
Autom Software Eng (2006) 13:497–528

DOI 10.1007/s10515-006-0273-5

A formal approach based on UML and B
for the specification and development of database
applications

Amel Mammar · Régine Laleau

C© Springer Science + Business Media, LLC 2006

Abstract This article describes a formal approach to specify and develop database
applications. This approach consists of two complementary phases. In the first phase,
B specifications are automatically generated from UML class, state and collaboration
diagrams describing the data and the transactions of the system we are developing.
In the second phase, these specifications are successively refined until they become
close enough to a relational implementation. The tool supporting this approach is im-
plemented as an extension of the Rational Rose tool to develop and visualize graphical
(UML) and formal (B) notations in a single environment.

Keywords Formal methods . Integration . UML . B . Database applications .

Relational implementation

1 Introduction

Database systems are the core component of various applications: e-business, fi-
nancial systems, smart cards, etc. Database applications are characterized by great
volumes of structured data that are subject to numerous rules of consistency called
integrity constraints. A trustworthy database application must enforce the integrity
constraints specified on its data. Generally a transaction has a simple algorithmic
structure and is made up of a set of basic operations which are generic and shared
by all database applications. The main difficulty when specifying a transaction is to

A. Mammar (�)
University of Luxembourg, SE2C, 6 rue Richard Courdenhove-Kalergi, L-1359
Luxembourg-Kirchberg, Luxembourg
e-mail: amel.mammar@clearsy.com

R. Laleau
University of Paris 12, LACL, IUT Fontainebleau, Route Forestière Hurtault, 77300 Fontainebleau
e-mail: laleau@univ-paris12.fr

Springer

498 Autom Software Eng (2006) 13:497–528

guarantee that it preserves the global integrity constraints of the system. To address
this issue, we suggest employing formal methods.

The derivation of database applications from formal specifications is a well known
but incompletely solved problem. Most of the already developed work and case tools
were restricted to the derivation of the database schema by considering that the pro-
duction of transactions can be straightforwardly achieved (Barros, 1994a,b, 1998;
Edmond, 1995; Gunther et al., 1993). However, the specification of transactions that
take integrity constraints into account raises non trivial difficulties and thus requires
the use of formal methods to gain confidence about the correctness of the transactions.

For a few years, our team has been engaged in a programme of research address-
ing the development of trustworthy database applications using the UML modeling
language and the B formal method. UML is the standard object-oriented modeling
language accepted by the OMG (Object Management Group) (OMG, 2005). It is
supported by several commercial tools like ROSE (Rational, 2003), XDE (Rational,
2005), MagicDraw NoMagic (2005), etc. Unfortunately, none of these tools provides
possibilities for formally generating database transactions. This is mainly due to the
lack of a precise semantics for the UML dynamic diagrams. Contrary to UML, the B
method (Abrial, 1996) is a safe technique widely used for the development of criti-
cal systems. The B method deals with the central aspects of the software life cycle,
namely: abstract specification, design by successive refinement steps, and executable
code generation. Using this method, software engineers are able to check that the
system fulfills the expected properties, and/or find a large range of errors at different
development phases.

The approach that we have developed consists of two complementary phases: 1.
generating a B specification from a UML description of an application, and 2. op-
erating successive transformations on the B specification in order to obtain a con-
crete specification that can be straightforwardly translated into an application in
JAVA/SQL, which is the implementation language we have chosen for describing
database transactions. Among the diagrams provided by UML, we use class dia-
grams for describing the static aspect of a system, and state/collaboration diagrams
for the dynamic aspects. This subset of UML diagrams has been endowed with a
formal semantics and is called IS-UML in the remainder of the paper. To make
our approach more accessible for software engineers, we have built a tool, called
UB2SQL (Mammar and Laleau, 2005), that automates both the generation of B spec-
ifications from IS-UML and their refinement until a relational implementation is ob-
tained. UB2SQL enables users to develop trustworthy database applications using two
complementary notations: UML graphical notations and B formal notations. In this
way, software engineers take advantage not only of the visual and intuitive aspects of
UML but also of the rigorous reasoning aspects of B. In this paper, we give a general
overview of the approach, through a single example, by illustrating all the consecutive
steps from its IS-UML specification down to the JAVA/SQL implementation. The ap-
propriate research papers that describe more precisely specific points are referenced
throughout the paper.

The paper is organized as follows. Section 2 starts with a brief description of the
B method and the relational database model. Section 3 gives an overview of our ap-
proach for the development of database applications. The different steps constituting
our approach are described, through a running example, in Sections 4, 5 and 6. A

Springer

Autom Software Eng (2006) 13:497–528 499

discussion of the benefits of the proposed approach and a comparison with other sim-
ilar approaches is given in Section 7. Finally, Section 8 concludes and outlines some
future work.

2 The B method and the relational database model

This section briefly presents the main concepts of B and the relational model to help
the reader understand our approach.

2.1 The B method

Introduced by Abrial (1996), B is a formal method dedicated to the development of
safe systems. B specifications are organized in abstract machines. Each machine en-
capsulates state variables on which operations act, and an invariant constraining the
state variables. The invariant is a predicate in a simplified version of ZF-set theory,
enriched with relational operators. It allows us to type the variables and to specify
some constraints that must always be verified by the state of the system. Operations
are specified in the Generalized Substitution Language which is a generalization of
Dijkstra’s guarded command notation. A substitution is like an assignment statement.
It allows us to identify which variables are modified by the operation, while avoid-
ing mentioning those which are not. The generalization allows the definition of non-
deterministic and pre-conditioned substitutions. A pre-conditioned substitution is of
the form PRE P THEN S END where P is a predicate, and S a substitution. When P
holds, the substitution is executed, otherwise nothing can be ensured: for instance, the
substitution S might not terminate or might violate the invariant. A brief description
of the B substitutions used in this paper is provided in the appendix. The B method
is supported by commercial tools like AtelierB (Clearsy, 2003), BToolkit (B-CORE,
1996), and recently by a free tool called B4free and Clik’n’prove (Clearsy, 2004). B
Refinement is the process of transforming one specification into a less abstract one.
A refinement can operate on an abstract machine or another refinement component.
In B, we distinguish two kinds of refinement:

– Behavioral refinement: this refinement aims at eliminating non-determinism and
coming close to the control structures used in the chosen target programming lan-
guage. Behavioral refinement includes, for example, weakening of preconditions,
replacement of a parallel substitution by a sequence substitution, etc.

– Data structure refinement: an abstract data structure D is replaced by a concrete
data structure D′ that must be close to the data structure allowed in the target im-
plementation language. For example a set, which is not available in standard pro-
gramming languages, is often refined by an array available in most programming
languages. In this kind of refinement, a predicate J, called the gluing invariant,
must be defined. It states the existing relation between D and D′.

Both specification and refinement steps give rise to proof obligations. At the abstract
level, proof obligations ensure that each operation maintains the invariant of the sys-
tem, whereas at the refinement level, they ensure that the transformation preserves the
properties of the abstract level. To carry out these proofs, AtelierB (Clearsy, 2003)

Springer

500 Autom Software Eng (2006) 13:497–528

includes two complementary provers. The first one is automatic, implementing a de-
cision procedure that uses a set of deduction and rewriting rules. The second prover
allows the users to enter into a dialogue with the automatic prover by defining their
own deduction and/or rewriting rules that guide the prover to find the right way to
discharge the proofs. To ensure the correctness of the interactive proofs, each added
rule must be proved by the prover of the AtelierB before it can be used.

2.2 Overview of the relational database model

The relational model was defined by Codd (1970). Relations, which we call tables
according to SQL (Melton and Simon, 1993) terminology to avoid confusion with
the B concept, are specified as sets of tuples (SQL bags without redundant tuples). A
tuple is an element of a cartesian product. The formal definition of a table contains
two parts: the table intension and the table extension. The intension is a tuple type that
defines the table attributes, each of which must be of a valid type. The extension is the
set of the instances of the type tuple existing at a given moment. A full description
of the relational model can be found in Elmasri and Navathe (2003). The integrity
constraints that can be defined on tables are as follows:

– NOT NULL constraint: defined on an attribute (or a group of attributes), this con-
straint specifies that the attribute must be valued.

– UNIQUE constraint: defined on an attribute (or a group of attributes), this con-
straint specifies that: if the attribute is valued, its value is unique in the table exten-
sion. This means that such an attribute may be null.

– Key constraint: each table has at least one key. By definition, a table is a set of
tuples and thus does not contain duplicate tuples. Thus, a table has at least the key
composed of all its attributes. However, in most cases it is possible (and strongly
recommended) to determine a key composed of a subset of all the attributes. If
several keys are possible, one of them is defined as the PRIMARY KEY of the
table. The other candidate keys are defined by using NOT NULL and UNIQUE
constraints.

– Referential constraint: defined on an attribute (or a group of attributes), denoted
Att1, of a table T1 towards a key of a table T2, denoted K2, it specifies that the set
of values of Att1 is included in the set of values of K2.

The remainder of the paper describes a formal approach and its support tool that al-
lows the generation of a relational implementation from a B specification describing a
database application. The B specifications we consider are derived from well-defined
UML diagrams. We assume that the reader is familiar with UML notations.

3 Overview of the approach

Our approach to develop database applications can be summarized by the following
steps (see Fig. 1).

1. The data structure and the transactions are described using IS-UML diagrams.
IS-UML notations are derived from UML 1.4 notations, dedicated to the

Springer

Autom Software Eng (2006) 13:497–528 501

A B* *

IS-UML Diagrams

Abstract model (B Language)

Concrete model (B Language)

Relational Database Structure + Programs

Translation phase

Coding phase

Proof

Refinement phase
Proof

Proof

Fig. 1 From IS-UML diagrams
to a relational implementation

specification and design of database applications. They are given a formal se-
mantics (see Laleau and Polack, 2001a,b). Data structures are specified by class
diagrams with a semantics of standard ER models. Class diagrams we consider
include classes, attributes, associations, class associations and simple inheritances
without cycles. A given class may also inherit from different classes that share the
same superclass. Transactions are described by state and collaboration diagrams
supplemented with precise annotations described in the B notations.

