51 104 7 0.003 N/Aa

0.7.3 5 10 6 0.12 1.0 1 18 2 0.13 1.0

0.7.4 32 34 14 0.04 1.0 22 57 18 0.03 1.0

0.8.0 42 69 37 0.04 1.0 83 233 37 0.004 1.0

0.9.0 170 313 1519 0.06 0.94 216 842 244 0.003 0.85

0.9.1 2 10 2 0.11 1.0 0 89 0 0 N/A

0.9.2 99 99 1168 0.29 0.97 60 105 9 0.004 1.0

0.9.3 109 207 618 0.06 0.95 144 1003 111 0.001 1.0

0.9.4 212 297 1737 0.07 1.0 121 406 74 0.004 0.7

0.9.5 564 721 4842 0.02 0.97 422 1303 267 0.001 1.0

0.9.6 10 43 35 0.34 1.0 1 42 0 0 N/A

0.9.7 138 242 213 0.01 1.0 190 583 227 0.004 0.92

0.9.8 52 54 24 0.01 1.0 31 96 85 0.04 1.0

0.9.9 309 625 3475 0.04 0.99 406 876 470 0.002 0.92

0.9.10 233 361 3044 0.07 1.0 137 213 23 0.001 0.30

0.9.11 16 73 10 0.02 1.0 8 237 11 0.01 1.0

0.9.12 106 383 690 0.03 1.0 124 550 345 0.008 0.90

0.9.13 83 174 410 0.04 1.0 6 161 3 0.005 1.0

0.9.14 168 333 821 0.02 0.96 89 427 27 0.001 0.80

0.9.15 21 43 23 0.04 1.0 13 180 2 0.001 1.0

0.9.16 70 76 95 0.04 1.0 85 202 67 0.008 0.98

0.9.17 272 495 3389 0.06 0.94 168 974 282 0.003 0.92

0.9.18 59 119 230 0.10 1.0 35 191 4 0.001 1.0

0.9.19 219 385 3444 0.08 0.98 242 418 108 0.002 0.92

0.9.20 9 21 5 0.08 1.0 4 64 1 0.008 N/A

0.9.21 118 272 574 0.02 1.0 1043 349 75 0.001 0.35

1.0.0 129 354 641 0.03 0.97 53 531 29 0.002 1.0

aIndicates that there are no moves of model elements in the compared models

Autom Softw Eng (2007) 14: 215–259 257

Table 19 The number of design
changes UMLDiff reports in the
evolution of JFreeChart

aThe moved methods may also
involve identifier changes. Such
instances are manually added
during the inspecting session of
UMLDiff results

Element renaming 2180

Element movea 957

Extract operation 533

Inline operation 95

Data type and return type change 1056

Abstraction«realize» change 1032

Generalization change 186

Visibility change 868

Other attribute/tagged-value change 607

Total 7514

Table 20 Recognizing renamings with different name-similarity metrics

Correct Wrong Precision Recall

Class and interface Char-LCS 123 48 71.9%a 98.4%

Char-Pair 123 47 72.4% 98.4%

Word-LCS 123 47 72.4% 98.4%

Attribute Char-LCS 295 42 87.5% 99.7%

Char-Pair 290 33 89.7% 97.9%

Word-LCS 280 31 90.1% 94.6%

Operation Char-LCS 794 126 86.3% 97.2%

Char-Pair 792 116 87.2% 97.0%

Word-LCS 793 118 87.0% 97.1%

Overall Char-LCS 1212 216 84.9% 97.9%

Char-Pair 1205 196 86.0% 97.3%

Word-LCS 1196 196 85.9% 96.6%

aThe low precision of class renaming is due to the large amount (31 out of 48) of demo and unit test classes
being identified as renamed. Most of them can be prevented with higher renaming threshold

Table 21 Recognizing renamings and moves with and without comment-similarity

Correct Wrong Precision Recall

Renamings Class and interface Without 121 36 77.0% 96.8%

With 123 48 71.9% 98.4%

Attribute Without 278 26 91.5% 94.0%

With 295 42 87.5% 99.7%

Operation Without 1590 62 96.3% 91.9%

With 1696 129 93.0% 98.3%

Moves Class and interface Without 296 0 100.0% 95.8%

With 299 0 100.0% 96.8%

Attribute Without 186 5 97.4% 83.4%

With 200 9 95.7% 89.7%

Operation Without 343 25 93.2% 80.7%

With 375 58 86.7% 88.3%

258 Autom Softw Eng (2007) 14: 215–259

Table 22 Recognizing
operation renamings and moves
with/without transitive usage
similarity

Correct Wrong Precision Recall

Operation renamings Without 1672 74 95.8% 96.6%

With 1696 129 93.0% 98.3%

Operation moves Without 375 55 87.2% 88.3%

With 375 58 86.7% 88.3%

References

Apiwattanapong, T., Orso, A., & Harrold, M. J. (2004). A differencing algorithm for object-oriented
programs. In Proceedings of the 19th international conference on automated software engineering
(pp. 2–13).

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2000). Finding refactorings via change metrics. ACM SIG-
PLAN Notices, 35(10), 166–177.

Egyed, A. (2001). Scalable consistency checking between diagrams—the ViewIntegra approach. In Pro-
ceedings of the 16th international conference on automated software engineering.

Eick, S. G., Steffen, J. L., & Sumner, E. E. (1992). SeeSoft—A tool for visualizing line-oriented software
statistics. IEEE Transactions on Software Engineering, 18(11), 957–968.

Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., & Mockus, A. (2001). Does code decay? Assessing the
evidence from change management data. IEEE Transactions on Software Engineering, 27(1), 1–12.

Fischer, M., Pinzger, M., & Gall, H. (2003). Populating a release history database from version control and
bug tracking systems. In Proceedings of the 19th international conference on software maintenance
(pp. 23–32), September 2003.

Fowler, M. (1999). Refactoring: Improving the design of existing code. Reading: Addison–Wesley.
Godfrey, M., & Zou, L. (2005). Using origin analysis to detect merging and splitting of source code entities.

IEEE Transactions on Software Engineering, 31(2), 166–181.
Horwitz, S. (1990). Identifying the semantic and textual differences between two versions of a program. In

Proceedings of the ACM SIGPLAN’90 conference on programming language design and implementa-
tion (pp. 234–246), June 1990.

Jackson, D., & Ladd, D. A. (1994). Semantic diff: A tool for summarizing the effects of modifications.
In Proceedings of 9th international conference on software maintenance (pp. 243–252), September
1994.

Lanza, M. (2001). The evolution matrix: Recovering software evolution using software visualization
techniques. In Proceedings of the 4th international workshop on principles of software evolution
(pp. 37–42).

Lehman, M. M., & Belady, L. A. (1985). Program evolution-processes of software change. London: Aca-
demic Press, p. 538.

Lorenz, M., & Kidd, J. (1994). Object-oriented software metrics: A practical approach. New York: Prentice
Hall.

OMG (2003). Unified Modeling Language Specification. formal/03-03-01, Version 1.5, http//www.omg.
org.

Ohst, D., Welle, M., & Kelter, U. (2003). Difference tools for analysis and design documents. In Proceed-
ings of the 19th international conference on software maintenance (pp. 13–22), September 2003.

Ryder, B. G., & Tip, F. (2001). Change impact analysis for object-oriented programs. In Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT workshop on program analysis for software tools and engineering
(pp. 46–53).

Rysselberghe, F. V., & Demeyer, S. (2003). Reconstruction of successful software evolution using
clone detection. In Proceedings of the international workshop on principles of software evolution
(pp. 126–130), September 2003.

Schofield, C., Tansey, B., Xing, Z., & Stroulia, E. (2006). Digging the development dust for refactorings. In
Proceedings of the 14th international conference on program comprehension (pp. 23–34), June 2006.

Simon, K. (1986). An improved algorithm for transitive closure on acyclic digraphs. In Theoretical com-
puter science: Vol. 58, Automata, languages and programming (pp. 376–386).

Spanoudakis, G., & Kim, H. (2001). Reconciliation of object interaction models. In Proceedings of the 7th
international conference on object oriented information systems (pp. 47–58), August 2001.

Autom Softw Eng (2007) 14: 215–259 259

Tu, Q., & Godfrey, M. W. (2002). An integrated approach for studying architectural evolution. In Proceed-
ings of the 10th international workshop on program comprehension (pp. 127–136).

Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal of the ACM,
21(1), 168–173.

Xing, Z., & Stroulia, E. (2004a). Understanding class evolution in object-oriented software. In Proceedings
of the 12th international workshop on program comprehension (pp. 34–43), June 2004.

Xing, Z., & Stroulia, E. (2004b). Design mentoring based on design evolution analysis. In Proceedings of
eclipse technology exchange workshop, OOPSLA 2004, Vancouver BC, Canada.

Xing, Z., & Stroulia, E. (2005a). Towards mentoring object-oriented evolutionary development. In Pro-
ceedings of the 21st international conference on software maintenance (pp. 621–624), September
2005.

Xing, Z., & Stroulia, E. (2005b). UMLDiff: An algorithm for object-oriented design differencing. In Pro-
ceedings of the 20th international conference on automated software engineering (pp. 54–65), No-
vember 2005.

Xing, Z., & Stroulia, E. (2005c). Analyzing the evolutionary history of the logical design of object-oriented
software. IEEE Transactions on Software Engineering, 31(10), 850–868.

Xing, Z., & Stroulia, E. (2006a). Understanding the evolution and co-evolution of classes in object-oriented
systems. International Journal of Software Engineering and Knowledge Engineering, 16(1), 23–52.

Xing, Z., & Stroulia, E. (2006b). Refactoring practice: How it is and how it should be supported—
an eclipse case study. In Proceddings of the 22nd international conference on software maintenance
(pp. 458–468), September 2006.

Xing, Z., & Stroulia, E. (2006c). Refactoring detection based on UMLDiff change-facts queries. In Pro-
ceedings of the 13th working conference on reverse engineering (pp. 263–274), October 2006.

Yang, W. (1991). Identifying syntactic differences between two programs. Software—Practice and Expe-
rience, 21(7), 739–755.

	Differencing logical UML models
	Abstract
	Introduction
	Related work
	The metamodel
	UML model reverse engineering in JDEvAn

	Comparing logical models of object-oriented software with UMLDiff
	The running example
	UMLDiff overview
	Similarity metrics
	Lexical similarity
	Structure similarity
	Overall similarity assessment

	Mapping model elements
	``Matched'' elements
	Renamed elements
	Moved elements
	Propagating knowledge of identified renamings and moves along usage dependency
	Propagating identified operation renamings along inheritance hierarchy

	Mapping relations
	Recognizing behavior redistribution
	Comparing attributes of mapped model elements

	Evaluation
	The run-time performance of UMLDiff
	UMLDiff robustness

	Conclusions
	Acknowledgement

	Appendix 1
	Appendix 2
	Appendix 3
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