2. According to translation rules defined in Laleau (2000), Laleau and Mammar
(2000b), B specifications are generated from the previous IS-UML diagrams. These
specifications are structured into a three-level architecture that reflects the IS-UML
specification structuring. This architecture gives a better readability to the B spec-
ifications and lightens the proof phase cost (see Sections 5.1.3 and 5.2.3).

3. The next step of our approach deals with the refinement of the generated B speci-
fications. Applying the generic refinement rules described in detail in Laleau and
Mammar (2000a) and Mammar (2002), the B specifications are successively trans-
formed until they become close enough to a B formalization of a relational imple-
mentation. The last B specification, produced in the B implementation phase, re-
flects the architecture of the database which consists of both the database schema
and the transactions.

4. From the last refinement step, the definition of the database schema is automati-
cally derived (Mammar and Laleau, 2006; Mammar, 2002). We plan to extend this
automation to derive the programs corresponding to the transactions.

Our approach has several benefits. The most important among them are the following:

– Having a precise matching between the abstract B specification and the IS-UML
description, on the one hand, and between the concrete B specification and the
relational database, on the other hand, allows a better understanding of the de-
veloped application. Moreover, the resulting IS-UML model is as formal as the B
specification, but in a form which is more friendly and familiar to IS designers. The
translation to textual B specification does not add anything to the IS-UML speci-
fication: it merely provides an alternative form and, above all, allows existing B
tools to be used to reason about the specification.

Springer

502 Autom Software Eng (2006) 13:497–528

– Allowing the designer to concentrate more on the analysis phase (elaboration of
IS-UML diagrams) since the specification and design phases are largely automated
thanks to the building of a tool called UB2SQL.

– Providing the database engineers with a method which ensures the complete con-
sistency of applications: by construction, the generated programs still verify all
constraints specified at the abstract level that are easier to verify at the design stage
in order to discover possible inconsistencies.

The following subsections illustrate the different development steps through a sim-
plified information system of a university. The system manages a set of teachers and
students that are gathered into the concept of Person. Each of them, described by
a name (NamePers), subscribes to an insurance company. Each teacher may inter-
vene in one to several courses. Similarly, several teachers may be involved in the same
course. Each course is described by the number of students (FreePlaces) that can be
enrolled in the future. When a course is full (FreePlaces = 0), all the forthcoming
enrollments are set to state “Wait” (see Fig. 2). We have chosen a simplified example
in order to facilitate the presentation of our approach. Real-life sized systems may
contain a great number of classes and associations, whereas transactions, most often,
involve few classes and associations. We would obtain a larger B specification, which
implies a great number of refinement proofs. However, the forms (schemas) of these
refinement proofs remain the same.

4 Specification of the static aspect of an application

4.1 Elaboration of IS-UML class diagrams

The class diagram is the first one to be elaborated. Indeed, the other diagrams use not
only information related to this diagram but also to its corresponding B specification.
For example, we need to know the name of the operations derived for each class and

Fig. 2 An example of class diagram

Springer

Autom Software Eng (2006) 13:497–528 503

association. Figure 2 shows the class diagram of the running example. To generate a
complete B specification, users specify some additional information about:

– Attribute multiplicity: mandatory-monovalued (1..1), optional-monovalued (0..1),
optional-multivalued (0..n), mandatory-multivalued (1..n). Only these common
multiplicities are considered. The extension to arbitrary multiplicities doesn’t raise
any difficulty.

– Attribute mutability: the value of an attribute may be modified or not.
– The frozen characteristic of each association end: an association with a frozen as-

sociation end doesn’t have its own operations. For instance, the association end of
Subscribes related to InsuranceCompany is frozen since each link of this associ-
ation is created (resp. deleted) when a new person is created (resp. deleted) and
doesn’t change (in general) during the person’s life.

4.2 B translation of IS-UML class diagrams

To translate a class diagram into a B specification, the formal rules described in detail
in Laleau (2000) and Laleau and Mammar (2000b) are applied. The main rules are
summed up as follows:

– With each class A (resp. no frozen association As) a B machine MA (MAs) is
associated.

– For each class A which has no superclass, an abstract set SA of all possible in-
stances is declared.

– For each class A, we define a variable v A representing the set of existing instances.
– Each mandatory-monovalued attribute is modeled as a function (→) from the vari-

able v A to the type of the attribute. A key is translated into a total injective function
(�). For each UML type which does not match a B type, an abstract B set is
created.

– If a class A inherits directly from an other class B, then machine MA uses machine
MB in order to have access to its data. The variable v A, associated with A, must be
a subset of vB .

– A UML association, involving two classes C and D, is translated into a B rela-
tion (↔) between the two sets vC and vD . This relation becomes a function, an
injection, etc. depending on the multiplicity of the roles (association ends).

– When an association is frozen, its specification is included in the B machine trans-
lating the class related to the frozen association end.

– For each inheritance structure involving a set of classes S, a B machine MS that
includes all the machines associated with classes S is defined. Machine MS gathers
all information related to the different classes involved in the related inheritance.
Moreover, it is in this machine where constraints involving different classes S are
defined.

For instance, three B machines Basic Person, Basic Student and Basic Teacher are
defined for the classes involved in the inheritance structure of Fig. 2. These machines
contain the following B specifications:

Springer

504 Autom Software Eng (2006) 13:497–528� Machine Basic Person

Sets PERSON
Variables Person, NamePers
Invariant Person ⊆ PERSON ∧ NamePers ∈ Person → STRING� Machine Basic Student

USES Basic Person
Variables Student, ClassLevel
Invariant Student ⊆ Person ∧ ClassLevel ∈ Student → NAT� Machine Basic Teacher

USES Basic Person
Variables Teacher, Seniority
Invariant Teacher ⊆ Person ∧ Seniority ∈ Teacher → NAT

In addition to these machines, a fourth machine Person which includes the pre-
vious three ones is defined. This machine defines the basic operations related to
the subclasses involved in the considered inheritance structure. Moreover, it is in
this machine where we can state, for instance, that classes Teacher and Student are
exclusive: Teacher ∩ Student = ∅.

Similarly, the association class Enrollment is translated into a B machine Ba-
sic Enrollment whose static part is as follows (Course is the variable translating class
Course):

Sets Type Status = {Succ, Wait}
USES Person, Basic Course
Variables Enrollment, Status
Invariant

Enrollment ∈ Student ↔ Course∧
//translation of multiplicity 1..n
dom(Enrollment) = Student∧
Status ∈ Enrollment → Type Status� A set of basic operations is automatically derived for each class and association.

These operations include insertion, deletion of objects and the update of the value
of each mutable attribute. For instance, the operation which adds a new link to
association Enrollment is specified as follows:

BasicAddEnrollment(stu, cou, sta)
�=

PRE stu ∈ PERSON ∧ cou ∈ COURSE ∧ sta ∈ Type Status∧
stu �→ cou /∈ Enrollment

THEN
Enrollment := Enrollment ∪ {stu �→ cou}‖
Status := Status ∪ {stu �→ cou �→ sta}

END

This operation takes as parameters the two instances to be linked and a value of each
mandatory attribute of this association. The precondition of this operation consists
in specifying the type of each input parameter and checking that the enrollment

Springer

Autom Software Eng (2006) 13:497–528 505

we would like to create does not exist yet (stu �→ cou /∈ Enrollment). Under this
precondition, the operation updates the set of the existing links and the values of
the attributes. Recall that all the parts of this operation are automatically gener-
ated from the class diagram. Let us remark that the precondition of the previous
operation refer to sets PERSON and COURSE, representing the set of all possi-
ble instances, instead of variables Student and Course that represent the existing
instances. Such a relaxed typing permits to specify for instance an operation that
enrolls, in a course, a new student at the same time that this latter is created. More-
over, such typing doesn’t violate the invariant related to the variable Enrollment. In
fact, as this invariant refers to variables defined in the used machines (Person and
Basic Course), the B prover will check this invariant in all other operations that call
BasicAddEnrollment.

To illustrate our approach, we also consider the following operations:� BasicAddPerson: this operation adds a new person. It is specified in the machine
BasicPerson.

BasicAddPerson(pr, na, ic)
�=

PRE pr ∈ PERSON − Person ∧ na ∈ STRING ∧ ic ∈ InsuranceCompany
THEN

Person := Person ∪ {pr}‖
NamePers := NamePers ∪ {pr �→ na}‖
Subscribes := Subscribes ∪ {pr �→ ic}

END� BasicAddStudent: this operation adds a new student without considering him as a
person. It is specified in the machine BasicStudent.

BasicAddStudent(st, cl)
�=

PRE st ∈ PERSON − Person ∧ cl ∈ NAT
THEN

Student := Student ∪ {st}‖
ClassLevel := ClassLevel ∪ {st �→ cl}

END� AddStudent: this operation actually adds a new student by adding him as a new per-
son. Hence, it calls the previous two operations BasicAddPerson and BasicAddStu-
dent. It is specified in the machine Person.

AddStudent(st, na, cl, ic)
�=

PRE st ∈ PERSON − Person ∧ na ∈ STRING ∧ cl ∈ NAT∧
ic ∈ InsuranceCompany

THEN
//adding a new instance to Person

BasicAddPerson(st, na, ic)‖

//adding a new instance to Student
BasicAddStudent(st, cl)

END
Springer

506 Autom Software Eng (2006) 13:497–528� BasicUpdateFreePlaces: this operation is specified in the machine Course.

BasicUpdateFreePlaces(co, fp)
�=

PRE co ∈ Course ∧ f p ∈ NAT
THEN

FreePlaces(co) := fp
END

Let us remark, since the association end of Subscribes is frozen, at the creation of
each new instance of Person, this latter is linked to an instance of InsuranceCompany.
For that, association Subscribes is defined in the same B machine corresponding to
Person that uses the machine related to InsuranceCompany.

4.3 Correctness of basic machines

In order to ensure the correctness of the B basic machines generated from the IS-UML
class diagrams, a set of proof obligations is automatically calculated by the proof
obligations generator (GOP) of AtelierB. From a theoretical point of view, one proof
obligation is generated for each B operation. This proof verifies that the execution of
the operation maintains the invariant. In order to facilitate the establishment of these
proofs, GOP operates simplification rules that lead to a great number of proofs which
are easier to achieve than the initial sub-proof. For instance, to prove the correctness
of the operation BasicAddEnrollment, 4 sub-proof obligations are defined. Note that
all the proofs related to the B machine translating classes are automatically discharged
by the automatic prover of AtelierB. However, proving the correctness of operations
that delete links from associations requires defining new deduction rules in the B
prover. More details can be found in Mammar (2002).

5 Specification of the behavioural aspect of an application

Once the class diagram is translated into a B specification, transactions (behavioral
aspects) of the application are described by using state and collaboration diagrams.
The aim of these diagrams is to specify the effect of transactions on the objects of
the system. It is important to note that the term transaction, used in databases, has
several meanings. From a system point of view, it refers to the three-phase processing
of acquiring locks on some resources, performing a sequence of operations and re-
leasing the locks. From a functional point of view, it means an interrupted execution
of a sequence of operations that corresponds to the achievement of a functionality
of the information system. In this paper we adopt the functional point of view. The
description of state and collaboration diagrams and their B translation follows.

5.1 IS-UML state machines (diagrams)

5.1.1 Elaboration of IS-UML state machines

Generally, a state machine describes the behaviour of objects of the system. The no-
tations of these diagrams are similar to those of Harel (1987) for which we have
defined a particular semantics dedicated to the database domain. In our case, a state

Springer

Autom Software Eng (2006) 13:497–528 507

Fig. 3 The partial state diagram
of association class Enrollment

diagram is associated with a single class or association class. It describes the state
changes of a single object. These changes are triggered by events. Also, only basic
states are considered for this purpose. The different states in which an instance of
the related class may be in are described by predicates denoting properties that the
instance must verify. A transition, triggered by an event, may be guarded. To ensure
a deterministic behavior, we make the assumption that at the reception of an event,
at most one transition is fireable. To avoid deadlock, we assume that at the recep-
tion of an event, at least one of these guards is satisfied. When a transition is fired,
one basic operation of the related class or association class may be called. Figure 3
(partially) shows the state diagram of an instance of the association class Enrollment.
We associate with this diagram the following semantics: when event CreateEnroll-
ment occurs, depending on the number of free places of the considered course, the
enrollment is either created as successful by calling the basic operation BasicAd-
dEnrollment with the value “Succ”, or in state “Wait” by calling the basic opera-
tion BasicAddEnrollment with the value “Wait”. Each state of such a diagram is de-
scribed by a B predicate. For instance, the initial and WaitingEnrollment states are
described by the following two predicates: (initial(st, co)

�= (st �→ co) /∈ Enrollment)
and (WaitingEnrollment(st, co)

�= Status(st, co) = Wait) respectively. The definition
of the initial state means that a given link, defined by a couple of objects (st, co), is
in the initial state if and only if these objects satisfy the related predicate. Moreover,
event CreateEnrollment happening on such a link will modify its state according to
the conditions represented by guards.

5.1.2 B translation of IS-UML state machines

The translation into B consists in generating a B operation for each event. In other
words, a single operation translates all the transitions triggered by the same event.
The following B operation translates event CreateEnrollment:

CreateEnrollment(st, co)
�=

PRE st ∈ PERSON ∧ co ∈ COURSE ∧ st �→ co /∈ Enrollment∧
((initial(st, co)∧FreePlaces(co)>0) ∨ (initial(st, co) ∧ FreePlaces(co) = 0))

THEN
SELECT FreePlaces(co) > 0 THEN BasicAddEnrollment(st, co, Succ)
WHEN FreePlaces(co) = 0 THEN BasicAddEnrollment(st, co, Wait)
END

END
Springer

508 Autom Software Eng (2006) 13:497–528

Let us give some explanations about the way whereby each part of this operation is
generated:

1. Signature: the signature of a B operation translating an event exactly corresponds
to the signature of this event: same name and same parameters.

2. Precondition: the precondition includes several conjuncts. The last conjunct is
derived from the transitions triggered by the related event. It is a disjunction of
predicates, each of them is associated with a transition and is the conjunction of
the predicate of the source state and the guard of the transition: ((initial(st, co) ∧
FreePlaces(co) > 0) ∨ (initial(st, co) ∧ FreePlaces(co) = 0)). The first two pre-
conditions concern the typing of the parameters and the preconditions of the called
operations: (st ∈ PERSON ∧ co ∈ COURSE ∧ st �→ co /∈ Enrollment). This pred-
icate is automatically inferred from the way whereby these parameters are used in
the basic operation calls. From a practical point of view, we proceed as follows. For
each call op(EParam1, . . . , EParamn) to an operation op whose formal parameters
are FParam1, . . . , FParamn , we substitute, in the precondition of op, each formal
parameter by its corresponding actual parameter. Then, the precondition of the op-
eration translating the event denotes the conjunction of all these sub-preconditions.
Doing this, some conjuncts may be redundant, consequently, simplification rules
must be applied. An example showing how such preconditions are calculated is
given in Section 5.2.2.

3. Postcondition (Body): the effect of the event is translated by a SELECT substitu-
tion. Each branch of this substitution is related to a single transition. It is guarded
by the guard of the transition, and executes the action specified for it.

5.1.3 Proofs for state diagrams

As for the B specification translating class diagrams, proof obligations are generated
for the B specifications translating state diagrams. Since no additional invariants are
added in this step, these proof obligations concern exclusively two points:

1. Preconditions of the called operations: for each operation op called in an opera-
tion ev whose precondition is Precev, a proof obligation checking the precondition
Precop of op is generated. These proof obligations are automatically discharged
since, as mentioned in the previous section, the precondition Precev is obtained by
taking the precondition of each called operation into account.

2. Target state of a transition: let A and B be two states of a state diagram. Let
PrA and PrB the predicates describing the states A and B respectively. For each
transition tr, from A to B, for which a guard gr and an action op are specified, a
proof obligation, ensuring that PrB is verified after executing op, is generated. For
instance, the transition relating the initial and WaitingEnrollment states raises the
following proof obligation:

(initial(st, co) ∧ FreePlaces(co) = 0) ⇒ (Status ∪ {st �→ co �→ Wait})(st, co)=Wait

which is true. It is worth noting that no new proof obligations are generated for the
invariants specified in the basic machines since we have already proved that each
basic operation preserves its invariant when it is called under its precondition.

Springer

Autom Software Eng (2006) 13:497–528 509

Since the operation translating a state diagram specifies just additional conditions
for calling one of the basic operations, all the proofs are still valid.

5.2 IS-UML collaboration diagrams

5.2.1 Elaboration of IS-UML collaboration diagrams

To describe transactions that involve several classes and associations, we use col-
laboration diagrams. In our method, a collaboration diagram shows how the effect
of a transaction is decomposed into internal messages sent to each class or associ-
ation. Figure 4 shows the UML collaboration diagram associated with transaction
Add Enrollment that actually registers a student into a course. This transaction con-
sists in simultaneously executing the following actions:

– Triggering event CreateEnrollment.
– Decreasing the number of the free places of the related course if there is at least

one available place.

5.2.2 B translation of IS-UML collaboration diagrams

A collaboration diagram is translated into a single B operation whose body consists in
simultaneously calling the operations corresponding to the messages. The operation
generated for the collaboration diagram of Fig. 4 is as follows.

AddEnrollment(st, co)
�=

PRE st ∈ Student ∧ co ∈ Course ∧ st �→ co /∈ Enrollment∧
((initial(st, co)∧FreePlaces(co) > 0)∨(initial(st, co) ∧ FreePlaces(co) = 0))

THEN
CreateEnrollment(st, co)‖
IF FreePlaces(co) > 0 THEN

BasicUpdateFreePlaces(co,FreePlaces(co)-1)
END

END

Fig. 4 The collaboration diagram of transaction AddEnrollment

Springer

510 Autom Software Eng (2006) 13:497–528

It is important to note that, contrary to other generated operations, the operations gen-
erated from collaboration diagrams define the interface of our information system. In
other words, the state of the system evolves through the execution of these operations.
This is why the typing of the input parameters of these operations is not inferred only
from operations calls but also from the substitutions that compose these operations.
So, to generate the preconditions of these operations, we have to substitute the formal
parameters, in the body of the called operations, with the actual ones. Taking opera-
tions’ bodies into account permits, for instance, to resolve the relaxed typing used in
the operations generated for associations. For instance, precondition P of operation
AddEnrollment is generated as follows:

1. From the call to operation BasicUpdateFreePlaces, we deduce that:

P1
�= (co ∈ Course ∧ (FreePlaces(co) − 1) ∈ NAT)

2. From the call to operation CreateEnrollment , we deduce that:

P2
�= (st ∈ PERSON ∧ co ∈ COURSE ∧ st �→ co /∈ Enrollment

∧ ((initial(st, co) ∧ FreePlaces(co) > 0) ∨ (initial(st, co) ∧ FreePlaces(co) = 0))))

The predicate P is then equal to:

P1 ∧ P2
�= (co ∈ Course ∧ (FreePlaces(co) − 1) ∈ NAT

∧ st ∈ PERSON ∧ co ∈ COURSE ∧ st �→ co /∈ Enrollment

∧ initial(st, co) ∧ FreePlaces(co) > 0) ∨ (initial(st, co) ∧ FreePlaces(co) = 0))

On this predicate, simplification rules must be applied in order to optimize it. To
do this, we have defined several simplification rules. For instance, to simplify the
predicate P , the following simplification rules, proved by the prover of the AterlierB,
must be applied:

1. B∈NAT
((A−B)∈NAT)==(A∈NAT)

: this rule means that if the second operand of the minus oper-
ator is natural, and the result of the operation is natural, we can deduce that the first
operand is natural too. Applying this rule rewrites ((FreePlaces(co) − 1) ∈ NAT)
into (FreePlaces(co) ∈ NAT).

2. f ∈A→B
(f (a)∈B)==(a∈A)

: this rule means that expression f (a) is defined if only and only if
a belongs to the domain of f . Applying this rule rewrites (FreePlaces(co) ∈ NAT)
into (co ∈ Course).

3. C2⊆C1 ∧not(c∈(C1−C2))
(c∈C1)==(c∈C2)

: this rule means that if there is no constraint saying that an in-
stance does not belong to a given subset C2, then it is. Applying this rule rewrites
co ∈ COURSE into co ∈ Course. But, the same rule applied on (st ∈ PERSON)
gives three possible rewritings: (st ∈ Person), (st ∈ Teacher) and (st ∈ Student).
This is why we have to consider the body of operation CreateEnrollment too,
which comes down to consider the body of BasicAddEnrollment. We obtain the
following substitutions (“ ” denotes either “Succ” or “Wait” value):

Enrollment := Enrollment ∪ {st �→ co}
Status := Status ∪ {st �→ co �→ }

Springer

Autom Software Eng (2006) 13:497–528 511

Replacing the after-value of Enrollment in invariant (Enrollment ∈ Student ↔
Course) gives: (Enrollment ∪ {st �→ co} ∈ Student ↔ Course). On this last for-
mulas, we have just to apply the simplification rule 4.

4. f ∈A↔B
(f ∪{a �→b})∈A↔B==(a∈A∧b∈B)

: this rule means that the type of a relation f is main-
tained by adding links whose components are well-typed.

5. c∈C1 ∧ c∈C2 ∧(C1⊆C2)
(c∈C1 ∧ c∈C2)==(c∈C1)

: this rule means that we keep only the strongest typing.

Finally precondition P of operation AddEnrollment is equal to:

P
�= (st ∈ Student ∧ co ∈ Course ∧ st �→ co /∈ Enrollment ∧

((initial(st, co) ∧ FreePlaces(co) > 0) ∨ (initial(st, co) ∧ FreePlaces(co) = 0))))

As we can see, this predicate can be further simplified. Indeed, the predicate
initial(vc) is redundant with the predicate (st �→ co /∈ Enrollment). However, we keep
it in order to maintain a correspondance between the generated B specification and
the IS-UML diagrams.

5.2.3 Proofs for collaboration diagrams

Since no additional invariants are added in this step, for each operation op translating
a collaboration diagram, two kinds of proof obligation are generated. The first kind
concerns the called operations. One proof obligation is generated for each called op-
eration. This proof obligation ensures that each operation is called under its precondi-
tion. For instance, we must verify that the precondition of the operation BasicUpdate-
FreePlaces is verified when it is called. These proof obligations are all automatically
discharged since the precondition of the operation AddEnrollment was defined by
taking the preconditions of all the called operations into account. The second kind of
proof obligations concerns the parts of the invariant of the basic machines that de-
pend on variables that are read and modified simultaneously by the called operations.
Indeed, although we have proved that each basic operation, executed separately, es-
tablishes the invariant, the simultaneous execution of two (or more) basic operations
may violate the invariant. These proof obligations must be achieved interactively. For
our case study for instance, suppose we have defined in machine BasicEnrollment
the following B invariant:

INV
�= ∀(st, co).(st �→ co ∈ Enrollment ∧ FreePlaces(co) > 0

⇒ Status(st, co) = Succ)

that states that all the enrollments in a given course co in which there are free places
must be successful. Let co be a full course (FreePlaces(co) = 0), and st be a student
which is not enrolled in co yet. It is obvious that BasicAddEnrollment(st, co, Wait)
maintains INV. Similarly, operation BasicUpdateFreePlaces(co, 1) does not violate
INV. However, the simultaneous execution of these two operations violates INV. In
fact, there will be free places in co while the enrollment of st is registered in status
“Wait”.

Springer

512 Autom Software Eng (2006) 13:497–528

6 From a B specification to a relational implementation

Once the B specification corresponding to the different IS-UML diagrams is gener-
ated, it is successively transformed, using the B refinement technique, until a concrete
level which is close to a B representation of the relational database and its correspond-
ing programs (transactions) is obtained. In this way, the last step of coding becomes
a straightforward task. Our data structure refinement rules use the algorithm defined
in Batini et al. (1992) that derives a relational schema from a class diagram whose
semantics is similar to ours. The main idea of this algorithm is to reorganize the class
diagram into a set of independent classes. So, all elaborated concepts such as inheri-
tance, association class and complex attributes must be transformed. The contribution
of our approach is the joint refinement of data and operations (basic operations and
transactions). In this way, we ensure, thanks to the refinement proofs, that the ob-
tained program still verifies constraints specified at the abstract level. The following
subsections illustrate the main steps of our refinement process (Mammar, 2002). Note
that due to some technical contraints of the B method detailed in Mammar (2002), we
have been obliged to consider that the global B specification is contained in a single
machine. The operations of the subclasses are expanded by unfolding the operation
calls. For instance, operation AddStudent is rewritten into:

AddStudent(st, na, cl, ic)
�=

PRE st ∈ PERSON − Person ∧ na ∈ STRING ∧ cl ∈ NAT∧
ic ∈ InsuranceCompany

THEN
//adding a new instance to Person

Person := Person ∪ {st}‖
NamePers := NamePers ∪ {st �→ na}‖
Subscribes := Subscribes ∪ {st �→ ic}‖

//adding a new instance to Student
Student := Student ∪ {st}‖
ClassLevel := ClassLevel ∪ {st �→ cl}

END

6.1 Data structure refinement

The objective of this phase is to transform all the UML data concepts that are not
allowed in the relational model. For this purpose, these rules are applied:

i. Elimination of inheritance links: our approach supports only simple inheritance
without cycles. Inheritance links can be removed according to three different
strategies:

• removing the superclasses and keeping the subclasses.
• removing the subclasses and keeping the superclasses.
• keeping the super and subclasses and replacing the inheritance links with in-

clusion constraints.

Springer

Autom Software Eng (2006) 13:497–528 513

In this paper, we give an illustration of the first case. By removing superclass
Person, i.e variable Person, its attributes and associations must be redefined on
subclasses T eacher and Student . For instance, attribute NamePers (resp. asso-
ciation Subscribes) is split into two attributes (resp. associations) NameTeach and
NameStu (resp.SubscribesTeach and SubscribesStu) which are defined as follows:

Invariant
//typing the added variables

NameTeach ∈ Teacher → STRING ∧ NameStu ∈ Student → STRING∧
SubscribesTeach ∈ Teacher → InsuranceCompany∧
SubscribesStu ∈ Student → InsuranceCompany∧

//the gluing invariant expressing the added variables with respect to the removed
ones

NamePers = NameTeach ∪ NameStu∧
Subscribes = SubscribesTeach ∪ SubscribesStu

To establish the above invariant, AddStudent is refined by removing the substitu-
tion related to variable Person and replacing variables NamePers and Subscribes
by NameStu and SubscribesStu respectively.
To keep the concept of Person in the system, we associate with the removed
variable Person the following B definition: (Person

�= Student ∪ Teacher) that is
translated into a SQL view.

ii. Transition to the first normal form: in a relational database, all the attribute do-
mains are atomic. According to its cardinality, a multivalued attribute of a class is
replaced either by a new class or by several new atomic attributes.

iii. Transition from an object-based model to a value-based model: in a relational
database, each table must have a key: it is a value-based model, that means that
each tuple is identified by a set of attributes. On the contrary, the UML model
is an object-based model: each object is identified by an object identifier that
is independent of the value of its attributes. Thus, for each class, either a key
already exists or the algorithm adds a new one. The selected key will be mapped
to a primary key when generating the database schema. For example, as class
Student has no key, this step adds a key variable CardStu defined by the following
conjunct:

CardStu ∈ Student � NAT

To establish this conjunct, operation AddStudent is refined by adding a substitu-
tion that updates variable CardStu.1 Note that the precondition has been weakened
(removed precisely):

AddStudent(st, na, cl, ic)
�=

BEGIN
ANY no WHERE no ∈ NAT − ran(CardStu) THEN

CardStu := CardStu ∪ {st �→ no}‖

1 ran(f) = {y | ∃x .(f (x) = y)}.
Springer

514 Autom Software Eng (2006) 13:497–528

NameStu := NameStu ∪ {st �→ na}‖
SubscribesStu := SubscribesStu ∪ {st �→ ic}‖
Student := Student ∪ {st}‖
ClassLevel := ClassLevel ∪ {st �→ cl}

END
END

iv. Transformation of monovalued associations: an association (or association class
without attributes) between classes C and D with at least one monovalued role
(attached for example to class C) is replaced by a new attribute in C . This new
attribute is linked to the key of D by a referential constraint. In B, applying this
rule replaces variable SubscribesStu by a new variable SubscribesStuMig defined
by the following invariant:

SubscribesStuMig ∈ Student → NAT∧
SubscribesStuMig = (NumCom ◦ SubscribesStu)

The first conjunct types the added variable SubscribesStuMig, the second is a
gluing invariant that relates SubscribesStuMig to SubscribesStu. Intuitively, this
refinement replaces each instance ic, of I nsuranceCompany, by the value of its
key (NumCom). Therefore, operation BasicAddStudent is refined by replacing ic
with NumCom(ic).

iv. Transformation of multivalued associations: multivalued associations (resp. asso-
ciation classes) become classes with two additional attributes linked by referential
constraints to the keys of the classes involved with the association. The tuple of
these two attributes denotes a key for the created class. Applying this rule adds
two variables Enrollment Stu and Enrollment Cou defined by2,3,4,5:

Enrollment Stu = Enrollment � (pr j1(Student, Course); CardStu)
Enrollment Cou = Enrollment � (prj2(Student, Course); Code)

(Enrollment Stu ⊗ Enrollment Cou) ∈ Enrollment � NAT × NAT

The first two predicates are the gluing invariant. It states how the two added vari-
ables are related to the abstract ones. The first (resp. second) predicate states
that variable Enrollment Stu (resp. Enrollment Cou) associates each tuple (st, co)
with the key value of its first (resp. second) element. The last predicate speci-
fies that tuple (Enrollment Stu, Enrollment Cou) constitutes a key for the class
Enrollment.

In order to preserve these invariants, we refine all the operations referring
to variable Enrollment. For instance, the operation BasicAddEnrollment is re-
fined by adding the following two substitutions that update the added variables
Enrollment Stu and Enrollment Cou:

Enrollment Stu := Enrollment Stu ∪ {(st �→ co) �→ CardStu(st)}
Enrollment Cou := Enrollment Cou ∪ {(st �→ co) �→ Code(co)}

2 X � f = {x �→ y | x �→ y ∈ f ∧ x ∈ X}.
3 pr j1(X, Y) = {(x �→ y) �→ x | x ∈ X ∧ y ∈ Y }.
4 pr j2(X, Y) = {(x �→ y) �→ y | x ∈ X ∧ y ∈ Y }.
5 f ⊗g = {x �→ (y �→ z) | x �→ y ∈ f ∧ x �→ z ∈ g}.

Springer

Autom Software Eng (2006) 13:497–528 515

v. Definition of the database schema: the idea is to gather under a single variable all
the characteristics related to a given class. This single variable corresponds to a
relational table. By this rule, the functions Enrollment Stu, Enrollment Cou and
Status, defined on the variable Enrollment, are gathered under the single variable
Table Enrollment defined by the following gluing invariant:

Table Enrollment ∈ Enrollment → (NAT × NAT × Type Status)∧
Table Enrollment = Enrollment Stu ⊗ Enrollment Cou ⊗ Status

Similarly, the substitutions related to the variables Enrollment Stu, Enroll-
ment Cou and Status, are replaced with a single substitution acting on the sin-
gle variable Table Enrollment. The basic operation BasicAddEnrollment is thus
refined into:

BasicAddEnrollment(stu, cou, sta)
�=

BEGIN
Enrollment := Enrollment ∪ {stu �→ cou}‖
Table Enrollment := Table Enrollment ∪

{(stu �→ cou) �→ (CardStu(stu) �→ Code(cou) �→ sta)}
END

vi. Implementation of the data structure and the basic operations: for each carte-
sian product obtained in the previous refinement step, we specify a B machine,
called an SQL machine, that implements it. For example, to implement variable
Table Enrollment, we define the SQL machine Rel Enrollment as follows6:

MACHINE Rel Enrollment
VARIABLES Table Enrollment
INVARIANT

Table Enrollment ⊆ struct(CardStu : NAT, Code : NAT, Status : Type Status)

INITIALISATION Table Enrollment:=∅
OPERATIONS
Insert Enrollment(stu, cou, sta)= /*Adding a new tuple in the Table Enrollment*/

PRE stu ∈ NAT ∧ cou ∈ NAT ∧ sta ∈ T ype Status THEN
Table Enrollment := Table Enrollment ∪ {rec(stu, cou, sta)}

END;
. . .

END

The implementation of the abstract variables obtained in the previous step by the
variables of the imported SQL machines is achieved by expressing the existing
relation between them. The main idea of this step is to identify each object by the
value of its key: the two elements become the same. For instance, the implementa-
tion of variable T Enrollment by variable Table Enrollment is formally specified
by the following gluing invariant:

∀(x, y, z) · (((x �→ y) �→ z) ∈T Enrollment⇒rec(x, y, z)∈Table Enrollment)∧
∀(x, y, z) · (x ∈ NAT ∧ y ∈ NAT1 ∧ z ∈ Type Status∧

rec(x, y, z) ∈ Table Enrollment ⇒ ((x �→ y) �→ z) ∈ T Enrollment)

6 struct(A1 : t1, . . . , An : tn) denotes the structure of records in B. An element of this structure is denoted
by rec(a1, . . . , an).

Springer

516 Autom Software Eng (2006) 13:497–528

The above conjunct defines a bijection relation between instances of the variables
T Enrollment and Table Enrollment. Each instance of T Enrollment is associ-
ated with exactly one instance of Table Enrollment and vice-versa. This is why
we do not have to express, in machine Rel Enrollment, that tuple (CardStu, Code)
is a key. In fact, the bijective feature of the gluing invariant makes each property
on T Enrollment also verified on Table Enrollment. In the same way each basic
operation obtained in the previous step is implemented by its equivalent ones de-
fined in the SQL machine. For example, the basic operation BasicAddEnrollment
is implemented by the operation Insert Enrollment. Each of these SQL machines
is mapped to a table. Integrity constraints are derived from the invariants defined
at the abstract specification level and those added during the different refinement
steps.

6.2 Substitution refinement

Up to now, only the data and the basic operations have been refined. The transactions
defined in our specification were only rewritten with respect to the concrete vari-
ables. The transactions still contain B substitution constructors, such as parallel and
SELECT constructors, which are not allowed at the implementation level. Moreover,
the variables which the transitions may refer to are refined by the variables defined
in the imported SQL machines. In Mammar and Laleau (2006), we have defined a
generic and automatic process to refine transactions. The refinement of transactions
consists hence of the following points:

1. We associate with each expression or predicate a B read operation that returns
its value. The input parameters of these operations are the free variables appear-
ing in the related expression or predicate. This operation refers to the variables
defined in the SQL machines. The specification of these operations requires the
definition of formal rules that rewrite the variables of the last refinement level with
respect to those defined in the SQL machines. For example, with respect to variable
T able Enrollment , variable Status is rewritten into7:

Status
�=

⋃
x · (x ∈ Table Enrollment|{(x′CardStu �→ x′Code) �→ x′Status})

Intuitively, function Status is rebuilt from Table Enrollment by generating tu-
ple ((x �→ y �→ z)) from each record rec(x, y, z). Abstract variables defined on
Course being rewritten according to concrete ones, operation AvailablePlaces that
returns the value of predicate (FeePlaces(co) > 0) checking whether there are
available places or not is defined as follows:

val ←− AvailablePlaces(co)
�=

PRE co ∈ Course THEN
val := Bool(FreePlaces(co) > 0)

END

7 x ′ y denotes the value of field y for record x .

Springer

Autom Software Eng (2006) 13:497–528 517

2. The IF constructor is kept since it is allowed at the B implementation level.
3. The SELECT constructor is replaced with the IF constructor. This implementation

is correct since we have made the assumption that when an event occurs at least
one of the guards of the transitions related to the event is satisfied.

4. The Parallel constructor is replaced with the Sequence one because it is not al-
lowed at the B implementation level. Since by construction S1 and S2 do not mod-
ify the same variables, two solutions are possible: either (S1; S2) or (S2; S1). In
Mammar and Laleau (2006), we described a formal approach that provides the
best solution. The approach is based on the set of modified and read variables of
S1 and S2. It is inspired by the lazy evaluation technique (Hughes, 1989). The
expressions and predicates appearing in a transaction are classified into two sets:
dependent expressions (resp. predicates), and mandatory expressions (resp. predi-
cates). An expression (resp. predicate) is dependent if it may be not relevant to the
transaction. For example, if we consider the following substitution:

IF pred THEN op(exp) END

the predicate pred is mandatory since pred is always evaluated, whereas exp is
dependent since it becomes relevant only when pred is true. Having defined these
two kinds of expressions/predicates, our solution consists in executing at first the
substitutions that modify the fewest number of variables appearing in dependent
expressions and predicates.

Applying this strategy, operation AddEnrollment is implemented by:

AddEnrollment(st, co)
�=

BEGIN
/*Implementation of the operation CreateEnrollment*/

VAR availableplaces1 IN
/*Evaluation of predicate FreePlaces(co) > 0*/
availableplaces1 ← AvailablePlaces(co);
IF availableplaces1 = TRUE THEN Insert Enrollment(st, co, Succ)
ELSE

VAR noavailableplaces IN
/*Evaluation of predicate FreePlaces(co) = 0*/
noavailableplaces ← NoAvailablePlaces(co);
IF noavailableplaces = TRUE THEN

Insert Enrollment(st, co, Wait)
END

END
END

END
/*Implementation of operation BasicUpdateFreePlaces */
VAR availableplaces2, newvalfreeplaces IN

/*Evaluation of actual parameter (FreePlaces(co) − 1)*/
newvalnbfree ← GetNewValueFreePlaces(co);
/*Evaluation of predicate (FreePlaces(co) > 0)*/
availableplaces2 ← AvailablePlaces(co);

Springer

518 Autom Software Eng (2006) 13:497–528

IF availableplaces2 =TRUE THEN Update FreePlaces(co, newvalfreeplaces);
END

END
END

6.3 Refinement proofs

To ensure the correctness of the refinement process we defined, we have established
the correctness of each refinement rule: about 200 refinement proofs. Proving the
refinement of a substitution S by a substitution T consists in: 1. proving that if S
terminates then T terminates as well, 2. the execution of S and T yields the same
result. With AtelierB (version 3.5), 70% of these proofs have been automatically dis-
charged, but this concerns only the easier proofs related to the first condition. The
remaining proofs are rather hard and often very tedious to achieve. Fortunately, the
generic feature of the refinement rules made it possible to define proof tactics that en-
able to automate the refinement proofs. This means that, once the proof of a generic
refinement rule has been obtained, it is possible to reuse it in all the instantiations of
the rule (Mammar and Laleau, 2003).

Similarly, to prove the refinement of transactions, we have studied and defined
sufficient conditions that allow us to reuse the basic operation refinement proofs. We
have also pointed out that, in the database domain, these conditions most often hold.
Hence, the proof of the transaction refinement has been largely automated. More
details can be found in Mammar and Laleau (2003) and Mammar (2002).

6.4 Generation of a relational implementation

The schema of the database and its related SQL statements are generated from the
imported machines. With each imported machine Rel A, are associated:

– a relational table A which defines the different fields that it contains,
– a JAVA class A which defines a set of methods corresponding to the different oper-

ations specified in machine Rel A.

In Mammar and Laleau (2006), we have informally presented through an example
the generation of these two elements. The objective of this part is to formalise such a
generation process.

6.4.1 Generation of database schemas

Each imported machine Rel A defines a relational table T able A whose fields are
obtained according to the following formal rules

a) Definition of the fields

Trad B SQL(T able C ⊆ struct(Att1 : T1, . . . , Attn : Tn)) =
CREATE TABLE C(

Att1 Trad B SQL(Att1 : T1) NULL Constraint,
. . .

Attn Trad B SQL(Attn : Tn) NULL Constraint
PRIMARYKEY Constraint,

Springer

Autom Software Eng (2006) 13:497–528 519

UNIQUE Constraint,
REFERENTIAL Constraint)

b) Definition of the types of fields

Trad B SQL(Att : NAT) = INT Check Att ≥ 0
Trad B SQL(Att : BOOL) = BOOLEAN
Trad B SQL(Att : STRING) = CHAR(n) where n denotes an integer value.
Trad B SQL(Att : {val1, . . . valn}) = CHAR(n) Check Att IN (“val1”,. . . ,“valn”)
where n denotes an integer value representing the length of the longest identifier vali .

c) Definition of constraints

//if the B function corresponding to an attribute is total, the field must be not null
Trad B SQL(Atti ∈ C → Ti) = NOT NULL

//The key of a table C corresponds to the injective function defined on C
//(or the functions whose direct product is injective on C)
Trad B SQL(Atti ⊗ · · · ⊗ Att j ∈ C � Ti × · · · × Tj) = PRIMARY KEY (Atti , . . . , Att j)
//The other injective functions are mapped as UNIQUE constraints
Trad B SQL(Attm ⊗ · · · ⊗ Attn ∈ C � Tm × · · · × Tn) = UNIQUE (Attm , . . . , Attn)

//The gluing invariant added by the refinement of monovalued associations is translated
//to a referential constraint
Trad B SQL(Att1 = (K eyD ◦ Att2)) = Att1 REFERENCES D(K ey D)

//The gluing invariant added by the refinement of multivalued associations is translated
//to two referential constraints

Trad B SQL(C ∈ A ↔ B ∧ Att1 = C � (pr j1(A, B);K eyA))= Att1 REFERENCES A(K eyA)
Trad B SQL(C ∈ A ↔ B ∧ Att2 = C � (pr j2(A, B);K eyB))= Att2 REFERENCES B(K eyB)

Applying these rules to the case study generates six tables as depicted in Fig. 5.
Roughly speaking, there is one table for each class, multivalued association or asso-
ciation class. Attributes Key Student and Key Teacher are the two keys automatically
added to classes Student and Teacher respectively. Let us notice that during the re-
lational implementation generation, the translation of the B constraints into SQL is
restricted to the above constraints (attribute type, primary key, etc.). Of course, the
considered B specification may contain other kinds of constraints. However, they may
be omitted in SQL since by refinement and its associated proofs, we are sure that the
generated transactions will verify them. In this way, the time spent by the DBMS to
verify these constraints will be saved. Moreover, one cannot specify additional con-
straints on the generated SQL tables. In fact, it is not recommended since, after such
an adding we cannot ensure that the transactions will verify the added constraints.

6.4.2 Generation of the JAVA classes defining the basic SQL statements

Each operation defined in an imported machine Rel A is mapped into a JAVA method.
These methods are declared in the same JAVA class A. The skeleton of this class is
constructed according to the following rule:

Springer

520 Autom Software Eng (2006) 13:497–528

Fig. 5 The UML representation of a database schema

Trad_B_JSQL(MACHINE Rel_A ... END)=
public class A {

/*as many variables as operations defined in Rel_A*/
...

/*definition of a connection to table A_Rel*/
private Connection conn;

/*creation of an instance*/
public A (Connection conn) throws SQLException{

this.conn = conn;
/*Definition of variables storing the SQL statements*/

...
/*Declaration of methods*/

... }}

The declaration and the definition of the variables storing the SQL statements are
obtained from the operations defined in the imported machines. In this paper, we only
give the rule translating an add operation.

Trad B JSQL(Insert A(p1, . . . , pn)
�= PRE p1 ∈ T1 ∧ · · · ∧ pn ∈ Tn THEN

T able A := T able A ∪ {rec(p1, . . . , pn)} END) =
/*declaration of the variable storing the statement*/

private PreparedStatement stmtInsert;
/*definition of the variable storing the statement*/
stmtInsert = conn.prepareStatement("insert into A"

+"(Att1, ... , Attn) values(?, ... ,?))");
/*adding a new instance in table A*/

Springer

Autom Software Eng (2006) 13:497–528 521

public void Insert_A(T1 p1, ... , Tn pn) throws SQLException {
/*assigning values to the fields*/

stmtInsert.setT1(1, p1); ... ;stmtInsert.setTn(n, pn);
/*execution of the insertion*/
stmtInsert.executeUpdate();}

For each operation defined in the imported machine, a PreparedStatement vari-
able is declared. Prepared Statement is a JDBC class that provides a method
prepareStatement allowing to store a pre-compiled SQL statement. This class also
offers methods to assign values to the different parameters of the related statement
(SetTi, Ti denotes a JAVA type), to execute statements (executeUpdate), etc.

6.4.3 Translation of transactions into JAVA

The translation of a transaction into JAVA is based on the different JAVA translation
of the operations it calls. Since the control structures (IF, Sequencing) obtained at
the implementation level are all supported by the JAVA language, this translation
becomes straightforward: we have just to replace each B substitution constructor by
its corresponding JAVA control structure, and operation calls by JAVA methods calls.
Hence, transaction AddEnrollment is translated into:

public void AddEnrollment(int st, int co){
boolean availableplaces1 = course.AvailablePlaces(co);
if (availableplaces1==true)

enrollment.Insert_Enrollment(st, co,"Succ");
else{

boolean noavailableplaces= course.NoAvailablePlaces(co);
if (noavailableplaces==true)

enrollment.Insert_Enrollment(st, co, "Wait");
}

int newvalfreeplaces = course.GetNewValueFreePlaces(co);
boolean availableplaces2 =course.AvailablePlaces(co);
if (availableplaces2==true)

course.Update_FreePlaces(co, newvalfreeplaces);
}

7 Discussion

7.1 Benefits and limitations of the approach

Our contribution is twofold: 1. a systematic approach to generate B specifications
from IS-UML diagrams, and 2. a systematic B refinement process that derives a cor-
rect B representation of a relational implementation from B specifications. Translat-
ing IS-UML diagrams into B specifications assigns them a formal semantics. This
helps users remove the ambiguities and alleviate the missing semantics of standard
UML diagrams. Furthermore, in Mammar and Laleau (2006) we show that the B
implementation of a transaction is in most cases longer than its abstract specifica-
tion that hides all the implementation concerns that our refinement rules deal with.
Moreover, to make our proposal more accessible for database users, we have devel-
oped a tool, called UB2SQL (Mammar and Laleau, 2005), that automates most of

Springer

522 Autom Software Eng (2006) 13:497–528

the tedious tasks. Automating both the generation of B specifications from IS-UML
diagrams and its refinement into a relational implementation frees engineers from te-
dious tasks. Indeed, without considering the different refinement steps and the proof
phase, handwriting (in ASCII characters) B abstract specifications corresponding to
a small diagram composed of one association involving two classes takes at least half
a day. Moreover, UB2SQL has been integrated into the ROSE environment (Rational,
2003) to facilitate its use as several notations (UML, B and SQL) can be viewed in
the same environment.

It is also important to consider the interest of using UML diagrams for building
a B model. Actually, the crux of the construction of a formal model is to find ap-
propriate abstractions, that is choosing the objects that make up the formal model
(Mandrioli, 2004; Davies et al., 2004; Oliveira, 2004). In the database domain, we
are used to constructing data models. After converting them into B specifications, we
obtain the complete state of the formal model, that is all the variables. Moreover, the
architecture of the formal model is also derived from the UML diagrams. Finally, a
state diagram provides a different view of the operations of a class compared to the
list of operations of a B machine. It describes ordering constraints between operations
that cannot be straightforwardly expressed in B (we can do this in B by adding new
state variables and preconditions but it is not a natural way of thinking). In fact state
diagrams could be used for the model checking of the formal model, a verification
technique presented below.

From a verification point of view, the proposed approach can be further improved.
Using AtelierB, only the safety properties can be verified. Indeed, the B method is
devoted to develop systems which, when they run, are guaranteed to produce correct
results. However, it would be interesting to verify some other kinds of properties such
as liveness properties. For instance,we have to check that the different preconditions
of operations generated from state and collaboration diagrams are not always false.
Similarly, we have to check that the predicate of a source state is not always false.
A similar verification must also be achieved for guards that must be satisfiable and
disjoint. The first case detects unreachable states. The second detects transitions that
can never be fired. Such bad specifications cannot be discovered by the B prover be-
cause they make the precondition of the generated B operation always false and thus
the associated proof theorem is automatically discharged (always true). For verifying
this kind of properties, we think that other provers and/or model checkers should be
investigated (Leuschel and Butler, 2003).

Moreover, the annotation of UML with B notations may be improved by consider-
ing the OCL language, which is an integral part of the latest UML language versions.
For instance, it would be easier for database users to express the previous constraint
INV of page 13 as OCL expressions instead of B notations. These OCL notations
would be translated into B specifications using the UML2B tool developed in the
context of the Lutin project (Marcano and Levy, 2002).

Another interesting topic that we have not yet considered concerns the link be-
tween partial functions in B and the use of the unknown value (NULL) in SQL. In
B, an attribute undefined for some objects, such as the maiden name for a person, is
represented by a partial function. In SQL, this is defined as an attribute that accepts
NULL values. Whereas in SQL a three-valued logic has been explicitly specified to
deal with NULL values, the B logic is a two-valued logic. However there exists some

Springer

Autom Software Eng (2006) 13:497–528 523

work on the definition of a logic for a language with partial functions, with a three-
valued interpretation for logical formulas (Behm et al., 1998; Burdy, 2000). Up to
now, our approach is somewhat simple and consists in reserving a given value of
each B type to denote the NULL value (see Laleau and Mammar, 2000a for more
details).

7.2 Comparison with other similar approaches

Over the last decade, several approaches, based on formal methods, to develop
database applications have been proposed. These approaches fall into two categories.
The principle of the first category’s approaches is to translate graphical notations
into formal ones, like B (Marcano and Levy, 2002; Ledang et al., 2003; Treharne,
2002) and Z (Dupuy et al., 2000; Hall, 1990; Kim and Carrington, 1999), in order
to obtain formal models on which rigorous reasoning and correctness proofs can be
achieved. In Dupuy (2000) a formal approach, supported by the RoZ tool (Dupuy
et al., 2000), to generate Z specifications from UML class diagrams is presented.
Contrary to our approach, basic operations are only generated for classes. Operations
on associations are not supported. Moreover, behavioral diagrams are not considered.
A similar tool, named FuZe, which deals with Fusion class diagrams edited under the
Paradigm Plus environment, has been developed by Bruel and France (1996). The
generation of B formal specifications from UML diagrams has been also investigated
by Snook and Butler (2001) and Ledang and Souquières (2001). Their approaches
are supported by U2B and ArgoUML + B tools respectively. Both are restricted to
class and state/transition diagrams. In Snoock’s approach only the insert operation is
generated for associations. Operations on attributes are not considered. Moreover, the
considered domain being reactive systems, the semantics attached to UML diagrams
is rather different from ours. Let us remark that none of these tools includes genera-
tion of code. Although such approaches move the development of database applica-
tions forward, they do not cover all the development phases. Lano et al. (2004) has
developed an approach, supported by the UML-RSDS tool, to generate B, JAVA and
SMV specifications from a subset of UML diagrams comprising class diagrams in-
volving inheritance, state diagrams and constraints expressed in OCL. The rules used
to translate class diagrams are similar to ours. The generation of SMV specifications
permits to detect some intra- and inter-diagram inconsistencies. However no details
are given about the formalism and the correctness of the JAVA process generation.

Approaches of the second category use the refinement technique to derive ex-
ecutable code from formal specifications. The most representative approaches are
those presented in Matthews and Locuratolo (1999), Edmond (1995), Gunther et al.
(1993) and Schewe et al. (1991). Matthews and Locuratolo (1999) proposes a refine-
ment process to develop object-oriented database applications. Based on the ASSO
formal method, which is very similar to B, the defined process aims at reorganizing an
inheritance hierarchy into independent classes. The application to develop is first de-
scribed and refined in ASSO, the resulted ASSO specification is then translated into B
in order to validate the entire development. The validation is made using B tools since
the ASSO method lacks such tools. The main drawback of this approach is that the
concepts available in ASSO are rather limited: classes, monovalued attributes, inher-
itance. These concepts are not sufficient to capture the whole semantics of database

Springer

524 Autom Software Eng (2006) 13:497–528

applications. In Gunther et al. (1993) and Schewe et al. (1991), an approach to gener-
ate a DBPL code from a B specification derived from TDL specification is presented.
The main drawback of this approach is that formal rules are defined only for the re-
finement of data, transactions are not considered. In Edmond (1995), another method
to derive relational implementations from Z specifications is proposed. Nevertheless,
this method is only presented through an example, no formal rules are provided. Qian
(1993) has defined a logic for an abstract specification of relational transactions. The
deductive tableau technique is then used to derive a program from this specification.
This approach requires strong mathematical and logical background. Indeed, deduc-
tion rules of the deductive tableau technique being a general approach, the author
illustrates his approach through practical examples showing that some steps often
require non-systematic adaptations to match deduction rules. We think that such non-
systematic adaptations do not allow neither the definition of generic rules nor the
automation of the method.

Compared to these different approaches, our proposal takes a wider range of con-
cepts into account: classes, attributes and their mutability, associations, inheritance,
operations, etc., and it covers the entire development process from design to imple-
mentation. Table 1 presents a comparison of these approaches based on seven repre-
sentative criteria (minus “−” means that the concept is not supported).

8 Conclusion and future work

This paper reports on our experience of developing a formal approach, based on UML
and the B formal method to build database applications. This approach includes two
main phases: 1. translating UML diagrams into B specifications, and 2. refining the
obtained B specifications into a B representation of a relational implementation. The
approach we propose permits to cover a wide range of UML concepts that are rel-
evant to design database applications. Moreover, our approach is supported by an
automatic tool UB2SQL which makes it more accessible for software engineers. This
tool allows a better integration of formal methods into the development process. In
addition, such a tool would help them detect inconsistencies in UML diagrams from
the inconsistencies discovered in the corresponding B specifications as described in
Laleau and Polack (2002). We have tried out our approach on academic case studies
(much more complex than the one presented here: 20 classes and 15 associations)
and on student projects, and promising results have been obtained. Also, it is planned
to use UB2SQL in the context of the EDEMOI8 (Ledru, 2003) project which aims at
investigating the integration of semi-formal methods (UML) and formal ones (B, Z,
etc.) for modeling and verifying airport security.

Even if the approach described in this paper has been specifically defined for the
development of relational database applications, we believe that the way it has been
defined could be applied to other kinds of application (but always with the B method).
Indeed, we always use the following main principles: (1) defining a domain-dedicated
semantics of UML diagrams, (2) translating the dedicated semantics into B, and (3)

8 The EDEMOI project is supported by the French National Action Concertée Incitative “Sécurité Infor-
matique”.

Springer

Autom Software Eng (2006) 13:497–528 525

Ta
bl

e
1

C
o

m
p

ar
is

o
n

o
f

th
e

d
if

fe
re

n
t

ap
p

ro
ac

h
es

B
ru

el
an

d
F

ra
n

ce
D

u
p

u
y

L
ed

an
g

an
d

S
o

u
q

u
iè

re
s

M
ar

ca
n

o
an

d
L

ev
y

S
n

o
o

k
an

d
B

u
tl

er
(2

0
0

1
)

M
at

th
ew

s
an

d
L

o
cu

ra
to

lo
G

u
n

th
er

et
al

.
E

d
m

o
n

d
Q

ia
n

U
B

2
S

Q
L

.

A
p

p
ro

ac
h

es
(1

9
9

6
)

(2
0

0
0

)
(2

0
0

1
)

(2
0

0
2

)
(S

ch
ew

e
et

al
.,

1
9

9
1

)
(1

9
9

9
)

(1
9

9
3

)
(1

9
9

5
)

(1
9

9
3

)

C
ri

te
ri

a

F
o

rm
al

iz
at

io
n

d
eg

re
e

H
ig

h
H

ig
h

H
ig

h
H

ig
h

H
ig

h
L

ow
M

ed
iu

m
L

ow
M

ed
iu

m
H

ig
h

G
ra

p
h

ic
al

n
o

ta
ti

o
n

s
F

u
si

o
n

U
M

L
U

M
L

U
M

L
U

M
L

−
−

−
−

U
M

L

S
u

p
p

o
rt

ed
co

n
ce

p
ts

cl
as

s
d

ia
g

ra
m

s
cl

as
s

d
ia

g
ra

m
s

cl
as

s
d

ia
g

ra
m

s
cl

as
s

d
ia

g
ra

m
s

cl
as

s
d

ia
g

ra
m

s
cl

as
se

s
m

o
n

o
va

lu
ed

cl
as

se
s

at
tr

ib
u

te
s

cl
as

se
s

cl
as

s
d

ia
g

ra
m

s

S
ta

te
d

ia
g

ra
m

s
S

ta
te

d
ia

g
ra

m
s

S
ta

te
d

ia
g

ra
m

s
at

tr
ib

u
te

s
in

h
er

it
an

ce
as

so
ci

at
io

n
s

as
so

ci
at

io
n

s
S

ta
te

d
ia

g
ra

m
s

O
C

L
ex

p
re

ss
io

n
s

C
o

ll
ab

o
ra

ti
o

n
C

o
ll

ab
o

ra
ti

o
n

d
ia

g
ra

m
s

d
ia

g
ra

m
s

E
le

m
en

ts
fo

r
w

h
ic

h
cl

as
se

s
cl

as
se

s
−

cl
as

se
s

cl
as

se
s

cl
as

se
s

cl
as

se
s

cl
as

se
s

cl
as

se
s

o
p

er
at

io
n

s
ar

e
g

en
er

at
ed

as
so

ci
at

io
n

s
as

so
ci

at
io

n
s

as
so

ci
at

io
n

s
as

so
ci

at
io

n
s

F
o

rm
al

la
n

g
u

ag
es

Z
Z

B
B

B
A

S
S

O
,

B
D

B
P

L
,

B
,

T
D

L
Z

F
ir

st
o

rd
er

lo
g

ic
B

C
o

d
e

g
en

er
at

io
n

−
−

−
−

−
−

+
−

+
+

T
o

o
l

su
p

p
o

rt
/D

ev
el

o
p

m
en

t
F

u
Z

e/
R

o
Z

/
A

rg
o

U
M

L
+B

/
U

M
L

2
B

/
U

2
B

/
U

B
2

S
Q

L
/

en
v

ir
o

n
m

en
t

P
ar

ad
ig

m
P

lu
s

R
O

S
E

A
rg

o
U

M
L

O
b

je
ct

ee
ri

n
g

R
O

S
E

−
−

−
−

R
O

S
E

Springer

526 Autom Software Eng (2006) 13:497–528

defining a refinement process that takes the concepts of the target language into ac-
count.

Future work includes the generalization of our approach to a better consideration
of integrity constraints during the generation of B operations. It would be interest-
ing to automatically determine the precondition of an operation by just providing
its body (B substitution) and the invariant we would like to preserve. Other ongoing
work concerns the optimization of the SQL code generated from transactions in order
to reduce their execution time and/or the size of buffers used during the evaluation
of SQL requests (Mammar and Laleau, 2006). We also plan to augment UB2SQL
by supporting the generation of JAVA/SQL code from the last B refinement level ac-
cording to the translation rules we have defined in Mammar and Laleau (2004) and to
support inheritance and aggregation/composition concepts. Note that the refinement
of an aggregation/composition structure is dealt with as if it were a simple associa-
tion; such a concept affects only the set of correct transactions. Indeed, for instance,
a transaction that deletes a composite without deleting all its parts will not be con-
sidered as correct. We also plan to define the concept of B data structure refinements
as UML model transformations (Lano, 2005) in order to make our refinement rules
more understandable to software developers.

Appendix: B substitutions

This appendix presents the semantics of the main B substitutions used in this paper
(see Table 2). The double square brackets denote optional elements.

Table 2 The main substitutions of the B language

Notation B Semantics

Skip Does not modify anything

x :=E Assigns the value of E to the variable x
PRE P THEN S END Executes S under the hypothesis that P is true

IF P THEN S ELSE T END If P is true, S is executed,

otherwise T is executed

SELECT P THEN S S or T is executed according to the truth-value

WHEN Q THEN T of P and Q
END If P and Q are both true, the substitution to

execute is arbitrarily chosen.

If P and Q are both false, the substitution is

not implementable.

ANY X WHERE P THEN indeterministically selects a value of X verifying P,

then executes S
S

END
u ← Op(v) Calls the operation Op with the parameters v and

assigns its result to u
S||T Executes simultaneously S and T
S[]T Executes either S or T
S; T Executes S then T

Springer

Autom Software Eng (2006) 13:497–528 527

References

Abrial, J. R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press (1996)
B-CORE: B-Toolkit Release 3.2. Manual. Oxford, UK (1996)
Barros, R.S.M.: Deriving relational database programs from formal specifications. In: Naftalin, M. Denvir,

B.T. Bertran, M. (eds.) Industrial Benifit fo Formal Method, Second International of Formal Methods
Europe (FME’94), vol. 873 of LNCS, Springer-Verlag (19941)

Barros R.S.M.: On the formal specification and derivation of relational database application. Ph.D thesis,
Department of Computing Science, the University of Glasgow (1994b)

Barros, R.S.M.: On the formal specification and derivation of relational database applications. Elec Notes
in Theoretical Comptuer Science 14 (1998)

Batini, C., Ceri, S., Navathe, S.: Conceptual Database Design: An Entity-Relationship Approach.
Benjamin/Cummings Publishing Company (1992).

Behm, P., Burdy, L., Meynadier, J.-M.: Well defined B. In: Bert, D. (ed.) B’98: Recent Advances in the
Development and Use of the B Method, Second International B Conference, vol. 1393 of Lecture
Notes in Computer Science pp. 29–45. Springer-Verlag (1998)

Bruel, J.M., France, R.B.: A formal object-oriented CASE tool for the development of complex
systems. In: 7th European Workshop on Next Generation of Case Tools. Available at cite-
seer.ist.psu.edu/bruel96formal.html (1996)

Burdy, L.: Traitement des expressions dépourvues de sens de la théorie des ensembles: Application à la
méthode B. Ph.D. thesis, CEDRIC Laboratory, Paris, France (2000)

Clearsy: Atelier B, Manuel de Référence. available at http://www.atelierb.societe.com (2003)
CLEARSY: (2004) http://www.b4free.com/
Codd, E.: A relational model for large shared data banks. Commun of the ACM 13(6) (1970)
Davies, J., Simpson, A., Martin, A.: Teaching formal methods in context. In: Neville Dean, C, Boute, R.T.

(eds.) Teaching Formal Methods, CoLogNET/FME Symposium (TFM 2004), vol. 3294 of LNCS.
Springer (2004).

Dupuy, S.: Couplage de notations semi-formelles et formelles pour la spcification des systmes
d’information. Ph.D. thesis, Universit Joseph Fourier (2000)

Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An overview of RoZ: A tool for integrating UML and Z spec-
ifications. In: Wangler, B., Bergman, L. (eds.), 12th International Conference Advanced Information
Systems Engineering (CAiSE’00), vol. 1789 of LNCS Springer-Verlag (2000)

Edmond, D.: Refining database systems. In: Bowen, J.P. Hinchey, M.G. (eds.) The Z Formal Specification
Notation (ZUM’95), vol. 967 of LNCS Springer-Verlag (1995)

Elmasri, R., Navathe, S.: Fundamental of Database Systems (4th edition). Addison-Wesley (2003)
Gunther, T., Schewe, K.D., Wetzel, I.: On the derivation of executable database programs from formal

specifications. In: Woodcock, J.C.P., Larsen, P.G. (eds.) Industrial-Strength Formal Methods, First
International Symposium of Formal Methods Europe (FME’93), vol. 670 of LNCS Springer-Verlag
(1993)

Hall, A.: Using Z as a specification calculus for object-oriented systems. In: VDM’90: 3rd International
Conference, Kiel, Germany, vol. 428 of LNCS Springer-Verlag (1990)

Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming 8(3)
(1987)

Hughes, J.: Why functional programming matters. Compu J 32(2) (1989)
Kim, S., Carrington, D.: Formalizing the UML class diagram using OBJECT-Z. In: UML99, vol. 1723 of

LNCS Springer-Verlag (1999)
Laleau, R.: On the interest of combining UML with the B formal method for the specification of database

applications. In: ICEIS’00: 2nd International Conference on Enterprise Information Systems. Avail-
able at http://www.univ-paris12.fr/lacl/laleau/ (2000).

Laleau, R., Mammar, A.: A generic process to refine a B specification into a relational database implemen-
tation. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) The First International Conference
of B and Z Users on Formal Specification and Development in Z and B (ZB’00), vol. 1878 of LNCS
Springer-Verlag (2000a)

Laleau, R., Mammar, A.: An overview of a method and its support tool for generating B specifications from
UML notations. In: The Fifteenth IEEE International Conference on Automated Software Engineering
(ASE’00) IEEE Computer Society (2000b)

Laleau, R., Polack, F.: A rigorous metamodel for UML static conceptual modelling of information sys-
tems. In: Dittrich, K.R., Geppert, A., Norrie, A.C. (eds.) 13th International Conference on Advanced
Information Systems Engineering (CAiSE’01), vol. 2068 of LNCS Springer-Verlag (2001a)

Springer

528 Autom Software Eng (2006) 13:497–528

Laleau, R., Polack, F.: Specification of integrity-preserving operations in information systems by using a
formal UML-based language. Info Soft Techno 43(12) (2001b)

Laleau, R., Polack, F.: Coming and going from UML to B: A proposal to support traceability in rigorous
IS development. In: Bert, D., Bowen, J.-P., Henson, M., Robinson, K. (eds.), Formal Specification and
Development in Z and B (ZB’02), vol. 2272 of Lecture Notes in Computer Science, Springer-Verlag
(2002)

Lano, K.: Advanced Systems Design with Java. UML and MDA Elsevier (2005)
Lano, K., Clark, D., Androutsopoulos, K.: UML to B: Formal verification of object-oriented models. In:

Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM’04: 4th International Conference on Integrated Formal
Methods (2004)

Ledang, H., Souquières, J.: Modeling class operations in B: Application to UML behavioral diagrams. In:
The Sixteenth IEEE International Conference on Automated Software Engineering (ASE’01). IEEE
Computer Society (2001)

Ledang, H., Souquieres, J., Charles, S.: ArgoUML+B : Un Outil de Transformation Systématique de
Spécifications UML vers B ’. In: Proceedings of AFADL’2003, INRIA (2003)

Ledru, Y.: http://www-lsr.imag.fr/EDEMOI/ (2003)
Leuschel, M., Butler, M.-J.: ProB: A model checker for B. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.)

The 12th International FME Symposium (FME’03), vol. 2805 of LNCS. Springer-Verlag (2003)
Mammar, A.: Un environnement formel pour le développement d’Applications bases de données. Ph.D.

thesis, CEDRIC Laboratory, Paris, France (2002)
Mammar, A., Laleau, R.: Design of an automatic prover dedicated to the refinement of database applica-

tions. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) The 12th International FME Symposium (FME’03),
vol. 2805 of LNCS. Springer-Verlag (2003)

Mammar, A., Laleau, R.: Génération de Code à Partir d’une Spécification B : Application aux Bases de
Données’. In: Proceedings of Approches Formelles dans l’Assistance au Développement de Logiciels”
(AFADL’2004) (2004)

Mammar, A., Laleau, R.: UB2SQL: An integrated environment based on UML and the B formal method
for the development of database applications. Technical report, University of Luxembourg. Available
at http://se2c.uni.lu/users/AM (2005)

Mammar, A., Laleau, R.: From a B formal specification to an executable code: Application to the relational
database domain. Information & Software Technology 48(4) (2006)

Mandrioli, D.: Advertising formal methods and organizing their teaching: Yes, but In: Neville Dean, C.,
Boute, R.T. (eds.), Teaching Formal Methods, CoLogNET/FME Symposium (TFM 2004), vol. 3294
of LNCS. Springer (2004)

Marcano, R., Levy, N.: Transformation rules of OCL constraints into B formal expressions. In: Jurjens,
J., Cengarle, M. V., Fernandez, E. B., Rumpe, B., Sandner, R. (eds.) Critical Systems Development
with UML – Proceedings of the UML’02 Workshop, Technische Universität München, Institut für
Informatik (2002)

Matthews, B., Locuratolo, E.: Formal development of databases in ASSO and B. In: Wing, J.-W.,
Woodcock, J.-C.-P., Davies, J.-W.-M. (eds.), Proceedings of FM’99: World Congress on Formal Meth-
ods, vol. 1709 of LNCS Springer-Verlag (1999)

Melton, J., Simon, A.: Understanding the New SQL: A Complete Guide. Morgan Kaufmann (1993)
NoMagic: http//:www.MagicDraw.com (2005)
Oliveira, J.: A survey of formal methods courses in european higher education. In: Neville Dean, C., Boute,

R.T. (eds.) Teaching Formal Methods, CoLogNET/FME Symposium (TFM 2004) vol. 3294 of LNCS
Springer (2004)

OMG: http://www.omg.org/ (2005)
Qian, X.: The deductive synthesis of database transactions. ACM Trans Data Syst 18(4) (1993)
Rational: http://www.rational.com (2003)
Rational: http://www.rational.com (2005)
Schewe, K., Schmidt, J., Wetzel, I.: Specification and refinement in an integrated databaseapplication en-

vironment. In: Prehn, S., Toetenel, T. (eds.), VDM’91: Proceedings of Formal Software Development
Methods vol. 552 of LNCS Springer-Verlag (1991)

Snook, C., Butler, M.: Using a graphical design tool for formal specification. In: Kadoda, G. (ed.) The
13th Annual Workshop of the Psychology of Programming Interest Group (PPIG’01). Available at
http://www.ppig.org/papers/13th-snook.pdf (2001)

Treharne, H.: Supplementing a UML development process with B. In: FME2002:International Symposium
of Formal Methods Europe, vol. 2391 of LNCS. Springer-Verlag (2002)

Springer

